JP2014197582A - Pretreatment method of group iii nitride substrate and leakage current control method in group iii nitride device - Google Patents

Pretreatment method of group iii nitride substrate and leakage current control method in group iii nitride device Download PDF

Info

Publication number
JP2014197582A
JP2014197582A JP2013071846A JP2013071846A JP2014197582A JP 2014197582 A JP2014197582 A JP 2014197582A JP 2013071846 A JP2013071846 A JP 2013071846A JP 2013071846 A JP2013071846 A JP 2013071846A JP 2014197582 A JP2014197582 A JP 2014197582A
Authority
JP
Japan
Prior art keywords
group iii
iii nitride
leakage current
substrate
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013071846A
Other languages
Japanese (ja)
Inventor
宗太 前原
Sota Maehara
宗太 前原
智彦 杉山
Tomohiko Sugiyama
智彦 杉山
雄一 岩田
Yuichi Iwata
雄一 岩田
倉岡 義孝
Yoshitaka Kuraoka
義孝 倉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2013071846A priority Critical patent/JP2014197582A/en
Publication of JP2014197582A publication Critical patent/JP2014197582A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pretreatment method of a base substrate composed of group III nitride crystals which can reduce leakage current in an electronic device structure formed on the base substrate composed of the group III nitride crystals.SOLUTION: As a pretreatment performed on a group III nitride substrate for formation of a group III nitride device, the group III nitride substrate is immersed in hydrofluoric acid with a concentration of 15 wt% and over, preferably not less than 20 wt% and not more than 50 wt%.

Description

本発明は、III族窒化物基板の前処理方法に関し、特に、電子デバイスの形成に用いるIII族窒化物基板に対する前処理方法に関する。   The present invention relates to a pretreatment method for a group III nitride substrate, and more particularly to a pretreatment method for a group III nitride substrate used for forming an electronic device.

GaN(窒化ガリウム)に代表されるIII族窒化物結晶(単結晶)は、HEMT(高電子移動度トランジスタ)などの電子デバイスや、LED(発光ダイオード)を初めとする発光素子や受光素子などの光デバイスの下地基板や、それらのデバイスにおいて所望のデバイス特性を発現させる機能層として広く用いられる。   Group III nitride crystals (single crystals) represented by GaN (gallium nitride) are used in electronic devices such as HEMT (high electron mobility transistors), light emitting elements such as LEDs (light emitting diodes), and light receiving elements. It is widely used as a base layer of an optical device and a functional layer that develops desired device characteristics in these devices.

また、下地基板に前処理を施すことで、III族窒化物結晶層形成前の基板表面の状態を、いわゆるエピレディの状態とする方法(例えば特許文献1および非特許文献1参照)やIII族窒化物結晶からなる基板に対する、エッチング処理の方法(例えば特許文献2および非特許文献1参照)が、既に公知である。   Further, by performing pretreatment on the base substrate, a method of changing the surface state of the substrate before the formation of the group III nitride crystal layer into a so-called epi-ready state (see, for example, Patent Document 1 and Non-Patent Document 1) or Group III nitriding An etching method (for example, see Patent Document 2 and Non-Patent Document 1) for a substrate made of a physical crystal is already known.

特表2012−525013号公報Special table 2012-52503 gazette 特開2007−324549号公報JP 2007-324549 A

”Dry etching of GaN substrates for high-quality homoepitaxy” M. Schauler, F. Eberhard, C. Kirchner, V. Schwegler, A. Pelzmann et al., Appl. Phys. Lett. 74, 1123 (1999)“Dry etching of GaN substrates for high-quality homoepitaxy” M. Schauler, F. Eberhard, C. Kirchner, V. Schwegler, A. Pelzmann et al., Appl. Phys. Lett. 74, 1123 (1999)

III族窒化物結晶からなる下地基板の上にIII族窒化物結晶層を形成することで作製した電子デバイス(III族窒化物デバイス)において、電極間に本来流れるべきではない電流が流れてしまう、いわゆる漏れ電流(リーク電流)が生じてしまうことがある。本発明の発明者によって、漏れ電流の発生には下地基板ごとにばらつきがあることが分かったため、本発明においては、基板の前処理による解決を試みた。従来の基板前処理方法では、成長装置内にてエッチングガス雰囲気に晒す手法が多いが、生産性の観点から効率的ではない。電子デバイス製造にあたり、本発明の発明者は、漏れ電流の発生を抑制し、かつ低コストに導入できる基板前処理方法を検討した。   In an electronic device (group III nitride device) produced by forming a group III nitride crystal layer on a base substrate made of group III nitride crystal, a current that should not flow originally flows between the electrodes. So-called leakage current (leakage current) may occur. Since the inventors of the present invention have found that the occurrence of leakage current varies from substrate to substrate, in the present invention, an attempt was made to solve the problem by pretreatment of the substrate. In the conventional substrate pretreatment method, there are many methods of exposing to the etching gas atmosphere in the growth apparatus, but it is not efficient from the viewpoint of productivity. In manufacturing electronic devices, the inventors of the present invention have studied a substrate pretreatment method that can suppress the generation of leakage current and can be introduced at low cost.

本発明は上記課題に鑑みてなされたものであり、III族窒化物結晶からなる下地基板の上に形成した電子デバイス構造における漏れ電流を低減させることができる、III族窒化物結晶からなる下地基板の前処理方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a base substrate made of a group III nitride crystal capable of reducing leakage current in an electronic device structure formed on the base substrate made of a group III nitride crystal. An object of the present invention is to provide a pre-processing method.

上記課題を解決するため、請求項1の発明は、III族窒化物デバイス形成用のIII族窒化物基板に対し行う前処理方法であって、前記III族窒化物基板を濃度が15wt%以上のフッ化水素酸に浸漬する、ことを特徴とする。   In order to solve the above-mentioned problems, the invention of claim 1 is a pretreatment method for a group III nitride substrate for forming a group III nitride device, wherein the group III nitride substrate has a concentration of 15 wt% or more. It is immersed in hydrofluoric acid.

請求項2の発明は、請求項1に記載のIII族窒化物基板の前処理方法であって、前記III族窒化物基板を濃度が20wt%以上50wt%以下のフッ化水素酸に浸漬する、ことを特徴とする。   The invention of claim 2 is the pretreatment method for a group III nitride substrate according to claim 1, wherein the group III nitride substrate is immersed in hydrofluoric acid having a concentration of 20 wt% or more and 50 wt% or less. It is characterized by that.

請求項3の発明は、III族窒化物基板の上にIII族窒化物結晶層を形成してなるIII族窒化物デバイスにおける漏れ電流の発生を抑制する方法であって、前記III族窒化物基板を濃度が15wt%以上のフッ化水素酸に浸漬したうえで前記III族窒化物基板の上に前記III族窒化物結晶層を形成する、ことを特徴とする。   The invention of claim 3 is a method for suppressing the occurrence of leakage current in a group III nitride device formed by forming a group III nitride crystal layer on a group III nitride substrate, the group III nitride substrate Is immersed in hydrofluoric acid having a concentration of 15 wt% or more, and then the group III nitride crystal layer is formed on the group III nitride substrate.

請求項4の発明は、請求項3に記載のIII族窒化物デバイスにおける漏れ電流抑制方法であって、前記III族窒化物基板を濃度が20wt%以上50wt%以下のフッ化水素酸に浸漬する、ことを特徴とする。   The invention of claim 4 is a method for suppressing leakage current in a group III nitride device according to claim 3, wherein the group III nitride substrate is immersed in hydrofluoric acid having a concentration of 20 wt% or more and 50 wt% or less. It is characterized by that.

請求項1ないし請求項4の発明によれば、III族窒化物デバイスにおける漏れ電流の発生を好適に抑制することが出来る。   According to the first to fourth aspects of the invention, it is possible to suitably suppress the occurrence of leakage current in the group III nitride device.

下地基板に対し行う前処理の方法(手順)を示す図である。It is a figure which shows the method (procedure) of the pre-processing performed with respect to a base substrate. 電子デバイス構造体10の構成を模式的に示す図である。1 is a diagram schematically showing a configuration of an electronic device structure 10. FIG.

図1は、本実施の形態において下地基板に対し行う前処理の方法(手順)を示す図である。係る前処理は、下地基板を母基板として作製した、III族窒化物からなる電子デバイス(III族窒化物デバイス)構造体における漏れ電流(リーク電流)の発生を抑制する目的で、行うものである。   FIG. 1 is a diagram showing a pretreatment method (procedure) for a base substrate in the present embodiment. Such pretreatment is performed for the purpose of suppressing the occurrence of leakage current (leakage current) in an electronic device (group III nitride device) structure made of group III nitride manufactured using a base substrate as a base substrate. .

本実施の形態に係る前処理方法の対象となる下地基板は、例えばGaNに代表される、III族窒化物結晶(単結晶)からなる、いわゆる自立基板である。好ましくは、下地基板1は、表面が原子レベルで平坦な(0001)面つまりはC面となっている。なお、下地基板は、GaNのほか、AlN、InNなどからなるものであってもよいし、それらの混晶からなるものであってもよい。あるいは、下地基板は、サファイアやシリコンなどの異種材料からなる基板上に、上述したIII族窒化物の結晶層がエピタキシャル形成されてなる、いわゆるテンプレート基板であってもよい。下地基板の厚みは、400μm〜1000μm程度であるのが好適である。   The base substrate that is the target of the pretreatment method according to the present embodiment is a so-called self-supporting substrate made of a group III nitride crystal (single crystal) represented by, for example, GaN. Preferably, the base substrate 1 has a (0001) plane that is flat at the atomic level, that is, a C plane. The base substrate may be made of AlN, InN or the like in addition to GaN, or may be made of a mixed crystal thereof. Alternatively, the base substrate may be a so-called template substrate in which the above-described group III nitride crystal layer is epitaxially formed on a substrate made of a different material such as sapphire or silicon. The thickness of the base substrate is preferably about 400 μm to 1000 μm.

また、電子デバイス構造体は、比較的大きなサイズを有する1の母基板から複数のデバイス構造体を得る、いわゆる多数個取りの手法によって作製される。すなわち、前処理済みの下地基板のうえに、III族窒化物からなる1または複数の結晶層を、デバイス特性を発現するうえにおいて必要とされる機能や結晶品質に応じて適宜に形成し、さらに、個々の電子デバイス構造体となる領域の所定位置に電極が配置されるように電極パターンを形成したうえで、素子分離を行うことによって作製される。   In addition, the electronic device structure is manufactured by a so-called multi-cavity method in which a plurality of device structures are obtained from one mother substrate having a relatively large size. That is, one or more crystal layers made of a group III nitride are appropriately formed on a pretreated base substrate according to functions and crystal quality required for developing device characteristics, The electrode pattern is formed so that the electrodes are arranged at predetermined positions in the regions to be the individual electronic device structures, and then the device is separated.

本実施の形態においては、上述したようなIII族窒化物結晶からなる下地基板を、まず初めにフッ化水素酸(フッ化水素水溶液)に浸漬する(ステップS1)。フッ化水素酸の濃度は、15wt%以上とするのが好適である。浸漬時間は、2分〜20分程度とすればよい。   In the present embodiment, the base substrate made of the group III nitride crystal as described above is first immersed in hydrofluoric acid (hydrogen fluoride aqueous solution) (step S1). The concentration of hydrofluoric acid is preferably 15 wt% or more. The immersion time may be about 2 to 20 minutes.

係るフッ化水素酸への浸漬の後は、超純水への浸漬によるリンス(ステップS2)を2回〜4回繰り返した後、流水によるリンスを2分〜20分間行い(ステップS3)、最後に、窒素ブローによる乾燥を行う(ステップS4)。   After soaking in hydrofluoric acid, rinsing by soaking in ultrapure water (step S2) is repeated 2 to 4 times, followed by rinsing with running water for 2 to 20 minutes (step S3). Next, drying by nitrogen blowing is performed (step S4).

以上の手順によって下地基板に対する前処理を行うことで、係る下地基板を用いて作製した電子デバイス構造体における漏れ電流の発生頻度を、5%以下とすることができる。   By performing the pretreatment for the base substrate by the above procedure, the occurrence frequency of the leakage current in the electronic device structure manufactured using the base substrate can be 5% or less.

ただし、本実施の形態において、漏れ電流の発生頻度は、前処理を施した下地基板を母基板として作製した多数の電子デバイス構造体のうち、漏れ電流の発生したものの割合によって表すものとする。   However, in the present embodiment, the frequency of occurrence of leakage current is expressed by the ratio of the number of electronic device structures produced using a base substrate that has been subjected to pretreatment as a mother substrate.

また、漏れ電流が発生するとは、電子デバイス構造体の電極間に300V以下の電圧を印加した場合に、電極間の電流密度が1×10−5A/mmを超えることをいうものとする。 In addition, the occurrence of leakage current means that the current density between the electrodes exceeds 1 × 10 −5 A / mm 2 when a voltage of 300 V or less is applied between the electrodes of the electronic device structure. .

好ましくは、フッ化水素酸の濃度は、20wt%以上50wt%以下とされる。係る場合に、漏れ電流の発生頻度は1.5%以下にまで低減される。なお、フッ化水素酸の濃度を50wt%以下とするのは、それ以上の濃度のフッ化水素酸を取り扱うのは、安全上の観点から好ましくないためである。また、漏れ電流の発生頻度の低減の効果は、20wt%以上の場合にほぼ一定となる(フッ化水素酸の濃度を高めても発生頻度は変わらない)ことから、実用上は、フッ化水素酸の濃度は、20wt%以上30wt%以下とすれば十分である。   Preferably, the concentration of hydrofluoric acid is 20 wt% or more and 50 wt% or less. In such a case, the occurrence frequency of leakage current is reduced to 1.5% or less. The reason why the concentration of hydrofluoric acid is 50 wt% or less is that it is not preferable from the viewpoint of safety to handle hydrofluoric acid having a higher concentration. In addition, since the effect of reducing the frequency of occurrence of leakage current is almost constant when it is 20 wt% or more (the frequency of occurrence does not change even if the concentration of hydrofluoric acid is increased), hydrogen fluoride is practically used. It is sufficient that the acid concentration is 20 wt% or more and 30 wt% or less.

一方、フッ化水素酸の濃度を15wt%よりも小さくした場合、漏れ電流の発生頻度は未処理の場合よりも低下はするものの、その効果は必ずしも十分ではない。このことは、漏れ電流の低減には、15wt%以上、あるいは20wt%以上という、比較的高濃度のフッ化水素酸を用いることが有効である、ということを意味している。   On the other hand, when the concentration of hydrofluoric acid is less than 15 wt%, the occurrence frequency of leakage current is lower than that in the case of no treatment, but the effect is not always sufficient. This means that it is effective to use hydrofluoric acid having a relatively high concentration of 15 wt% or more, or 20 wt% or more for reducing the leakage current.

以上の手順によって前処理を行った下地基板を用いて電子デバイス構造体を作製した場合に、漏れ電流が低減される理由は、係る作製に供されるに先立って下地基板が研磨された際に基板最表面に生じていた加工変質層や、表面を研磨する際に用いられる研磨剤に含有されるSi酸化物(例えば、SiO)が、係る前処理によって好適に除去されることにより、結晶欠陥(転位)の発生さらには厚み方向への伝播が、抑制されるからであると考えられる。後者については実際、III族窒化物結晶層における結晶欠陥の多少が反映されるピット密度の大小と、漏れ電流の発生頻度との間に一定の相関があることが、本発明の発明者によって確認されている。 The reason why the leakage current is reduced when an electronic device structure is manufactured using a base substrate that has been pre-processed by the above procedure is that when the base substrate is polished prior to being subjected to such manufacturing. The work-affected layer generated on the outermost surface of the substrate and the Si oxide (for example, SiO 2 ) contained in the abrasive used for polishing the surface are suitably removed by such pretreatment, so that the crystal This is considered to be because the generation of defects (dislocations) and the propagation in the thickness direction are suppressed. Regarding the latter, the inventors of the present invention confirmed that there is a certain correlation between the magnitude of the pit density, which reflects the degree of crystal defects in the group III nitride crystal layer, and the frequency of occurrence of leakage current. Has been.

なお、フッ化水素酸の他に、下地基板の前処理に用い得る薬液としては、特許文献2に開示されているTMAH(水酸化テトラメチルアンモニウム)水溶液のほか、水酸化アンモニウム水溶液や、塩酸や、硫酸過水などが考えられるが、これらの薬液に浸漬処理を行ったとしても、漏れ電流の抑制には十分な効果が得られないことが、本発明の発明者によって確認されている。   In addition to hydrofluoric acid, as a chemical solution that can be used for pretreatment of the base substrate, in addition to an aqueous solution of TMAH (tetramethylammonium hydroxide) disclosed in Patent Document 2, an aqueous solution of ammonium hydroxide, hydrochloric acid, However, it is confirmed by the inventor of the present invention that even if immersion treatment is performed in these chemical solutions, a sufficient effect cannot be obtained for suppressing leakage current.

以上、説明したように、本実施の形態によれば、III族窒化物からなる下地基板を用いて電子デバイス構造体を作製するに先立って、15wt%以上という比較的高濃度のフッ化水素酸に該下地基板を浸漬することで、電子デバイス構造体における漏れ電流の発生を好適に抑制することが出来る。特に、20wt%以上30wt%以下の濃度のフッ化水素酸に浸漬した場合には、電子デバイス構造体における漏れ電流の発生頻度を1.5%以下にまで抑制することが出来る。   As described above, according to the present embodiment, a hydrofluoric acid having a relatively high concentration of 15 wt% or more prior to manufacturing an electronic device structure using a base substrate made of group III nitride. By immersing the base substrate in, the generation of leakage current in the electronic device structure can be suitably suppressed. In particular, when immersed in hydrofluoric acid having a concentration of 20 wt% or more and 30 wt% or less, the occurrence frequency of leakage current in the electronic device structure can be suppressed to 1.5% or less.

本実施例においては、薬液の条件を種々に違えて浸漬処理を行った複数の下地基板を用意し、それぞれの下地基板を用いて電子デバイス構造体を作製してその評価を行った。   In this example, a plurality of base substrates subjected to immersion treatment with various chemical solution conditions were prepared, and an electronic device structure was prepared and evaluated using each base substrate.

具体的には、まず、下地基板として、直径が2インチで厚みが400μmのC面GaN単結晶基板(以下、GaN基板)を複数枚用意し、浸漬処理用の薬液として、濃度の異なる8種類のフッ化水素酸(それぞれの濃度は5wt%、10wt%、15wt%、17.5wt%、20wt%、30wt%、40wt%、50wt%)と、pH=10の水酸化アンモニウム水溶液と、0.005mol/LのTMAH水溶液と、20wt%の塩酸と、硫酸(96wt%)と過酸化水素水(30wt%)を20:1にて混合した硫酸過水との全12種類を用意した。   Specifically, first, a plurality of C-plane GaN single crystal substrates (hereinafter, referred to as GaN substrates) having a diameter of 2 inches and a thickness of 400 μm are prepared as base substrates, and eight kinds of chemical solutions for immersion treatment having different concentrations are prepared. Hydrofluoric acid (concentrations of 5 wt%, 10 wt%, 15 wt%, 17.5 wt%, 20 wt%, 30 wt%, 40 wt%, 50 wt%), an aqueous ammonium hydroxide solution with pH = 10, A total of 12 types of 005 mol / L TMAH aqueous solution, 20 wt% hydrochloric acid, sulfuric acid / hydrogen peroxide mixture (96 wt%) and hydrogen peroxide (30 wt%) mixed at 20: 1 were prepared.

そして、それぞれの薬液にGaN基板を10分間浸漬した後、超純水への浸漬を2回繰り返し、さらに5分間の流水リンスを行った。その後、窒素ガスブローによりGaN基板を乾燥させた。   And after immersing a GaN board | substrate in each chemical | medical solution for 10 minutes, immersion in ultrapure water was repeated twice and the running water rinse for 5 minutes was performed. Thereafter, the GaN substrate was dried by nitrogen gas blowing.

次に、これら処理後のGaN基板(全12種類)に加え、未処理のGaN基板(1種類)をも対象として、13種のデバイス構造体を形成した。   Next, in addition to these processed GaN substrates (12 types in total), 13 types of device structures were formed targeting untreated GaN substrates (1 type).

図2は、本実施例において漏れ電流の評価対象とした電子デバイス構造体10の構成を模式的に示す図である。   FIG. 2 is a diagram schematically illustrating the configuration of the electronic device structure 10 that is an evaluation target of leakage current in the present embodiment.

電子デバイス構造体10は、それぞれの下地基板1の上に、GaN層2を3μmの厚みに形成した後、下地基板1側の表面とGaN層側の表面にそれぞれ、Ptからなる円形の電極(直径250μm)3、4が2次元的に繰り返し配置された電極パターンを電子ビーム蒸着法により形成し、素子分離を行うことにより作製した。1つの下地基板からは、250個の電子デバイス構造体10が得られた。   The electronic device structure 10 is formed by forming a GaN layer 2 with a thickness of 3 μm on each base substrate 1 and then forming circular electrodes (Pt) made of Pt on the surface on the base substrate 1 side and the surface on the GaN layer side, respectively. An electrode pattern in which diameters 3 and 4 are repeatedly arranged in a two-dimensional manner is formed by electron beam evaporation, and device isolation is performed. From one base substrate, 250 electronic device structures 10 were obtained.

なお、GaN層2を形成した時点で、偏光顕微鏡による基板表面の観察を行い、その結果に基づいて、その表面のピット密度を評価した。   When the GaN layer 2 was formed, the substrate surface was observed with a polarizing microscope, and the pit density on the surface was evaluated based on the result.

また、得られた個々の電子デバイス構造体10について電流−電圧測定を行った。最大300Vの電圧を印加した場合に、電極間の電流密度が1×10−5A/mmを超えるものを漏れ電流が発生していると判定した。 Further, current-voltage measurement was performed on the obtained individual electronic device structures 10. When a maximum voltage of 300 V was applied, it was determined that leakage current was generated when the current density between the electrodes exceeded 1 × 10 −5 A / mm 2 .

表1に、それぞれの薬液の条件と、これに対応するピット密度の測定結果および電流−電圧測定結果から得られた漏れ電流の発生頻度とを、一覧にして示す。   Table 1 shows a list of conditions for each chemical solution and the frequency of occurrence of leakage currents obtained from the corresponding pit density measurement results and current-voltage measurement results.

Figure 2014197582
Figure 2014197582

表1に示すように、濃度の異なるフッ化水素酸を用いて浸漬処理をした処理条件a−1〜a−8の場合においては、いずれも、(未処理である)処理条件bの場合よりもピット密度が低下し、かつ、フッ化水素酸の濃度が高いほどピット密度の値は小さくなった。また、漏れ電流の発生頻度についても概ねフッ化水素酸の濃度が高いほど低下する傾向があり、フッ化水素酸の濃度が15wt%以上である処理条件a−3〜a−8の場合においては5%以下となった。これは、未処理の場合の漏れ電流の発生頻度の概ね1/9〜1/10以下の値である。ただし、フッ化水素酸の濃度が20wt%以上である処理条件a−5〜a−8の場合においては、漏れ電流の発生頻度は1.3%以下でほぼ一定となった。これは、未処理の場合の漏れ電流の発生頻度の概ね1/30以下である。   As shown in Table 1, in the case of the treatment conditions a-1 to a-8 where the immersion treatment was performed using hydrofluoric acid having different concentrations, all of them were from the case of the treatment condition b (untreated). However, the pit density decreased and the value of the pit density decreased as the concentration of hydrofluoric acid increased. In addition, the frequency of occurrence of leakage current also tends to decrease as the concentration of hydrofluoric acid increases, and in the case of treatment conditions a-3 to a-8 where the concentration of hydrofluoric acid is 15 wt% or more. 5% or less. This is a value of approximately 1/9 to 1/10 or less of the occurrence frequency of leakage current in the case of no processing. However, in the case of treatment conditions a-5 to a-8 in which the concentration of hydrofluoric acid was 20 wt% or more, the occurrence frequency of leakage current was almost constant at 1.3% or less. This is approximately 1/30 or less of the occurrence frequency of leakage current in the unprocessed case.

一方、フッ化水素酸以外の薬液を用いて浸漬処理を行った処理条件c〜fの場合は、TMAH水溶液を用いた処理条件dの場合のみ、処理条件bの場合よりもピット密度が小さくなり、かつ、漏れ電流の発生頻度が小さくなったが、その低減の程度は、処理条件a−5〜a−8に比して小さかった。また、処理条件c、e、fの場合、ピット密度は処理条件bの場合とさほど変わらず、漏れ電流の発生頻度はむしろ増加した。   On the other hand, in the case of the treatment conditions cf in which the immersion treatment is performed using a chemical solution other than hydrofluoric acid, the pit density is smaller than in the case of the treatment condition b only in the case of the treatment condition d using the TMAH aqueous solution. In addition, the frequency of occurrence of leakage current was reduced, but the degree of reduction was small compared to the processing conditions a-5 to a-8. In the case of the processing conditions c, e, and f, the pit density was not much different from that in the processing condition b, and the frequency of occurrence of leakage current was rather increased.

以上の結果は、下地基板に対して濃度が15wt%以上であるフッ化水素酸への浸漬処理を行うことが、該下地基板を用いて作製する電子デバイス構造体における漏れ電流の発生を抑制するという点において効果的であることを示している。   The above results show that immersion treatment in hydrofluoric acid having a concentration of 15 wt% or more with respect to the base substrate suppresses the occurrence of leakage current in an electronic device structure manufactured using the base substrate. It is effective in that point.

1 下地基板
2 GaN層
3、4 電極
10 電子デバイス構造体
DESCRIPTION OF SYMBOLS 1 Ground substrate 2 GaN layer 3, 4 Electrode 10 Electronic device structure

Claims (4)

III族窒化物デバイス形成用のIII族窒化物基板に対し行う前処理方法であって、
前記III族窒化物基板を濃度が15wt%以上のフッ化水素酸に浸漬する、
ことを特徴とするIII族窒化物基板の前処理方法。
A pretreatment method for a group III nitride substrate for forming a group III nitride device,
Immersing the group III nitride substrate in hydrofluoric acid having a concentration of 15 wt% or more,
A pretreatment method for a group III nitride substrate.
請求項1に記載のIII族窒化物基板の前処理方法であって、
前記III族窒化物基板を濃度が20wt%以上50wt%以下のフッ化水素酸に浸漬する、
ことを特徴とするIII族窒化物基板の前処理方法。
A pretreatment method for a group III nitride substrate according to claim 1,
Immersing the group III nitride substrate in hydrofluoric acid having a concentration of 20 wt% or more and 50 wt% or less,
A pretreatment method for a group III nitride substrate.
III族窒化物基板の上にIII族窒化物結晶層を形成してなるIII族窒化物デバイスにおける漏れ電流の発生を抑制する方法であって、
前記III族窒化物基板を濃度が15wt%以上のフッ化水素酸に浸漬したうえで前記III族窒化物基板の上に前記III族窒化物結晶層を形成する、
ことを特徴とするIII族窒化物デバイスにおける漏れ電流抑制方法。
A method for suppressing the occurrence of leakage current in a group III nitride device formed by forming a group III nitride crystal layer on a group III nitride substrate,
Forming the group III nitride crystal layer on the group III nitride substrate after immersing the group III nitride substrate in hydrofluoric acid having a concentration of 15 wt% or more;
A method for suppressing leakage current in a group III nitride device.
請求項3に記載のIII族窒化物デバイスにおける漏れ電流抑制方法であって、
前記III族窒化物基板を濃度が20wt%以上50wt%以下のフッ化水素酸に浸漬する、
ことを特徴とするIII族窒化物デバイスにおける漏れ電流抑制方法。
A method for suppressing leakage current in a group III nitride device according to claim 3,
Immersing the group III nitride substrate in hydrofluoric acid having a concentration of 20 wt% or more and 50 wt% or less,
A method for suppressing leakage current in a group III nitride device.
JP2013071846A 2013-03-29 2013-03-29 Pretreatment method of group iii nitride substrate and leakage current control method in group iii nitride device Pending JP2014197582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071846A JP2014197582A (en) 2013-03-29 2013-03-29 Pretreatment method of group iii nitride substrate and leakage current control method in group iii nitride device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071846A JP2014197582A (en) 2013-03-29 2013-03-29 Pretreatment method of group iii nitride substrate and leakage current control method in group iii nitride device

Publications (1)

Publication Number Publication Date
JP2014197582A true JP2014197582A (en) 2014-10-16

Family

ID=52358193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071846A Pending JP2014197582A (en) 2013-03-29 2013-03-29 Pretreatment method of group iii nitride substrate and leakage current control method in group iii nitride device

Country Status (1)

Country Link
JP (1) JP2014197582A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936051A (en) * 1995-07-14 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> Crystal growth method of compound semiconductor thin film
JPH10233382A (en) * 1997-02-17 1998-09-02 Hewlett Packard Co <Hp> Surface cleaning method for semiconductor
JP2001053011A (en) * 1999-06-02 2001-02-23 Japan Energy Corp Compound semiconductor wafer and semiconductor device using the same
US20070269989A1 (en) * 2006-05-17 2007-11-22 Sumitomo Electric Industries, Ltd. Inspection method of compound semiconductor substrate, compound semiconductor substrate, surface treatment method of compound semiconductor substrate, and method of producing compound semiconductor crystal
JP2008085060A (en) * 2006-09-27 2008-04-10 Kyocera Corp Method of manufacturing gallium nitride-based compound semiconductor
JP2009021362A (en) * 2007-07-11 2009-01-29 Sumitomo Electric Ind Ltd Group iii nitride electronic device, laminate wafer for group iii nitride electronic device, and method of manufacturing group iii nitride electronic device
WO2009047894A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Method for producing group iii nitride crystal substrate, group iii nitride crystal substrate, and semiconductor device using group iii nitride crystal substrate
JP2010132471A (en) * 2008-12-02 2010-06-17 Sumitomo Electric Ind Ltd Growth method of gallium nitride crystal and production method of gallium nitride crystal
JP2011018912A (en) * 2010-08-09 2011-01-27 Sharp Corp Nitride semiconductor device manufacturing method
WO2011083551A1 (en) * 2010-01-06 2011-07-14 パナソニック株式会社 Nitride semiconductor light-emitting element and process for production thereof
US20110232564A1 (en) * 2008-12-02 2011-09-29 Sumitomo Electric Industries, Ltd. Method of growing gallium nitride crystal and method of manufacturing gallium nitride crystal

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936051A (en) * 1995-07-14 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> Crystal growth method of compound semiconductor thin film
JPH10233382A (en) * 1997-02-17 1998-09-02 Hewlett Packard Co <Hp> Surface cleaning method for semiconductor
US5919715A (en) * 1997-02-17 1999-07-06 Hewlett-Packard Company Method for cleaning a semiconductor surface
JP2001053011A (en) * 1999-06-02 2001-02-23 Japan Energy Corp Compound semiconductor wafer and semiconductor device using the same
US20070269989A1 (en) * 2006-05-17 2007-11-22 Sumitomo Electric Industries, Ltd. Inspection method of compound semiconductor substrate, compound semiconductor substrate, surface treatment method of compound semiconductor substrate, and method of producing compound semiconductor crystal
JP2007311490A (en) * 2006-05-17 2007-11-29 Sumitomo Electric Ind Ltd Compound semiconductor substrate, method for inspecting the same, method for surface-treating compound semiconductor substrate, and manufacturing method for compound semiconductor crystal
JP2008085060A (en) * 2006-09-27 2008-04-10 Kyocera Corp Method of manufacturing gallium nitride-based compound semiconductor
JP2009021362A (en) * 2007-07-11 2009-01-29 Sumitomo Electric Ind Ltd Group iii nitride electronic device, laminate wafer for group iii nitride electronic device, and method of manufacturing group iii nitride electronic device
WO2009047894A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Method for producing group iii nitride crystal substrate, group iii nitride crystal substrate, and semiconductor device using group iii nitride crystal substrate
JP2010132471A (en) * 2008-12-02 2010-06-17 Sumitomo Electric Ind Ltd Growth method of gallium nitride crystal and production method of gallium nitride crystal
US20110232564A1 (en) * 2008-12-02 2011-09-29 Sumitomo Electric Industries, Ltd. Method of growing gallium nitride crystal and method of manufacturing gallium nitride crystal
WO2011083551A1 (en) * 2010-01-06 2011-07-14 パナソニック株式会社 Nitride semiconductor light-emitting element and process for production thereof
JP2011018912A (en) * 2010-08-09 2011-01-27 Sharp Corp Nitride semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JP5056753B2 (en) Method for manufacturing compound semiconductor device and etching solution
JP6088431B2 (en) Compound semiconductor wafer cleaning method
JP5266679B2 (en) Group III nitride electronic devices
JP2009200523A (en) Substrate with epitaxial layer, semiconductor element and these manufacturing method
JP2007005472A (en) Surface processing method of substrate and manufacturing method of groups iii-v compound semiconductor
CN109065449B (en) Method for thinning epitaxial structure
JP2010098076A (en) Method for manufacturing semiconductor device
JP2007234952A (en) Manufacturing method of compound semiconductor, surface treatment method of compound semiconductor substrate, compound semiconductor substrate, and semiconductor wafer
US20160013305A1 (en) Nitride semiconductor device and method for manufacturing nitride semiconductor device
JP4697272B2 (en) III-V compound semiconductor substrate manufacturing method and epitaxial wafer manufacturing method
JP6019129B2 (en) III-nitride substrate processing method and epitaxial substrate manufacturing method
JP2010239066A (en) Method for fabricating semiconductor device
JP2017011005A (en) Method for cleaning silicon wafer
JP2009231550A (en) Method of manufacturing semiconductor apparatus
US8580695B2 (en) Method of fabricating a semiconductor device
JP2020150141A (en) Semiconductor device and manufacturing method thereof
WO2013179569A1 (en) Method for cleaning semiconductor wafer
JP2014183092A (en) Semiconductor device manufacturing method and dry etching device used therefor
JP6376072B2 (en) Epitaxial wafer manufacturing method
US5919715A (en) Method for cleaning a semiconductor surface
US9431260B2 (en) Semiconductor device and manufacturing method of the same
WO2009119159A1 (en) Substrate for optical device and method for manufacturing the substrate
JP2014197582A (en) Pretreatment method of group iii nitride substrate and leakage current control method in group iii nitride device
JP2005210089A (en) Manufacturing method for nitride compound semiconductor device
WO2019087517A1 (en) Method for manufacturing soi wafer having thin-film soi layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228