JP2014198407A - Double-sided metal-clad laminate sheet and method for manufacturing the same - Google Patents

Double-sided metal-clad laminate sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2014198407A
JP2014198407A JP2013074548A JP2013074548A JP2014198407A JP 2014198407 A JP2014198407 A JP 2014198407A JP 2013074548 A JP2013074548 A JP 2013074548A JP 2013074548 A JP2013074548 A JP 2013074548A JP 2014198407 A JP2014198407 A JP 2014198407A
Authority
JP
Japan
Prior art keywords
metal foil
resin
cured layer
double
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013074548A
Other languages
Japanese (ja)
Other versions
JP6112452B2 (en
Inventor
昌二 橋本
Shoji Hashimoto
昌二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013074548A priority Critical patent/JP6112452B2/en
Publication of JP2014198407A publication Critical patent/JP2014198407A/en
Application granted granted Critical
Publication of JP6112452B2 publication Critical patent/JP6112452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a double-sided metal-clad laminate sheet capable of inhibiting warpage even in a case where the respective thicknesses of metal foils on both surfaces thereof differ.SOLUTION: A double-sided metal-clad laminate sheet 1 is obtained by laminating and integrating: a first metal foil 21; an insulating layer 4 formed as a result of the curing of a resin composition and including at least one fiber substrate 3 in the interior thereof; and a second metal foil 22 thinner than the first metal foil 21. In a case where the thickness of a first cured resin layer 51 existing in-between the first metal foil 21 and the fiber substrate 3 closest to the first metal foil 21 is defined as Rand where the thickness of a second cured resin layer 52 existing in-between the second metal foil 22 and the fiber substrate 3 closest to the second metal foil 22 is defined as R, the relational formula of R≥2Ris satisfied.

Description

本発明は、多層プリント配線板等の材料として用いられる両面金属張積層板及びその製造方法に関する。   The present invention relates to a double-sided metal-clad laminate used as a material for multilayer printed wiring boards and the like, and a method for producing the same.

近年、多層プリント配線板等に用いられる両面銅張積層板については、大容量・情報化の流れから、層数増大による薄型化が望まれており、厚みの薄い銅箔が使用される傾向にある。また、両面銅張積層板の表面に形成する回路(導体パターン)をファインパターン化して配線密度を上げる場合にも薄い銅箔が用いられている。また、両面銅張積層板の両面の銅箔間の絶縁層の厚みも薄層化して板厚全体を薄くする傾向にある。   In recent years, for double-sided copper-clad laminates used for multilayer printed wiring boards, etc., due to the trend toward high capacity and information technology, thinning by increasing the number of layers is desired, and thin copper foil tends to be used. is there. A thin copper foil is also used when a circuit (conductor pattern) formed on the surface of a double-sided copper clad laminate is made into a fine pattern to increase the wiring density. In addition, the thickness of the insulating layer between the copper foils on both sides of the double-sided copper-clad laminate tends to be reduced to reduce the overall thickness.

このような状況下において、両面の銅箔の厚みが異なる両面銅張積層板が使用されている。この両面銅張積層板の一方の面にはグラウンド層を形成するために厚い銅箔が用いられ、他方の面には上記のような事情から薄い銅箔が用いられている。   Under such circumstances, double-sided copper clad laminates having different thicknesses of copper foils on both sides are used. A thick copper foil is used on one side of the double-sided copper clad laminate to form a ground layer, and a thin copper foil is used on the other side for the above reasons.

しかし、板厚全体が薄い両面銅張積層板において両面の銅箔の厚みを異ならせると、厚みの薄い銅箔側が凸、厚みの厚い銅箔側が凹となるような反りが発生しやすくなる。そして、このように反りが発生した両面銅張積層板は、プリント配線板の生産ラインの回路形成工程におけるロール等に引っ掛かるなど搬送不良が生じるという問題がある。   However, if the thicknesses of the copper foils on both sides of the double-sided copper-clad laminate with a thin overall plate thickness are made different, warping is likely to occur such that the thin copper foil side is convex and the thick copper foil side is concave. And the double-sided copper clad laminated board which generate | occur | produced the curvature in this way has the problem that conveyance defect arises, for example, being caught in the roll in the circuit formation process of the production line of a printed wiring board.

ところで、特許文献1には、片面の銅箔をエッチングしたときに発生する反りを小さくすることを目的とした両面銅張積層板の製造方法の発明が記載されている。特許文献1に記載の両面銅張積層板では、一つの態様として、最上側に回路形成用の銅箔を配設し、最下側にアース用の銅箔を配設すると共に、回路形成用の銅箔の厚みをアース用の銅箔の厚みの52%未満とすることによって、エッチング後の反りの発生を抑制している。また他の態様として、最上側に回路形成用の銅箔を配設し、最下側にアース用の銅箔を配設すると共に、プリプレグの最上面の樹脂量を最下面の樹脂量に比較して10重量%以上多く含有することによって、エッチング後の反りの発生を抑制している。   By the way, Patent Document 1 describes an invention of a method for producing a double-sided copper-clad laminate for the purpose of reducing the warpage that occurs when a copper foil on one side is etched. In the double-sided copper-clad laminate described in Patent Document 1, as one aspect, a copper foil for circuit formation is disposed on the uppermost side, a copper foil for grounding is disposed on the lowermost side, and for circuit formation By making the thickness of the copper foil less than 52% of the thickness of the grounding copper foil, the occurrence of warpage after etching is suppressed. As another aspect, a copper foil for circuit formation is disposed on the uppermost side, a copper foil for grounding is disposed on the lowermost side, and the resin amount on the uppermost surface of the prepreg is compared with the resin amount on the lowermost surface. And by containing more than 10 weight%, generation | occurrence | production of the curvature after an etching is suppressed.

特開平7−22731号公報JP-A-7-22731

しかし、特許文献1に記載の両面銅張積層板の製造方法は、上記のいずれの態様も、エッチング後の反りを想定し、この反りを相殺する方向にあらかじめ両面銅張積層板を反らせておくというものである。このように、特許文献1に記載の両面銅張積層板は、最初から反りが発生しているので、プリント配線板の生産ラインにおいてロール等に引っ掛かるなど搬送不良が生じるという問題がある。   However, the manufacturing method of the double-sided copper-clad laminate described in Patent Document 1 assumes that the warp after etching is assumed in any of the above aspects, and the double-sided copper-clad laminate is warped in advance in a direction to cancel the warp. That's it. Thus, since the double-sided copper clad laminate described in Patent Document 1 has warped from the beginning, there is a problem that a conveyance failure occurs such as being caught on a roll or the like in a production line of a printed wiring board.

本発明は上記の点に鑑みてなされたものであり、両面の金属箔の厚みが異なる場合であっても、反りの発生を抑制することができる両面金属張積層板及びその製造方法を提供することを目的とする。   This invention is made | formed in view of said point, Even if it is a case where the thickness of metal foil of both surfaces differs, the double-sided metal clad laminated board which can suppress generation | occurrence | production of curvature, and its manufacturing method are provided. For the purpose.

本発明に係る両面金属張積層板は、
第1金属箔と、
樹脂組成物が硬化して形成され、少なくとも1枚以上の繊維基材を内部に含む絶縁層と、
前記第1金属箔の厚みよりも厚みの薄い第2金属箔と、
が積層一体化された両面金属張積層板である。
そして、
前記第1金属箔と、前記第1金属箔に最も近い繊維基材との間に存在する第1樹脂硬化層の厚みをRとし、
前記第2金属箔と、前記第2金属箔に最も近い繊維基材との間に存在する第2樹脂硬化層の厚みをRとしたとき、
≧2R
の関係式を満たすものである。
The double-sided metal-clad laminate according to the present invention is
A first metal foil;
An insulating layer formed by curing the resin composition and including at least one or more fiber substrates; and
A second metal foil having a thickness smaller than that of the first metal foil;
Is a double-sided metal-clad laminate that is laminated and integrated.
And
Wherein the first metal foil, the thickness of the first resin cured layer existing between the nearest fiber base material in the first metal foil and R 1,
When the second metal foil, the thickness of the second resin cured layer existing between said second metal foil to the nearest fiber base material was changed to R 2,
R 1 ≧ 2R 2
The following relational expression is satisfied.

本発明に係る両面金属張積層板において、
≧5R
の関係式を満たしていることが好ましい。
In the double-sided metal-clad laminate according to the present invention,
R 1 ≧ 5R 2
It is preferable that the following relational expression is satisfied.

また本発明は、
前記第1金属箔の厚みをMとし、
前記第2金属箔の厚みをMとしたとき、
≧1.4M
の関係式を満たしている両面金属張積層板において好適に適用される。
The present invention also provides
The thickness of the first metal foil and M 1,
When the thickness of the second metal foil and a M 2,
M 1 ≧ 1.4M 2
It is suitably applied to a double-sided metal-clad laminate that satisfies the relational expression:

本発明の第一の態様に係る両面金属張積層板の製造方法は、
樹脂組成物を繊維基材に含浸して形成され、前記繊維基材の一方の面に第1樹脂半硬化層が設けられ、前記繊維基材の他方の面に前記第1樹脂半硬化層の厚みよりも厚みの薄い第2樹脂半硬化層が設けられた基材偏在型プリプレグを用い、
前記第1樹脂半硬化層が一方の最外層に配置され、前記第2樹脂半硬化層が他方の最外層に配置されるように、
前記基材偏在型プリプレグを少なくとも1枚以上積層し、
第1金属箔を前記最外層の第1樹脂半硬化層に重ね、
前記第1金属箔の厚みよりも厚みの薄い第2金属箔を前記最外層の第2樹脂半硬化層に重ねて加熱加圧成形することを特徴とする。
The method for producing a double-sided metal-clad laminate according to the first aspect of the present invention includes:
The fiber base material is impregnated with a resin composition, a first resin semi-cured layer is provided on one surface of the fiber base material, and the first resin semi-cured layer is formed on the other surface of the fiber base material. Using a base material uneven distribution type prepreg provided with a second resin semi-cured layer having a thickness smaller than the thickness,
The first resin semi-cured layer is disposed on one outermost layer, and the second resin semi-cured layer is disposed on the other outermost layer,
Laminating at least one base ubiquitous prepreg,
Overlaying the first metal foil on the outermost first resin semi-cured layer,
A second metal foil having a thickness smaller than that of the first metal foil is superimposed on the second resin semi-cured layer as the outermost layer, and is heated and pressed.

本発明の第二の態様に係る両面金属張積層板の製造方法は、
樹脂組成物を繊維基材に含浸して形成され、前記繊維基材の両面に第1樹脂半硬化層が設けられた第1プリプレグと、
樹脂組成物を繊維基材に含浸して形成され、前記繊維基材の両面に前記第1樹脂半硬化層の厚みよりも厚みの薄い第2樹脂半硬化層が設けられた第2プリプレグと、
を用い、
前記第1樹脂半硬化層が一方の最外層に配置され、前記第2樹脂半硬化層が他方の最外層に配置されるように、
前記第1プリプレグ及び前記第2プリプレグのそれぞれを少なくとも1枚以上積層し、
第1金属箔を前記最外層の第1樹脂半硬化層に重ね、
前記第1金属箔の厚みよりも厚みの薄い第2金属箔を前記最外層の第2樹脂半硬化層に重ねて加熱加圧成形することを特徴とする。
The method for producing a double-sided metal-clad laminate according to the second aspect of the present invention,
A first prepreg formed by impregnating a fiber base material with a resin composition, and provided with a first resin semi-cured layer on both sides of the fiber base;
A second prepreg formed by impregnating a fiber base material with a resin composition, and provided with a second resin semi-cured layer having a thickness smaller than the thickness of the first resin semi-cured layer on both surfaces of the fiber base;
Use
The first resin semi-cured layer is disposed on one outermost layer, and the second resin semi-cured layer is disposed on the other outermost layer,
Laminating at least one each of the first prepreg and the second prepreg,
Overlaying the first metal foil on the outermost first resin semi-cured layer,
A second metal foil having a thickness smaller than that of the first metal foil is superimposed on the second resin semi-cured layer as the outermost layer, and is heated and pressed.

本発明によれば、厚みの厚い第1金属箔に厚みの厚い第1樹脂硬化層を隣接させると共に、厚みの薄い第2金属箔に厚みの薄い第2樹脂硬化層を隣接させることによって、両面金属張積層板1の両面において、第1金属箔21と第1樹脂硬化層51との間、及び第2金属箔22と第2樹脂硬化層52との間で生じる応力の不均衡を解消することができる。これにより、両面金属張積層板1の残留応力を緩和することができ、両面金属張積層板の反りの発生を抑制することができる。   According to the present invention, a thick first resin cured layer is adjacent to a thick first metal foil, and a thin second resin cured layer is adjacent to a thin second metal foil. On both surfaces of the metal-clad laminate 1, the stress imbalance between the first metal foil 21 and the first resin cured layer 51 and between the second metal foil 22 and the second resin cured layer 52 is eliminated. be able to. Thereby, the residual stress of the double-sided metal-clad laminate 1 can be relaxed, and the occurrence of warpage of the double-sided metal-clad laminate can be suppressed.

本発明に係る両面金属張積層板の製造方法の一例を示し、(a)(b)は概略断面図である。An example of the manufacturing method of the double-sided metal-clad laminate which concerns on this invention is shown, (a) (b) is a schematic sectional drawing. 本発明に係る両面金属張積層板の製造方法の他の一例を示し、(a)(b)は概略断面図である。The other example of the manufacturing method of the double-sided metal clad laminated board which concerns on this invention is shown, (a) (b) is a schematic sectional drawing. 本発明に係る両面金属張積層板の製造方法の他の一例を示し、(a)(b)は概略断面図である。The other example of the manufacturing method of the double-sided metal clad laminated board which concerns on this invention is shown, (a) (b) is a schematic sectional drawing. 両面金属張積層板の反りの測定方法を示すものであり、(a)(b)は概略断面図である。The measuring method of the curvature of a double-sided metal-clad laminate is shown, (a) (b) is a schematic sectional drawing.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(実施形態1)
図1(b)は本発明に係る両面金属張積層板1の一例を示す。この両面金属張積層板1は、第1金属箔21と、絶縁層4と、第2金属箔22とがこの順に積層一体化されて形成されている。
(Embodiment 1)
FIG. 1B shows an example of a double-sided metal-clad laminate 1 according to the present invention. The double-sided metal-clad laminate 1 is formed by laminating and integrating a first metal foil 21, an insulating layer 4, and a second metal foil 22 in this order.

第1金属箔21としては、材質は特に限定されるものではないが、例えば、銅箔、ステンレス箔、ニッケル箔、ニクロム箔等を用いることができる。第1金属箔21の厚みMは、第2金属箔22の厚みMよりも厚ければ、特に限定されるものではないが、例えば、18〜70μmである。 The material of the first metal foil 21 is not particularly limited. For example, a copper foil, a stainless steel foil, a nickel foil, a nichrome foil, or the like can be used. The thickness M 1 of the first metal foil 21, if thicker than the thickness M 2 of the second metal foil 22, is not particularly limited, for example, a 18~70Myuemu.

また絶縁層4は、樹脂組成物が硬化した樹脂硬化物で形成され、少なくとも1枚以上の繊維基材3を内部に含んでいる。樹脂組成物は、例えば、熱硬化性樹脂、硬化剤、硬化促進剤、充填剤、難燃剤等を含有することができる。熱硬化性樹脂としては、例えば、エポキシ樹脂、ポリフェニレンエーテル樹脂、フェノール樹脂、ポリイミド樹脂等を用いることができる。硬化剤としては、例えば、フェノール化合物、シアネート化合物、スチレン系化合物、ジアミン化合物、酸無水物、ジシアンジアミド、ポリアミド等を用いることができる。硬化促進剤としては、熱硬化性樹脂の硬化反応に適したものを適宜用いることができ、例えば、イミダゾール系化合物、アミン系化合物、金属石鹸等を用いることができる。充填剤としては、例えば、シリカ、アルミナ、酸化マグネシウム、タルク、水酸化アルミニウム、水酸化マグネシウム等の無機充填剤、樹脂フィラー等の有機充填剤を用いることができる。難燃剤としては、ハロゲン系難燃剤、リン系難燃剤など公知のものを所望に応じて適宜用いることができる。繊維基材3としては、材質は特に限定されるものではないが、例えば、ガラスクロス(ガラス布)、ガラスペーパ(ガラス不織布)等の無機繊維基材、アラミド(全芳香族ポリアミド)等の織布や不織布等の有機繊維基材を用いることができる。図1(b)に示す両面金属張積層板1においては、絶縁層4が1枚の繊維基材3を内部に含んでいるが、後述の図2(b)や図3(b)に示すように、絶縁層4が2枚以上の繊維基材3を内部に含んでいてもよい。絶縁層4の厚みは、特に限定されるものではないが、30〜300μmである。   The insulating layer 4 is formed of a cured resin obtained by curing the resin composition, and includes at least one or more fiber base materials 3 therein. The resin composition can contain, for example, a thermosetting resin, a curing agent, a curing accelerator, a filler, a flame retardant, and the like. As the thermosetting resin, for example, an epoxy resin, a polyphenylene ether resin, a phenol resin, a polyimide resin, or the like can be used. As the curing agent, for example, phenol compounds, cyanate compounds, styrene compounds, diamine compounds, acid anhydrides, dicyandiamide, polyamides, and the like can be used. As a hardening accelerator, what is suitable for hardening reaction of a thermosetting resin can be used suitably, For example, an imidazole type compound, an amine compound, a metal soap, etc. can be used. As the filler, for example, inorganic fillers such as silica, alumina, magnesium oxide, talc, aluminum hydroxide, and magnesium hydroxide, and organic fillers such as resin fillers can be used. As the flame retardant, known ones such as halogen flame retardants and phosphorus flame retardants can be appropriately used as desired. The material of the fiber base material 3 is not particularly limited. For example, inorganic fiber base materials such as glass cloth (glass cloth) and glass paper (glass nonwoven cloth), and woven cloth such as aramid (fully aromatic polyamide). Organic fiber base materials such as cloth and nonwoven fabric can be used. In the double-sided metal-clad laminate 1 shown in FIG. 1 (b), the insulating layer 4 contains one fiber base material 3 inside, which is shown in FIG. 2 (b) and FIG. 3 (b) described later. As described above, the insulating layer 4 may include two or more fiber base materials 3 inside. The thickness of the insulating layer 4 is not particularly limited, but is 30 to 300 μm.

また第2金属箔22としては、第1金属箔21と同様の材質のものを用いることができる。第2金属箔22の厚みMは、第1金属箔21の厚みMよりも薄ければ、特に限定されるものではないが、例えば、7〜35μmである。 The second metal foil 22 can be made of the same material as the first metal foil 21. The thickness M 2 of the second metal foil 22, if thin than the thickness M 1 of the first metal foil 21 is not particularly limited, for example, 7 to 35 m.

上記のように、本発明に係る両面金属張積層板1においては、M>Mの関係式を満たしている。厚みの厚い第1金属箔21は、例えば、回路形成層のほか、グラウンド層、接地層、電源層等として用いられる。厚みの薄い第2金属箔22は、例えば、回路形成層、特に比較的緻密な導体パターンが形成される層や多層プリント配線板の内層回路等として用いられる。 As described above, in the double-sided metal-clad laminate 1 according to the present invention, the relational expression of M 1 > M 2 is satisfied. The thick first metal foil 21 is used, for example, as a ground layer, a ground layer, a power supply layer, etc. in addition to a circuit forming layer. The thin second metal foil 22 is used as, for example, a circuit forming layer, particularly a layer on which a relatively dense conductor pattern is formed, an inner layer circuit of a multilayer printed wiring board, or the like.

本発明において、第1金属箔21の厚みMと第2金属箔22の厚みMとが、特にM≧1.4Mの関係式を満たしている場合、顕著な反り抑制の効果を得ることができる。すなわち、第1金属箔21の厚みMと第2金属箔22の厚みMの厚みとの差が大きいと、両面金属張積層板1の両面における応力差が大きくなるが、後述するように、本発明においては絶縁層4において応力を相殺することによって、反りの発生を抑制することができる。 In the present invention, if the thickness M 1 of the first metal foil 21 and the thickness M 2 of the second metal foil 22, in particular satisfies the relation M 1 ≧ 1.4M 2, the effect of remarkable warp suppressing Can be obtained. That is, if the difference between the thicknesses of M 2 between the thickness M 1 of the first metal foil 21 second metal foil 22 is large, the stress difference at both sides of the double-sided metal-clad laminate 1 is increased, as described below In the present invention, the occurrence of warpage can be suppressed by canceling the stress in the insulating layer 4.

図1(b)に示すように、第1金属箔21と繊維基材3との間には第1樹脂硬化層51が存在する。後述の図2(b)や図3(b)に示すように、絶縁層4が2枚以上の繊維基材3を内部に含んでいる場合には、第1樹脂硬化層51は、第1金属箔21と、第1金属箔21に最も近い繊維基材3との間に存在する。第1樹脂硬化層51は、図1(a)に示す後述の基材偏在型プリプレグ6の第1樹脂半硬化層81が完全硬化して形成されたものである。   As shown in FIG. 1B, a first resin cured layer 51 exists between the first metal foil 21 and the fiber base 3. As shown in FIG. 2B and FIG. 3B, which will be described later, when the insulating layer 4 includes two or more fiber base materials 3, the first resin cured layer 51 is a first resin layer. It exists between the metal foil 21 and the fiber substrate 3 closest to the first metal foil 21. The first resin cured layer 51 is formed by completely curing a first resin semi-cured layer 81 of a later-described base material uneven prepreg 6 shown in FIG.

他方、図1(b)に示すように、第2金属箔22と繊維基材3との間には第2樹脂硬化層52が存在する。後述の図2(b)や図3(b)に示すように、絶縁層4が2枚以上の繊維基材3を内部に含んでいる場合には、第2樹脂硬化層52は、第2金属箔22と、第2金属箔22に最も近い繊維基材3との間に存在する。第2樹脂硬化層52は、図1(a)に示す後述の基材偏在型プリプレグ6の第2樹脂半硬化層82が完全硬化して形成されたものである。   On the other hand, as shown in FIG. 1B, a second resin cured layer 52 exists between the second metal foil 22 and the fiber base material 3. As shown in FIG. 2B and FIG. 3B described later, when the insulating layer 4 includes two or more fiber base materials 3 inside, the second resin cured layer 52 is the second resin cured layer 52. It exists between the metal foil 22 and the fiber substrate 3 closest to the second metal foil 22. The second resin cured layer 52 is formed by completely curing a second resin semi-cured layer 82 of a base material ubiquitous prepreg 6 described later shown in FIG.

そして、本発明に係る両面金属張積層板1においては、第1樹脂硬化層51の厚みをRとし、第2樹脂硬化層52の厚みをRとしたとき、R≧2Rの関係式を満たしている。ここで、第1樹脂硬化層51及び第2樹脂硬化層52を構成する樹脂硬化物の線膨張係数は金属よりも大きい。しかも厚みの厚い第1樹脂硬化層51の線膨張にかかる応力の影響は、厚みの薄い第2樹脂硬化層52の線膨張にかかる応力の影響よりも大きくなる。したがって、厚みの厚い第1金属箔21に厚みの厚い第1樹脂硬化層51を隣接させると共に、厚みの薄い第2金属箔22に厚みの薄い第2樹脂硬化層52を隣接させることによって、両面金属張積層板1の両面において、第1金属箔21と第1樹脂硬化層51との間、及び第2金属箔22と第2樹脂硬化層52との間で生じる応力の不均衡を解消することができる。これにより、両面金属張積層板1の残留応力を緩和することができ、両面金属張積層板1の反りの発生を抑制することができる。このとき特にR≧5Rの関係式を満たしていることが好ましく、より好ましくはR≧10Rである。これにより、両面金属張積層板1の反りの発生をより好適に抑制することができる。 In the double-sided metal-clad laminate 1 according to the present invention, when the thickness of the first resin cured layer 51 is R 1 and the thickness of the second resin cured layer 52 is R 2 , the relationship of R 1 ≧ 2R 2 The expression is satisfied. Here, the linear expansion coefficient of the cured resin that forms the first cured resin layer 51 and the second cured resin layer 52 is larger than that of the metal. Moreover, the influence of the stress on the linear expansion of the thick first resin cured layer 51 is larger than the influence of the stress on the linear expansion of the thin second resin cured layer 52. Therefore, the first resin cured layer 51 having a large thickness is adjacent to the first metal foil 21 having a large thickness, and the second resin cured layer 52 having a small thickness is adjacent to the second metal foil 22 having a small thickness. On both surfaces of the metal-clad laminate 1, the stress imbalance between the first metal foil 21 and the first resin cured layer 51 and between the second metal foil 22 and the second resin cured layer 52 is eliminated. be able to. Thereby, the residual stress of the double-sided metal-clad laminate 1 can be relaxed, and the occurrence of warpage of the double-sided metal-clad laminate 1 can be suppressed. At this time, it is particularly preferable that the relational expression of R 1 ≧ 5R 2 is satisfied, and more preferably R 1 ≧ 10R 2 . Thereby, generation | occurrence | production of the curvature of the double-sided metal-clad laminated board 1 can be suppressed more suitably.

次に、上記の両面金属張積層板1の製造方法について説明する。   Next, the manufacturing method of said double-sided metal-clad laminate 1 is demonstrated.

図1(b)に示す両面金属張積層板1を製造するにあたっては、図1(a)に示すような基材偏在型プリプレグ6を用いる。   In manufacturing the double-sided metal-clad laminate 1 shown in FIG. 1 (b), a base material unevenly distributed prepreg 6 as shown in FIG. 1 (a) is used.

基材偏在型プリプレグ6は、繊維基材3の一方の面に第1樹脂半硬化層81を設け、繊維基材3の他方の面に第1樹脂半硬化層81の厚みよりも厚みの薄い第2樹脂半硬化層82を設けて形成されている。このように、基材偏在型プリプレグ6の厚み方向の中央部から繊維基材3が第2樹脂半硬化層82の側に偏在している。このような基材偏在型プリプレグ6は、基本的には上記の樹脂組成物を適当な溶剤(トルエン等)に溶解してワニスを調製し、このワニスを繊維基材3に含浸し、これを半硬化状態となるまで加熱乾燥して製造することができるが、例えば、次のようにして繊維基材3を偏在させることができる。すなわち、ワニスを繊維基材3に含浸させた後、ロールコーター等により一方の面にワニスを余分に付着させたり、またスキージ等により他方の面からワニスを除去したりすることによって、繊維基材3を厚み方向の中央部から片側に偏在させることができる。また、ワニスの塗布装置により繊維基材3に対して両側から異なる量のワニスを塗布し、繊維基材3の両面でのワニスの含浸量を異ならせることによって、繊維基材3を厚み方向の中央部から片側に偏在させることもできる。   In the base material uneven distribution type prepreg 6, the first resin semi-cured layer 81 is provided on one surface of the fiber base material 3, and the thickness is thinner than the thickness of the first resin semi-cured layer 81 on the other surface of the fiber base material 3. The second resin semi-cured layer 82 is provided. Thus, the fiber base material 3 is unevenly distributed on the second resin semi-cured layer 82 side from the central portion in the thickness direction of the base material uneven prepreg 6. Such a base material uneven distribution type prepreg 6 is basically prepared by dissolving the resin composition in an appropriate solvent (toluene or the like) to prepare a varnish, impregnating the fiber base material 3 with this varnish, Although it can manufacture by heat-drying until it will be in a semi-hardened state, the fiber base material 3 can be unevenly distributed as follows, for example. That is, after impregnating the fiber base material 3 with the varnish, the fiber base material is adhered to the one surface with a roll coater or the like, or the varnish is removed from the other surface with a squeegee or the like. 3 can be unevenly distributed from the central portion in the thickness direction to one side. Further, by applying different amounts of varnish from both sides to the fiber base material 3 by using a varnish coating device, and making the impregnation amount of the varnish on both sides of the fiber base material 3 different, It can also be unevenly distributed from the center to one side.

そして、図1(a)に示すように、第1金属箔21を基材偏在型プリプレグ6の第1樹脂半硬化層81に重ね、第2金属箔22を基材偏在型プリプレグ6の第2樹脂半硬化層82に重ねて加熱加圧成形することによって、図1(b)に示すような両面金属張積層板1を製造することができる。両面金属張積層板1の絶縁層4は、半硬化状態の基材偏在型プリプレグ6が完全硬化して形成される。   And as shown to Fig.1 (a), the 1st metal foil 21 is piled up on the 1st resin semi-hardened layer 81 of the base material uneven distribution type prepreg 6, and the 2nd metal foil 22 is the 2nd of the base material uneven distribution type prepreg 6. A double-sided metal-clad laminate 1 as shown in FIG. 1B can be manufactured by heating and press-molding over the resin semi-cured layer 82. The insulating layer 4 of the double-sided metal-clad laminate 1 is formed by completely curing a semi-cured base material uneven distribution type prepreg 6.

(実施形態2)
図2(b)は本発明に係る両面金属張積層板1の他の一例を示す。この両面金属張積層板1は、絶縁層4が2枚の繊維基材3を内部に含んでいる点で、図1(b)に示す両面金属張積層板1と相違し、その他の点では共通する。よって、共通点についての説明は省略する。
(Embodiment 2)
FIG. 2B shows another example of the double-sided metal-clad laminate 1 according to the present invention. This double-sided metal-clad laminate 1 is different from the double-sided metal-clad laminate 1 shown in FIG. 1 (b) in that the insulating layer 4 includes two fiber base materials 3 inside. Common. Therefore, the description about a common point is abbreviate | omitted.

図2(b)に示す両面金属張積層板1を製造するにあたっては、2枚の基材偏在型プリプレグ6を積層して用いる。この場合、図2(a)に示すように、第1樹脂半硬化層81が一方の最外層に配置され、第2樹脂半硬化層82が他方の最外層に配置されるように、2枚の基材偏在型プリプレグ6を積層する。そして、第1金属箔21を最外層の第1樹脂半硬化層81に重ね、第2金属箔22を最外層の第2樹脂半硬化層82に重ねて加熱加圧成形することによって、図2(b)に示すような両面金属張積層板1を製造することができる。加熱加圧の条件は特に限定されるものではないが、例えば、実施形態1と同様である。なお、図1では1枚の基材偏在型プリプレグ6を用い、図2では2枚の基材偏在型プリプレグ6を用いて両面金属張積層板1を製造するようにしているが、基材偏在型プリプレグ6は少なくとも1枚以上用いればよいので、3枚以上の基材偏在型プリプレグ6を用いて両面金属張積層板1を製造するようにしてもよい。   In manufacturing the double-sided metal-clad laminate 1 shown in FIG. 2B, two base material ubiquitous prepregs 6 are laminated and used. In this case, as shown in FIG. 2A, the first resin semi-cured layer 81 is disposed on one outermost layer, and the second resin semi-cured layer 82 is disposed on the other outermost layer. The base material uneven distribution type prepreg 6 is laminated. Then, the first metal foil 21 is overlaid on the outermost first resin semi-cured layer 81, and the second metal foil 22 is overlaid on the outermost second resin semi-cured layer 82 to perform heat and pressure molding, thereby FIG. A double-sided metal-clad laminate 1 as shown in (b) can be manufactured. The heating and pressing conditions are not particularly limited, but are the same as those in the first embodiment, for example. In FIG. 1, the double-sided metal-clad laminate 1 is manufactured using a single base material uneven prepreg 6 and in FIG. 2 two base material uneven prepregs 6. Since at least one or more mold prepregs 6 may be used, the double-sided metal-clad laminate 1 may be manufactured using three or more base material unevenly distributed prepregs 6.

(実施形態3)
図3(b)は本発明に係る両面金属張積層板1の他の一例を示す。この両面金属張積層板1は、絶縁層4が2枚の繊維基材3を内部に含んでいる点で、図1(b)に示す両面金属張積層板1と相違し、その他の点では共通する。よって、共通点についての説明は省略する。
(Embodiment 3)
FIG. 3B shows another example of the double-sided metal-clad laminate 1 according to the present invention. This double-sided metal-clad laminate 1 is different from the double-sided metal-clad laminate 1 shown in FIG. 1 (b) in that the insulating layer 4 includes two fiber base materials 3 inside. Common. Therefore, the description about a common point is abbreviate | omitted.

図3(b)に示す両面金属張積層板1を製造するにあたっては、図3(a)に示すような第1プリプレグ71及び第2プリプレグ72を用いる。   In manufacturing the double-sided metal-clad laminate 1 shown in FIG. 3B, a first prepreg 71 and a second prepreg 72 as shown in FIG. 3A are used.

第1プリプレグ71は、繊維基材3の両面に第1樹脂半硬化層81を設けて形成されている。このように、第1プリプレグ71の厚み方向の中央部に繊維基材3が存在している。このような第1プリプレグ71は、上記の樹脂組成物を適当な溶剤に溶解してワニスを調製し、このワニスを繊維基材3に含浸し、これを半硬化状態となるまで加熱乾燥して製造することができる。   The first prepreg 71 is formed by providing a first resin semi-cured layer 81 on both surfaces of the fiber substrate 3. Thus, the fiber base material 3 exists in the center part in the thickness direction of the first prepreg 71. Such a first prepreg 71 is prepared by dissolving the resin composition in an appropriate solvent to prepare a varnish, impregnating the varnish into the fiber base material 3, and heating and drying it until it is in a semi-cured state. Can be manufactured.

第2プリプレグ72は、繊維基材3の両面に第1樹脂半硬化層81の厚みよりも厚みの薄い第2樹脂半硬化層82を設けて形成されている。このように、第2プリプレグ72の厚み方向の中央部に繊維基材3が存在している。このような第2プリプレグ72は、第2樹脂半硬化層82の厚みを第1樹脂半硬化層81の厚みよりも薄くするだけであるので、基本的には第1プリプレグ71と同様に製造することができる。   The second prepreg 72 is formed by providing a second resin semi-cured layer 82 having a thickness smaller than that of the first resin semi-cured layer 81 on both surfaces of the fiber base 3. Thus, the fiber base material 3 exists in the center part in the thickness direction of the second prepreg 72. Such a second prepreg 72 is basically manufactured in the same manner as the first prepreg 71 because the thickness of the second resin semi-cured layer 82 is merely made thinner than the thickness of the first resin semi-cured layer 81. be able to.

そして、図3(a)に示すように、第1プリプレグ71及び第2プリプレグ72を積層する。さらに第1金属箔21を最外層の第1樹脂半硬化層81に重ね、第2金属箔22を最外層の第2樹脂半硬化層82に重ねて加熱加圧成形することによって、図3(b)に示すような両面金属張積層板1を製造することができる。両面金属張積層板1の絶縁層4は、半硬化状態の第1プリプレグ71及び第2プリプレグ72が完全硬化して形成される。加熱加圧の条件は特に限定されるものではないが、例えば、実施形態1と同様である。なお、図3では第1プリプレグ71及び第2プリプレグ72のそれぞれを1枚ずつ積層するようにしているが、第1プリプレグ71及び第2プリプレグ72のそれぞれを少なくとも1枚以上積層すればよい。この場合、第1樹脂半硬化層81を一方の最外層に配置し、第2樹脂半硬化層82を他方の最外層に配置する。そして、第1金属箔21を最外層の第1樹脂半硬化層81に重ね、第2金属箔22を最外層の第2樹脂半硬化層82に重ねて加熱加圧成形することによって、両面金属張積層板1を製造することができる。この場合の加熱加圧の条件も特に限定されるものではないが、例えば、実施形態1と同様である。   And as shown to Fig.3 (a), the 1st prepreg 71 and the 2nd prepreg 72 are laminated | stacked. Further, the first metal foil 21 is overlaid on the outermost first resin semi-cured layer 81, and the second metal foil 22 is overlaid on the outermost second resin semi-cured layer 82 and heat-pressed to form FIG. A double-sided metal-clad laminate 1 as shown in b) can be produced. The insulating layer 4 of the double-sided metal-clad laminate 1 is formed by completely curing the first prepreg 71 and the second prepreg 72 in a semi-cured state. The heating and pressing conditions are not particularly limited, but are the same as those in the first embodiment, for example. In FIG. 3, each of the first prepreg 71 and the second prepreg 72 is laminated one by one, but at least one or more of the first prepreg 71 and the second prepreg 72 may be laminated. In this case, the first resin semi-cured layer 81 is disposed on one outermost layer, and the second resin semi-cured layer 82 is disposed on the other outermost layer. The first metal foil 21 is overlaid on the outermost first resin semi-cured layer 81, and the second metal foil 22 is overlaid on the outermost second resin semi-cured layer 82 and heat-pressed to form a double-sided metal. The tension laminate 1 can be manufactured. The heating and pressing conditions in this case are not particularly limited, but are the same as those in the first embodiment, for example.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

(樹脂組成物のワニスの調製)
まず高分子量ポリフェニレンエーテル樹脂を次のようにして低分子化した。
(Preparation of varnish of resin composition)
First, the molecular weight of the high molecular weight polyphenylene ether resin was reduced as follows.

トルエン200gを攪拌装置及び攪拌羽根を装備した2000mLのフラスコに入れた。このフラスコを内温80℃に制御しながら、高分子量ポリフェニレンエーテル樹脂である日本GEプラスチックス(株)製「ノリルPX9701」:100g、ビスフェノールA:4.3g、t−ブチルペルオキシイソプロピルモノカーボネートである日本油脂(株)製「パーブチルI」:2.94g及びナフテン酸コバルト溶液(トルエンに溶解された8質量%溶液):0.0042gを入れ、高分子量ポリフェニレンエーテルが完全に溶解するまで攪拌することにより、低分子量ポリフェニレンエーテル樹脂を調製した。   200 g of toluene was placed in a 2000 mL flask equipped with a stirrer and a stirring blade. While controlling this flask at an internal temperature of 80 ° C., high molecular weight polyphenylene ether resin “Noryl PX9701” manufactured by Japan GE Plastics Co., Ltd .: 100 g, bisphenol A: 4.3 g, t-butylperoxyisopropyl monocarbonate. “Perbutyl I” manufactured by Nippon Oil & Fats Co., Ltd .: 2.94 g and cobalt naphthenate solution (8 mass% solution dissolved in toluene): 0.0042 g are added and stirred until the high molecular weight polyphenylene ether is completely dissolved. Thus, a low molecular weight polyphenylene ether resin was prepared.

上記の低分子量ポリフェニレンエーテル樹脂を多量のメタノールで再沈殿させ、不純物を除去して、減圧下80℃で3時間乾燥してトルエンを完全に除去した。   The low molecular weight polyphenylene ether resin was reprecipitated with a large amount of methanol to remove impurities, and dried at 80 ° C. under reduced pressure for 3 hours to completely remove toluene.

次に、上記のようにして得られた低分子量ポリフェニレンエーテル樹脂を次のようにしてエテニルベンジル化した。   Next, the low molecular weight polyphenylene ether resin obtained as described above was ethenylbenzylated as follows.

温度調節器、攪拌装置、冷却設備及び滴下ロートを備えた1Lの3つ口フラスコに上記の低分子量ポリフェニレンエーテル樹脂を200g、クロロメチルスチレン(p−クロロメチルスチレンとm−クロロメチルスチレンの比が1:1;東京化成工業(株)製):15g、テトラ−n−ブチルアンモニウムブロマイド:0.8g、トルエン:400gを仕込み、攪拌溶解し、液温を75℃にし、水酸化ナトリウム水溶液(水酸化ナトリウム10g/水10g)を20分間かけて滴下し、さらに75℃で4時間攪拌を続けた。次に、10質量%塩酸水溶液でフラスコ内容物を中和した後、多量のメタノールを追加し、エテニルベンジル化したポリフェニレンエーテルを沈殿物として得た。この沈殿物のろ過物をメタノールと水の混合液(80:20の質量比率)で3回洗浄した後、減圧下80℃/3時間処理することで、溶剤や水分を除去したエテニルベンジル化されたポリフェニレンエーテル樹脂を取り出した。   200 g of the above low molecular weight polyphenylene ether resin is added to a 1 L three-necked flask equipped with a temperature controller, a stirrer, a cooling facility and a dropping funnel, and the ratio of chloromethylstyrene (p-chloromethylstyrene to m-chloromethylstyrene is 1: 1; manufactured by Tokyo Chemical Industry Co., Ltd.): 15 g, tetra-n-butylammonium bromide: 0.8 g, toluene: 400 g were charged, dissolved by stirring, the liquid temperature was adjusted to 75 ° C., and an aqueous sodium hydroxide solution (water Sodium oxide 10 g / water 10 g) was added dropwise over 20 minutes, and stirring was further continued at 75 ° C. for 4 hours. Next, after neutralizing the contents of the flask with a 10% by mass hydrochloric acid aqueous solution, a large amount of methanol was added to obtain ethenylbenzylated polyphenylene ether as a precipitate. The precipitate filtrate was washed three times with a mixed solution of methanol and water (mass ratio of 80:20) and then treated at 80 ° C./3 hours under reduced pressure to remove ethenylbenzylated solvent and water. The polyphenylene ether resin was taken out.

上記のようにして得られたエテニルベンジル化ポリフェニレンエーテル樹脂の数平均分子量(Mn)をゲルパーミエーションクロマトグラフィー(GPC)で測定したところ3500であった。なお、数平均分子量は、TSK guard column HXL-4 G4000HXL:1本、G3000HXL:1本、G2000HXL:1本、G1000HXL:2本のカラムを用いて測定した。   The number average molecular weight (Mn) of the ethenylbenzylated polyphenylene ether resin obtained as described above was 3500 as measured by gel permeation chromatography (GPC). The number average molecular weight was measured using TSK guard column HXL-4 G4000HXL: 1, G3000HXL: 1, G2000HXL: 1, G1000HXL: 2 columns.

そして、上記のエテニルベンジル化ポリフェニレンエーテル樹脂を用いて、次のようにして樹脂組成物のワニスを調製した。   And the varnish of the resin composition was prepared as follows using said ethenyl benzylated polyphenylene ether resin.

表1に示す配合量で、まず70℃に加熱したトルエンに、エテニルベンジル化ポリフェニレンエーテル樹脂を溶解し、さらにトリアリルイソシアヌレート(日本化成(株)製「TAIC」)、α,α’−ジ(t−ブチルパーオキシ)ジイソプロピルベンゼン(日油(株)製「パーブチルP」)、エチレンビス(ペンタブロモフェニル)(アルベマール日本(株)製「SAYTEX8010」)、溶融シリカ(電気化学工業(株)製「FB−5SDC」)を添加し、これを攪拌混合することによって、樹脂組成物のワニスを調製した。   First, ethenylbenzylated polyphenylene ether resin is dissolved in toluene heated to 70 ° C. in the blending amounts shown in Table 1, and further triallyl isocyanurate (“TAIC” manufactured by Nippon Kasei Co., Ltd.), α, α′− Di (t-butylperoxy) diisopropylbenzene (“Perbutyl P” manufactured by NOF Corporation), ethylenebis (pentabromophenyl) (“SAYTEX8010” manufactured by Albemarle Japan Co., Ltd.), fused silica (Electrochemical Co., Ltd.) ) "FB-5SDC") was added, and this was stirred and mixed to prepare a varnish of the resin composition.

Figure 2014198407
Figure 2014198407

(実施例1)
上記のようにして得られたワニスを用いて基材偏在型プリプレグ6を次のようにして製造した。上記のワニスを繊維基材3(表2に示すガラスクロス)に含浸し、ロールコーターにより一方の面にワニスを余分に付着させると共に、スキージにより他方の面からワニスを除去した後、これを半硬化状態となるまで加熱乾燥して基材偏在型プリプレグ6を製造した。この基材偏在型プリプレグ6は、繊維基材3の一方の面に第1樹脂半硬化層81が設けられ、繊維基材3の他方の面に第1樹脂半硬化層81の厚みよりも厚みの薄い第2樹脂半硬化層82が設けられている。
Example 1
Using the varnish obtained as described above, the base material uneven distribution type prepreg 6 was manufactured as follows. After impregnating the fiber base 3 (glass cloth shown in Table 2) with the varnish described above, the varnish was excessively adhered to one surface by a roll coater, and the varnish was removed from the other surface with a squeegee, and this was then removed. Substrate uneven distribution type prepreg 6 was manufactured by heating and drying until it was in a cured state. In the base material uneven distribution type prepreg 6, the first resin semi-cured layer 81 is provided on one surface of the fiber base material 3, and the thickness of the other surface of the fiber base material 3 is larger than the thickness of the first resin semi-cured layer 81. A thin second resin semi-cured layer 82 is provided.

そして、上記の基材偏在型プリプレグ6のほか、第1金属箔21及び第2金属箔22として銅箔を用いて、次のようにして両面金属張積層板1を製造した。なお、第1金属箔21の厚みM及び第2金属箔22の厚みMを表2に示す。 And besides the base material uneven distribution type prepreg 6, the double-sided metal-clad laminate 1 was manufactured as follows using copper foil as the first metal foil 21 and the second metal foil 22. Incidentally, showing the thickness M 2 of a thickness M 1 and the second metal foil 22 of the first metal foil 21 in Table 2.

図1(a)に示すように、第1金属箔21を基材偏在型プリプレグ6の第1樹脂半硬化層81に重ね、第2金属箔22を基材偏在型プリプレグ6の第2樹脂半硬化層82に重ねて加熱加圧成形することによって、図1(b)に示すような両面金属張積層板1を製造した。加熱加圧の条件は、200℃、2.94MPaである。第1樹脂硬化層51の厚みR及び第2樹脂硬化層52の厚みRを表2に示す。 As shown in FIG. 1A, the first metal foil 21 is overlaid on the first resin semi-cured layer 81 of the base material uneven distribution prepreg 6, and the second metal foil 22 is overlapped with the second resin half resin of the base material uneven distribution type prepreg 6. A double-sided metal-clad laminate 1 as shown in FIG. 1 (b) was manufactured by heating and pressure forming over the hardened layer 82. The heating and pressing conditions are 200 ° C. and 2.94 MPa. The thickness R 2 of a thickness R 1 and a second resin cured layer 52 of the first cured resin layer 51 shown in Table 2.

(実施例2)
実施例1と同様の基材偏在型プリプレグ6、第1金属箔21及び第2金属箔22を用いて、次のようにして両面金属張積層板1を製造した。
(Example 2)
The double-sided metal-clad laminate 1 was manufactured as follows using the base material uneven prepreg 6, the first metal foil 21, and the second metal foil 22 similar to those in Example 1.

図2(a)に示すように、第1樹脂半硬化層81が一方の最外層に配置され、第2樹脂半硬化層82が他方の最外層に配置されるように、2枚の基材偏在型プリプレグ6を積層した。そして、第1金属箔21を最外層の第1樹脂半硬化層81に重ね、第2金属箔22を最外層の第2樹脂半硬化層82に重ねて加熱加圧成形することによって、図2(b)に示すような両面金属張積層板1を製造した。加熱加圧の条件は、実施例1と同様である。   As shown in FIG. 2 (a), the two substrates are arranged such that the first resin semi-cured layer 81 is disposed on one outermost layer and the second resin semi-cured layer 82 is disposed on the other outermost layer. The uneven distribution type prepreg 6 was laminated. Then, the first metal foil 21 is overlaid on the outermost first resin semi-cured layer 81, and the second metal foil 22 is overlaid on the outermost second resin semi-cured layer 82 to perform heat and pressure molding, thereby FIG. A double-sided metal-clad laminate 1 as shown in (b) was produced. The conditions for heating and pressing are the same as in Example 1.

(実施例3)
第1金属箔21の厚みM及び第2金属箔22の厚みMを表2のように変更した以外は、実施例1と同様にして両面金属張積層板1を製造した。
(Example 3)
Except that the thickness M 2 of a thickness M 1 and the second metal foil 22 of the first metal foil 21 were changed as shown in Table 2, were prepared sided metal-clad laminate 1 in the same manner as in Example 1.

(実施例4)
実施例1と同様のワニス及び繊維基材3を用いて、第1プリプレグ71及び第2プリプレグ72を次のようにして製造した。
Example 4
A first prepreg 71 and a second prepreg 72 were manufactured as follows using the same varnish and the fiber base material 3 as in Example 1.

第1プリプレグ71は、ワニスを繊維基材3に含浸し、ロールコーターにより両面にワニスを同量付着させた後、これを半硬化状態となるまで加熱乾燥して製造した。第1プリプレグ71は、繊維基材3の両面に第1樹脂半硬化層81が設けられている。   The first prepreg 71 was manufactured by impregnating the fiber base material 3 with varnish, adhering the same amount of varnish on both sides with a roll coater, and then heating and drying it until it was in a semi-cured state. In the first prepreg 71, first resin semi-cured layers 81 are provided on both surfaces of the fiber base 3.

第2プリプレグ72は、ワニスを繊維基材3に含浸し、スキージにより両面からワニスを同量除去した後、これを半硬化状態となるまで加熱乾燥して製造した。第2プリプレグ72は、繊維基材3の両面に第1樹脂半硬化層81の厚みよりも厚みの薄い第2樹脂半硬化層82が設けられている。   The second prepreg 72 was manufactured by impregnating the fiber base material 3 with varnish, removing the same amount of varnish from both sides with a squeegee, and then drying by heating until it was in a semi-cured state. The second prepreg 72 is provided with a second resin semi-cured layer 82 having a thickness smaller than that of the first resin semi-cured layer 81 on both surfaces of the fiber substrate 3.

そして、上記の第1プリプレグ71及び第2プリプレグ72のほか、実施例1と同様の第1金属箔21及び第2金属箔22を用いて、次のようにして両面金属張積層板1を製造した。   Then, in addition to the first prepreg 71 and the second prepreg 72 described above, the double-sided metal-clad laminate 1 is manufactured using the first metal foil 21 and the second metal foil 22 similar to those of the first embodiment as follows. did.

図3(a)に示すように、第1プリプレグ71及び第2プリプレグ72を積層した。さらに第1金属箔21を最外層の第1樹脂半硬化層81に重ね、第2金属箔22を最外層の第2樹脂半硬化層82に重ねて加熱加圧成形することによって、図3(b)に示すような両面金属張積層板1を製造した。加熱加圧の条件は、実施例1と同様である。   As shown in FIG. 3A, a first prepreg 71 and a second prepreg 72 were laminated. Further, the first metal foil 21 is overlaid on the outermost first resin semi-cured layer 81, and the second metal foil 22 is overlaid on the outermost second resin semi-cured layer 82 and heat-pressed to form FIG. A double-sided metal-clad laminate 1 as shown in b) was produced. The conditions for heating and pressing are the same as in Example 1.

(比較例1)
第1樹脂硬化層51の厚みR及び第2樹脂硬化層52の厚みRを表2のように変更した以外は、実施例1と同様にして両面金属張積層板1を製造した。
(Comparative Example 1)
The thickness R 2 of a thickness R 1 and a second resin cured layer 52 of the first resin cured layer 51 except for changing as shown in Table 2, were prepared sided metal-clad laminate 1 in the same manner as in Example 1.

(比較例2)
第1樹脂硬化層51の厚みR及び第2樹脂硬化層52の厚みRを表2のように変更した以外は、実施例2と同様にして両面金属張積層板1を製造した。
(Comparative Example 2)
The thickness R 2 of a thickness R 1 and a second resin cured layer 52 of the first resin cured layer 51 except for changing as shown in Table 2, were prepared sided metal-clad laminate 1 in the same manner as in Example 2.

(比較例3)
第1金属箔21の厚みM及び第2金属箔22の厚みMを表2のように変更した以外は、比較例1と同様にして両面金属張積層板1を製造した。
(Comparative Example 3)
Except that the thickness M 2 of a thickness M 1 and the second metal foil 22 of the first metal foil 21 were changed as shown in Table 2, were prepared sided metal-clad laminate 1 in the same manner as in Comparative Example 1.

(両面金属張積層板の反り)
両面金属張積層板1を600mm×500mmの矩形状に切断したものを試料10として用いた。この試料10を図4(a)及び図4(b)に示すように定盤11上に置き、鋼製巻尺12(最小目盛り1mm)を用いて、試料10の四隅のそれぞれの持ち上がり量を測定した。そして、持ち上がり量のうち最大値を両面金属張積層板1の反りとした。その結果を表2に示す。
(Warpage of double-sided metal-clad laminate)
A sample 10 obtained by cutting the double-sided metal-clad laminate 1 into a rectangular shape of 600 mm × 500 mm was used. The sample 10 is placed on the surface plate 11 as shown in FIGS. 4A and 4B, and the lifting amounts of the four corners of the sample 10 are measured using a steel tape measure 12 (minimum scale 1 mm). did. Then, the maximum value of the lift amount was set as the warp of the double-sided metal-clad laminate 1. The results are shown in Table 2.

Figure 2014198407
Figure 2014198407

表2から明らかなように、実施例1〜4では比較例1〜3に比べて両面金属張積層板1の反りが抑制されていることが確認された。   As is clear from Table 2, it was confirmed that the warpage of the double-sided metal-clad laminate 1 was suppressed in Examples 1-4 as compared with Comparative Examples 1-3.

1 両面金属張積層板
21 第1金属箔
22 第2金属箔
3 繊維基材
4 絶縁層
51 第1樹脂硬化層
52 第2樹脂硬化層
6 基材偏在型プリプレグ
71 第1プリプレグ
72 第2プリプレグ
81 第1樹脂半硬化層
82 第2樹脂半硬化層
DESCRIPTION OF SYMBOLS 1 Double-sided metal-clad laminate 21 1st metal foil 22 2nd metal foil 3 Fiber base material 4 Insulating layer 51 1st resin cured layer 52 2nd resin cured layer 6 Base material uneven distribution type prepreg 71 1st prepreg 72 2nd prepreg 81 First resin semi-cured layer 82 Second resin semi-cured layer

Claims (5)

第1金属箔と、
樹脂組成物が硬化して形成され、少なくとも1枚以上の繊維基材を内部に含む絶縁層と、
前記第1金属箔の厚みよりも厚みの薄い第2金属箔と、
が積層一体化された両面金属張積層板であって、
前記第1金属箔と、前記第1金属箔に最も近い繊維基材との間に存在する第1樹脂硬化層の厚みをRとし、
前記第2金属箔と、前記第2金属箔に最も近い繊維基材との間に存在する第2樹脂硬化層の厚みをRとしたとき、
≧2R
の関係式を満たしている
ことを特徴とする両面金属張積層板。
A first metal foil;
An insulating layer formed by curing the resin composition and including at least one or more fiber substrates; and
A second metal foil having a thickness smaller than that of the first metal foil;
Is a double-sided metal-clad laminate with integrated lamination,
Wherein the first metal foil, the thickness of the first resin cured layer existing between the nearest fiber base material in the first metal foil and R 1,
When the second metal foil, the thickness of the second resin cured layer existing between said second metal foil to the nearest fiber base material was changed to R 2,
R 1 ≧ 2R 2
A double-sided metal-clad laminate characterized by satisfying the relational expression:
≧5R
の関係式を満たしている
ことを特徴とする請求項1に記載の両面金属張積層板。
R 1 ≧ 5R 2
The double-sided metal-clad laminate according to claim 1, wherein the following relational expression is satisfied.
前記第1金属箔の厚みをMとし、
前記第2金属箔の厚みをMとしたとき、
≧1.4M
の関係式を満たしている
ことを特徴とする請求項1又は2に記載の両面金属張積層板。
The thickness of the first metal foil and M 1,
When the thickness of the second metal foil and a M 2,
M 1 ≧ 1.4M 2
The double-sided metal-clad laminate according to claim 1 or 2, wherein the following relational expression is satisfied.
請求項1乃至3のいずれか一項に記載の両面金属張積層板の製造方法であって、
樹脂組成物を繊維基材に含浸して形成され、前記繊維基材の一方の面に第1樹脂半硬化層が設けられ、前記繊維基材の他方の面に前記第1樹脂半硬化層の厚みよりも厚みの薄い第2樹脂半硬化層が設けられた基材偏在型プリプレグを用い、
前記第1樹脂半硬化層が一方の最外層に配置され、前記第2樹脂半硬化層が他方の最外層に配置されるように、
前記基材偏在型プリプレグを少なくとも1枚以上積層し、
第1金属箔を前記最外層の第1樹脂半硬化層に重ね、
前記第1金属箔の厚みよりも厚みの薄い第2金属箔を前記最外層の第2樹脂半硬化層に重ねて加熱加圧成形する
ことを特徴とする両面金属張積層板の製造方法。
A method for producing a double-sided metal-clad laminate according to any one of claims 1 to 3,
The fiber base material is impregnated with a resin composition, a first resin semi-cured layer is provided on one surface of the fiber base material, and the first resin semi-cured layer is formed on the other surface of the fiber base material. Using a base material uneven distribution type prepreg provided with a second resin semi-cured layer having a thickness smaller than the thickness,
The first resin semi-cured layer is disposed on one outermost layer, and the second resin semi-cured layer is disposed on the other outermost layer,
Laminating at least one base ubiquitous prepreg,
Overlaying the first metal foil on the outermost first resin semi-cured layer,
A method for producing a double-sided metal-clad laminate, wherein a second metal foil having a thickness smaller than that of the first metal foil is superimposed on the second resin semi-cured layer of the outermost layer and heat-pressed.
請求項1乃至3のいずれか一項に記載の両面金属張積層板の製造方法であって、
樹脂組成物を繊維基材に含浸して形成され、前記繊維基材の両面に第1樹脂半硬化層が設けられた第1プリプレグと、
樹脂組成物を繊維基材に含浸して形成され、前記繊維基材の両面に前記第1樹脂半硬化層の厚みよりも厚みの薄い第2樹脂半硬化層が設けられた第2プリプレグと、
を用い、
前記第1樹脂半硬化層が一方の最外層に配置され、前記第2樹脂半硬化層が他方の最外層に配置されるように、
前記第1プリプレグ及び前記第2プリプレグのそれぞれを少なくとも1枚以上積層し、
第1金属箔を前記最外層の第1樹脂半硬化層に重ね、
前記第1金属箔の厚みよりも厚みの薄い第2金属箔を前記最外層の第2樹脂半硬化層に重ねて加熱加圧成形する
ことを特徴とする両面金属張積層板の製造方法。
A method for producing a double-sided metal-clad laminate according to any one of claims 1 to 3,
A first prepreg formed by impregnating a fiber base material with a resin composition, and provided with a first resin semi-cured layer on both sides of the fiber base;
A second prepreg formed by impregnating a fiber base material with a resin composition, and provided with a second resin semi-cured layer having a thickness smaller than the thickness of the first resin semi-cured layer on both surfaces of the fiber base;
Use
The first resin semi-cured layer is disposed on one outermost layer, and the second resin semi-cured layer is disposed on the other outermost layer,
Laminating at least one each of the first prepreg and the second prepreg,
Overlaying the first metal foil on the outermost first resin semi-cured layer,
A method for producing a double-sided metal-clad laminate, wherein a second metal foil having a thickness smaller than that of the first metal foil is superimposed on the second resin semi-cured layer of the outermost layer and heat-pressed.
JP2013074548A 2013-03-29 2013-03-29 Double-sided metal-clad laminate and method for producing the same Active JP6112452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013074548A JP6112452B2 (en) 2013-03-29 2013-03-29 Double-sided metal-clad laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013074548A JP6112452B2 (en) 2013-03-29 2013-03-29 Double-sided metal-clad laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014198407A true JP2014198407A (en) 2014-10-23
JP6112452B2 JP6112452B2 (en) 2017-04-12

Family

ID=52355655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013074548A Active JP6112452B2 (en) 2013-03-29 2013-03-29 Double-sided metal-clad laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP6112452B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147912A (en) * 2014-02-10 2015-08-20 日立化成株式会社 Prepreg, metal-clad laminate, and printed wiring board
JP5991500B1 (en) * 2016-03-18 2016-09-14 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board
JP2017170877A (en) * 2016-08-01 2017-09-28 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for manufacturing metal-clad laminate, and method for manufacturing printed wiring board
CN109310006A (en) * 2017-07-28 2019-02-05 三星电机株式会社 Printed circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722731A (en) * 1993-06-30 1995-01-24 Matsushita Electric Works Ltd Manufacture of laminated sheet copper-clad on both-sides
JP2009172982A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Double-sided metal clad laminate
JP2012124460A (en) * 2010-11-18 2012-06-28 Sumitomo Bakelite Co Ltd Insulating substrate, metal-clad laminate, printed wiring board, and semiconductor device
WO2013012053A1 (en) * 2011-07-20 2013-01-24 パナソニック株式会社 Printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722731A (en) * 1993-06-30 1995-01-24 Matsushita Electric Works Ltd Manufacture of laminated sheet copper-clad on both-sides
JP2009172982A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Double-sided metal clad laminate
JP2012124460A (en) * 2010-11-18 2012-06-28 Sumitomo Bakelite Co Ltd Insulating substrate, metal-clad laminate, printed wiring board, and semiconductor device
US20130242520A1 (en) * 2010-11-18 2013-09-19 Sumitomo Bakelite Co., Ltd. Insulating substrate, metal-clad laminate, printed wiring board and semiconductor device
WO2013012053A1 (en) * 2011-07-20 2013-01-24 パナソニック株式会社 Printed wiring board
US20140158406A1 (en) * 2011-07-20 2014-06-12 Hiroaki Kato Printed wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147912A (en) * 2014-02-10 2015-08-20 日立化成株式会社 Prepreg, metal-clad laminate, and printed wiring board
JP5991500B1 (en) * 2016-03-18 2016-09-14 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board
JP2017170640A (en) * 2016-03-18 2017-09-28 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for manufacturing metal-clad laminate, and method for manufacturing printed wiring board
JP2017170877A (en) * 2016-08-01 2017-09-28 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for manufacturing metal-clad laminate, and method for manufacturing printed wiring board
CN109310006A (en) * 2017-07-28 2019-02-05 三星电机株式会社 Printed circuit board
CN109310006B (en) * 2017-07-28 2023-07-07 三星电机株式会社 Printed circuit board with improved heat dissipation

Also Published As

Publication number Publication date
JP6112452B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6801632B2 (en) Manufacturing method of laminate, laminate, multilayer laminate, printed wiring board and laminate
JP7121354B2 (en) Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
JP6624573B2 (en) Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board
JP6112452B2 (en) Double-sided metal-clad laminate and method for producing the same
KR20110086510A (en) Method for laminating prepreg, method for producing printed wiring board and prepreg roll
CN107118515A (en) Resin sheet with supporter
WO2013042750A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
TWI725387B (en) Prepreg, laminate, metal foil-clad laminate, printed wiring board, and multi-layered printed wiring board
JP2013239701A (en) Interlayer dielectric film with carrier material, and multilayer printed circuit board using the same
KR20140109376A (en) Resin composition, prepreg, and laminate
JPWO2013042751A1 (en) LAMINATE, LAMINATE, MULTILAYER LAMINATE, PRINTED WIRING BOARD AND METHOD FOR PRODUCING LAMINATE
JP2014024970A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
TWI537318B (en) Prepreg, metal foil-clad laminate and print circuit board
TWI546006B (en) Method of manufacturing print circuit board
JP5725074B2 (en) Laminated material for electrical insulation and printed wiring board using the laminated material
JP4125256B2 (en) Method and apparatus for continuous production of laminates
JP2005254680A (en) Method and apparatus for continuously manufacturing laminated plate
JP2009172982A (en) Double-sided metal clad laminate
JP4119388B2 (en) Method and apparatus for continuous production of laminates
JP2008213481A (en) Method and apparatus for continuously manufacturing laminated sheet
JP2014128971A (en) Method for manufacturing metal-clad laminate, and printed wiring board
TWI551632B (en) Prepreg, metal-clad laminate, and printed wiring board,and multilayer printed wiring board
JP2008137389A (en) Continuous manufacturing process and apparatus of laminate
JP2010058391A (en) Metal foil tension laminated sheet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6112452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150