JP2014193474A - Solder powder and paste for solder using the same - Google Patents

Solder powder and paste for solder using the same Download PDF

Info

Publication number
JP2014193474A
JP2014193474A JP2013070866A JP2013070866A JP2014193474A JP 2014193474 A JP2014193474 A JP 2014193474A JP 2013070866 A JP2013070866 A JP 2013070866A JP 2013070866 A JP2013070866 A JP 2013070866A JP 2014193474 A JP2014193474 A JP 2014193474A
Authority
JP
Japan
Prior art keywords
solder
powder
silver
tin
solder powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013070866A
Other languages
Japanese (ja)
Other versions
JP6079375B2 (en
Inventor
Ryuji Uesugi
隆二 植杉
Kanji Hisayoshi
完治 久芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013070866A priority Critical patent/JP6079375B2/en
Priority to TW103107258A priority patent/TWI593493B/en
Priority to CN201410083455.4A priority patent/CN104070295A/en
Priority to KR1020140026963A priority patent/KR20140118747A/en
Publication of JP2014193474A publication Critical patent/JP2014193474A/en
Application granted granted Critical
Publication of JP6079375B2 publication Critical patent/JP6079375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices

Abstract

PROBLEM TO BE SOLVED: To provide solder powder that hardly causes remelting and a decrease in joint strength after reflow and that is suitable particularly for mounting of an electronic component exposed to high-temperature atmosphere and the like, and paste for solder using the same.SOLUTION: Solder powder 10 includes a core 11 and a coating layer 12 for coating the core 11; the core 11 is made of silver, and an intermetallic compound of silver and tin; and the coating layer 12 is made of tin. Characteristically, an average particle diameter of the solder powder 10 is 30 μm or less, and the content rate of copper is more than 10 mass% and 70 mass% or less with respect to 100 mass% of the total amount of the solder powder 10.

Description

本発明は、電子部品等の実装に用いられるハンダ粉末及びこの粉末を用いたハンダ用ペーストに関する。更に詳しくは、リフロー後、再溶融及び接合強度の低下が起こりにくく、特に高温雰囲気に晒される電子部品等の実装に好適なハンダ粉末及びこの粉末を用いたハンダ用ペーストに関するものである。   The present invention relates to a solder powder used for mounting electronic components and the like, and a solder paste using the powder. More particularly, the present invention relates to a solder powder suitable for mounting electronic parts and the like which are not easily remelted and reduced in bonding strength after reflow and particularly exposed to a high temperature atmosphere, and a solder paste using this powder.

電子部品等の接合に用いられるハンダは環境の面から鉛フリー化が進められ、現在では、錫を主成分としたハンダ粉末が採用されている。ハンダ粉末のような微細な金属粉末を得る方法としては、ガスアトマイズ法や回転ディスク法等のアトマイズ法の他に、メルトスピニング法、回転電極法、機械的プロセス、化学的プロセス等が知られている。ガスアトマイズ法は、誘導炉やガス炉で金属を溶融した後、タンディッシュの底のノズルから溶融金属を流下させ、その周囲より高圧ガスを吹き付けて粉化する方法等が知られている。また、回転ディスク法は、遠心力アトマイズ法とも呼ばれ、溶融した金属を高速で回転するディスク上に落下させて、接線方向に剪断力を加えて破断して微細粉を作る方法である。   Solder used for joining electronic parts and the like has been made lead-free from the viewpoint of the environment, and at present, solder powder mainly composed of tin is used. As a method for obtaining a fine metal powder such as a solder powder, in addition to an atomizing method such as a gas atomizing method or a rotating disk method, a melt spinning method, a rotating electrode method, a mechanical process, a chemical process, or the like is known. . As the gas atomizing method, a method is known in which after melting a metal in an induction furnace or a gas furnace, the molten metal is caused to flow down from a nozzle at the bottom of a tundish, and high pressure gas is sprayed from the surroundings to pulverize. The rotating disk method is also called a centrifugal atomizing method, and is a method in which a molten metal is dropped onto a rotating disk at high speed, and a shearing force is applied in a tangential direction to break and make a fine powder.

ハンダには、上述の環境面における特性以外に、実装される電子部品の用途等に応じて様々な特性が求められる。例えば、携帯電話やパソコン等の情報電子機器では、携帯性を重視させた薄型化、軽量化が要求され、これらの製造に用いられる電子部品の小型化や接合部品のファインピッチ化が進んでおり、より微細な粒径のハンダ粉末が求められる。   In addition to the above-mentioned environmental characteristics, the solder is required to have various characteristics depending on the use of the electronic component to be mounted. For example, information electronic devices such as mobile phones and personal computers are required to be thinner and lighter with an emphasis on portability, and electronic components used in these manufactures are becoming smaller and finer pitches for joining components. Therefore, a solder powder having a finer particle size is required.

一方、車載用途等で高温下で使用される電子部品では、実装後のハンダが高温雰囲気に晒されることによって再溶融し、接合強度が低下するのを防止する必要があることから、リフロー後の高い耐熱性が求められる。最も一般的なSn−Pb系の共晶ハンダ(組成比 Sn:Pb=63:37質量%)の場合、融点は約187℃であり、また、一般的なSn−Ag−Cu系ハンダでは約217℃程度である。これに対し、耐熱性のある高温ハンダとして知られるAu−Sn系の高温ハンダ(組成比Sn:Au=20:80質量%)では、リフロー後の融点が約280℃であり、Sn−Pb系の高温ハンダ(組成比 Sn:Pb=5:95質量%)では、約310〜315℃程度の高い融点を示す。   On the other hand, in electronic parts used at high temperatures for in-vehicle applications, etc., it is necessary to prevent the solder after mounting from remelting by being exposed to a high-temperature atmosphere and reducing the bonding strength. High heat resistance is required. In the case of the most common Sn—Pb type eutectic solder (composition ratio Sn: Pb = 63: 37% by mass), the melting point is about 187 ° C., and in the case of a general Sn—Ag—Cu type solder, It is about 217 ° C. On the other hand, in the case of Au-Sn high-temperature solder (composition ratio Sn: Au = 20: 80 mass%) known as heat-resistant high-temperature solder, the melting point after reflow is about 280 ° C., and Sn-Pb High-temperature solder (composition ratio Sn: Pb = 5: 95 mass%) exhibits a high melting point of about 310 to 315 ° C.

しかし、上記Au−Sn系ハンダでは、非常に高価なAuを使用していることから、製造コストが上昇してしまうという問題がある。また、Sn−Pb系の高温ハンダは、高い耐熱性を示すものの、鉛を使用しているため、上述の環境面の問題が残る。このような問題を解消するため、鉛や金を含まない低融点、かつ低コストの材料粉末に、融点が高い他の材料粉末を混合して耐熱性や接合強度等を向上させる技術が知られている(例えば、特許文献1〜6参照。)。   However, since the Au—Sn solder uses very expensive Au, there is a problem that the manufacturing cost increases. In addition, although Sn-Pb-based high-temperature solder exhibits high heat resistance, since it uses lead, the above-mentioned environmental problems remain. In order to solve such problems, a technology is known that improves heat resistance, bonding strength, etc. by mixing low-melting and low-cost material powders that do not contain lead or gold with other material powders with high melting points. (For example, refer to Patent Documents 1 to 6.)

特許文献1には、セラミックス部材と金属部剤との当接に、金属Cu粉末、金属Sn粉末及びAg−Cu−Ti合金粉末を混合させた金属材料を使用した接合方法が開示されている。また、特許文献2には、鉛を含まず、従来の錫鉛共晶合金よりも融点が低いSn−Bi等の合金粉末に、従来の錫鉛共晶合金よりも融点が高いSn−Ag等の合金粉末を混合した混合粉末を含有するハンダペーストが開示されている。また、特許文献3には、共晶ハンダ以外に、該共晶ハンダよりも融点が高いAg、Sn、Cu等の金属粒子を混合させたクリームハンダが開示されている。また、特許文献4には、鉛を含まず、Sn等の第一金属成分に、400℃以上の融点を有するAg、Cu等の第二金属成分を混合させたハンダ付け用組成物が開示されている。また、特許文献5には、粉末状をなす第1金属成分と第2金属成分を含み、第1金属成分がSn−Cu系合金、Sn−Cu−Sb系合金のいずれか、若しくはこれらのうちのいずれかにAg、In、Bi、ZnまたはNiのうちの一種以上を添加したものであり、第2金属成分はCu、Sn、Sb、Ag、Zn、Niのうちの一種以上の金属若しくはこれらの金属のうちの2種以上の合金をである高温クリームはんだ用組成物が開示されている。また、特許文献6には、鉛を含まず、錫を主成分として含む第一金属粉と、第一金属粉よりも高い融点をもち、銅を主として含む第二金属粉を含有させたハンダ用組成物が開示されている。   Patent Document 1 discloses a joining method using a metal material in which a metal Cu powder, a metal Sn powder, and an Ag—Cu—Ti alloy powder are mixed in contact between a ceramic member and a metal part. Further, Patent Document 2 does not contain lead, and Sn—Bi or the like, which has a melting point lower than that of a conventional tin-lead eutectic alloy, Sn—Ag or the like whose melting point is higher than that of a conventional tin-lead eutectic alloy. A solder paste containing a mixed powder obtained by mixing these alloy powders is disclosed. Patent Document 3 discloses cream solder in which metal particles such as Ag, Sn, and Cu having a higher melting point than eutectic solder are mixed in addition to eutectic solder. Patent Document 4 discloses a soldering composition in which a second metal component such as Ag or Cu having a melting point of 400 ° C. or higher is mixed with a first metal component such as Sn that does not contain lead. ing. Patent Document 5 includes a first metal component and a second metal component in powder form, and the first metal component is either a Sn—Cu based alloy or a Sn—Cu—Sb based alloy, or of these. One or more of Ag, In, Bi, Zn, or Ni is added to any of the above, and the second metal component is one or more metals of Cu, Sn, Sb, Ag, Zn, Ni, or these A composition for high-temperature cream soldering, which is an alloy of two or more of these metals, is disclosed. Patent Document 6 includes a first metal powder that does not contain lead and contains tin as a main component, and a solder that contains a second metal powder that has a higher melting point than the first metal powder and mainly contains copper. A composition is disclosed.

特開平5−24943号公報(請求項2、段落[0015])JP-A-5-24943 (Claim 2, paragraph [0015]) 特開平11−186712号公報(請求項2、段落[0018]、段落[0023])JP-A-11-186712 (claim 2, paragraph [0018], paragraph [0023]) 特開2000−176678号公報(請求項1,3、段落[0010])JP 2000-176678 A (Claims 1 and 3, paragraph [0010]) 特開2002−254195号公報(請求項1〜5、段落[0011]〜段落[0013])JP 2002-254195 A (Claims 1 to 5, paragraphs [0011] to [0013]) 特開2003−154485号公報(請求項1、段落[0009])JP 2003-154485 A (Claim 1, paragraph [0009]) 特許第3782743号公報(請求項1〜4、段落[0005])Japanese Patent No. 3782743 (Claims 1-4, paragraph [0005])

上記従来の特許文献1〜6では、いずれも鉛や金等を含まない低融点の金属粉末と、高融点を有する金属粉末とを混合して得られたハンダ粉末を使用しているが、このように融点や組成等が異なる2又はそれ以上の粉末同士を混合して得られるハンダ粉末では、粉末の混ざり具合に不均一さが生じやすい。不均一さが生じると、リフロー時に、部分的な溶融ムラや組成ズレが生じ、これにより、接合部位において十分な強度が得られないといった問題が生じる。   In the above-mentioned conventional Patent Documents 1 to 6, all use a solder powder obtained by mixing a low melting point metal powder not containing lead or gold and a high melting point metal powder. As described above, in a solder powder obtained by mixing two or more powders having different melting points, compositions, etc., nonuniformity is likely to occur in the mixing of the powders. When non-uniformity occurs, partial melting unevenness and compositional deviation occur during reflow, which causes a problem that sufficient strength cannot be obtained at the joint portion.

本発明の目的は、リフロー後、再溶融及び接合強度の低下が起こりにくく、特に高温雰囲気に晒される電子部品等の実装に好適なハンダ粉末及びこの粉末を用いたハンダ用ペーストを提供することにある。   An object of the present invention is to provide a solder powder suitable for mounting an electronic component or the like exposed to a high temperature atmosphere, and a solder paste using this powder, which are unlikely to be remelted and reduced in bonding strength after reflow. is there.

本発明の第1の観点は、図1に示すように、中心核11と中心核11を被覆する被覆層12で構成され、中心核11が銀及び銀と錫との金属間化合物からなり、被覆層12が錫からなるハンダ粉末10において、ハンダ粉末10の平均粒径が30μm以下であり、ハンダ粉末10の全体量100質量%に対し、銀の含有割合が10質量%を超え70質量%以下であることを特徴とする。   As shown in FIG. 1, the first aspect of the present invention is composed of a central core 11 and a coating layer 12 covering the central core 11, and the central core 11 is composed of silver and an intermetallic compound of silver and tin. In the solder powder 10 in which the coating layer 12 is made of tin, the average particle size of the solder powder 10 is 30 μm or less, and the silver content exceeds 70% by mass with respect to 100% by mass of the total amount of the solder powder 10. It is characterized by the following.

本発明の第2の観点は、第1の観点に基づく発明であって、更に銀と錫との金属間化合物がAg3Sn及び/又はAg4Snであることを特徴とする。 A second aspect of the present invention is an invention based on the first aspect, and is characterized in that the intermetallic compound of silver and tin is Ag 3 Sn and / or Ag 4 Sn.

本発明の第3の観点は、第1又は第2の観点のハンダ粉末とハンダ用フラックスを混合してペースト化することにより得られたハンダ用ペーストである。   A third aspect of the present invention is a solder paste obtained by mixing the solder powder of the first or second aspect and a solder flux into a paste.

本発明の第4の観点は、第3の観点の、更にハンダ用ペーストを用いて電子部品を実装する方法であることを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for mounting an electronic component using a solder paste according to the third aspect.

本発明の第1,2の観点のハンダ粉末は、中心核と中心核を被覆する被覆層で構成され、中心核が銀及び銀と錫との金属間化合物からなり、被覆層が錫からなるハンダ粉末において、ハンダ粉末の平均粒径が30μm以下であり、ハンダ粉末の全体量100質量%に対し、銀の含有割合が10質量%を超え70質量%以下である。このように、本発明のハンダ粉末では、粉末表面が融点の低い錫から構造されることでリフロー時の溶融性等に優れる一方、リフロー後は、上記所定の割合で含まれる銀の存在により、また既に存在する金属間化合物により、融点の高い金属間化合物を形成する。例えば、ε相(Ag3Sn)の融点は480℃、ζ相(Ag4Sn)の融点は724℃と非常に高いため、凝固開始温度が300〜640℃程度まで上昇することで再溶融が起こりにくい。このため、本発明のハンダ粉末は、特に高温雰囲気に晒される電子部品等の実装に用いられる高温ハンダとして好適に用いることができる。また、粉末を構成する一つの金属粒子内において、銀と錫が含まれるため、リフロー時の溶融ムラや組成ズレによる接合強度の低下を防止できる。 The solder powder according to the first and second aspects of the present invention comprises a central core and a coating layer covering the central core, the central core is composed of silver and an intermetallic compound of silver and tin, and the coating layer is composed of tin. In the solder powder, the average particle size of the solder powder is 30 μm or less, and the silver content is more than 10% by mass and 70% by mass or less with respect to 100% by mass of the total amount of the solder powder. As described above, in the solder powder of the present invention, the powder surface is composed of tin having a low melting point, so that it has excellent meltability at the time of reflowing, and after reflowing, due to the presence of silver contained in the predetermined ratio, Further, an intermetallic compound having a high melting point is formed by the existing intermetallic compound. For example, since the melting point of the ε phase (Ag 3 Sn) is 480 ° C. and the melting point of the ζ phase (Ag 4 Sn) is very high at 724 ° C., the solidification start temperature rises to about 300 to 640 ° C. Hard to happen. For this reason, the solder powder of the present invention can be suitably used as a high-temperature solder used for mounting electronic parts exposed to a high-temperature atmosphere. Moreover, since silver and tin are contained in one metal particle constituting the powder, it is possible to prevent a decrease in bonding strength due to melting unevenness or composition shift during reflow.

本発明の第3の観点のハンダ用ペーストは、上記本発明のハンダ粉末を用いて得られる。そのため、このハンダ用ペーストは、リフロー時の溶融が速く、溶融性に優れる一方、リフロー後は、溶融するハンダ粉末が融点の高い金属間化合物を形成し、耐熱性が上昇するため、熱による再溶融が起こりにくい。このため、本発明のハンダ用ペーストは、特に高温雰囲気に晒される電子部品等の実装に好適に用いることができる。
本発明の第4の観点の電子部品を実装する方法では、上記本発明のハンダ用ペーストを用いるため、リフロー時にはハンダ用ペーストの溶融の速さ、優れた溶融性により、簡便に、かつ高い精度で実装することができるとともに、実装後において高い耐熱性を付与できる。
The solder paste according to the third aspect of the present invention is obtained using the solder powder of the present invention. For this reason, this solder paste is fast melting during reflow and has excellent meltability. Melting hardly occurs. For this reason, the solder paste of the present invention can be suitably used for mounting electronic parts and the like exposed to a high temperature atmosphere.
In the method of mounting the electronic component according to the fourth aspect of the present invention, the solder paste of the present invention is used. Therefore, during reflow, the melting speed of the solder paste and the excellent meltability make it easy and highly accurate. It can be mounted with high heat resistance after mounting.

本発明実施形態のハンダ粉末ハンダ粉末の断面構造の一例を模式的に表した図である。It is the figure which represented typically an example of the section structure of solder powder solder powder of an embodiment of the present invention.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本発明のハンダ粉末は、図1に示すように、中心核11と中心核11を被覆する被覆層12で構成され、中心核11が銀及び銀と錫との金属間化合物からなり、被覆層12が錫からなるハンダ粉末である。本発明のハンダ粉末は、このように、銀及び銀と錫との金属間化合物からなる中心核が、融点の低い錫からなる被覆層で被覆された構造になっているため、リフロー時の溶融性に優れる。また、上記従来のハンダ粉末のように、融点等が異なる2以上の金属粉末を混合した粉末ではなく、粉末を構成する一つの金属粒子内において、銀と錫が含まれるため、リフロー時の溶融ムラや組成ズレが起こりにくく、高い接合強度が得られる。更に、中心核の一部が、リフロー前に既に銀と錫との金属間化合物を形成しているため、例えば銀からなる中心核を錫で被覆した構造の粉末に比べて、リフロー時の溶融拡散性が良く、ハンダバンプ形成時の組成制御が容易であり、濡れ性に優れる。   As shown in FIG. 1, the solder powder of the present invention comprises a central core 11 and a coating layer 12 covering the central core 11, and the central core 11 is composed of silver and an intermetallic compound of silver and tin. 12 is a solder powder made of tin. As described above, the solder powder of the present invention has a structure in which the central core made of an intermetallic compound of silver and silver and tin is coated with a coating layer made of tin having a low melting point. Excellent in properties. In addition, the conventional solder powder is not a powder in which two or more metal powders having different melting points or the like are mixed, but silver and tin are contained in one metal particle constituting the powder. Unevenness and composition deviation hardly occur, and high bonding strength can be obtained. Furthermore, since a part of the central core has already formed an intermetallic compound of silver and tin before reflowing, for example, compared to a powder having a structure in which the central core made of silver is covered with tin, melting at the time of reflowing Good diffusibility, easy composition control during solder bump formation, and excellent wettability.

そして、本発明のハンダ粉末10は、平均粒径が30μm以下である。ハンダ粉末の平均粒径を30μm以下に限定したのは、30μmを越えるとバンプを形成する場合においてバンプのコプラナリティが低下するという不具合を生じ、また、パターン表面をハンダでコートする場合に塗布ムラが生じ、パターン全面を均一にコートできないという不具合を生じるからである。なお、1μm未満になると、比表面積が高くなり、粉末の表面酸化層の影響によりハンダの溶融性が低下する傾向がみられるため、ハンダ粉末の平均粒径は1〜30μmの範囲とするのが好ましく、3〜20μmの範囲とするのが特に好ましい。なお、本明細書において、粉末の平均粒径とは、レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA−950)にて測定した体積累積中位径(Median径、D50)をいう。 And the solder powder 10 of this invention is 30 micrometers or less in average particle diameter. The reason why the average particle size of the solder powder is limited to 30 μm or less is that when it exceeds 30 μm, the bump coplanarity is deteriorated when the bump is formed, and when the pattern surface is coated with solder, there is uneven coating. This is because the problem arises that the entire pattern surface cannot be uniformly coated. When the thickness is less than 1 μm, the specific surface area is increased, and the solder meltability tends to be reduced due to the influence of the surface oxide layer of the powder. Therefore, the average particle size of the solder powder should be in the range of 1 to 30 μm. The range of 3 to 20 μm is particularly preferable. In the present specification, the average particle size of the powder was measured with a particle size distribution measuring device (Horiba Seisakusho, laser diffraction / scattering particle size distribution measuring device LA-950) using a laser diffraction scattering method. Volume cumulative median diameter (Median diameter, D 50 ).

また、本発明のハンダ粉末10は、粉末の全体量100質量%に対し、銀の含有割合が10質量%を超え70質量%以下である。従来のハンダ粉末では、Sn−Pb系共晶ハンダ(組成比 Sn:Pb=63:37質量%)の代替として使用されるため、融点が近く、共晶組成が求められるという理由から、銀の割合を1.0〜3.5質量%程度と、比較的少なめに含有させている。一方、本発明のハンダ粉末では、銀の割合を比較的多めの上記範囲で含ませることにより、リフロー後に、300〜640℃程度の高い凝固開始温度を有するSn−Ag合金を形成する。なお、銀の含有割合が少なくても、リフロー後は、錫よりも凝固開始温度の高いSn−Ag合金を形成するが、銀をより多く含有させることで、凝固開始温度が更に上昇するのは、合金中に高い融点を有する金属間化合物の比率が高くなるという理由からである。これにより、このハンダ粉末を含むハンダ用ペーストのリフローによって形成されるハンダバンプでは、耐熱性が大幅に向上し、再溶融及び接合強度の低下を防止することができる。このため、特に高温雰囲気に晒される電子部品等の実装に用いられる高温ハンダとして好適に用いることができる。銀の含有割合が下限値未満では、凝固開始温度が低くなることから、リフロー後に形成されるハンダバンプにおいて十分な耐熱性が得られず、高温雰囲気での使用の際に再溶融が起こり、高温ハンダとして用いることができない。一方、上限値を越えると凝固開始温度が高くなりすぎて、ハンダが十分に溶融しないため、接合不良が発生するという不具合が生じる。このうち、粉末の全体量100質量%に占める銀の含有割合は、10〜70質量%とするのが好ましい。   In addition, the solder powder 10 of the present invention has a silver content of more than 10% by mass and 70% by mass or less with respect to 100% by mass of the total amount of the powder. Since conventional solder powder is used as an alternative to Sn—Pb-based eutectic solder (composition ratio Sn: Pb = 63: 37 mass%), the melting point is close and eutectic composition is required. The proportion is relatively small, about 1.0 to 3.5% by mass. On the other hand, in the solder powder of the present invention, an Sn—Ag alloy having a high solidification start temperature of about 300 to 640 ° C. is formed after reflowing by including a relatively high proportion of silver in the above range. In addition, even if the content ratio of silver is small, after reflow, an Sn—Ag alloy having a higher solidification start temperature than that of tin is formed. However, if more silver is contained, the solidification start temperature is further increased. This is because the ratio of intermetallic compounds having a high melting point in the alloy increases. Thereby, in the solder bump formed by reflow of the solder paste containing this solder powder, the heat resistance is greatly improved, and remelting and reduction in bonding strength can be prevented. For this reason, it can be suitably used as a high-temperature solder used for mounting electronic components exposed to a high-temperature atmosphere. If the silver content is less than the lower limit, the solidification start temperature will be low, so that sufficient heat resistance will not be obtained in solder bumps formed after reflow, and remelting will occur when used in a high temperature atmosphere, and high temperature soldering will occur. Cannot be used as On the other hand, when the upper limit is exceeded, the solidification start temperature becomes too high and the solder is not sufficiently melted, resulting in a problem that bonding failure occurs. Among these, it is preferable that the content rate of the silver which occupies for 100 mass% of whole quantity of a powder shall be 10-70 mass%.

また、ハンダ粉末中の錫の含有割合は、粉末中の上記銀以外の残部、即ちハンダ粉末の全体量100質量%に対して30〜90質量%、好ましくは50〜90質量%である。錫の含有割合が下限値未満では、リフロー時においてハンダ粉末に必要とされる低融点を示さないからである。また、上限値を越えると、結果的に銀の含有割合が少なくなり、リフロー後に形成されるハンダバンプの耐熱性が低下する。   Moreover, the content rate of the tin in solder powder is 30-90 mass% with respect to the remainder other than the said silver in powder, ie, 100 mass% of the whole quantity of solder powder, Preferably it is 50-90 mass%. This is because if the tin content is less than the lower limit, the low melting point required for the solder powder is not exhibited during reflow. On the other hand, if the upper limit is exceeded, the silver content decreases as a result, and the heat resistance of the solder bump formed after reflowing decreases.

中心核の一部を構成する銀と錫との金属間化合物としてはAg3Sn及び/又はAg4Snが挙げられる。 Examples of the intermetallic compound of silver and tin constituting a part of the central core include Ag 3 Sn and / or Ag 4 Sn.

続いて、上記本発明のハンダ粉末を製造する方法について説明する。先ず、溶媒に、中心核、被覆層を構成する金属元素を含む化合物、即ち銀を含む化合物及び錫を含む化合物と、分散剤とをそれぞれ添加して混合することにより、溶解液を調製する。溶解液中における錫を含む化合物、銀を含む化合物の割合は、ハンダ粉末製造後に、各金属元素の含有割合が上記範囲になるように調整する。   Subsequently, a method for producing the solder powder of the present invention will be described. First, a solvent is prepared by adding and mixing a compound containing a central element and a metal element constituting the coating layer, that is, a compound containing silver and a compound containing tin, and a dispersant. The ratio of the compound containing tin and the compound containing silver in the solution is adjusted so that the content ratio of each metal element is within the above range after the solder powder is manufactured.

また、上記溶解液には、上記銀を含む化合物の代わりに銀粉末を用い、この銀粉末と分散剤を溶媒に添加混合して銀粉末の分散液を調製し、これに上記錫を含む化合物を直接添加混合し溶解させて得られる、銀粉末が分散する溶解液を使用することもできる。この場合に使用される銀粉末、錫を含む化合物の割合は、ハンダ粉末製造後に、各金属元素の含有割合が上記範囲になるように調整する。   In addition, instead of the silver-containing compound, silver powder is used in the solution, and the silver powder and a dispersant are added and mixed in a solvent to prepare a silver powder dispersion, in which the tin-containing compound is prepared. It is also possible to use a solution in which silver powder is dispersed, which is obtained by directly adding, mixing and dissolving. The ratio of the silver powder and tin-containing compound used in this case is adjusted so that the content ratio of each metal element is within the above range after the solder powder is manufactured.

溶解液の調製に用いられる銀化合物としては、硫酸銀(I)、塩化銀(I)又は硝酸銀(I)等が挙げられ、錫化合物としては、塩化錫(II)、硫酸錫(II)、酢酸錫(II)、シュウ酸錫(II)等が挙げられる。一方、銀化合物の代わりに用いられる銀粉末としては、平均粒径が0.1〜2.0μmであり、還元反応による化学的手法で得られた銀粉末の他、アトマイズ法のような物理的手法によって得られた銀粉末も使用可能である。このうち、銀を含む化合物、錫を含む化合物が溶解する溶解液を用いる場合は、いずれも硝酸塩の硝酸銀(I)、硝酸錫(II)を使用するのが特に好ましい。   Examples of the silver compound used for the preparation of the solution include silver sulfate (I), silver chloride (I), or silver nitrate (I), and the tin compound includes tin (II) chloride, tin (II) sulfate, Examples include tin (II) acetate and tin (II) oxalate. On the other hand, the silver powder used in place of the silver compound has an average particle size of 0.1 to 2.0 μm. In addition to silver powder obtained by a chemical method using a reduction reaction, a physical powder such as an atomizing method is used. Silver powder obtained by the technique can also be used. Among these, when using a solution in which a compound containing silver and a compound containing tin are used, it is particularly preferable to use silver nitrate (I) or tin (II) nitrate.

溶媒としては、水、アルコール、エーテル、ケトン、エステル等が挙げられる。また、分散剤としては、セルロース系、ビニル系、多価アルコール等が挙げられ、その他にゼラチン、カゼイン等を用いることができる。調製した溶解液はpH調整する。pHは、生成したハンダ粉末の再溶解等を考慮して、0〜2.0の範囲に調整するのが好ましい。なお、溶媒に上記金属化合物をそれぞれ添加して溶解させた後、錯化剤を加えて、各金属元素を錯体化した後に、分散剤を添加しても良い。錯化剤を加えることでpHがアルカリ側でも金属イオンが沈殿せず、広い範囲での合成が可能となる。錯化剤としては、コハク酸、酒石酸、グリコール酸、乳酸、フタル酸、リンゴ酸、クエン酸、シュウ酸、エチレンジアミン四酢酸、イミノ二酢酸、ニトリロ三酢酸又はその塩等が挙げられる。   Examples of the solvent include water, alcohol, ether, ketone, ester and the like. Examples of the dispersant include cellulose-based, vinyl-based, and polyhydric alcohols. In addition, gelatin, casein, and the like can be used. The pH of the prepared solution is adjusted. The pH is preferably adjusted to a range of 0 to 2.0 in consideration of redissolution of the generated solder powder. In addition, after adding each said metal compound to a solvent and making it melt | dissolve, after adding a complexing agent and complexing each metal element, you may add a dispersing agent. By adding a complexing agent, metal ions do not precipitate even when the pH is alkaline, and synthesis in a wide range is possible. Examples of the complexing agent include succinic acid, tartaric acid, glycolic acid, lactic acid, phthalic acid, malic acid, citric acid, oxalic acid, ethylenediaminetetraacetic acid, iminodiacetic acid, nitrilotriacetic acid, and salts thereof.

次に、還元剤を溶解した水溶液を調製し、この水溶液のpHを、上記調製した溶解液と同程度に調整する。還元剤としては、テトラヒドロホウ酸ナトリウム、ジメチルアミンボラン等のホウ素水素化物、ヒドラジン等の窒素化合物、三価のチタンイオンや2価のクロムイオン等の金属イオン等が挙げられる。   Next, an aqueous solution in which the reducing agent is dissolved is prepared, and the pH of the aqueous solution is adjusted to the same level as that of the prepared solution. Examples of the reducing agent include boron hydrides such as sodium tetrahydroborate and dimethylamine borane, nitrogen compounds such as hydrazine, metal ions such as trivalent titanium ions and divalent chromium ions, and the like.

次に、上記溶解液に還元剤水溶液を添加して混合することにより、溶解液中の各金属イオンが還元され、液中に金属粉末が分散した分散液が得られる。この還元反応では、上記銀を含む化合物、錫を含む化合物が溶解する溶解液を用いた場合は、先ず、錫よりも貴な銀が還元され、最後に錫が還元される。これにより、銀からなる中心核と、この中心核を被覆する錫からなる被覆層で構成された、平均粒径30μm以下の金属粉末が形成される。溶解液と還元剤水溶液を混合する方法としては、容器内の溶解液に所定の添加速度で還元剤水溶液を滴下し、スターラ等で攪拌する方法や、所定の径を有する反応チューブを用い、この反応チューブ内に両液を所定の流量で注ぎ込み、混合させる方法等が挙げられる。   Next, by adding a reducing agent aqueous solution to the solution and mixing, each metal ion in the solution is reduced, and a dispersion in which metal powder is dispersed in the solution is obtained. In this reduction reaction, when a solution in which the compound containing silver and the compound containing tin are dissolved is used, first, silver nobler than tin is reduced, and finally tin is reduced. As a result, a metal powder having an average particle diameter of 30 μm or less, which is composed of a central core made of silver and a coating layer made of tin covering the central core, is formed. As a method of mixing the dissolving solution and the reducing agent aqueous solution, the reducing agent aqueous solution is dropped into the dissolving solution in the container at a predetermined addition rate and stirred with a stirrer or a reaction tube having a predetermined diameter. Examples include a method of pouring both solutions into a reaction tube at a predetermined flow rate and mixing them.

次いで、この分散液を、デカンテーション等によって固液分離し、回収した固形分を水又はpHを0.5〜2に調整した塩酸水溶液、硝酸水溶液、硫酸水溶液、或いはメタノール、エタノール、アセトン等で洗浄する。洗浄後は、再度固液分離して固形分を回収する。洗浄から固液分離までの工程を、好ましくは2〜5回繰り返す。   Then, this dispersion is subjected to solid-liquid separation by decantation or the like, and the collected solid content is water or a hydrochloric acid aqueous solution, a nitric acid aqueous solution, a sulfuric acid aqueous solution, or methanol, ethanol, acetone, etc., adjusted to a pH of 0.5-2. Wash. After washing, the solid content is recovered by solid-liquid separation again. The steps from washing to solid-liquid separation are preferably repeated 2 to 5 times.

次に、回収した固形分に、沸点が100℃以上の高沸点溶媒を加えて分散させ、不活性ガス雰囲気下、所定の温度で加熱する。この加熱処理を施すことにより、上記還元反応で形成された金属粉末の銀からなる中心核、中心核を被覆する錫からなる被覆層の一部が反応して、その一部が銀と錫の金属間化合物からなる中心核が形成される。   Next, a high-boiling solvent having a boiling point of 100 ° C. or higher is added to the recovered solid content and dispersed, and heated at a predetermined temperature in an inert gas atmosphere. By performing this heat treatment, a central core made of silver of the metal powder formed by the above reduction reaction, a part of the coating layer made of tin covering the central core reacts, and a part thereof is made of silver and tin. A central nucleus composed of an intermetallic compound is formed.

使用される高沸点溶媒としてはエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ヒマシ油等が挙げられる。   Examples of the high boiling point solvent used include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, and castor oil.

上記加熱処理は、100〜130℃の温度で20分間〜1時間行うのが好ましい。処理温度又は保持時間が下限値未満では、中心核に金属間化合物が形成されない場合がある。また、処理温度が上限値を越えると、被覆層の錫が酸化されて溶融性が低下する不具合が生じる。なお、保持時間を上限値以上としてもその効果は変わらない。このうち115〜125℃の温度で30〜40分間行うのが特に好ましい。   The heat treatment is preferably performed at a temperature of 100 to 130 ° C. for 20 minutes to 1 hour. When the treatment temperature or holding time is less than the lower limit value, an intermetallic compound may not be formed in the central core. On the other hand, when the treatment temperature exceeds the upper limit value, tin in the coating layer is oxidized, resulting in a problem that the meltability is lowered. The effect does not change even if the holding time is set to the upper limit value or more. Among these, it is particularly preferable to carry out at a temperature of 115 to 125 ° C. for 30 to 40 minutes.

加熱後は、再度上記洗浄から固液分離までの工程を、好ましくは2〜5回繰り返した後、回収した固形分を真空乾燥させることにより、本発明のハンダ粉末を得ることができる。   After heating, the steps from washing to solid-liquid separation are preferably repeated 2 to 5 times, and then the collected solid content is vacuum dried to obtain the solder powder of the present invention.

以上の工程により、本発明のハンダ粉末を得ることができる。このハンダ粉末は、ハンダ用フラックスと混合してペースト化して得られるハンダ用ペーストの材料として好適に用いられる。ハンダ用ペーストの調製は、ハンダ粉末とハンダ用フラックスとを所定の割合で混合してペースト化することにより行われる。ハンダ用ペーストの調製に用いられるハンダ用フラックスは、特に限定されないが、溶剤、ロジン、チキソ剤及び活性剤等の各成分を混合して調製されたフラックスを用いることができる。   Through the above steps, the solder powder of the present invention can be obtained. This solder powder is suitably used as a material for a solder paste obtained by mixing with a solder flux to form a paste. The solder paste is prepared by mixing solder powder and solder flux at a predetermined ratio to form a paste. The solder flux used for the preparation of the solder paste is not particularly limited, but a flux prepared by mixing components such as a solvent, rosin, thixotropic agent and activator can be used.

上記ハンダ用フラックスの調製に好適な溶剤としては、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、テトラエチレングリコール、2−エチル−1,3−ヘキサンジオール、α−テルピネオール等の沸点が180℃以上である有機溶剤が挙げられる。また、ロジンとしては、ガムロジン、水添ロジン、重合ロジン、エステルロジン等が挙げられる。   Solvents suitable for preparing the solder flux include diethylene glycol monohexyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, tetraethylene glycol, 2-ethyl-1,3-hexanediol, α-terpineol and the like having a boiling point of 180. An organic solvent having a temperature of not lower than ° C. can be mentioned. Examples of the rosin include gum rosin, hydrogenated rosin, polymerized rosin, and ester rosin.

また、チキソ剤としては、硬化ひまし油、脂肪酸アマイド、天然油脂、合成油脂、N,N’−エチレンビス−12−ヒドロキシステアリルアミド、12−ヒドロキシステアリン酸、1,2,3,4−ジベンジリデン−D−ソルビトール及びその誘導体等が挙げられる。   Further, as the thixotropic agent, hardened castor oil, fatty acid amide, natural fats and oils, synthetic fats and oils, N, N′-ethylenebis-12-hydroxystearylamide, 12-hydroxystearic acid, 1,2,3,4-dibenzylidene- Examples include D-sorbitol and its derivatives.

また、活性剤としては、ハロゲン化水素酸アミン塩が好ましく、具体的には、トリエタノールアミン、ジフェニルグアニジン、エタノールアミン、ブチルアミン、アミノプロパノール、ポリオキシエチレンオレイルアミン、ポリオキシエチレンラウレルアミン、ポリオキシエチレンステアリルアミン、ジエチルアミン、トリエチルアミン、メトキシプロピルアミン、ジメチルアミノプロピルアミン、ジブチルアミノプロピルアミン、エチルヘキシルアミン、エトキシプロピルアミン、エチルヘキシルオキシプロピルアミン、ビスプロピルアミン、イソプロピルアミン、ジイソプロピルアミン、ピペリジン、2,6−ジメチルピペリジン、アニリン、メチルアミン、エチルアミン、ブチルアミン、3−アミノ−1−プロペン、イソプロピルアミン、ジメチルヘキシルアミン、シクロヘキシルアミン等のアミンの塩化水素酸塩又は臭化水素酸塩が挙げられる。   The activator is preferably a hydrohalic acid amine salt, specifically, triethanolamine, diphenylguanidine, ethanolamine, butylamine, aminopropanol, polyoxyethylene oleylamine, polyoxyethylene laurelamine, polyoxyethylene. Stearylamine, diethylamine, triethylamine, methoxypropylamine, dimethylaminopropylamine, dibutylaminopropylamine, ethylhexylamine, ethoxypropylamine, ethylhexyloxypropylamine, bispropylamine, isopropylamine, diisopropylamine, piperidine, 2,6-dimethyl Piperidine, aniline, methylamine, ethylamine, butylamine, 3-amino-1-propene, isopropylamine , Dimethyl hexyl amines, hydrochloric acid salt or hydrobromide of an amine such as cyclohexylamine.

ハンダ用フラックスは、上記各成分を所定の割合で混合することにより得られる。フラックス全体量100質量%中に占める溶剤の割合は30〜60質量%、チキソ剤の割合は1〜10質量%、活性剤の割合は0.1〜10質量%とするのが好ましい。溶剤の割合が下限値未満では、フラックスの粘度が高くなりすぎるため、これを用いたハンダ用ペーストの粘度も応じて高くなり、ハンダの充填性低下や塗布ムラが多発する等、印刷性が低下する不具合を生じる場合がある。一方、上限値を越えるとフラックスの粘度が低くなりすぎるため、これを用いたハンダ用ペーストの粘度も応じて低くなることから、ハンダ粉末とフラックス成分が沈降分離する不具合を生じる場合がある。また、チキソ剤の割合が下限値未満では、ハンダ用ペーストの粘度が低くなりすぎるため、ハンダ粉末とフラックス成分が沈降分離するという不具合を生じる場合がある。一方、上限値を越えるとハンダ用ペーストの粘度が高くなりすぎるため、ハンダ充填性や塗布ムラ等の印刷性低下という不具合を生じる場合がある。また、活性剤の割合が下限値未満では、ハンダ粉末が溶融せず、充分な接合強度が得られないという不具合を生じる場合があり、一方、上限値を越えると保管中に活性剤がハンダ粉末と反応し易くなるため、ハンダ用ペーストの保存安定性が低下するという不具合を生じる場合がある。この他、ハンダ用フラックスには、粘度安定剤を添加しても良い。粘度安定剤としては、溶剤に溶解可能なポリフェノール類、リン酸系化合物、硫黄系化合物、トコフェノール、トコフェノールの誘導体、アルコルビン酸、アルコルビン酸の誘導体等が挙げられる。粘度安定剤は、多すぎるとハンダ粉末の溶融性が低下する等の不具合が生じる場合があるため、10質量%以下とするのが好ましい。   The soldering flux can be obtained by mixing the above components at a predetermined ratio. It is preferable that the ratio of the solvent in the total amount of flux of 100% by mass is 30 to 60% by mass, the ratio of the thixotropic agent is 1 to 10% by mass, and the ratio of the activator is 0.1 to 10% by mass. If the solvent ratio is less than the lower limit, the viscosity of the flux will be too high, so the viscosity of the solder paste using this will also increase accordingly, resulting in poor printability, such as poor solder filling and uneven coating. May cause malfunctions. On the other hand, when the upper limit is exceeded, the viscosity of the flux becomes too low, and the viscosity of the solder paste using the flux also decreases accordingly, which may cause a problem that the solder powder and the flux component settle and separate. In addition, when the ratio of the thixotropic agent is less than the lower limit, the viscosity of the solder paste becomes too low, which may cause a problem that the solder powder and the flux component are settled and separated. On the other hand, when the upper limit is exceeded, the viscosity of the solder paste becomes too high, which may cause problems such as poor solderability and poor printability such as coating unevenness. In addition, if the ratio of the activator is less than the lower limit value, the solder powder may not be melted and a sufficient bonding strength may not be obtained. On the other hand, if the upper limit value is exceeded, the activator may become solder powder during storage. This may cause a problem that the storage stability of the solder paste is lowered. In addition, a viscosity stabilizer may be added to the solder flux. Examples of the viscosity stabilizer include polyphenols that can be dissolved in a solvent, phosphoric acid compounds, sulfur compounds, tocophenols, tocophenol derivatives, ascorbic acid, and ascorbic acid derivatives. If there are too many viscosity stabilizers, problems such as a decrease in the meltability of the solder powder may occur.

ハンダ用ペーストを調製する際のハンダ用フラックスの混合量は、調製後のペースト100質量%中に占める該フラックスの割合が5〜30質量%になる量にするのが好ましい。下限値未満ではフラックス不足でペースト化が困難になり、一方、上限値を越えるとペースト中のフラックスの含有割合が多すぎて金属の含有割合が少なくなってしまい、ハンダ溶融時に所望のサイズのハンダバンプを得るのが困難になるからである。   The amount of solder flux mixed when preparing the solder paste is preferably such that the proportion of the flux in 100% by mass of the prepared paste is 5 to 30% by mass. If it is less than the lower limit, it becomes difficult to form a paste due to insufficient flux, while if it exceeds the upper limit, the content of the flux in the paste is too high and the content of metal is reduced, and solder bumps of the desired size when melting the solder This is because it becomes difficult to obtain.

このハンダ用ペーストは、上記本発明のハンダ粉末を材料としているため、リフロー時の溶融が速く、溶融性に優れる一方、リフロー後は、溶融するハンダ粉末が融点の高い金属間化合物を形成し、耐熱性が上昇するため、熱による再溶融が起こりにくい。このため、本発明のハンダ用ペーストは、特に高温雰囲気に晒される電子部品等の実装に好適に用いることができる。   Since this solder paste is made of the above-described solder powder of the present invention, melting at the time of reflow is fast and excellent in meltability, and after reflow, the melting solder powder forms an intermetallic compound having a high melting point, Since heat resistance increases, remelting due to heat hardly occurs. For this reason, the solder paste of the present invention can be suitably used for mounting electronic parts and the like exposed to a high temperature atmosphere.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、水50mLに硫酸銀(I)を1.74×10-3mol、硫酸錫(II)を2.56×10-2mol加え、スターラを用いて回転速度300rpmにて5分間攪拌し、溶解液を調製した。この溶解液を硫酸にてpHを0.5に調整した後、分散剤としてポリビニルアルコール500(平均分子量が500のポリビニルアルコール)を0.5g加え、更に回転速度300rpmにて10分間攪拌した。次いで、この溶解液にpHを0.5に調整した1.58mol/Lの2価クロムイオン水溶液50mLを、添加速度50mL/secにて加え、回転速度500rpmにて10分間攪拌して各金属イオンを還元し、液中に金属粉末が分散する分散液を得た。この分散液を60分間静置して生成した金属粉末を沈降させた後、上澄み液を捨て、ここに水100mLを加えて回転速度300rpmにて10分間攪拌する操作を4回繰返し、洗浄を行った。その後、エチレングリコール100mLを加えて分散させ、回転速度300rpmにて攪拌しながら120℃で30分加熱を行った。加熱後、再び分散液を60分間静置して加熱した金属粉末を沈降させた後、上澄み液を捨て、ここに水100mLを加えて回転速度300rpmにて10分間攪拌する操作を4回繰返し、洗浄を行った。最後にこれを真空乾燥機にて乾燥することにより、Ag及び金属間化合物Ag3Sn、Ag4Snを中心核、Snを被覆層とするハンダ粉末を得た。
<Example 1>
First, 1.74 × 10 −3 mol of silver sulfate (I) and 2.56 × 10 −2 mol of tin sulfate (II) were added to 50 mL of water, and the mixture was stirred for 5 minutes at a rotational speed of 300 rpm using a stirrer. A lysis solution was prepared. After adjusting the pH of this solution to 0.5 with sulfuric acid, 0.5 g of polyvinyl alcohol 500 (polyvinyl alcohol having an average molecular weight of 500) was added as a dispersant, and the mixture was further stirred at a rotational speed of 300 rpm for 10 minutes. Next, 50 mL of a 1.58 mol / L divalent chromium ion aqueous solution whose pH was adjusted to 0.5 was added to this solution at an addition rate of 50 mL / sec and stirred for 10 minutes at a rotational speed of 500 rpm. To obtain a dispersion in which the metal powder is dispersed in the liquid. The dispersion was allowed to stand for 60 minutes to settle the metal powder, and then the supernatant was discarded, 100 mL of water was added thereto, and the mixture was stirred for 10 minutes at a rotational speed of 300 rpm, and washed four times. It was. Thereafter, 100 mL of ethylene glycol was added and dispersed, and the mixture was heated at 120 ° C. for 30 minutes while stirring at a rotation speed of 300 rpm. After heating, the dispersion was allowed to stand again for 60 minutes to settle the heated metal powder, and then the supernatant was discarded, 100 mL of water was added thereto, and the operation of stirring at a rotational speed of 300 rpm for 10 minutes was repeated four times. Washing was performed. Finally, this was dried in a vacuum dryer to obtain a solder powder having Ag and intermetallic compounds Ag 3 Sn and Ag 4 Sn as the central core and Sn as the coating layer.

<実施例2〜7、比較例1,2>
以下の表1に示すように、硫酸銀(I)の添加量を調整することにより、ハンダ粉末100質量%中に含まれる銀の割合を変更したこと、ハンダ粉末の平均粒径を所定の粒径に制御したこと以外は、実施例1と同様にしてハンダ粉末を得た。
<Examples 2 to 7, Comparative Examples 1 and 2>
As shown in Table 1 below, the proportion of silver contained in 100% by mass of solder powder was changed by adjusting the amount of silver (I) sulfate added, and the average particle size of the solder powder was set to a predetermined value. Solder powder was obtained in the same manner as in Example 1 except that the diameter was controlled.

<比較試験及び評価>
実施例1〜7及び比較例1,2で得られたハンダ粉末について、次に述べる方法により、粉末を構成する金属粒子の構造、粉末の平均粒径、組成の分析又は測定を行った。また、これらのハンダ粉末を用いてハンダペーストをそれぞれ調製し、接合強度を評価した。これらの結果を以下の表1に示す。
<Comparison test and evaluation>
The solder powders obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were analyzed or measured for the structure of metal particles constituting the powder, the average particle diameter of the powder, and the composition by the method described below. Further, solder pastes were prepared using these solder powders, and the bonding strength was evaluated. These results are shown in Table 1 below.

(1) 構造分析:粉末X線回折装置(リガク社製:RINT Ultima+/PC)にて構造分析を行った。   (1) Structural analysis: The structural analysis was performed with a powder X-ray diffractometer (manufactured by Rigaku Corporation: RINT Ultimate + / PC).

(2) 平均粒径:レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA−950)にて粒径分布を測定し、その体積累積中位径(Median径、D50)をハンダ粉末の平均粒径とした。 (2) Average particle size: The particle size distribution is measured with a particle size distribution measuring device (Horiba, Ltd., laser diffraction / scattering particle size distribution measuring device LA-950) using a laser diffraction scattering method, and the volume is accumulated. The median diameter (Median diameter, D 50 ) was defined as the average particle size of the solder powder.

(3) 組成:誘導結合プラズマ発光分光分析(島津製作所社製 ICP発光分析装置:ICPS−7510)により金属元素含有量を測定した。   (3) Composition: The metal element content was measured by inductively coupled plasma optical emission spectrometry (ICP emission analyzer: ICPS-7510 manufactured by Shimadzu Corporation).

(4) 接合強度:溶剤として50質量%のジエチレングリコールモノヘキシルエーテルと、ロジンとして46質量%の重合ロジン(軟化点95℃)と、活性剤としてシクロヘキシルアミン臭化水素酸塩1.0質量%と、チキソ剤として硬化ひまし油3.0質量%とを混合してフラックスを調製した。次に、このフラックスと、実施例1〜10及び比較例1〜3で得られたハンダ粉末とを、フラックスを88質量%、ハンダ粉末を12質量%の割合で混合してハンダペーストをそれぞれ調製した。   (4) Bonding strength: 50% by mass of diethylene glycol monohexyl ether as a solvent, 46% by mass of polymerized rosin (softening point 95 ° C.) as rosin, and 1.0% by mass of cyclohexylamine hydrobromide as an activator A flux was prepared by mixing 3.0% by mass of hardened castor oil as a thixotropic agent. Next, this flux and the solder powder obtained in Examples 1 to 10 and Comparative Examples 1 to 3 are mixed at a ratio of 88 mass% flux and 12 mass% solder powder to prepare solder pastes, respectively. did.

上記調製したペーストをピン転写法にて先端部の直径100μmのピンを用いて0.5mm厚のコバール(Fe−Ni−Co系合金)基板の所定位置に転写した。なお、コバール基板上にはNiメッキ、更にその上にAuフラッシュメッキを行った。続いて、転写されたペースト上に0.9mm□のLEDチップを搭載した。更に、リフロー炉(SIKAMA社製 Falcon8500)にて窒素雰囲気中、所定の最大保持温度でリフローし、LEDチップとコバール基板とを接合させることにより、接合サンプルを得た。なお、上記リフロー時の最大保持温度を250℃、300℃、350℃の異なる温度に設定し、比較例1を除いて、実施例又は比較例ごとにそれぞれ3つずつ接合サンプルを得た。   The prepared paste was transferred to a predetermined position on a 0.5 mm thick Kovar (Fe—Ni—Co alloy) substrate using a pin having a diameter of 100 μm by a pin transfer method. The Kovar substrate was Ni-plated, and further Au flash-plated. Subsequently, a 0.9 mm □ LED chip was mounted on the transferred paste. Further, a reflow furnace (SIKAMA Falcon 8500) was reflowed at a predetermined maximum holding temperature in a nitrogen atmosphere, and the LED chip and the Kovar substrate were bonded to obtain a bonded sample. In addition, the maximum holding temperature at the time of the reflow was set to different temperatures of 250 ° C., 300 ° C., and 350 ° C., except for Comparative Example 1, three bonded samples were obtained for each Example or Comparative Example.

上記接合したコバール基板及びLEDチップとの接合強度について、JIS Z 3198−7に記されている鉛フリーハンダ試験方法−第7部の「チップ部品におけるハンダ接合のシェア強度測定方法」に準拠して、室温及び250℃の条件下で接合シェア強度をそれぞれ測定し、室温におけるシェア強度を100とした時の250℃での相対的シェア強度を求めた。表中、「優」は、相対的シェア強度が95以上であった場合を示し、「良」は、95未満から80以上であった場合を示し、「可」は、80未満から60以上であった場合を示し、「不可」は、60未満であった場合を示す。   Regarding the bonding strength between the above-mentioned Kovar substrate and the LED chip, in accordance with “Lead-free solder test method described in JIS Z 3198-7—Part 7:“ Measurement method of shear strength of solder joint in chip parts ” The joint shear strength was measured under the conditions of room temperature and 250 ° C., and the relative shear strength at 250 ° C. when the shear strength at room temperature was taken as 100 was determined. In the table, “excellent” indicates a case where the relative share strength is 95 or more, “good” indicates a case where it is less than 95 to 80 or more, and “possible” indicates less than 80 to 60 or more. “Not possible” indicates a case of less than 60.

Figure 2014193474
Figure 2014193474

表1から明らかなように、実施例1〜7と比較例1,2とを比較すると、銀の含有割合が10質量%に満たない比較例1では、凝固開始温度が低くなりすぎたためにハンダが再溶融し、相対的シェア強度が低くなったことから接合強度についての評価の判定が全て「不可」となった。一方、銀の含有割合が70質量%を超える比較例2では、凝固開始温度が高くなりすぎたためにリフロー時にハンダ粉末が溶融せず、充分な接合が得られなかったことから、接合シェア強度が測定できず、接合強度についての評価の判定が全て「不可」となった。これに対して、実施例1〜7では、銀の含有割合が増加するに従い、相対的シェア強度が向上し、高温雰囲気における接合強度についての評価の判定が全て「可」以上と良好な結果が得られた。   As apparent from Table 1, when Examples 1 to 7 and Comparative Examples 1 and 2 were compared, in Comparative Example 1 in which the silver content was less than 10% by mass, the solidification start temperature was too low, and thus soldering was performed. As a result of remelting, the relative shear strength was lowered, so that all the judgments regarding the evaluation of the joint strength were “impossible”. On the other hand, in Comparative Example 2 in which the silver content exceeds 70% by mass, the solidification start temperature became too high, and the solder powder did not melt at the time of reflow, so that sufficient bonding could not be obtained. It was not possible to measure, and all the judgments regarding the evaluation of the bonding strength were “impossible”. On the other hand, in Examples 1-7, as the content ratio of silver increases, the relative shear strength is improved, and all the determinations regarding the evaluation of the bonding strength in a high-temperature atmosphere are “good” or better. Obtained.

本発明は、電子部品の実装、特に高温雰囲気に晒される電子部品の実装に好適に利用できる。   The present invention can be suitably used for mounting electronic components, particularly for mounting electronic components that are exposed to a high temperature atmosphere.

10 ハンダ粉末
11 中心核
12 被覆層
10 Solder powder 11 Central core 12 Coating layer

Claims (4)

中心核と前記中心核を被覆する被覆層で構成され、前記中心核が銀及び銀と錫との金属間化合物からなり、前記被覆層が錫からなるハンダ粉末において、
前記ハンダ粉末の平均粒径が30μm以下であり、
前記ハンダ粉末の全体量100質量%に対し、銀の含有割合が10質量%を超え70質量%以下である
ことを特徴とするハンダ粉末。
In the solder powder comprising a central core and a coating layer covering the central core, the central core is composed of silver and an intermetallic compound of silver and tin, and the coating layer is composed of tin,
The average particle size of the solder powder is 30 μm or less,
Solder powder, wherein the content of silver is more than 10% by mass and 70% by mass or less with respect to 100% by mass of the total amount of the solder powder.
前記銀と錫との金属間化合物がAg3Sn及び/又はAg4Snである請求項1記載のハンダ粉末。 Solder powder according to claim 1, wherein an intermetallic compound of the silver and tin are Ag 3 Sn and / or Ag 4 Sn. 請求項1又は2記載のハンダ粉末とハンダ用フラックスを混合してペースト化することにより得られたハンダ用ペースト。   A solder paste obtained by mixing the solder powder according to claim 1 and a solder flux into a paste. 請求項3記載のハンダ用ペーストを用いて電子部品を実装する方法。   A method for mounting an electronic component using the solder paste according to claim 3.
JP2013070866A 2013-03-29 2013-03-29 Solder powder, method for producing the same, and solder paste using the powder Expired - Fee Related JP6079375B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013070866A JP6079375B2 (en) 2013-03-29 2013-03-29 Solder powder, method for producing the same, and solder paste using the powder
TW103107258A TWI593493B (en) 2013-03-29 2014-03-04 Welding powders and welding pastes using this powder
CN201410083455.4A CN104070295A (en) 2013-03-29 2014-03-07 Solder powder, solder paste using the powder, electronic part installation method
KR1020140026963A KR20140118747A (en) 2013-03-29 2014-03-07 Solder powder and solder paste using the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070866A JP6079375B2 (en) 2013-03-29 2013-03-29 Solder powder, method for producing the same, and solder paste using the powder

Publications (2)

Publication Number Publication Date
JP2014193474A true JP2014193474A (en) 2014-10-09
JP6079375B2 JP6079375B2 (en) 2017-02-15

Family

ID=51592119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070866A Expired - Fee Related JP6079375B2 (en) 2013-03-29 2013-03-29 Solder powder, method for producing the same, and solder paste using the powder

Country Status (4)

Country Link
JP (1) JP6079375B2 (en)
KR (1) KR20140118747A (en)
CN (1) CN104070295A (en)
TW (1) TWI593493B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172913A (en) * 2015-03-18 2016-09-29 三菱マテリアル株式会社 Solder powder production method and solder paste using the powder
WO2017094713A1 (en) * 2015-12-01 2017-06-08 三菱マテリアル株式会社 Solder powder and preparation method for solder paste using said powder
CN107492404A (en) * 2017-08-17 2017-12-19 黄琴 A kind of conductive silver tin cream
JP2019176092A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Electronic component and method of manufacturing the same
JP2020112487A (en) * 2019-01-15 2020-07-27 株式会社日本マイクロニクス Probe substrate and electric connection device
EP4219059A4 (en) * 2020-10-29 2023-10-25 Tanaka Kikinzoku Kogyo K.K. Bonding structure and semiconductor device having said bonding structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105345304B (en) * 2015-12-02 2017-07-25 华北水利水电大学 A kind of supersaturated solder and preparation method thereof
JP7261433B2 (en) 2016-11-11 2023-04-20 株式会社小泉製作所 drinking container
FR3059011B1 (en) * 2016-11-24 2022-07-22 Valeo Systemes De Controle Moteur FORMULATION OF AN AG-SN INTERMETALLIC COMPOUND

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151231A (en) * 1992-10-29 1994-05-31 Toshiba Lighting & Technol Corp Electric part
JPH10501025A (en) * 1993-10-08 1998-01-27 アメリカ合衆国 Acid assisted cold welding and intermetallic formation and its dental applications
JP2002254194A (en) * 2000-06-12 2002-09-10 Hitachi Ltd Electronic equipment
JP2005538851A (en) * 2002-09-18 2005-12-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Non-eutectic solder composition
JP2008515635A (en) * 2004-09-30 2008-05-15 インテル コーポレイション Nano-sized metals and alloys, and methods for assembling packages containing them
JP2012115860A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for manufacturing solder powder and solder powder obtained by the same
JP2012157870A (en) * 2011-01-31 2012-08-23 Mitsubishi Materials Corp Solder powder and paste for solder using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE547698A (en) * 1955-05-10 1900-01-01
JP3074649B1 (en) * 1999-02-23 2000-08-07 インターナショナル・ビジネス・マシーンズ・コーポレ−ション Lead-free solder powder, lead-free solder paste, and methods for producing them
US6805974B2 (en) * 2002-02-15 2004-10-19 International Business Machines Corporation Lead-free tin-silver-copper alloy solder composition
US6854636B2 (en) * 2002-12-06 2005-02-15 International Business Machines Corporation Structure and method for lead free solder electronic package interconnections
JP2008138266A (en) * 2006-12-04 2008-06-19 Mitsubishi Materials Corp Solder powder, and solder paste using the same
US20100252144A1 (en) * 2007-11-27 2010-10-07 Harima Chemicals, Inc. Soldering flux and solder paste composition
WO2009069601A1 (en) * 2007-11-27 2009-06-04 Harima Chemicals, Inc. Flux for soldering, soldering paste composition, and method of soldering
TWI388392B (en) * 2010-02-05 2013-03-11 Univ Nat Pingtung Sci & Tech Manufacturing method for lead-free solder material mixed with metal micro-particles
JP5754582B2 (en) * 2011-02-28 2015-07-29 三菱マテリアル株式会社 Precoat solder paste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151231A (en) * 1992-10-29 1994-05-31 Toshiba Lighting & Technol Corp Electric part
JPH10501025A (en) * 1993-10-08 1998-01-27 アメリカ合衆国 Acid assisted cold welding and intermetallic formation and its dental applications
JP2002254194A (en) * 2000-06-12 2002-09-10 Hitachi Ltd Electronic equipment
JP2005538851A (en) * 2002-09-18 2005-12-22 インターナショナル・ビジネス・マシーンズ・コーポレーション Non-eutectic solder composition
JP2008515635A (en) * 2004-09-30 2008-05-15 インテル コーポレイション Nano-sized metals and alloys, and methods for assembling packages containing them
JP2012115860A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for manufacturing solder powder and solder powder obtained by the same
JP2012157870A (en) * 2011-01-31 2012-08-23 Mitsubishi Materials Corp Solder powder and paste for solder using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172913A (en) * 2015-03-18 2016-09-29 三菱マテリアル株式会社 Solder powder production method and solder paste using the powder
WO2017094713A1 (en) * 2015-12-01 2017-06-08 三菱マテリアル株式会社 Solder powder and preparation method for solder paste using said powder
TWI670136B (en) * 2015-12-01 2019-09-01 日商三菱綜合材料股份有限公司 Solder powder and method for preparing solder paste using the same
CN107492404A (en) * 2017-08-17 2017-12-19 黄琴 A kind of conductive silver tin cream
JP2019176092A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Electronic component and method of manufacturing the same
JP7059751B2 (en) 2018-03-29 2022-04-26 Tdk株式会社 Electronic components and manufacturing methods for electronic components
JP2020112487A (en) * 2019-01-15 2020-07-27 株式会社日本マイクロニクス Probe substrate and electric connection device
EP4219059A4 (en) * 2020-10-29 2023-10-25 Tanaka Kikinzoku Kogyo K.K. Bonding structure and semiconductor device having said bonding structure

Also Published As

Publication number Publication date
CN104070295A (en) 2014-10-01
TW201438836A (en) 2014-10-16
JP6079375B2 (en) 2017-02-15
KR20140118747A (en) 2014-10-08
TWI593493B (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6079374B2 (en) Solder powder manufacturing method and solder paste using the powder
JP6079375B2 (en) Solder powder, method for producing the same, and solder paste using the powder
JP6428407B2 (en) Method for producing solder powder and method for producing solder paste using the powder
JP5895344B2 (en) Method for producing solder powder and method for producing solder paste using solder powder produced by this method
JP6587099B2 (en) Solder powder, method for producing the same, and method for preparing solder paste using the powder
JP6428408B2 (en) Method for producing solder powder and method for producing solder paste using the powder
JP5750913B2 (en) Solder powder and solder paste using this powder
JP6607006B2 (en) Solder powder and method for preparing solder paste using the powder
JP6428409B2 (en) Solder powder and solder paste using this powder
JP6720515B2 (en) Au-Sn solder powder and solder paste containing this powder
JP6645318B2 (en) Joining powder, method for producing this powder, and method for producing paste for joining using this powder
JP6645317B2 (en) Joining powder, method for producing this powder, and method for producing paste for joining using this powder
JP5488553B2 (en) Solder powder and solder paste using this powder
JP5447464B2 (en) Solder powder and solder paste using this powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees