JP2014197456A - Method of positive electrode grid body for lead-acid storage battery and lead-acid storage battery - Google Patents

Method of positive electrode grid body for lead-acid storage battery and lead-acid storage battery Download PDF

Info

Publication number
JP2014197456A
JP2014197456A JP2013071547A JP2013071547A JP2014197456A JP 2014197456 A JP2014197456 A JP 2014197456A JP 2013071547 A JP2013071547 A JP 2013071547A JP 2013071547 A JP2013071547 A JP 2013071547A JP 2014197456 A JP2014197456 A JP 2014197456A
Authority
JP
Japan
Prior art keywords
lead
positive electrode
storage battery
electrode grid
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013071547A
Other languages
Japanese (ja)
Inventor
祐太朗 川口
Yutaro Kawaguchi
祐太朗 川口
古川 淳
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2013071547A priority Critical patent/JP2014197456A/en
Publication of JP2014197456A publication Critical patent/JP2014197456A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing the positive electrode grid body for lead-acid storage battery capable of preventing short circuit of the positive electrode grid body for lead-acid storage battery due to elongation deformation caused by corrosion thereof, while suppressing reduction in mechanical strength and influence on the electrical characteristics, and to provide a lead-acid storage battery.SOLUTION: A method of manufacturing the positive electrode grid body 1 for a lead-acid storage battery in which a grid body having a frame bone 2, and a vertical bone 3 and a lateral bone 4 arranged like a grid in the frame bone are formed from a plate of lead or a lead alloy produced by any one of gravity casting, pressure casting, continuous casting or rolling, includes a step for subjecting a predetermined point of the frame bone 2 to high deformation thus forming a low corrosion resistance point.

Description

本発明は、鉛蓄電池の正極極板に用いられる鉛蓄電池用正極格子体の製造方法及び鉛蓄電池に関する。   The present invention relates to a method for manufacturing a positive electrode grid for a lead storage battery used for a positive electrode plate of a lead storage battery and a lead storage battery.

従来、鉛蓄電池においては、グロスと称する正極板の伸びが発生する。グロスが進行すると、正極格子体が伸びて、正極格子体の上端と負極ストラップが接近し、ついには両者が接触して内部短絡に至る。このグロスを防止することは極めて難しく、グロスを抑えるために正極板の格子体の材質や構造等種々検討されている。
例えば、鉛蓄電池用正極格子体のグロスに起因した短絡を防止するため、鉛蓄電池用正極格子体の枠骨に、切り欠き等を設けることで周囲よりも機械的強度を弱め、これによって折損を誘発するウィークポイントを予め設ける技術が知られている(例えば、特許文献1参照)。
Conventionally, in a lead storage battery, an elongation of a positive electrode plate called gloss is generated. As the gloss progresses, the positive electrode lattice body expands, the upper end of the positive electrode lattice body and the negative electrode strap approach each other, and finally they come into contact with each other, resulting in an internal short circuit. It is extremely difficult to prevent the gloss, and various studies have been made on the material and structure of the grid of the positive electrode plate in order to suppress the gloss.
For example, in order to prevent a short circuit due to the gross of the positive electrode grid for lead-acid batteries, the mechanical strength of the lead-acid battery positive grid for the lead-acid battery is lessened by providing notches etc. in the frame, thereby breaking. A technique for providing a weak point to be induced in advance is known (see, for example, Patent Document 1).

特表2008−542997号公報Special table 2008-542997 gazette

しかしながら、切り欠き等が設けられた枠骨を採用した鉛蓄電池では、格子断面積が減少するため、鉛蓄電池の電位分布に影響を与え、電気的特性の性能低下を招く。また、予め、機械的強度を低下させるウィークポイントを形成したので、鉛蓄電池用正極格子体の製造工程では、鉛蓄電池用正極格子体に活物質を充填する工程や電槽に極板群を挿入する工程において、ウィークポイントの折損が生じてしまい歩留まりの悪化を招く恐れがある。   However, in a lead storage battery that employs a frame bone provided with a notch or the like, the lattice cross-sectional area is reduced, which affects the potential distribution of the lead storage battery and causes a reduction in performance of electrical characteristics. In addition, because the weak points that reduce the mechanical strength were formed in advance, in the manufacturing process of the positive electrode grid for lead-acid batteries, the electrode plate group was inserted into the process for filling the positive-electrode grid for lead-acid batteries and the battery case In the process, the weak points may be broken and the yield may be deteriorated.

本発明は上記の課題を解決するためになされたものであり、機械的強度の低下、及び電気的特性への影響を抑えつつ、鉛蓄電池用正極格子体のグロスに起因した短絡を防止できる鉛蓄電池用正極格子体の製造方法、及び鉛蓄電池を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and can prevent a short circuit caused by the gloss of the positive electrode grid for a lead-acid battery while suppressing a decrease in mechanical strength and an influence on electrical characteristics. It aims at providing the manufacturing method of the positive electrode grid for storage batteries, and a lead storage battery.

上記目的を達成するために、本発明は、重力鋳造、圧力鋳造、連続鋳造、圧延のいずれかで製造された鉛、又は鉛合金からなる枠骨、及び当該枠骨内に格子状に配置された縦骨と横骨とを有する格子体を形成する鉛蓄電池用正極格子体の製造方法において、前記枠骨に強加工を施し低耐腐食性ポイントを形成する工程を含むことを特徴とする。   In order to achieve the above object, the present invention is a frame made of lead or a lead alloy produced by any one of gravity casting, pressure casting, continuous casting, and rolling, and arranged in a lattice pattern in the frame bone. A method of manufacturing a positive electrode grid for a lead-acid battery that forms a grid having a vertical bone and a horizontal bone includes a step of subjecting the frame bone to strong processing to form a low corrosion resistance point.

また、本発明は、上記鉛蓄電池用正極格子体の製造方法において、前記鉛蓄電池用正極格子体は、矩形枠状の前記枠骨の一辺に耳を備え、前記耳が設けられた一辺の少なくとも一方の端部の周囲に前記低耐腐食性ポイントを設けることを特徴とする。   Further, the present invention provides the above-described method for manufacturing a lead-acid battery positive electrode grid, wherein the lead-acid battery positive electrode grid includes an ear on one side of the rectangular frame-shaped frame, and at least one side on which the ear is provided. The low corrosion resistance point is provided around one end portion.

また、本発明は、上記鉛蓄電池用正極格子体の製造方法において、前記強加工は、前記枠骨の断面の微細組織を変化させて耐食性を低下させる加工であることを特徴とする。   Moreover, the present invention is characterized in that, in the above-described method for producing a positive electrode grid for a lead storage battery, the strong processing is processing for changing the microstructure of the cross section of the frame bone to reduce corrosion resistance.

また、本発明は、上記のいずれかに記載の鉛蓄電池用正極格子体の製造方法によって製造された鉛蓄電池用正極格子体を正極に備えたことを特徴とする。   Moreover, this invention was equipped with the positive electrode grid for lead acid batteries manufactured by the manufacturing method of the positive electrode grid for lead acid batteries in any one of the above in the positive electrode.

本発明の鉛蓄電池用正極格子体の製造方法によれば、鉛蓄電池用正極格子体の機械的強度及び電気的特性に影響を及ぼす格子断面積を変化させずに、強加工により低耐腐食性ポイントを形成するので、低耐食性ポイントの形成によって、鉛蓄電池用正極格子体の機械的強度が低下したり、電気的特性に影響がでたりすることを抑制できる。本鉛蓄電池用正極格子体を採用した鉛蓄電池では、腐食に起因した伸び変形が大きくなる前に前記低耐腐食性ポイントが折損するので、短絡の発生を防止できる。   According to the method for manufacturing a positive electrode grid for a lead-acid battery of the present invention, low corrosion resistance is obtained by strong processing without changing the lattice cross-sectional area that affects the mechanical strength and electrical characteristics of the positive-electrode grid for a lead-acid battery. Since the point is formed, the formation of the low corrosion resistance point can suppress the decrease in the mechanical strength of the positive electrode body for the lead-acid battery and the influence on the electrical characteristics. In a lead storage battery that employs the positive electrode grid for the lead storage battery, the low corrosion resistance point breaks before the elongation deformation due to corrosion becomes large, so that the occurrence of a short circuit can be prevented.

本発明の一実施形態に係る鉛蓄電池用正極格子体の製造方法により製造された鉛蓄電池用正極格子体の正面図である。It is a front view of the positive electrode grid body for lead acid batteries manufactured by the manufacturing method of the positive electrode grid object for lead acid batteries which concerns on one Embodiment of this invention. 鉛蓄電池の正極極板の製造方法のフローチャート図である。It is a flowchart figure of the manufacturing method of the positive electrode plate of a lead acid battery. 低耐腐食性ポイントの形状及び形成方法について説明する断面図である。It is sectional drawing explaining the shape and formation method of a low corrosion resistance point. 本発明の一実施形態に係る鉛蓄電池と比較例の鉛蓄電池の寿命試験の結果を示す図である。It is a figure which shows the result of the life test of the lead acid battery which concerns on one Embodiment of this invention, and the lead acid battery of a comparative example. 低耐腐食性ポイントの形状及び形成方法の他の実施態様について説明する断面図である。It is sectional drawing explaining the other embodiment of the shape and formation method of a low corrosion resistance point. 低耐腐食性ポイントの形状及び形成方法の他の実施態様について説明する断面図である。It is sectional drawing explaining the other embodiment of the shape and formation method of a low corrosion resistance point.

以下、本発明の実施形態について図面を参照して説明する。
図1は本発明の一実施形態に係る鉛蓄電池用正極格子体(以下、「正極格子体」と言う)の製造方法により製造された正極格子体1の正面図である。
図1において、正極格子体1は、例えば、自動車等に搭載される鉛蓄電池の正極極板の集電体として用いられる。
正極格子体1は、外枠を構成する枠骨2と、この枠骨2の内側に、格子状に形成される複数の縦骨3及び複数の横骨4と、枠骨2から外側に延出させた集電用の耳5とを備えている。
枠骨2は、矩形形状の外形を有し、図1中、上下方向に互いに離間して平行に延びる上枠骨6及び下枠骨7と、左右方向に互いに離間して平行に延びる左枠骨8及び右枠骨9とを備えている。
複数の縦骨3は互いに離間して、枠骨2内に配置されている。各縦骨3の一端は上枠骨6に接続され、縦骨3の他端は、下枠骨7、左枠骨8、及び右枠骨9のいずれかに接続されている。また、複数の横骨4が、上下方向に互いに離間して左枠骨8及び右枠骨9の間を渡すように設けられ、縦骨3と共同して格子を形成する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a front view of a positive electrode grid 1 manufactured by a method for manufacturing a positive electrode grid for a lead storage battery (hereinafter referred to as a “positive electrode grid”) according to an embodiment of the present invention.
In FIG. 1, a positive electrode grid body 1 is used as a current collector of a positive electrode plate of a lead storage battery mounted on an automobile or the like, for example.
The positive grid 1 includes a frame bone 2 constituting an outer frame, a plurality of vertical bones 3 and a plurality of horizontal bones 4 formed in a lattice shape inside the frame bone 2, and extends outward from the frame bone 2. And a collected ear 5 for current collection.
The frame bone 2 has a rectangular outer shape, and in FIG. 1, an upper frame bone 6 and a lower frame bone 7 that are spaced apart from each other in the vertical direction and extend in parallel, and a left frame that is spaced apart from each other in the left-right direction and extends in parallel. A bone 8 and a right frame bone 9 are provided.
The plurality of vertical bones 3 are arranged in the frame bone 2 so as to be separated from each other. One end of each longitudinal bone 3 is connected to the upper frame bone 6, and the other end of the longitudinal bone 3 is connected to any of the lower frame bone 7, the left frame bone 8, and the right frame bone 9. A plurality of horizontal bones 4 are provided so as to be spaced apart from each other in the vertical direction and pass between the left frame bone 8 and the right frame bone 9, and form a lattice in cooperation with the vertical bones 3.

次いで、正極格子体1を用いた正極極板の製造方法について説明する。
図2は、鉛蓄電池の正極極板の製造方法のフローチャート図である。
正極極板の製造方法は、正極格子体1を製造する工程(ステップS11〜ステップS13)と、活物質充填・乾燥工程(ステップS14)とを備えている。
ステップS11で行うスラブ製造工程は、鉛、又は鉛合金スラブを得る工程である。スラブ鋳造工程では、まず、ブロックあるいは粉末状の鉛(Pb)、又は、それぞれ、ブロックあるいは粉末状のPbと各種金属を混ぜ合わせた混合金属を用意する。
鉛合金を材料とする場合、合金組成としては、従来から広く採用されているPb−アンチモン(Sb)系合金でもよいし、Pb−カルシウム(Ca)−スズ(Sn)系合金などでもよい。Pb−Ca−Sn系合金は、自己放電、減液量の少ないなどの特徴があり、メンテナンスフリーの観点から有用である。
なお、鉛合金の合金組成は、このものによらず、Pbに混ぜる金属は、Ca、Snの他、例えば、アルミニウム(Al)やバリウム(Ba)などの金属を適宜混合してもよい。
以下、混合金属から正極格子体1を作る場合について説明するが、Pbから正極格子体1を作る場合も同様に説明できる。
スラブ製造工程では、いわゆる双ロール鋳造機を用いてシート状の鋳造体(スラブ)を得る。
即ち、混合金属を加熱して溶融し、溶融した混合金属を、対向する一対の金属製ロール間に注いで凝固させた鋳片を引きだすことにより、連続するシート状の鉛合金スラブを得る。
Next, a method for manufacturing a positive electrode plate using the positive electrode grid 1 will be described.
FIG. 2 is a flowchart of a method for manufacturing a positive electrode plate of a lead storage battery.
The manufacturing method of the positive electrode plate includes a process of manufacturing the positive electrode grid body 1 (step S11 to step S13) and an active material filling / drying process (step S14).
The slab manufacturing process performed in step S11 is a process for obtaining lead or a lead alloy slab. In the slab casting process, first, a block or powdered lead (Pb) or a mixed metal obtained by mixing a block or powdered Pb and various metals is prepared.
When a lead alloy is used as the material, the alloy composition may be a Pb-antimony (Sb) -based alloy that has been widely used, or a Pb-calcium (Ca) -tin (Sn) -based alloy. Pb—Ca—Sn alloys have features such as self-discharge and a small amount of liquid reduction, and are useful from the viewpoint of maintenance-free.
The alloy composition of the lead alloy is not limited to this, and the metal mixed with Pb may be appropriately mixed with metals such as aluminum (Al) and barium (Ba) in addition to Ca and Sn.
Hereinafter, although the case where the positive electrode grid body 1 is made from a mixed metal will be described, the case where the positive electrode grid body 1 is made from Pb can be similarly described.
In the slab manufacturing process, a sheet-like cast body (slab) is obtained using a so-called twin roll casting machine.
That is, the mixed metal is heated and melted, and the molten mixed metal is poured between a pair of opposed metal rolls to solidify the slab, thereby obtaining a continuous sheet-like lead alloy slab.

ステップS12で行う圧延工程では、上下一対の圧延ロール間にシート状の鉛合金スラブを挟み込んで圧力をかけ、鉛合金スラブを延ばした圧延シートを得る。この実施形態では、圧延シートの厚さが1mm程度となるように、公知の方法により圧延ロールの段数、圧下率を調整し圧延を行った。圧延により、鉛合金スラブの状態よりも機械的強度が高まり、また、圧延シートの加工が容易になる。
次いで、ステップS13で行うプレス成型・低耐腐食性ポイント形成工程では、プレス成型機を用いて圧延シートのプレス打ち抜きを実施し、図1に示した形状の正極格子体1を得る。
ここで、プレス成型・低耐腐食性ポイント形成工程では、プレス打ち抜きと同時に、図1の破線の円で示す部分に、即ち、枠骨2の所定の部位P1〜P4に強加工を施し、周囲より耐食性を低下させた低耐腐食性ポイントを形成しているが、これについては後述する。
また、ステップS14で行う活物質充填・乾燥工程では、正極格子体1の格子目に正極活物質を充填し、正極活物質を熟成・乾燥させて正極極板を得る工程である。正極活物質は、鉛粉と、希硫酸と、水とを練り合わせてペースト状として正極格子体に充填される。
In the rolling process performed in Step S12, a sheet-shaped lead alloy slab is sandwiched between a pair of upper and lower rolling rolls, and pressure is applied to obtain a rolled sheet in which the lead alloy slab is extended. In this embodiment, rolling was performed by adjusting the number of rolling rolls and the rolling reduction by a known method so that the thickness of the rolled sheet was about 1 mm. Rolling increases the mechanical strength as compared with the state of the lead alloy slab and facilitates the processing of the rolled sheet.
Next, in the press molding / low corrosion resistance point forming step performed in step S13, the rolled sheet is press punched using a press molding machine to obtain the positive electrode grid body 1 having the shape shown in FIG.
Here, in the press molding / low corrosion resistance point forming process, simultaneously with the press punching, the portion indicated by the broken circle in FIG. A low corrosion resistance point with further reduced corrosion resistance is formed, which will be described later.
In the active material filling / drying step performed in step S14, the positive electrode active material is filled in the lattice of the positive electrode grid 1, and the positive electrode active material is aged and dried to obtain a positive electrode plate. The positive electrode active material is filled in the positive electrode grid as a paste by kneading lead powder, dilute sulfuric acid, and water.

次いで、鉛蓄電池について説明する。
詳細には図示しないが、鉛蓄電池は、電槽の中に、極板群を設けた構成を有している。極板群は、正極極板及び袋状のセパレータに挿入された負極極板を交互に配列して構成されている。この実施形態では、正極極板の枚数を7枚とし、負極極板の枚数を8枚としている。
なお、負極極板は、負極格子体に負極活物質を充填し、熟成・乾燥して製造される。正極極板と負極極板を、それぞれの耳を上方に向けて、電槽内に配列している。正極極板の耳5と負極極板の耳は、積層方向から見て互いにずれた位置にある。複数の負極極板の耳は、共通の負極ストラップに接続され、複数の正極極板の耳5は、共通の正極ストラップに接続される。
外部に露出する電槽の蓋部の表面には、正極端子及び負極端子が設けられ、負極ストラップは、負極端子に接続され、正極ストラップは正極端子に接続されている。
電槽に、比重1.240の硫酸水溶液(希硫酸)を電解液として注入することで、初期充電(電槽化成)が行われ、正極端子及び負極端子間から電圧を供給可能になる。
Next, the lead storage battery will be described.
Although not shown in detail, the lead storage battery has a configuration in which an electrode plate group is provided in a battery case. The electrode plate group is configured by alternately arranging positive electrode plates and negative electrode plates inserted in a bag-shaped separator. In this embodiment, the number of positive electrode plates is seven and the number of negative electrode plates is eight.
The negative electrode plate is manufactured by filling a negative electrode grid with a negative electrode active material, aging and drying. The positive electrode plate and the negative electrode plate are arranged in the battery case with their ears facing upward. The ears 5 of the positive electrode plate and the ears of the negative electrode plate are shifted from each other when viewed from the stacking direction. The plurality of negative electrode plate ears are connected to a common negative electrode strap, and the plurality of positive electrode plate ears 5 are connected to a common positive electrode strap.
A positive electrode terminal and a negative electrode terminal are provided on the surface of the lid portion of the battery case exposed to the outside, the negative electrode strap is connected to the negative electrode terminal, and the positive electrode strap is connected to the positive electrode terminal.
By injecting a sulfuric acid aqueous solution (dilute sulfuric acid) having a specific gravity of 1.240 into the battery case as an electrolytic solution, initial charging (battery cell formation) is performed, and voltage can be supplied between the positive electrode terminal and the negative electrode terminal.

ところで、電槽内に配列された正極極板において、鉛蓄電池の充放電によって正極格子体1の腐食が進むと、枠骨2には、腐食生成物の引張応力に起因して、グロスと呼ばれる正極格子体1の伸び変形が発生する。正極格子体1の枠骨2は、電槽の底部及び側面に囲まれており、電槽の底部及び側面に向けて変形することが規制されている。その一方で、正極格子体1の上方には、正極格子体1の上枠骨6と負極ストラップとの間に空間が形成されており、上方に向かう正極格子体1の伸び変形が規制されない。従って、正極格子体1の枠骨2にグロスが発生した場合、上枠骨6は、左右方向及び上方向に延びようとするが、左右方向及び下方向への伸び変形が規制されることから、伸び変形を規制されない上方に向って変形する。
上述の低耐腐食性ポイントとは、正極格子体1の上枠骨6が、グロスにより上方に位置する負極ストラップに接触して短絡することを防止すべく、強加工により耐食性を低下させた箇所と定義する。
By the way, in the positive electrode plate arranged in the battery case, when the corrosion of the positive electrode grid body 1 proceeds due to charging / discharging of the lead storage battery, the frame 2 is called gross due to the tensile stress of the corrosion product. Elongation deformation of the positive electrode grid 1 occurs. The frame 2 of the positive electrode grid 1 is surrounded by the bottom and side surfaces of the battery case, and is restricted from being deformed toward the bottom and side surfaces of the battery case. On the other hand, a space is formed above the positive electrode grid body 1 between the upper frame bone 6 of the positive electrode grid body 1 and the negative electrode strap, and the upward deformation of the positive electrode grid body 1 is not restricted. Therefore, when gross is generated in the frame 2 of the positive grid 1, the upper frame 6 tends to extend in the left-right direction and the upper direction, but the deformation in the left-right direction and the lower direction is restricted. , Deformation toward the upper direction where the deformation is not restricted.
The above-mentioned low corrosion resistance point means that the upper frame bone 6 of the positive electrode grid body 1 is a portion where the corrosion resistance has been lowered by strong processing in order to prevent the upper frame bone 6 from coming into contact with the negative electrode strap located above by the gloss and short-circuiting. It is defined as

前記するようにグロスの発生は、上枠骨6と左枠骨8、または上枠骨6と右枠骨9とが形成する角部の近傍に応力が集中するので、これらの角部の近傍で大きくなる。
そこで、低耐腐食性ポイントを、耳5の形成された上枠骨6の両端の部位P1,P2、及び上枠骨6の両端に近い左枠骨8及び右枠骨9の部位P3,P4に形成している。
低耐腐食性ポイントでは、正極格子体1のグロスを発生した上枠骨6が、上方の負極ストラップに接触する前に折損されるように強加工を施し耐食性を低下させている。
正極格子体1のグロスの発生によって、上枠骨6を上方に向かわせようとする応力は、低耐腐食性ポイントのいずれかが折損すると、折損した部分における枠骨2の延在方向に逃がされる。このため、低耐腐食性ポイントが折損した後は、上枠骨6が上方に伸び変形することが抑制される。
なお、低耐腐食性ポイントは、枠骨2の部位P1〜P4に形成するものに限定されず、正極格子体1のグロスを防止したい箇所を鑑みて適宜設定すればよい。例えば、上枠骨6は、部位P1,P2の両方に設けるものに限定されない。例えば、負極ストラップが、上枠骨6の一方の端部の上方に位置し、上枠骨6と負極ストラップとの接触だけを考慮すればよい場合、上枠骨6の一方の端部に低耐腐食性ポイントを設けるだけでもよい。
As described above, since the stress is concentrated in the vicinity of the corner formed by the upper frame bone 6 and the left frame bone 8 or the upper frame bone 6 and the right frame bone 9, the vicinity of these corner portions is generated. It grows big.
Therefore, the low corrosion resistance points are determined at portions P1, P2 at both ends of the upper frame bone 6 where the ears 5 are formed, and portions P3, P4 of the left frame bone 8 and the right frame bone 9 near the both ends of the upper frame bone 6. Is formed.
At the low corrosion resistance point, the upper frame bone 6 that has generated the gloss of the positive electrode grid 1 is strongly processed so as to be broken before coming into contact with the upper negative electrode strap, thereby reducing the corrosion resistance.
Due to the occurrence of the gloss of the positive electrode lattice 1, the stress that tends to make the upper frame bone 6 face upward is released in the extending direction of the frame frame 2 at any broken portion when one of the low corrosion resistance points is broken. It is. For this reason, after the low corrosion resistance point breaks, the upper frame bone 6 is restrained from extending and deforming upward.
Note that the low corrosion resistance point is not limited to those formed in the parts P1 to P4 of the frame bone 2, and may be set as appropriate in consideration of the part where the positive electrode lattice 1 is desired to be prevented from being glossed. For example, the upper frame bone 6 is not limited to what is provided in both the site | parts P1 and P2. For example, when the negative strap is located above one end of the upper frame bone 6 and only the contact between the upper frame bone 6 and the negative strap needs to be taken into consideration, the negative strap is low at one end of the upper frame bone 6. It is only necessary to provide a corrosion resistance point.

次いで、低耐腐食性ポイントの形成方法について説明する。
図3は、低耐腐食性ポイントの形状及び形成方法について説明する断面図である。
図3は、上枠骨6の幅方向に直交する断面であり、低耐腐食性ポイントの形成領域の周辺を示している。
低耐腐食性ポイントは、上述したように、ステップS13で行うプレス成型・低耐腐食性ポイント形成工程で、プレス成型機による打ち抜き動作を行う際に行われる。
プレス成型機の打ち抜きダイ11は、枠骨2の形成領域となる圧延シート12の部位を、厚さ方向の両側から挟み込む上側ダイ15及び下側ダイ16を有している。圧延シート12の低耐腐食性ポイントを挟み込む上側ダイ15の位置に凸部17が設けられ、凸部17と対向する下側ダイ16の部位に凹部18が設けられている。
Next, a method for forming a low corrosion resistance point will be described.
FIG. 3 is a cross-sectional view illustrating the shape and forming method of the low corrosion resistance point.
FIG. 3 is a cross section orthogonal to the width direction of the upper frame bone 6 and shows the periphery of the formation region of the low corrosion resistance point.
As described above, the low corrosion resistance point is performed when a punching operation is performed by a press molding machine in the press molding / low corrosion resistance point forming step performed in step S13.
The punching die 11 of the press molding machine includes an upper die 15 and a lower die 16 that sandwich a portion of the rolled sheet 12 that forms the frame bone 2 from both sides in the thickness direction. A convex portion 17 is provided at a position of the upper die 15 sandwiching the low corrosion resistance point of the rolled sheet 12, and a concave portion 18 is provided at a portion of the lower die 16 facing the convex portion 17.

凸部17の壁面形状は、図3に示すように概略断面円弧状をなし、上枠骨6の幅方向の全域に亘ってプレスする。凹部18の壁面形状は、断面円弧状である。これにより、凸部17と凹部18の間に挟み込まれて強加工された部位は、U字状に湾曲された低耐腐食性ポイントとなる。
ここで、強加工は、枠骨2の形成領域のうち、強加工の対象となる部分を除いた主要領域よりも高い圧力を厚み方向に加えるプレス加工を言う。
なお、左枠骨8及び右枠骨9の部位P3,P4をプレスして、低耐腐食性ポイントを形成する凸部及び凹部も同様の形状であり、上側ダイ15及び下側ダイ16による圧延シート12の押さえこみ時に、枠骨2の部位P3,P4にも強加工が施される。
As shown in FIG. 3, the wall surface shape of the convex portion 17 has a substantially circular arc shape and is pressed over the entire width direction of the upper frame bone 6. The wall surface shape of the recess 18 has a circular arc cross section. Thereby, the site | part strongly processed by being pinched | interposed between the convex part 17 and the recessed part 18 turns into a low corrosion resistance point curved in the U shape.
Here, strong processing refers to press processing in which a higher pressure is applied in the thickness direction than the main region excluding the portion to be subjected to strong processing in the formation region of the frame bone 2.
The convex portions and the concave portions forming the low corrosion resistance points by pressing the portions P3 and P4 of the left frame bone 8 and the right frame bone 9 have the same shape, and rolling by the upper die 15 and the lower die 16 is performed. When the sheet 12 is pressed, the parts P3 and P4 of the frame bone 2 are also strongly processed.

枠骨2を強加工することで、枠骨2の断面における微細組織が変化する。このため、強加工された枠骨2の部位では微細な結晶粒が形成されて耐食性が低下し、他の部位よりも腐食の進行が速くなる。強加工を行う際の圧力は、低耐腐食性ポイントにおける耐腐食性の低下目標値に応じて設定する。即ち、耐腐食性の低下目標値は、鉛蓄電池を製造した場合の負極ストラップと正極格子体1の上枠骨6との距離を鑑み、グロスが発生しても、上枠骨6が負極ストラップに接触する前に、低耐腐食性ポイントが折損するように設定する。これにより、正極格子体1を正極極板に用いた鉛蓄電池では、短絡を防止できる。また、強加工により枠骨2の一部を変形させて低耐腐食性ポイントを形成しているものの、低耐腐食性ポイントを形成した枠骨2の部位での枠骨2の幅は変化しない。このため、鉛蓄電池の充放電が繰り返されて腐食が進行する前では、低耐腐食性ポイントでの機械的強度の低下や、低耐腐食性ポイントの形成による電気的特性への影響も抑えられる。   By finely processing the frame bone 2, the microstructure in the cross section of the frame bone 2 changes. For this reason, fine crystal grains are formed in the strongly-processed part of the frame bone 2 to reduce the corrosion resistance, and the progress of corrosion is faster than in other parts. The pressure at the time of performing strong processing is set according to the target value of the decrease in corrosion resistance at the low corrosion resistance point. That is, the target value for the reduction in corrosion resistance is that the upper frame bone 6 remains in the negative strap even if gross occurs in consideration of the distance between the negative electrode strap when the lead-acid battery is manufactured and the upper frame bone 6 of the positive electrode grid 1. Set so that the low corrosion resistance point breaks before touching. Thereby, in the lead storage battery using the positive electrode grid body 1 for the positive electrode plate, a short circuit can be prevented. In addition, although a part of the frame bone 2 is deformed by strong processing to form a low corrosion resistance point, the width of the frame bone 2 at the part of the frame bone 2 where the low corrosion resistance point is formed does not change. . For this reason, before the lead-acid battery is repeatedly charged and discharged and the corrosion progresses, the mechanical strength is reduced at the low corrosion resistance point, and the influence on the electrical characteristics due to the formation of the low corrosion resistance point can be suppressed. .

上記する方法で本発明の鉛蓄電池と比較例の鉛蓄電池を作製した。比較例の鉛蓄電池は、本実施形態の鉛蓄電池の製造方法において、プレス成型・低耐腐食性ポイント形成工程での低耐腐食性ポイントの形成を省略した他は、本実施形態の鉛蓄電池と同様の製造方法により製造した。そして、夫々作製した鉛蓄電池を用いてサイクル寿命試験を実施した。
前記サイクル寿命試験は、75℃環境下において、鉛蓄電池を放電電流25Aで2分間放電し、その後、充電電圧14.8V(最大充電電流25A)で10分間充電する工程を繰り返した。前記工程を480サイクル繰り返す毎に、放電電流272Aで30秒間放電し、30秒目電圧が7.2Vにまで低下した時点で寿命とした。
図4は本発明の一実施形態に係る鉛蓄電池と比較例の鉛蓄電池の寿命試験の結果を示す図である。
図4において、横軸は、鉛蓄電池の充放電サイクルの回数であり、縦軸は、30秒目電圧である。30秒目電圧が、鉛蓄電池の実使用上、寿命と見なされる電圧を下回ったところで試験を終了した。
図4に示すように、本実施形態の鉛蓄電池では、比較例の鉛蓄電池に比べて大幅に寿命が向上する結果となった。
試験終了後、本実施形態の鉛蓄電池及び比較例の鉛蓄電池を解体し、正極格子体1の状態を観察した。
比較例の鉛蓄電池の正極格子体1では、顕著に大きなグロスが観察され、一部の正極格子体1と負極ストラップとの距離が近くなっていた。その為、正極活物質の軟化で浮遊した活物質が、負極板の耳部に電析し、デンドライト状に成長して短絡が発生したものと考えられる。
一方、本実施形態の鉛蓄電池では、低耐腐食性ポイントが折損している箇所が見られた。これにより、本実施形態の鉛蓄電池では、上方に向かう正極格子体1のグロスが抑制されることによって、比較例の鉛蓄電池よりも電気的特性の低下が抑えられたために、長寿命となったと判断できる。
The lead storage battery of this invention and the lead storage battery of the comparative example were produced by the method mentioned above. The lead acid battery of the comparative example is the same as the lead acid battery of the present embodiment except that the formation of the low corrosion resistance point in the press molding / low corrosion resistance point forming step is omitted in the method of manufacturing the lead acid battery of the present embodiment. It manufactured by the same manufacturing method. And the cycle life test was implemented using the lead storage battery produced, respectively.
In the cycle life test, a lead storage battery was discharged at a discharge current of 25 A for 2 minutes in a 75 ° C. environment, and then charged for 10 minutes at a charge voltage of 14.8 V (maximum charge current of 25 A). Each time the above process was repeated 480 cycles, the battery was discharged at a discharge current of 272A for 30 seconds, and the life was reached when the voltage at the 30th second dropped to 7.2V.
FIG. 4 is a diagram showing the results of a life test of a lead storage battery according to an embodiment of the present invention and a lead storage battery of a comparative example.
In FIG. 4, the horizontal axis represents the number of charge / discharge cycles of the lead storage battery, and the vertical axis represents the 30-second voltage. The test was terminated when the voltage at 30 seconds was lower than the voltage considered to be the lifetime in actual use of the lead storage battery.
As shown in FIG. 4, in the lead storage battery of this embodiment, the lifetime was significantly improved as compared with the lead storage battery of the comparative example.
After the test, the lead storage battery of this embodiment and the lead storage battery of the comparative example were disassembled, and the state of the positive electrode grid 1 was observed.
In the positive electrode grid body 1 of the lead storage battery of the comparative example, a significantly large gloss was observed, and the distance between some of the positive electrode grid bodies 1 and the negative electrode strap was close. Therefore, it is considered that the active material floating due to the softening of the positive electrode active material is electrodeposited on the ears of the negative electrode plate and grows in a dendrite shape to cause a short circuit.
On the other hand, in the lead storage battery of this embodiment, the location where the low corrosion resistance point was broken was seen. Thereby, in the lead acid battery of this embodiment, since the fall of the electrical property was suppressed rather than the lead acid battery of the comparative example by suppressing the gross of the positive electrode grid body 1 which goes upwards, it became long life I can judge.

なお、上述した実施形態は、あくまでも本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。
低耐腐食性ポイントは、打ち抜きダイ11の凸部17と凹部18により、枠骨2に強加工を施してU字状に形成するものとして説明した。しかし、低耐腐食性ポイントはU字状に形成するものによらず、例えば、以下に説明する図5及び図6に示すものでもよい。
図5及び図6は低耐腐食性ポイントの形状及び形成方法の他の実施態様について説明する断面図である。
低耐腐食性ポイントは、例えば、図5に示すように、枠骨2に強加工を施すことにより枠骨2の厚みを薄くして得るものでもよい。
この場合、強加工を施すプレス成型機の打ち抜きダイは、前述の打ち抜きダイ11において、上側ダイ15及び下側ダイ16に代え、上側ダイ21及び下側ダイ22にした構成とする。
上側ダイ21の凸部23の外形形状を、矩形状の凸面とし、下側ダイ22の平部24の内面形状を、凸部23の凸面に略合致する平面とし、凸部23と平部24の間に圧延シート12を挟み込んで強加工することで、枠骨2の厚みを変形する。
The above-described embodiment is merely an example of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
The low corrosion resistance point has been described as being formed into a U shape by subjecting the frame 2 to strong processing by the convex portions 17 and the concave portions 18 of the punching die 11. However, the low corrosion resistance point is not formed in a U shape, and may be as shown in FIGS. 5 and 6 described below, for example.
FIG. 5 and FIG. 6 are cross-sectional views for explaining other embodiments of the shape and forming method of the low corrosion resistance point.
For example, as shown in FIG. 5, the low corrosion resistance point may be obtained by reducing the thickness of the frame bone 2 by subjecting the frame bone 2 to strong processing.
In this case, the punching die of the press molding machine that performs strong processing is configured such that the upper die 21 and the lower die 22 are replaced with the upper die 15 and the lower die 16 in the punching die 11 described above.
The outer shape of the convex portion 23 of the upper die 21 is a rectangular convex surface, the inner surface shape of the flat portion 24 of the lower die 22 is a plane that substantially matches the convex surface of the convex portion 23, and the convex portion 23 and the flat portion 24. The thickness of the frame 2 is deformed by sandwiching the rolled sheet 12 between the two and performing strong processing.

また、低耐腐食性ポイントは、例えば、図6に示すように、枠骨2に、強加工により、いわゆるオフセット変形させて得るものでもよい。
この場合、強加工を施すプレス成型機の打ち抜きダイは、前述の打ち抜きダイ11において、上側ダイ15及び下側ダイ16に代え、上側ダイ25及び下側ダイ26にした構成とする。
上側ダイ25には段差部27が設けられ、下側ダイ26には段差部28が設けられている。段差部27,28の両側では、圧延シート12の枠骨2の形成領域に向けられる上側ダイ25及び下側ダイ26の面が、上側ダイ25及び下側ダイ26が離間する方向に位置をずらして配置される。上側ダイ25及び下側ダイ26は、圧延シート12のうち、低耐腐食性ポイントの形成領域を、段差部27,28で圧延シート12の厚み方向から挟み込む。これにより、段差部27,28に挟み込まれた圧延シート12の部位が、オフセット変形して、低耐腐食性ポイントとなる。
Further, the low corrosion resistance point may be obtained by, for example, so-called offset deformation of the frame 2 by strong processing as shown in FIG.
In this case, the punching die of the press molding machine that performs strong processing is configured by replacing the upper die 15 and the lower die 16 with the upper die 25 and the lower die 26 in the aforementioned punching die 11.
The upper die 25 is provided with a step portion 27, and the lower die 26 is provided with a step portion 28. On both sides of the stepped portions 27, 28, the surfaces of the upper die 25 and the lower die 26 directed to the formation region of the frame 2 of the rolled sheet 12 are shifted in the direction in which the upper die 25 and the lower die 26 are separated from each other. Arranged. The upper die 25 and the lower die 26 sandwich the formation region of the low corrosion resistance point in the rolled sheet 12 with the step portions 27 and 28 from the thickness direction of the rolled sheet 12. Thereby, the site | part of the rolled sheet 12 pinched | interposed into the level | step-difference parts 27 and 28 carries out an offset deformation | transformation, and becomes a low corrosion resistance point.

図5及び図6に示すような低耐腐食性ポイントを、枠骨2に強加工を施して形成しても、枠骨2の部位の断面における微細組織が変化するため、当該部位では他の部位よりも腐食の進行が速くなる。このため、これらの低耐腐食性ポイントを有する正極格子体1を正極極板に採用して製造した鉛蓄電池では、鉛蓄電池と同様に、鉛蓄電池の短絡が防止され、また長寿命化する。
また、本実施形態では、プレス成型機で、プレス成型を行う際に、強加工を行うものとして説明したが、枠骨2に強加工を起こって低耐腐食性ポイントを形成する工程を、圧延シートを格子状にプレス成型する工程と別に設けてもよい。
なお、本実施形態では圧延に付いて記載したが、格子体に低耐食性ポイントを形成できれば良く、公知の重力鋳造、圧力鋳造、連続鋳造で作製した格子体に前記する強加工を施すことで同様の効果を得ることが可能であることは言うまでもない。
Even if the low corrosion resistance point as shown in FIG. 5 and FIG. 6 is formed by subjecting the frame bone 2 to strong processing, the fine structure in the cross section of the frame bone 2 changes. Corrosion progresses faster than the site. For this reason, in the lead storage battery manufactured by adopting the positive electrode grid body 1 having these low corrosion resistance points as the positive electrode plate, short-circuiting of the lead storage battery is prevented and the life of the lead storage battery is extended.
Further, in the present embodiment, the press forming machine is described as performing strong processing when performing press molding. However, the step of forming the low corrosion resistance point by performing strong processing on the frame 2 is performed by rolling. You may provide separately from the process of press-molding a sheet | seat in a grid | lattice form.
In addition, although it described about rolling in this embodiment, it should just be able to form a low corrosion resistance point in a lattice object, and it is the same by giving the above-mentioned strong processing to a lattice object produced by publicly known gravity casting, pressure casting, and continuous casting. It goes without saying that it is possible to obtain the effect of.

1 鉛蓄電池用正極格子体
2 枠骨
3 縦骨
4 横骨
5 耳
DESCRIPTION OF SYMBOLS 1 Positive electrode grid for lead acid battery 2 Frame bone 3 Longitudinal bone 4 Horizontal bone 5 Ear

Claims (4)

重力鋳造、圧力鋳造、連続鋳造、圧延のいずれかで製造された鉛、又は鉛合金からなる枠骨、及び当該枠骨内に格子状に配置された縦骨と横骨とを有する格子体を形成する鉛蓄電池用正極格子体の製造方法において、
前記枠骨に強加工を施し低耐腐食性ポイントを形成する工程を含む
ことを特徴とする鉛蓄電池用正極格子体の製造方法。
A frame body made of lead or lead alloy manufactured by gravity casting, pressure casting, continuous casting, or rolling, and a lattice body having vertical and horizontal bones arranged in a lattice shape in the frame bone In the manufacturing method of the positive electrode grid for lead storage battery to be formed,
The manufacturing method of the positive electrode grid body for lead acid batteries characterized by including the process of giving a strong process to the said frame bone, and forming a low corrosion-resistant point.
前記鉛蓄電池用正極格子体は、矩形枠状の前記枠骨の一辺に耳を備え、
前記耳が設けられた一辺の少なくとも一方の端部の周囲に前記低耐腐食性ポイントを設けることを特徴とする請求項1に記載の鉛蓄電池用正極格子体の製造方法。
The lead-acid battery positive grid is provided with an ear on one side of the rectangular frame.
2. The method for producing a positive electrode grid for a lead-acid battery according to claim 1, wherein the low corrosion resistance point is provided around at least one end of one side where the ear is provided.
前記強加工は、前記枠骨の断面の微細組織を変化させて耐食性を低下させる加工であることを特徴とする請求項1又は2に記載の鉛蓄電池用正極格子体の製造方法。   3. The method for producing a positive electrode grid for a lead storage battery according to claim 1, wherein the strong processing is a processing of changing a microstructure of a cross section of the frame bone to reduce corrosion resistance. 4. 請求項1乃至3のいずれかに記載の製造方法によって製造された鉛蓄電池用正極格子体を正極に備えたことを特徴とする鉛蓄電池。   A lead storage battery comprising a positive electrode grid for a lead storage battery manufactured by the manufacturing method according to claim 1 on a positive electrode.
JP2013071547A 2013-03-29 2013-03-29 Method of positive electrode grid body for lead-acid storage battery and lead-acid storage battery Pending JP2014197456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071547A JP2014197456A (en) 2013-03-29 2013-03-29 Method of positive electrode grid body for lead-acid storage battery and lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071547A JP2014197456A (en) 2013-03-29 2013-03-29 Method of positive electrode grid body for lead-acid storage battery and lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2014197456A true JP2014197456A (en) 2014-10-16

Family

ID=52358108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071547A Pending JP2014197456A (en) 2013-03-29 2013-03-29 Method of positive electrode grid body for lead-acid storage battery and lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2014197456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067522A (en) * 2017-09-28 2019-04-25 古河電池株式会社 Method of manufacturing positive electrode lattice body for lead storage battery, positive electrode lattice body for storage battery, and lead storage battery
JPWO2022030056A1 (en) * 2020-08-05 2022-02-10

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484243A (en) * 1977-12-16 1979-07-05 Furukawa Electric Co Ltd Brid substrate for lead storage battery
JPS5630267A (en) * 1979-08-20 1981-03-26 Matsushita Electric Ind Co Ltd Manufacture of lattice for lead storage battery
JPS57162268A (en) * 1981-03-30 1982-10-06 Shin Kobe Electric Mach Co Ltd Manufacture of electrode plate for lead-acid battery
JPS6297262A (en) * 1985-10-22 1987-05-06 Yuasa Battery Co Ltd Paste type lead storage battery
JPH03179668A (en) * 1989-12-07 1991-08-05 Japan Storage Battery Co Ltd Manufacture of expanded grid
JPH06111825A (en) * 1992-09-28 1994-04-22 Shin Kobe Electric Mach Co Ltd Manufacture of grid body
JPH11233119A (en) * 1998-02-13 1999-08-27 Japan Storage Battery Co Ltd Grating for lead-acid battery
JP2001110427A (en) * 1999-10-12 2001-04-20 Furukawa Battery Co Ltd:The Lattice board for lead accumulator and electrode board for the lead accumulator
JP2008542997A (en) * 2005-05-23 2008-11-27 ジョンソン コントロールズ テクノロジー カンパニー Battery grid
JP2010113913A (en) * 2008-11-05 2010-05-20 Furukawa Battery Co Ltd:The Method of manufacturing base for lead-acid battery
US20130029229A1 (en) * 2010-04-14 2013-01-31 Johnson Controls Technology Company Battery, battery plate assembly, and method of assembly

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484243A (en) * 1977-12-16 1979-07-05 Furukawa Electric Co Ltd Brid substrate for lead storage battery
JPS5630267A (en) * 1979-08-20 1981-03-26 Matsushita Electric Ind Co Ltd Manufacture of lattice for lead storage battery
JPS57162268A (en) * 1981-03-30 1982-10-06 Shin Kobe Electric Mach Co Ltd Manufacture of electrode plate for lead-acid battery
JPS6297262A (en) * 1985-10-22 1987-05-06 Yuasa Battery Co Ltd Paste type lead storage battery
JPH03179668A (en) * 1989-12-07 1991-08-05 Japan Storage Battery Co Ltd Manufacture of expanded grid
JPH06111825A (en) * 1992-09-28 1994-04-22 Shin Kobe Electric Mach Co Ltd Manufacture of grid body
JPH11233119A (en) * 1998-02-13 1999-08-27 Japan Storage Battery Co Ltd Grating for lead-acid battery
JP2001110427A (en) * 1999-10-12 2001-04-20 Furukawa Battery Co Ltd:The Lattice board for lead accumulator and electrode board for the lead accumulator
JP2008542997A (en) * 2005-05-23 2008-11-27 ジョンソン コントロールズ テクノロジー カンパニー Battery grid
JP2010113913A (en) * 2008-11-05 2010-05-20 Furukawa Battery Co Ltd:The Method of manufacturing base for lead-acid battery
US20130029229A1 (en) * 2010-04-14 2013-01-31 Johnson Controls Technology Company Battery, battery plate assembly, and method of assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067522A (en) * 2017-09-28 2019-04-25 古河電池株式会社 Method of manufacturing positive electrode lattice body for lead storage battery, positive electrode lattice body for storage battery, and lead storage battery
JPWO2022030056A1 (en) * 2020-08-05 2022-02-10
WO2022030056A1 (en) * 2020-08-05 2022-02-10 古河電池株式会社 Liquid lead storage battery
JP7219366B1 (en) 2020-08-05 2023-02-07 古河電池株式会社 liquid lead acid battery
JP2023022290A (en) * 2020-08-05 2023-02-14 古河電池株式会社 Liquid type lead acid battery

Similar Documents

Publication Publication Date Title
CN107026271B (en) Positive electrode plate for lead storage battery, and method for manufacturing positive electrode plate for lead storage battery
JP2019186231A (en) Battery grid with varied corrosion resistance
CN104254624B (en) Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
JP4892651B1 (en) Lead acid battery
JP5230845B2 (en) Electrode plate group for lead-acid battery, lead-acid battery, and method for producing electrode plate group for lead-acid battery
JP2014197456A (en) Method of positive electrode grid body for lead-acid storage battery and lead-acid storage battery
JP2019067522A (en) Method of manufacturing positive electrode lattice body for lead storage battery, positive electrode lattice body for storage battery, and lead storage battery
JP5291272B1 (en) Expanded grid and manufacturing method thereof, electrode plate for lead acid battery using the same, and lead acid battery
TWI745864B (en) Rolled copper foil for secondary battery negative current collector, secondary battery negative current collector and secondary battery using the copper foil, and manufacturing method of rolled copper foil for secondary battery negative current collector
JP4884748B2 (en) Lattice substrate for lead acid battery
JP5898476B2 (en) Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same
JP5137371B2 (en) Rolled lead alloy sheet for expanded positive grid and lead-acid battery
JP4655657B2 (en) Winded lead acid battery
JP5772497B2 (en) Lead acid battery
JPH10284085A (en) Grid for lead-acid battery
JP7562981B2 (en) Positive electrode current collector for lead-acid battery and lead-acid battery
JP6232365B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP5387667B2 (en) Lead acid battery
JP7478877B1 (en) Flooded lead-acid battery
JP5630716B2 (en) Lead acid battery
JP5316040B2 (en) Method for producing current collector for lead acid battery
JP2003100301A (en) Expand grid body for positive pole and method of manufacturing the same
JP2002231302A (en) Control valve type lead-acid battery
JP2016085859A (en) Lead acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905