JP2014193056A - Wireless power transmission device - Google Patents

Wireless power transmission device Download PDF

Info

Publication number
JP2014193056A
JP2014193056A JP2013067860A JP2013067860A JP2014193056A JP 2014193056 A JP2014193056 A JP 2014193056A JP 2013067860 A JP2013067860 A JP 2013067860A JP 2013067860 A JP2013067860 A JP 2013067860A JP 2014193056 A JP2014193056 A JP 2014193056A
Authority
JP
Japan
Prior art keywords
coil
power
power transmission
outer peripheral
peripheral length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013067860A
Other languages
Japanese (ja)
Other versions
JP6179160B2 (en
Inventor
Hitoyoshi Kurata
仁義 倉田
Yoshihiro Saito
義広 斎藤
Hiroki Kuraoka
宏喜 倉岡
Hiroshi Sachi
洋 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013067860A priority Critical patent/JP6179160B2/en
Publication of JP2014193056A publication Critical patent/JP2014193056A/en
Application granted granted Critical
Publication of JP6179160B2 publication Critical patent/JP6179160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power transmission device capable of reducing unwanted radiation noise even when a change of distance or a positional deviation between a power transmitting coil and a power receiving coil occurs.SOLUTION: A wireless power transmission device S1 comprises: a power transmitting coil L1; a power transmitting side shield part 11 disposed on a side of the power transmitting coil L1 opposite to the surface facing a power receiving coil L2; the power receiving coil L2; and a power receiving side shield part 21 disposed on a side of the power receiving coil L2 opposite to the surface facing a power transmitting coil L1. An outer circumferential length of the transmitting side shield part 11 is smaller than an outer circumferential length of the receiving side shield part 21. When viewed from the opposing direction of the transmitting side shield part 11 and the receiving side shield part 21 while the transmitting side shield part 11 and the receiving side shield part 21 are located in such a way that their center points face each other, all of the outer contours of the transmitting side shield part 11 are located inward from all of the outer contours of the receiving side shield part 21.

Description

本発明は、ワイヤレス電力伝送装置に関するものである。   The present invention relates to a wireless power transmission device.

電源コードやケーブル等を用いることなく、電力をワイヤレスで供給するワイヤレス電力伝送技術が注目されている。ワイヤレス電力伝送技術としては、(A)電磁誘導を利用するタイプ(近距離用)、(B)電波を利用するタイプ(遠距離用)、(C)磁場の共振現象を利用するタイプ(中距離用)の3種類に大別できる。   Wireless power transmission technology that supplies power wirelessly without using a power cord or cable is drawing attention. Wireless power transmission technologies include (A) a type that uses electromagnetic induction (for short distances), (B) a type that uses radio waves (for long distances), and (C) a type that uses magnetic field resonance (medium distances). Can be roughly divided into three types.

磁場の共振現象を利用するタイプ(C)は、比較的新しい技術であり、数m程度の中距離でも高い電力伝送効率を実現できることから、例えば、電気自動車の車両底部に受電コイルを設置し、地中又は地上に配置された給電コイルからワイヤレスにて電力を送り込むという案も検討されている。   Type (C), which utilizes the magnetic field resonance phenomenon, is a relatively new technology, and can achieve high power transmission efficiency even in the middle range of several meters. For example, a receiving coil is installed at the bottom of an electric vehicle. A proposal to send power wirelessly from a power supply coil arranged underground or on the ground is also being studied.

ところで、ワイヤレスによる大電力伝送を行った場合、電磁波の不要な輻射ノイズが送電機器外部の空間中に発生してしまい、周辺の電子機器に悪影響を及ぼすという問題があった。   By the way, when wireless high-power transmission is performed, there is a problem in that unnecessary radiation noise of electromagnetic waves is generated in a space outside the power transmission device and adversely affects peripheral electronic devices.

上記問題を解決するために、特許文献1では、1次側及び2次側は、それぞれエアギャップ側から順に、コイル、磁心コア、ベースプレートを備えた非接触給電装置が提案されている。この非接触給電装置では、該ベースプレートが、内部誘起される渦電流によって漏洩磁束の外部漏出を遮蔽している。   In order to solve the above-described problem, Patent Document 1 proposes a non-contact power feeding device including a coil, a magnetic core, and a base plate on the primary side and the secondary side in order from the air gap side. In this non-contact power feeding device, the base plate shields external leakage of leakage magnetic flux by eddy current induced internally.

特開2010−93180号公報JP 2010-93180 A

しかしながら、特許文献1に開示される非接触給電装置は、1次側及び2次側の磁心コアならびにベースプレートの寸法に関しては言及されておらず、送電コイルと受電コイルとの間の距離変化や位置ずれが生じた場合に、漏洩磁束が大きくなり、不要な輻射ノイズが大きくなる虞があった。   However, the non-contact power feeding device disclosed in Patent Document 1 is not mentioned regarding the dimensions of the primary and secondary magnetic cores and the base plate, and the distance change and position between the power transmission coil and the power reception coil are not mentioned. When deviation occurs, the leakage magnetic flux increases, and unnecessary radiation noise may increase.

本発明は、上記問題に鑑みてなされたものであって、送電コイルと受電コイルとの間の距離変化や位置ずれが生じた場合であっても、不要な輻射ノイズを低減することができるワイヤレス電力伝送装置を提供することを目的とする。   The present invention has been made in view of the above problem, and can wirelessly reduce unnecessary radiation noise even when the distance between the power transmitting coil and the power receiving coil is changed or the positional deviation occurs. An object is to provide a power transmission device.

本発明に係るワイヤレス電力伝送装置は、送電コイルと受電コイルとが対向することにより電力がワイヤレスにて伝送される装置であって、送電コイルと、送電コイルの受電コイルと対向する面とは反対側に配置される送電側シールド部と、受電コイルと、受電コイルの送電コイルと対向する面とは反対側に配置される受電側シールド部と、を備え、送電側シールド部の外周長さは、受電側シールド部の外周長さよりも小さく、且つ、送電側シールド部の中心点と受電側シールド部の中心点が対向するように位置した状態において、送電コイルと受電コイルとの対向方向から見て、送電側シールド部の全ての外輪郭が受電側シールド部の全ての外輪郭よりも内側に位置している。   A wireless power transmission device according to the present invention is a device in which electric power is transmitted wirelessly when a power transmission coil and a power reception coil face each other, and is opposite to a surface facing the power reception coil and the power reception coil of the power transmission coil. A power transmission side shield portion disposed on the side, a power reception coil, and a power reception side shield portion disposed on the opposite side of the surface of the power reception coil facing the power transmission coil, and the outer peripheral length of the power transmission side shield portion is In the state where the outer peripheral length of the power receiving side shield part is smaller and the center point of the power transmitting side shield part and the center point of the power receiving side shield part are opposed to each other, it is viewed from the facing direction of the power transmitting coil and the power receiving coil. Thus, all the outer contours of the power transmission side shield part are located inside of all the outer contours of the power reception side shield part.

本発明によれば、送電側シールド部の外周長さが、受電側シールド部の外周長さよりも小さく、且つ、送電側シールド部の中心点と受電側シールド部の中心点が対向するように位置した状態において、送電コイルと受電コイルとの対向方向から見て、送電側シールド部の全ての外輪郭が受電側シールド部の全ての外輪郭よりも外側に位置している。そのため、送電コイルと受電コイルとの間の距離変化や位置ずれが生じた場合であっても、不要な輻射ノイズを低減することができる。   According to the present invention, the outer peripheral length of the power transmission side shield part is smaller than the outer peripheral length of the power reception side shield part, and the center point of the power transmission side shield part and the center point of the power reception side shield part are opposed to each other. In this state, when viewed from the opposing direction of the power transmission coil and the power receiving coil, all outer contours of the power transmission side shield portion are located outside of all outer contours of the power reception side shield portion. Therefore, unnecessary radiation noise can be reduced even when the distance between the power transmitting coil and the power receiving coil is changed or the position is shifted.

好ましくは、送電コイルの外周長さは、受電コイルの外周長さよりも小さく、且つ、送電コイルの中心点と受電コイルの中心点が対向するように位置した状態において、送電コイルと受電コイルとの対向方向から見て、送電コイルの全ての外輪郭が受電コイルの全ての外輪郭よりも内側に位置している。この場合、送電コイルと受電コイルとの間の距離変化や位置ずれが生じた場合であっても、電力伝送効率を高く維持することができる。   Preferably, the outer peripheral length of the power transmission coil is smaller than the outer peripheral length of the power reception coil, and the power transmission coil and the power reception coil are positioned in a state where the center point of the power transmission coil and the center point of the power reception coil are opposed to each other. When viewed from the opposite direction, all outer contours of the power transmission coil are located on the inner side than all outer contours of the power receiving coil. In this case, even when a distance change or a positional deviation occurs between the power transmission coil and the power reception coil, the power transmission efficiency can be maintained high.

より好ましくは、送電側シールド部の外周長さは、受電コイルの外周長さよりも小さく、且つ、送電側シールド部の中心点と受電コイルの中心点が対向するように位置した状態において、送電コイルと受電コイルとの対向方向から見て、送電側シールド部の全ての外輪郭が受電コイルの全ての外輪郭よりも内側に位置している。この場合、送電コイルと受電コイルとの間の距離変化や位置ずれが生じた場合であっても、不要な輻射ノイズをより一層低減することができる。   More preferably, in the state where the outer peripheral length of the power transmission side shield part is smaller than the outer peripheral length of the power receiving coil and the center point of the power transmission side shield part and the center point of the power receiving coil are opposed to each other, As seen from the facing direction of the power receiving coil, all the outer contours of the power transmission side shield portion are located inside of all the outer contours of the power receiving coil. In this case, unnecessary radiation noise can be further reduced even when a change in the distance between the power transmission coil and the power reception coil or a positional deviation occurs.

より好ましくは、送電コイルの外周長さをLs、受電コイルの外周長さをLr、送電コイルと受電コイルとの間の最大離間距離をGmaxとすると、Ls,Lr及びGmaxは以下の関係式(1)を満たす。
Ls/Lr=1−2.4462×Ls−1.4193×Gmax±0.05 式(1)
(但し、式中Ls,Lr,Gmaxの単位はm、Ls/Lr<1である。)
この場合、送電コイルと受電コイルとの間の距離変化や位置ずれが生じた場合であっても、電力伝送効率をより一層高く維持することができる。
More preferably, assuming that the outer peripheral length of the power transmission coil is Ls, the outer peripheral length of the power receiving coil is Lr, and the maximum separation distance between the power transmitting coil and the power receiving coil is Gmax, Ls, Lr and Gmax are expressed by the following relational expression ( 1) is satisfied.
Ls / Lr = 1−2.4462 × Ls −1.4193 × Gmax ± 0.05 Formula (1)
(However, the units of Ls, Lr, and Gmax in the formula are m and Ls / Lr <1.)
In this case, even when the distance between the power transmitting coil and the power receiving coil is changed or the position is shifted, the power transmission efficiency can be maintained even higher.

より好ましくは、送電側シールド部の外周長さをWs、受電側シールド部の外周長さをWr、送電コイルと受電コイルとの間の最大離間距離をGmax、受電コイルの外周長さをLrとすると、Ws,Wr,Gmax,Lr及びLsは以下の関係式(2)を満たす。
Wr−Ws>(2.4462×Ls−1.4193×Gmax−0.05)×Lr 式(2)
(但し、式中Ws,Wr,Gmax,Lr及びLsの単位はm、Wr−Ws>0である。)
この場合、送電コイルと受電コイルとの間の距離変化や位置ずれが生じた場合であっても、電力伝送効率をより一層高く維持しつつ、不要な輻射ノイズをより一層低減することができる。
More preferably, the outer circumference length of the power transmission side shield part is Ws, the outer circumference length of the power reception side shield part is Wr, the maximum separation distance between the power transmission coil and the power reception coil is Gmax, and the outer circumference length of the power reception coil is Lr. Then, Ws, Wr, Gmax, Lr, and Ls satisfy the following relational expression (2).
Wr−Ws> (2.4462 × Ls− 1.4193 × Gmax−0.05) × Lr Formula (2)
(However, the unit of Ws, Wr, Gmax, Lr, and Ls in the formula is m and Wr−Ws> 0.)
In this case, even when a change in the distance between the power transmission coil and the power reception coil or a positional deviation occurs, unnecessary radiation noise can be further reduced while maintaining the power transmission efficiency even higher.

本発明のワイヤレス電力伝送装置によれば、送電コイルと受電コイルとの間の距離変化や位置ずれが生じた場合であっても、不要な輻射ノイズを低減することができる。   According to the wireless power transmission device of the present invention, it is possible to reduce unnecessary radiation noise even when the distance between the power transmission coil and the power reception coil is changed or the positional deviation occurs.

本発明の第1実施形態に係るワイヤレス電力伝送装置を示す斜視図である。1 is a perspective view showing a wireless power transmission device according to a first embodiment of the present invention. 図1におけるI−I線に沿うワイヤレス電力伝送装置の模式切断部端面図である。It is a model cutting part end view of the wireless power transmission apparatus along the II line in FIG. 本発明の第2実施形態に係るワイヤレス電力伝送装置を示す斜視図である。It is a perspective view which shows the wireless power transmission apparatus which concerns on 2nd Embodiment of this invention. 図3におけるII−II線に沿うワイヤレス電力伝送装置の模式切断部端面図である。It is a model cutting part end view of the wireless power transmission apparatus along the II-II line in FIG. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と結合係数との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of a power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and a coupling coefficient. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と結合係数との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of a power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and a coupling coefficient. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と結合係数との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of a power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and a coupling coefficient. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と結合係数との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of a power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and a coupling coefficient. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と結合係数との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of a power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and a coupling coefficient. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と電力伝送効率との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of the power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and power transmission efficiency. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と電力伝送効率との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of the power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and power transmission efficiency. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と電力伝送効率との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of the power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and power transmission efficiency. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と電力伝送効率との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of the power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and power transmission efficiency. 送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と電力伝送効率との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer periphery length of the power transmission coil with respect to the largest separation distance change between a power transmission coil and a power reception coil, the ratio of the outer periphery length of a power reception coil, and power transmission efficiency. 送電コイルと受電コイルとの間の最大離間距離変化に対する、最大結合係数と、結合係数が最も高くなる場合の送電コイルの外周長さと受電コイルの外周長さの比を示すグラフである。It is a graph which shows the ratio of the outer periphery length of the power transmission coil and the outer periphery length of a receiving coil in case the largest coupling coefficient and the coupling coefficient become the highest with respect to the largest separation distance change between a power transmission coil and a power receiving coil. 送電コイルの外周長さに対する送電コイルの外周長さと受電コイルの外周長さの比の傾きの大きさを示すグラフである。It is a graph which shows the magnitude | size of the inclination of ratio of the outer periphery length of a power transmission coil, and the outer periphery length of a receiving coil with respect to the outer periphery length of a power transmission coil. 送電側シールド部の外周長さと受電側シールド部の外周長さの差と不要な輻射ノイズレベルとの関係を示すグラフである。It is a graph which shows the relationship between the difference of the outer periphery length of a power transmission side shield part and the outer periphery length of a power receiving side shield part, and an unnecessary radiation noise level. 本実施形態の変形例に係るワイヤレス電力伝送装置を示す斜視図である。It is a perspective view which shows the wireless power transmission apparatus which concerns on the modification of this embodiment. 図10におけるIII−III線に沿うワイヤレス電力伝送装置の模式切断部端面図である。It is a model cutting part end view of the wireless power transmission apparatus along the III-III line in FIG.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

(第1実施形態)
まず、図1及び図2を参照して、本発明の第1実施形態の構成について説明する。図1は、本発明の第1実施形態に係るワイヤレス電力伝送装置を示す斜視図である。図2は、図1におけるI−I線に沿うワイヤレス電力伝送装置の模式切断部端面図である。
(First embodiment)
First, with reference to FIG.1 and FIG.2, the structure of 1st Embodiment of this invention is demonstrated. FIG. 1 is a perspective view showing a wireless power transmission device according to a first embodiment of the present invention. FIG. 2 is a schematic end view of the wireless power transmission device taken along line II in FIG.

ワイヤレス電力伝送装置S1は、図1に示されるように、送電ユニット10と、受電ユニット20を含む。送電ユニット10は、送電コイルL1と、送電側シールド部11を含む。受電側ユニット20は、受電コイルL2と、受電側シールド部21を含む。送電コイルL1と受電コイルL2は、その間に距離を空けて対向して配置され、ワイヤレスにて電力の伝送が行われる。   As illustrated in FIG. 1, the wireless power transmission device S1 includes a power transmission unit 10 and a power reception unit 20. The power transmission unit 10 includes a power transmission coil L1 and a power transmission side shield unit 11. The power reception side unit 20 includes a power reception coil L2 and a power reception side shield part 21. The power transmission coil L1 and the power reception coil L2 are arranged to face each other with a distance therebetween, and power is transmitted wirelessly.

送電ユニット10は、地中または地面近傍に配設される。送電コイルL1は、送電コイルL1と受電コイルL2間の離間距離と所望の電力伝送効率に基づいて、その巻数が適宜設定される。   The power transmission unit 10 is disposed in the ground or near the ground. The number of turns of the power transmission coil L1 is appropriately set based on the separation distance between the power transmission coil L1 and the power reception coil L2 and the desired power transmission efficiency.

送電側シールド部11は、図2に示されるように、送電コイルL1の受電コイルL2と対向する面とは反対側に配置されている。送電側シールド部11は、送電側磁性体12と、送電側磁性体12の送電コイルL1と対向する面とは反対側に配置される送電側導電体13を含む。すなわち、送電コイルL1と受電コイルL2の対向方向において、受電コイルL2から送電コイルL1に向かう方向で、送電コイルL1、送電側磁性体12、送電側導電体13の順で配置されている。ここで、送電側磁性体12と送電側導電体13とは、接触して配置されていてもよく、その間に空隙または絶縁体を設けていてもよい。   As shown in FIG. 2, the power transmission side shield portion 11 is disposed on the opposite side of the surface of the power transmission coil L1 that faces the power receiving coil L2. The power transmission side shield unit 11 includes a power transmission side magnetic body 12 and a power transmission side conductor 13 disposed on the opposite side of the surface of the power transmission side magnetic body 12 that faces the power transmission coil L1. That is, in the facing direction of the power transmission coil L1 and the power reception coil L2, the power transmission coil L1, the power transmission side magnetic body 12, and the power transmission side conductor 13 are arranged in this order from the power reception coil L2 to the power transmission coil L1. Here, the power transmission side magnetic body 12 and the power transmission side conductor 13 may be disposed in contact with each other, and a gap or an insulator may be provided therebetween.

送電側磁性体12は、磁性体から構成され、磁路の磁気抵抗を減らし、コイル間の磁気的な結合を高める作用を有する。磁性体としては、例えば、センダスト、MnZnフェライト、パーマロイなどが挙げられる。磁性体の透磁率及び電気抵抗は高ければ高いほど好ましく、これらの中では、特にMnZnフェライトが好ましい。   The power transmission side magnetic body 12 is comprised from a magnetic body, and has the effect | action which reduces the magnetic resistance of a magnetic path and raises the magnetic coupling between coils. Examples of the magnetic material include Sendust, MnZn ferrite, and permalloy. Higher magnetic permeability and electrical resistance are preferred, and among these, MnZn ferrite is particularly preferred.

送電側磁性体12は、送電コイルL1と受電コイルL2の対向方向と略直交する方向に延びる送電側磁性体基部12aと、送電側磁性体基部12aの周縁端に連結され、送電側磁性体基部12aに対して送電コイルL1の方向に傾く勾配を有し、送電コイルL1と受電コイルL2の対向方向に略平行な方向に延びる送電側磁性体突出部12bから構成される。送電側磁性体突出部12bの送電側磁性体基部12aに連結される縁部とは反対側の縁部は、送電コイルL1と受電コイルL2の対向方向に、送電コイルL1と同じ位置に位置していてもよく、高い位置(図示上方)に位置していてもよい。これら送電側磁性体基部12aと送電側磁性体突出部12bによって画定される空間に送電コイルL1が配置されることとなる。   The power transmission side magnetic body 12 is connected to the power transmission side magnetic body base 12a extending in a direction substantially orthogonal to the facing direction of the power transmission coil L1 and the power reception coil L2, and the peripheral edge of the power transmission side magnetic body base 12a. The power transmission side magnetic body protruding portion 12b has a gradient inclined in the direction of the power transmission coil L1 with respect to 12a and extends in a direction substantially parallel to the opposing direction of the power transmission coil L1 and the power reception coil L2. The edge of the power transmission side magnetic body protruding portion 12b opposite to the edge connected to the power transmission side magnetic body base 12a is located at the same position as the power transmission coil L1 in the facing direction of the power transmission coil L1 and the power reception coil L2. Or may be located at a high position (upward in the figure). The power transmission coil L1 is disposed in a space defined by the power transmission side magnetic base 12a and the power transmission side magnetic protrusion 12b.

送電側導電体13は、導電体から構成され、電磁波を吸収する作用を有する。導電体としては、例えばアルミニウム、銅、銀などが挙げられる。導電体は、非磁性でもよく、その導電率は高ければ高いほど好ましい。   The power transmission side conductor 13 is comprised from a conductor, and has the effect | action which absorbs electromagnetic waves. Examples of the conductor include aluminum, copper, and silver. The conductor may be non-magnetic, and the higher the conductivity, the better.

送電側導電体13は、送電コイルL1と受電コイルL2の対向方向と略直交する方向に延びる送電側導電体基部13aと、送電側導電体基部13aの周縁端に連結され、送電側導電体基部13aに対して送電コイルL1の方向に傾く勾配を有し、送電コイルL1と受電コイルL2の対向方向に略平行な方向に延びる送電側導電体突出部13bから構成される。送電側導電体突出部13bの送電側導電体基部13aに連結される縁部とは反対側の縁部は、送電コイルL1と受電コイルL2の対向方向に、送電コイルL1と同じ位置に位置していてもよく、高い位置(図示上方)に位置していてもよい。これら送電側導電体基部13aと送電側導電体突出部13bによって画定される空間に送電コイルL1が配置されることとなる。   The power transmission side conductor 13 is connected to a power transmission side conductor base 13a extending in a direction substantially orthogonal to the facing direction of the power transmission coil L1 and the power reception coil L2, and a peripheral edge of the power transmission side conductor base 13a. The power transmission side conductor protrusion 13b has a gradient inclined in the direction of the power transmission coil L1 with respect to 13a and extends in a direction substantially parallel to the opposing direction of the power transmission coil L1 and the power reception coil L2. The edge of the power transmission side conductor protrusion 13b opposite to the edge connected to the power transmission side conductor base 13a is located at the same position as the power transmission coil L1 in the facing direction of the power transmission coil L1 and the power reception coil L2. Or may be located at a high position (upward in the figure). The power transmission coil L1 is arranged in a space defined by the power transmission side conductor base 13a and the power transmission side conductor protrusion 13b.

受電コイルL2は、送電コイルL1からの電力を受電可能に構成され、好ましくは、送電コイルL1と同軸上に配設される。受電コイルL2は、送電コイルL1と受電コイルL2間の離間距離と所望の電力伝送効率に基づいて、その巻数が適宜設定される。   The power receiving coil L2 is configured to receive power from the power transmitting coil L1, and is preferably disposed coaxially with the power transmitting coil L1. The number of turns of the power receiving coil L2 is appropriately set based on the separation distance between the power transmitting coil L1 and the power receiving coil L2 and the desired power transmission efficiency.

受電側シールド部21は、図2に示されるように、受電コイルL2の送電コイルL1と対向する面とは反対側に配置されている。受電側シールド部21は、受電側磁性体22と、受電側磁性体22の受電コイルL2と対向する面とは反対側に配置される受電側導電体23を含む。すなわち、送電コイルL1と受電コイルL2の対向方向において、送電コイルL1から受電コイルL2に向かう方向で、受電コイルL2、受電側磁性体22、受電側導電体23の順で配置されている。ここで、受電側磁性体22と受電側導電体23とは、接触して配置されていてもよく、その間に空隙または絶縁体を設けてもよい。   As shown in FIG. 2, the power reception side shield portion 21 is disposed on the opposite side of the surface of the power reception coil L2 that faces the power transmission coil L1. The power-receiving-side shield portion 21 includes a power-receiving-side magnetic body 22 and a power-receiving-side conductor 23 disposed on the opposite side of the surface of the power-receiving-side magnetic body 22 that faces the power-receiving coil L2. That is, in the facing direction of the power transmission coil L1 and the power reception coil L2, the power reception coil L2, the power reception side magnetic body 22, and the power reception side conductor 23 are arranged in this order from the power transmission coil L1 toward the power reception coil L2. Here, the power receiving side magnetic body 22 and the power receiving side conductor 23 may be disposed in contact with each other, and a gap or an insulator may be provided therebetween.

受電側磁性体22は、磁性体から構成され、磁路の磁気抵抗を減らし、コイル間の磁気的な結合を高める作用を有する。磁性体としては、例えば、センダスト、MnZnフェライト、パーマロイなどが挙げられる。磁性体の透磁率及び電気抵抗は高ければ高いほど好ましく、これらの中では、特にMnZnフェライトが好ましい。   The power receiving side magnetic body 22 is made of a magnetic body and has an action of reducing the magnetic resistance of the magnetic path and increasing the magnetic coupling between the coils. Examples of the magnetic material include Sendust, MnZn ferrite, and permalloy. Higher magnetic permeability and electrical resistance are preferred, and among these, MnZn ferrite is particularly preferred.

受電側磁性体22は、送電コイルL1と受電コイルL2の対向方向と略直交する方向に延びる受電側磁性体基部22aと、受電側磁性体基部22aの周縁端に連結され、受電側磁性体基部22aに対して受電コイルL2の方向に傾く勾配を有し、送電コイルL1と受電コイルL2の対向方向に略平行な方向に延びる受電側磁性体突出部22bから構成される。受電側磁性体突出部22bの受電側磁性体基部22aに連結される縁部とは反対側の縁部は、送電コイルL1と受電コイルL2の対向方向に、受電コイルL2と同じ位置に位置していてもよく、低い位置(図示下方)に位置していてもよい。これら受電側磁性体基部22aと受電側磁性体突出部22bによって画定される空間に受電コイルL2が配置されることとなる。   The power receiving side magnetic body 22 is connected to a power receiving side magnetic body base portion 22a extending in a direction substantially orthogonal to the facing direction of the power transmission coil L1 and the power receiving coil L2, and a peripheral edge of the power receiving side magnetic body base portion 22a. The power receiving side magnetic body protruding portion 22b has a gradient inclined in the direction of the power receiving coil L2 with respect to 22a and extends in a direction substantially parallel to the opposing direction of the power transmitting coil L1 and the power receiving coil L2. The edge of the power receiving side magnetic body protruding portion 22b opposite to the edge connected to the power receiving side magnetic base 22a is located at the same position as the power receiving coil L2 in the facing direction of the power transmitting coil L1 and the power receiving coil L2. Or may be located at a low position (downward in the figure). The power receiving coil L2 is disposed in a space defined by the power receiving side magnetic body base portion 22a and the power receiving side magnetic body protruding portion 22b.

受電側導電体23は、導電体から構成され、電磁波を吸収する作用を有する。導電体としては、例えばアルミニウム、銅、銀などが挙げられる。導電体は、非磁性でもよく、その導電率は高ければ高いほど好ましい。   The power receiving side conductor 23 is made of a conductor and has an action of absorbing electromagnetic waves. Examples of the conductor include aluminum, copper, and silver. The conductor may be non-magnetic, and the higher the conductivity, the better.

受電側導電体23は、送電コイルL1と受電コイルL2の対向方向と略直交する方向に延びる受電側導電体基部23aと、受電側導電体基部23aの周縁端に連結され、受電側導電体基部23aに対して受電コイルL2の方向に傾く勾配を有し、送電コイルL1と受電コイルL2の対向方向に略平行な方向に延びる受電側導電体突出部23bから構成される。受電側導電体突出部23bの受電側導電体基部23aに連結される縁部とは反対側の縁部は、送電コイルL1と受電コイルL2の対向方向に、受電コイルL2と同じ位置に位置していてもよく、低い位置(図示下方)に位置していてもよい。これら受電側導電体基部23aと受電側導電体突出部23bによって画定される空間に受電コイルL2が配置されることとなる。   The power receiving side conductor 23 is connected to the power receiving side conductor base 23a extending in a direction substantially orthogonal to the facing direction of the power transmission coil L1 and the power receiving coil L2, and the peripheral edge of the power receiving side conductor base 23a. The power receiving side conductor protruding portion 23b has a gradient inclined in the direction of the power receiving coil L2 with respect to 23a and extends in a direction substantially parallel to the opposing direction of the power transmitting coil L1 and the power receiving coil L2. The edge of the power receiving side conductor protrusion 23b opposite to the edge connected to the power receiving side conductor base 23a is located at the same position as the power receiving coil L2 in the facing direction of the power transmitting coil L1 and the power receiving coil L2. Or may be located at a low position (downward in the figure). The power receiving coil L2 is disposed in a space defined by the power receiving side conductor base 23a and the power receiving side conductor protrusion 23b.

続いて、送電ユニット10と受電ユニット20の寸法関係について詳細に説明する。本実施形態では、送電側シールド部11の外周長さは、受電側シールド部21の外周長さよりも小さくなっている。ここで、「送電側シールド部11の外周長さが受電側シールド部21の外周長さよりも小さい」とは、送電コイルL1と受電コイルL2の対向方向から見て、送電側シールド部11及び受電側シールド部21が略円形形状、略多角形形状、略楕円形形状のいずれの形状を呈している場合であっても、送電側シールド部11の中心点と受電側シールド部21の中心点が対向するように位置した状態において、送電側シールド部11の外周長さから換算された等価直径が受電側シールド部21の外周長さから換算された等価直径よりも小さい関係となる。また、送電側シールド部11の中心点と受電側シールド部21の中心点が対向するように位置した状態において、送電コイルL1と受電コイルL2との対向方向から見て、送電側シールド部11の全ての外輪郭が受電側シールド部21の全ての外輪郭よりも内側に位置している。言い換えると、送電側シールド部11の中心点と受電側シールド部21の中心点が対向するように配置されると、送電コイルL1と受電コイルL2との対向方向から見て、送電側シールド部11の全領域が受電側シールド部21に重なることとなる。   Next, the dimensional relationship between the power transmission unit 10 and the power reception unit 20 will be described in detail. In the present embodiment, the outer peripheral length of the power transmission side shield part 11 is smaller than the outer peripheral length of the power reception side shield part 21. Here, “the outer peripheral length of the power transmission side shield part 11 is smaller than the outer peripheral length of the power reception side shield part 21” means that the power transmission side shield part 11 and the power reception side are viewed from the direction in which the power transmission coil L1 and the power reception coil L2 face each other. Even if the side shield portion 21 has a substantially circular shape, a substantially polygonal shape, or a substantially elliptical shape, the center point of the power transmission side shield portion 11 and the center point of the power reception side shield portion 21 are the same. In the state of being positioned so as to face each other, the equivalent diameter converted from the outer peripheral length of the power transmission side shield portion 11 is smaller than the equivalent diameter converted from the outer peripheral length of the power reception side shield portion 21. Further, in a state where the center point of the power transmission side shield part 11 and the center point of the power reception side shield part 21 are opposed to each other, the power transmission side shield part 11 has the power transmission side shield part 11 as viewed from the facing direction of the power transmission coil L1 and the power reception coil L2. All the outer contours are located on the inner side of all the outer contours of the power receiving side shield part 21. In other words, when the center point of the power transmission side shield portion 11 and the center point of the power reception side shield portion 21 are arranged to face each other, the power transmission side shield portion 11 is viewed from the opposing direction of the power transmission coil L1 and the power reception coil L2. Will overlap the power receiving side shield part 21.

以上のように、本実施形態に係るワイヤレス電力伝送装置S1では、送電側シールド部11の外周長さが、受電側シールド部21の外周長さよりも小さく、且つ、送電側シールド部11の中心点と受電側シールド部21の中心点が対向するように位置した状態において、送電コイルL1と受電コイルL2との対向方向から見て、送電側シールド部11の全ての外輪郭が受電側シールド部21の全ての外輪郭よりも外側に位置している。そのため、送電コイルL1と受電コイルL2との間の距離変化や位置ずれが生じた場合であっても、不要な輻射ノイズを低減することができる。   As described above, in the wireless power transmission device S <b> 1 according to the present embodiment, the outer peripheral length of the power transmission side shield unit 11 is smaller than the outer peripheral length of the power reception side shield unit 21 and the center point of the power transmission side shield unit 11. In the state where the central point of the power receiving side shield part 21 is located opposite to each other, all the outer contours of the power transmitting side shield part 11 are seen from the opposing direction of the power transmitting coil L1 and the power receiving coil L2. It is located outside all the outer contours. Therefore, even if the distance change and position shift between power transmission coil L1 and power reception coil L2 arise, unnecessary radiation noise can be reduced.

(第2実施形態)
続いて、図3及び図4を参照して、本発明の第2実施形態について説明する。図3は、本発明の第2実施形態に係るワイヤレス電力伝送装置を示す斜視図である。図4は、図3におけるII−II線に沿うワイヤレス電力伝送装置の模式切断部端面図である。第2実施形態に係るワイヤレス電力伝送装置S2は、送電コイルと受電コイルの寸法比、及び、送電側シールド部と受電コイルの寸法比の点において、第1実施形態に係るワイヤレス電力伝送装置S1と異なっている。以下、第1実施形態と異なる点を中心に説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a perspective view showing a wireless power transmission device according to the second embodiment of the present invention. 4 is a schematic end view of the wireless power transmission device taken along line II-II in FIG. 3. The wireless power transmission device S2 according to the second embodiment is different from the wireless power transmission device S1 according to the first embodiment in terms of the size ratio between the power transmission coil and the power reception coil and the size ratio between the power transmission side shield part and the power reception coil. Is different. Hereinafter, a description will be given focusing on differences from the first embodiment.

ワイヤレス電力伝送装置S2は、図3及び図4に示されるように、送電ユニット100と、受電ユニット200を含む。送電ユニット100は、送電コイルL11と、送電側シールド部110を含む。受電側ユニット200は、受電コイルL12と、受電側シールド部210を含む。送電コイルL11と受電コイルL12は、その間に距離を空けて対向して配置され、ワイヤレスにて電力の伝送が行われる。   As illustrated in FIGS. 3 and 4, the wireless power transmission device S <b> 2 includes a power transmission unit 100 and a power reception unit 200. The power transmission unit 100 includes a power transmission coil L11 and a power transmission side shield part 110. The power receiving side unit 200 includes a power receiving coil L12 and a power receiving side shield part 210. The power transmission coil L11 and the power reception coil L12 are arranged facing each other with a distance therebetween, and power is transmitted wirelessly.

次に、送電ユニット100と受電ユニット200の寸法関係について詳細に説明する。本実施形態では、第1実施形態に係るワイヤレス電力伝送装置S1と同様に、送電側シールド部110の外周長さは、受電側シールド部210の外周長さよりも小さくなっている。但し、本実施形態では、送電コイルL11の外周長さと受電コイルL12の外周長さの関係、ならびに、送電側シールド部110の外周長さと受電コイルL12の外周長さの関係が第1実施形態と相違する。   Next, the dimensional relationship between the power transmission unit 100 and the power reception unit 200 will be described in detail. In the present embodiment, the outer peripheral length of the power transmission side shield unit 110 is smaller than the outer peripheral length of the power reception side shield unit 210 as in the wireless power transmission device S1 according to the first embodiment. However, in this embodiment, the relationship between the outer circumferential length of the power transmission coil L11 and the outer circumferential length of the power receiving coil L12 and the relationship between the outer circumferential length of the power transmission side shield unit 110 and the outer circumferential length of the power receiving coil L12 are the same as those in the first embodiment. Is different.

本実施形態では、送電コイルL11の外周長さは、受電コイルL12の外周長さよりも小さくなっている。ここで、「送電コイルL11の外周長さが受電コイルL12の外周長さよりも小さい」とは、送電コイルL11と受電コイルL12の対向方向から見て、送電コイルL11及び受電コイルL12が略円形形状、略多角形形状、略楕円形形状のいずれを呈している場合であっても、送電コイルL11の中心点と受電コイルL12の中心点が対向するように位置した状態において、送電コイルL11の外周長さから換算された等価直径が受電コイルL12の外周長さから換算された等価直径よりも小さい関係となる。また、送電コイルL11の中心点と受電コイルL12の中心点が対向するように位置した状態において、送電コイルL11と受電コイルL12との対向方向から見て、送電コイルL11の全ての外輪郭が受電コイルL12の全ての外輪郭よりも内側に位置している。   In this embodiment, the outer peripheral length of the power transmission coil L11 is smaller than the outer peripheral length of the power receiving coil L12. Here, “the outer peripheral length of the power transmission coil L11 is smaller than the outer peripheral length of the power reception coil L12” means that the power transmission coil L11 and the power reception coil L12 have a substantially circular shape when viewed from the opposing direction of the power transmission coil L11 and the power reception coil L12. The outer periphery of the power transmission coil L11 in a state where the center point of the power transmission coil L11 and the center point of the power reception coil L12 are opposed to each other, regardless of whether they have a substantially polygonal shape or a substantially elliptical shape. The equivalent diameter converted from the length is smaller than the equivalent diameter converted from the outer peripheral length of the power receiving coil L12. Further, in a state where the center point of the power transmission coil L11 and the center point of the power reception coil L12 are opposed to each other, all the outer contours of the power transmission coil L11 are received by power when viewed from the facing direction of the power transmission coil L11 and the power reception coil L12. It is located inside the entire outer contour of the coil L12.

さらに本実施形態では、送電側シールド部110の外周長さは、受電コイルL12の外周長さよりも小さくなっている。ここで、「送電側シールド部110の外周長さが受電コイルL12の外周長さよりも小さい」とは、送電コイルL11と受電コイルL12の対向方向から見て、送電側シールド部110及び受電コイルL12が略円形形状、略多角形形状、略楕円形形状のいずれを呈している場合であっても、送電側シールド部110の中心点と受電コイルL12の中心点が対向するように位置した状態において、送電側シールド部110の外周長さから換算された等価直径が受電コイルL12の外周長さから換算された等価直径よりも小さい関係となる。また、送電側シールド部110の中心点と受電コイルL12の中心点が対向するように位置した状態において、送電コイルL11と受電コイルL12との対向方向から見て、送電側シールド部110の全ての外輪郭が受電コイルL12の全ての外輪郭よりも内側に位置している。   Furthermore, in this embodiment, the outer periphery length of the power transmission side shield part 110 is smaller than the outer periphery length of the receiving coil L12. Here, “the outer peripheral length of the power transmission side shield part 110 is smaller than the outer peripheral length of the power reception coil L12” means that the power transmission side shield part 110 and the power reception coil L12 are viewed from the opposing direction of the power transmission coil L11 and the power reception coil L12. In the state where the center point of the power transmission side shield part 110 and the center point of the power receiving coil L12 are opposed to each other, even if it has a substantially circular shape, a substantially polygonal shape, or a substantially elliptical shape The equivalent diameter converted from the outer peripheral length of the power transmission side shield part 110 is smaller than the equivalent diameter converted from the outer peripheral length of the power receiving coil L12. Further, in a state where the center point of the power transmission side shield part 110 and the center point of the power reception coil L12 are opposed to each other, when viewed from the facing direction of the power transmission coil L11 and the power reception coil L12, all the power transmission side shield parts 110 The outer contour is positioned inside all the outer contours of the power receiving coil L12.

次に、図5〜図8を参照して、送電コイルL11の外周長さと受電コイルL12の外周長さの好ましい比率について詳細に説明する。図5a〜図5eは、送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と結合係数との関係を示すグラフである。図6a〜図6eは、送電コイルと受電コイルとの間の最大離間距離変化に対する送電コイルの外周長さと受電コイルの外周長さの比と電力伝送効率との関係を示すグラフである。図7は、送電コイルと受電コイルとの間の最大離間距離変化に対する、最大結合係数と、結合係数が最も高くなる場合の送電コイルの外周長さと受電コイルの外周長さの比を示すグラフである。図8は、送電コイルの外周長さに対する送電コイルの外周長さと受電コイルの外周長さの比の傾きの大きさを示すグラフである。   Next, with reference to FIGS. 5 to 8, a preferable ratio of the outer peripheral length of the power transmission coil L11 and the outer peripheral length of the power receiving coil L12 will be described in detail. 5a to 5e are graphs showing the relationship between the coupling coefficient and the ratio of the outer circumference length of the power transmission coil to the outer circumference length of the power reception coil and the coupling coefficient with respect to the change in the maximum separation distance between the power transmission coil and the power reception coil. 6A to 6E are graphs showing the relationship between the power transmission efficiency and the ratio of the outer peripheral length of the power transmitting coil to the outer peripheral length of the power receiving coil with respect to the change in the maximum separation distance between the power transmitting coil and the power receiving coil. FIG. 7 is a graph showing the maximum coupling coefficient and the ratio of the outer peripheral length of the power transmitting coil to the outer peripheral length of the power receiving coil when the coupling coefficient is the highest with respect to the maximum change in the separation distance between the power transmitting coil and the power receiving coil. is there. FIG. 8 is a graph showing the magnitude of the gradient of the ratio of the outer peripheral length of the power transmission coil to the outer peripheral length of the power receiving coil with respect to the outer peripheral length of the power transmission coil.

まず、送電コイルL11の外周長さをLs(m)、受電コイルL12の外周長さをLr(m)、送電コイルL11と受電コイルL12との間の最大離間距離をGmax(m)とする。なお、本実施形態では、送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなっているため、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrは1未満となる。   First, the outer peripheral length of the power transmission coil L11 is Ls (m), the outer peripheral length of the power reception coil L12 is Lr (m), and the maximum separation distance between the power transmission coil L11 and the power reception coil L12 is Gmax (m). In the present embodiment, since the outer peripheral length Ls of the power transmission coil L11 is smaller than the outer peripheral length Lr of the power receiving coil L12, the outer peripheral length Ls of the power transmitting coil L11 and the outer peripheral length Lr of the power receiving coil L12. The ratio Ls / Lr is less than 1.

図5aに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に結合係数kを表示している。図5aに示す例においては、送電コイルL11の外周長さLsを1.2mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、結合係数kが最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.45〜0.93の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。   In the graph shown in FIG. 5A, the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 is displayed on the horizontal axis, and the coupling coefficient k is displayed on the vertical axis. In the example shown in FIG. 5a, the outer peripheral length Ls of the power transmission coil L11 is set to 1.2 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the coupling coefficient k becomes the highest when the outer peripheral length Ls of the power transmission coil L11 and the power reception coil L12 are increased. It was confirmed that the ratio Ls / Lr of the outer peripheral length Lr was in the range of 0.45 to 0.93, that is, when the outer peripheral length Ls of the power transmission coil L11 was smaller than the outer peripheral length Lr of the power receiving coil L12. .

図5bに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に結合係数kを表示している。図5bに示す例においては、送電コイルL11の外周長さLsを1.6mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、結合係数kが最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.60〜0.95の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。   In the graph shown in FIG. 5B, the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 is displayed on the horizontal axis, and the coupling coefficient k is displayed on the vertical axis. In the example shown in FIG. 5b, the outer peripheral length Ls of the power transmission coil L11 is set to 1.6 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the coupling coefficient k becomes the highest when the outer peripheral length Ls of the power transmission coil L11 and the power reception coil L12 are increased. It was confirmed that the ratio Ls / Lr of the outer peripheral length Lr was in the range of 0.60 to 0.95, that is, when the outer peripheral length Ls of the power transmission coil L11 was smaller than the outer peripheral length Lr of the power receiving coil L12. .

図5cに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に結合係数kを表示している。図5cに示す例においては、送電コイルL11の外周長さLsを2.0mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、結合係数kが最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.70〜0.95の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。   In the graph shown in FIG. 5C, the horizontal axis indicates the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12, and the vertical axis indicates the coupling coefficient k. In the example shown in FIG. 5c, the outer peripheral length Ls of the power transmission coil L11 is set to 2.0 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the coupling coefficient k becomes the highest when the outer peripheral length Ls of the power transmission coil L11 and the power reception coil L12 are increased. It was confirmed that the ratio Ls / Lr of the outer peripheral length Lr is in the range of 0.70 to 0.95, that is, the outer peripheral length Ls of the power transmission coil L11 is smaller than the outer peripheral length Lr of the power receiving coil L12. .

図5dに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に結合係数kを表示している。図5dに示す例においては、送電コイルL11の外周長さLsを2.4mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、結合係数kが最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.77〜0.98の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。   In the graph shown in FIG. 5d, the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 is displayed on the horizontal axis, and the coupling coefficient k is displayed on the vertical axis. In the example shown in FIG. 5d, the outer peripheral length Ls of the power transmission coil L11 is set to 2.4 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the coupling coefficient k becomes the highest when the outer peripheral length Ls of the power transmission coil L11 and the power reception coil L12 are increased. It was confirmed that the ratio Ls / Lr of the outer peripheral length Lr was in the range of 0.77 to 0.98, that is, the outer peripheral length Ls of the power transmission coil L11 was smaller than the outer peripheral length Lr of the power receiving coil L12. .

図5eに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に結合係数kを表示している。図5eに示す例においては、送電コイルL11の外周長さLsを3.2mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、結合係数kが最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.84〜0.99の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。   The graph shown in FIG. 5e displays the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 on the horizontal axis, and the coupling coefficient k on the vertical axis. In the example shown in FIG. 5e, the outer peripheral length Ls of the power transmission coil L11 is set to 3.2 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the coupling coefficient k becomes the highest when the outer peripheral length Ls of the power transmission coil L11 and the power reception coil L12 are increased. It was confirmed that the ratio Ls / Lr of the outer peripheral length Lr was in the range of 0.84 to 0.99, that is, the outer peripheral length Ls of the power transmission coil L11 was smaller than the outer peripheral length Lr of the power receiving coil L12. .

図6aに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に電力伝送効率η(%)を表示している。図6aに示す例においては、送電コイルL11の外周長さLsを1.2mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、電力伝送効率η(%)が最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.45〜0.93の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。なお、図6aに示す例において、電力伝送効率η(%)が最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lr、言い換えると図5aに示す例における結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことも確認できた。   The graph shown in FIG. 6a displays the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 on the horizontal axis, and the power transmission efficiency η (%) on the vertical axis. Yes. In the example shown in FIG. 6a, the outer peripheral length Ls of the power transmission coil L11 is set to 1.2 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the power transmission efficiency η (%) becomes the highest as the outer peripheral length Ls of the power transmission coil L11. The ratio Ls / Lr of the outer peripheral length Lr of the power receiving coil L12 is in the range of 0.45 to 0.93, that is, the outer peripheral length Ls of the power transmitting coil L11 is smaller than the outer peripheral length Lr of the power receiving coil L12. Was confirmed. In the example shown in FIG. 6a, the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 where the power transmission efficiency η (%) is highest, in other words, the example shown in FIG. Even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12, which has the highest coupling coefficient k, changes about ± 0.05, the power transmission efficiency η (%) changes. It was also confirmed that it was not recognized.

図6bに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に電力伝送効率η(%)を表示している。図6bに示す例においては、送電コイルL11の外周長さLsを1.6mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、電力伝送効率η(%)が最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.6〜0.95の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。なお、図6bに示す例において、電力伝送効率η(%)が最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lr、言い換えると図5bに示す例における結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことも確認できた。   The graph shown in FIG. 6b shows the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 on the horizontal axis, and the power transmission efficiency η (%) on the vertical axis. Yes. In the example shown in FIG. 6b, the outer peripheral length Ls of the power transmission coil L11 is set to 1.6 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the power transmission efficiency η (%) becomes the highest as the outer peripheral length Ls of the power transmission coil L11. The ratio Ls / Lr of the outer peripheral length Lr of the power receiving coil L12 is in the range of 0.6 to 0.95, that is, the outer peripheral length Ls of the power transmitting coil L11 is smaller than the outer peripheral length Lr of the power receiving coil L12. Was confirmed. In the example shown in FIG. 6b, the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 where the power transmission efficiency η (%) is highest, in other words, the example shown in FIG. 5b. Even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12, which has the highest coupling coefficient k, changes about ± 0.05, the power transmission efficiency η (%) changes. It was also confirmed that it was not recognized.

図6cに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に電力伝送効率η(%)を表示している。図6cに示す例においては、送電コイルL11の外周長さLsを2.0mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、電力伝送効率η(%)が最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.70〜0.95の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。なお、図6cに示す例において、電力伝送効率η(%)が最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lr、言い換えると図5cに示す例における結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことも確認できた。   The graph shown in FIG. 6c shows the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 on the horizontal axis, and the power transmission efficiency η (%) on the vertical axis. Yes. In the example shown in FIG. 6c, the outer peripheral length Ls of the power transmission coil L11 is set to 2.0 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the power transmission efficiency η (%) becomes the highest as the outer peripheral length Ls of the power transmission coil L11. The ratio Ls / Lr of the outer peripheral length Lr of the power receiving coil L12 is in the range of 0.70 to 0.95, that is, the outer peripheral length Ls of the power transmitting coil L11 is smaller than the outer peripheral length Lr of the power receiving coil L12. Was confirmed. In the example shown in FIG. 6c, the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 that maximizes the power transmission efficiency η (%), in other words, the example shown in FIG. Even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12, which has the highest coupling coefficient k, changes about ± 0.05, the power transmission efficiency η (%) changes. It was also confirmed that it was not recognized.

図6dに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に電力伝送効率η(%)を表示している。図6dに示す例においては、送電コイルL11の外周長さLsを2.4mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、電力伝送効率η(%)が最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.77〜0.98の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。なお、図6dに示す例において、電力伝送効率η(%)が最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lr、言い換えると図5dに示す例における結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことも確認できた。   The graph shown in FIG. 6d displays the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 on the horizontal axis, and the power transmission efficiency η (%) on the vertical axis. Yes. In the example shown in FIG. 6d, the outer peripheral length Ls of the power transmission coil L11 is set to 2.4 m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation between the power transmitting coil L11 and the power receiving coil L12 is achieved. The distance Gmax (m) was measured while being changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the power transmission efficiency η (%) becomes the highest as the outer peripheral length Ls of the power transmission coil L11. The ratio Ls / Lr of the outer peripheral length Lr of the power receiving coil L12 is in the range of 0.77 to 0.98, that is, the outer peripheral length Ls of the power transmitting coil L11 is smaller than the outer peripheral length Lr of the power receiving coil L12. Was confirmed. In the example shown in FIG. 6d, the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 where the power transmission efficiency η (%) is highest, in other words, the example shown in FIG. Even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12, which has the highest coupling coefficient k, changes about ± 0.05, the power transmission efficiency η (%) changes. It was also confirmed that it was not recognized.

図6eに示すグラフは、横軸に送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示し、縦軸に電力伝送効率η(%)を表示している。図6eに示す例においては、送電コイルL11の外周長さLsを3.2.mに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させて測定した。測定結果から、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)が大きくなるにつれて、電力伝送効率η(%)が最も高くなるのは、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが0.84〜0.99の範囲、すなわち送電コイルL11の外周長さLsが受電コイルL12の外周長さLrよりも小さくなるときであることが確認できた。なお、図6eに示す例において、電力伝送効率η(%)が最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lr、言い換えると図5eに示す例における結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことも確認できた。   The graph shown in FIG. 6e displays the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 on the horizontal axis, and the power transmission efficiency η (%) on the vertical axis. Yes. In the example shown in FIG. 6e, the outer peripheral length Ls of the power transmission coil L11 is set to 3.2. m, the outer peripheral length Lr of the power receiving coil L12 is changed, and the maximum separation distance Gmax (m) between the power transmitting coil L11 and the power receiving coil L12 is 0.05 m, 0.10 m, 0.15 m, 0 .20 m, 0.25 m, and 0.30 m. From the measurement results, as the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 increases, the power transmission efficiency η (%) becomes the highest as the outer peripheral length Ls of the power transmission coil L11. The ratio Ls / Lr of the outer peripheral length Lr of the power receiving coil L12 is in the range of 0.84 to 0.99, that is, the outer peripheral length Ls of the power transmitting coil L11 is smaller than the outer peripheral length Lr of the power receiving coil L12. Was confirmed. In the example shown in FIG. 6e, the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 where the power transmission efficiency η (%) is highest, in other words, the example shown in FIG. Even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12, which has the highest coupling coefficient k, changes about ± 0.05, the power transmission efficiency η (%) changes. It was also confirmed that it was not recognized.

図7に示すグラフは、横軸に送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を表示し、縦軸に結合係数kと送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表示している。図7に示す例においては、送電コイルL11の外周長さLsを1.2m、1.6m、2.0m、2.4m、3.2mのそれぞれに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させた場合の最大結合係数kmaxと、結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrを表している。図7に示されるように、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)に対して、結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrは、縦軸切片値が1で傾きが負の比例関係を示している。   In the graph shown in FIG. 7, the horizontal axis indicates the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12, and the vertical axis indicates the coupling coefficient k, the outer peripheral length Ls of the power transmission coil L11, and the power reception coil. The ratio Ls / Lr of the outer peripheral length Lr of L12 is displayed. In the example shown in FIG. 7, the outer peripheral length Ls of the power transmission coil L11 is set to 1.2 m, 1.6 m, 2.0 m, 2.4 m, and 3.2 m, respectively, and the outer peripheral length Lr of the power receiving coil L12 is set. And the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 is changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. And the ratio Ls / Lr of the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 where the coupling coefficient k is the highest. As shown in FIG. 7, the outer peripheral length Ls of the power transmission coil L11 and the power reception coil L12 having the highest coupling coefficient k with respect to the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12. The ratio Ls / Lr of the outer peripheral length Lr shows a proportional relationship in which the vertical axis intercept value is 1 and the slope is negative.

送電コイルL11の外周長さLsが1.2mの場合、結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの近似直線を求めると、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)に対する送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrは、以下の関係式(3)を満たすこととなる。なお、上述したように、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことから、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの許容範囲とする。
Ls/Lr=1−Gmax×1.82±0.05 式(3)
(但し、式中Ls,Lr,Gmaxの単位はm、Ls/Lr<1である。)
When the outer peripheral length Ls of the power transmission coil L11 is 1.2 m, an approximate straight line of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 that has the highest coupling coefficient k is obtained. The ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power reception coil L12 with respect to the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 is expressed by the following relational expression (3 ) Will be satisfied. As described above, even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 changes by about ± 0.05, a change in the power transmission efficiency η (%) is recognized. Therefore, the allowable range of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 is set.
Ls / Lr = 1−Gmax × 1.82 ± 0.05 Formula (3)
(However, the units of Ls, Lr, and Gmax in the formula are m and Ls / Lr <1.)

送電コイルL11の外周長さLsが1.6mの場合、結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの近似直線を求めると、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)に対する送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrは、以下の関係式(4)を満たすこととなる。なお、上述したように、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことから、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの許容範囲とする。
Ls/Lr=1−Gmax×1.256±0.05 式(4)
(但し、式中Ls,Lr,Gmaxの単位はm、Ls/Lr<1である。)
When the outer peripheral length Ls of the power transmission coil L11 is 1.6 m, an approximate straight line of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 with the highest coupling coefficient k is obtained. The ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power reception coil L12 with respect to the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 is expressed by the following relational expression (4 ) Will be satisfied. As described above, even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 changes by about ± 0.05, a change in the power transmission efficiency η (%) is recognized. Therefore, the allowable range of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 is set.
Ls / Lr = 1−Gmax × 1.256 ± 0.05 Formula (4)
(However, the units of Ls, Lr, and Gmax in the formula are m and Ls / Lr <1.)

送電コイルL11の外周長さLsが2.0mの場合、結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの近似直線を求めると、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)に対する送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrは、以下の関係式(5)を満たすこととなる。なお、上述したように、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことから、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの許容範囲とする。
Ls/Lr=1−Gmax×0.9396±0.05 式(5)
(但し、式中Ls,Lr,Gmaxの単位はm、Ls/Lr<1である。)
When the outer peripheral length Ls of the power transmission coil L11 is 2.0 m, an approximate straight line of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 that has the highest coupling coefficient k is obtained. The ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power reception coil L12 with respect to the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 is expressed by the following relational expression (5 ) Will be satisfied. As described above, even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 changes by about ± 0.05, a change in the power transmission efficiency η (%) is recognized. Therefore, the allowable range of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 is set.
Ls / Lr = 1−Gmax × 0.9396 ± 0.05 Formula (5)
(However, the units of Ls, Lr, and Gmax in the formula are m and Ls / Lr <1.)

送電コイルL11の外周長さLsが2.4mの場合、結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの近似直線を求めると、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)に対する送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrは、以下の関係式(6)を満たすこととなる。なお、上述したように、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことから、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの許容範囲とする。
Ls/Lr=1−Gmax×0.7582±0.05 式(6)
(但し、式中Ls,Lr,Gmaxの単位はm、Ls/Lr<1である。)
When the outer peripheral length Ls of the power transmission coil L11 is 2.4 m, an approximate straight line of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 with the highest coupling coefficient k is obtained. The ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power reception coil L12 with respect to the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 is expressed by the following relational expression (6 ) Will be satisfied. As described above, even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 changes by about ± 0.05, a change in the power transmission efficiency η (%) is recognized. Therefore, the allowable range of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 is set.
Ls / Lr = 1−Gmax × 0.7582 ± 0.05 Formula (6)
(However, the units of Ls, Lr, and Gmax in the formula are m and Ls / Lr <1.)

送電コイルL11の外周長さLsが3.2mの場合、結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの近似直線を求めると、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)に対する送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrは、以下の関係式(7)を満たすこととなる。なお、上述したように、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが±0.05程度変化しても電力伝送効率η(%)の変化が認められないことから、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの許容範囲とする。
Ls/Lr=1−Gmax×0.4436±0.05 式(7)
(但し、式中Ls,Lr,Gmaxの単位はm、Ls/Lr<1である。)
When the outer peripheral length Ls of the power transmission coil L11 is 3.2 m, an approximate straight line of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 with the highest coupling coefficient k is obtained. The ratio Ls / Lr of the outer peripheral length Ls of the power transmitting coil L11 and the outer peripheral length Lr of the power receiving coil L12 with respect to the maximum separation distance Gmax (m) between the power transmitting coil L11 and the power receiving coil L12 is expressed by the following relational expression (7 ) Will be satisfied. As described above, even if the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 changes by about ± 0.05, a change in the power transmission efficiency η (%) is recognized. Therefore, the allowable range of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 is set.
Ls / Lr = 1−Gmax × 0.4436 ± 0.05 Formula (7)
(However, the units of Ls, Lr, and Gmax in the formula are m and Ls / Lr <1.)

図8に示すグラフは、横軸に送電コイルL11の外周長さLsを表示し、縦軸に送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)に対する送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの傾きの大きさAを表示している。図8に示す例においては、送電コイルL11の外周長さLsを1.2m、1.6m、2.0m、2.4m、3.2mのそれぞれに設定し、受電コイルL12の外周長さLrを変化させるとともに、送電コイルL11と受電コイルL12との間の最大離間距離Gmax(m)を0.05m、0.10m、0.15m、0.20m、0.25m、0.30mに変化させた場合の結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの傾きの大きさAを表している。図8に示されるように、送電コイルL11の外周長さLsに対する結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの傾きの大きさAは、以下の関係式(8)を満たすこととなる。
A=2.4462×Ls−1.4193 式(8)
(但し、式中Lsの単位はmを示す。)
The graph shown in FIG. 8 displays the outer peripheral length Ls of the power transmission coil L11 on the horizontal axis, and the outer peripheral length of the power transmission coil L11 with respect to the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 on the vertical axis. The magnitude A of the inclination of the ratio Ls / Lr between the length Ls and the outer peripheral length Lr of the power receiving coil L12 is displayed. In the example shown in FIG. 8, the outer peripheral length Ls of the power transmission coil L11 is set to 1.2 m, 1.6 m, 2.0 m, 2.4 m, and 3.2 m, respectively, and the outer peripheral length Lr of the power receiving coil L12 is set. And the maximum separation distance Gmax (m) between the power transmission coil L11 and the power reception coil L12 is changed to 0.05 m, 0.10 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m. The ratio A of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 that has the highest coupling coefficient k is shown. As shown in FIG. 8, the slope of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 that has the highest coupling coefficient k with respect to the outer peripheral length Ls of the power transmission coil L11. The length A satisfies the following relational expression (8).
A = 2.4462 × Ls− 1.4193 (8)
(However, the unit of Ls represents m in the formula.)

したがって、上述の式(3)〜式(7)中で表される送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの傾きの大きさに、式(8)で表される結合係数kが最も高くなる送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrの傾きの大きさAを代入すると、以下の関係式(1)を満たすこととなる。
Ls/Lr=1−2.4462×Ls−1.4193×Gmax±0.05 式(1)
(但し、式中Ls,Lr,Gmaxの単位はm、Ls/Lr<1である。)
すなわち、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが上述の式(1)を満たす場合、結合係数kが最も高くなるため、送電コイルL11と受電コイルL12との間の距離変化や位置ずれが生じた場合であっても、電力伝送効率をより一層高く維持することができる。
Therefore, the magnitude of the slope of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 expressed in the above formulas (3) to (7) is expressed by the formula (8 When the ratio A of the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 with the highest coupling coefficient k expressed by (1) is substituted, the following relational expression (1 ) Will be satisfied.
Ls / Lr = 1−2.4462 × Ls −1.4193 × Gmax ± 0.05 Formula (1)
(However, the units of Ls, Lr, and Gmax in the formula are m and Ls / Lr <1.)
That is, when the ratio Ls / Lr between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Lr of the power receiving coil L12 satisfies the above-described equation (1), the coupling coefficient k is the highest, so the power transmitting coil L11 and the power receiving coil Even in the case where a change in the distance from L12 or a positional deviation occurs, the power transmission efficiency can be maintained even higher.

続いて、図9を参照して、送電側シールド部110と受電側シールド部210の好ましい寸法関係について詳細に説明する。図9は、送電側シールド部110の外周長さWsと受電側シールド部210の外周長さWrの差と不要な輻射ノイズレベル(dBμV/m)との関係を示すグラフである。   Next, a preferable dimensional relationship between the power transmission side shield part 110 and the power reception side shield part 210 will be described in detail with reference to FIG. FIG. 9 is a graph showing the relationship between the difference between the outer peripheral length Ws of the power transmission side shield part 110 and the outer peripheral length Wr of the power reception side shield part 210 and the unnecessary radiation noise level (dBμV / m).

まず、送電コイルL11の外周長さをLs(m)、受電コイルL12の外周長さをLr(m)、送電側シールド部110の外周長さをWs(m)、受電側シールド部210の外周長さをWr(m)、送電コイルL11の外周長さLsと送電側シールド部110の外周長さWsの差をα(m)、受電コイルL12の外周長さLrと受電側シールド部210の外周長さWrの差をβ(m)、送電コイルL11と受電コイルL12との間の最大離間距離をGmax(m)とする。なお、本実施形態では、送電側シールド部110の外周長さWsが受電側シールド部210の外周長さWrよりも小さくなっているため、送電側シールド部110の外周長さWsと受電側シールド部210の外周長さWrの差Wr−Wsは、0よりも大きくなる。   First, the outer circumference length of the power transmission coil L11 is Ls (m), the outer circumference length of the power reception coil L12 is Lr (m), the outer circumference length of the power transmission side shield part 110 is Ws (m), and the outer circumference of the power reception side shield part 210. The length is Wr (m), the difference between the outer peripheral length Ls of the power transmission coil L11 and the outer peripheral length Ws of the power transmission side shield part 110 is α (m), the outer peripheral length Lr of the power reception coil L12 and the power reception side shield part 210 The difference in the outer peripheral length Wr is β (m), and the maximum separation distance between the power transmission coil L11 and the power reception coil L12 is Gmax (m). In the present embodiment, since the outer peripheral length Ws of the power transmission side shield part 110 is smaller than the outer peripheral length Wr of the power reception side shield part 210, the outer peripheral length Ws of the power transmission side shield part 110 and the power reception side shield. The difference Wr−Ws in the outer peripheral length Wr of the portion 210 is larger than zero.

上述の関係より、送電側シールド部110の外周長さWsは、Ws=Ls+αとなり、受電側シールド部210の外周長さWrは、Wr=Lr+βとなる。したがって、送電側シールド部110の外周長さWsと受電側シールド部210の外周長さWrの差は以下の関係式(9)を満たすこととなる。
Wr−Ws=(Lr−Ls)+(β−α) 式(9)
(但し、式中Ws,Wr,Lr及びLsの単位はm、Wr−Ws>0である。)
ここで、送電コイルL11と受電コイルL12の間の距離変化や位置ずれが生じた場合であっても、電力伝送効率をより一層高く維持するためには、送電コイルL11の外周長さLsと受電コイルL12の外周長さLrの比Ls/Lrが上述の関係式(1)を満たす必要がある。したがって、上述の関係式(1)から送電コイルL11の外周長さLsを導いて関係式(9)に代入すると、送電側シールド部110の外周長さWsと受電側シールド部210の外周長さWrの差は以下の関係式(10)となる。
Wr−Ws=(Lr−(1−2.4462×Ls−1.4193×Gmax±0.05)×Lr)+(β−α) 式(10)
(但し、式中Ws,Wr,Gmax,Lr,Ls,α及びβの単位はm、Wr−Ws>0である。)
From the above relationship, the outer peripheral length Ws of the power transmission side shield unit 110 is Ws = Ls + α, and the outer peripheral length Wr of the power reception side shield unit 210 is Wr = Lr + β. Therefore, the difference between the outer peripheral length Ws of the power transmission side shield part 110 and the outer peripheral length Wr of the power reception side shield part 210 satisfies the following relational expression (9).
Wr−Ws = (Lr−Ls) + (β−α) Formula (9)
(However, the unit of Ws, Wr, Lr and Ls in the formula is m and Wr−Ws> 0.)
Here, even when the distance between the power transmission coil L11 and the power reception coil L12 is changed or the position shift occurs, the outer peripheral length Ls of the power transmission coil L11 and the power reception are required in order to keep the power transmission efficiency higher. The ratio Ls / Lr of the outer peripheral length Lr of the coil L12 needs to satisfy the above relational expression (1). Therefore, when the outer peripheral length Ls of the power transmission coil L11 is derived from the relational expression (1) and substituted into the relational expression (9), the outer peripheral length Ws of the power transmission side shield part 110 and the outer peripheral length of the power reception side shield part 210 are calculated. The difference in Wr is expressed by the following relational expression (10).
Wr−Ws = (Lr− (1-22.4462 × Ls− 1.4193 × Gmax ± 0.05) × Lr) + (β−α) Formula (10)
(However, the units of Ws, Wr, Gmax, Lr, Ls, α, and β in the formula are m and Wr−Ws> 0.)

ところで、受電側シールド部210の外周長さWrを送電側シールド部110の外周長さWsよりも大きくすると不要な輻射ノイズの低減効果を向上させることができる。さらに、受電コイルL12の外周長さLrと受電側シールド部210の外周長さWrの差βを送電コイルL11の外周長さLsと送電側シールド部110の外周長さWsの差αよりも大きくする、すなわちβ>αの関係を満たすと不要な輻射ノイズを一層低減することができる。なお、送電コイルL11の送電側磁性体突出部12bによる送電コイルL11のインダクタンス低減作用と受電コイルL12の受電側磁性体突出部13bによる受電コイルL12のインダクタンス低減作用の影響を軽減するには、α,β≠0の関係を満たす必要がある。以上のことから、関係式(10)の送電側シールド部110の外周長さWsと受電側シールド部210の外周長さWrの差を大きくすれば大きくするほど不要な輻射ノイズの低減効果を向上させることができる。そして、α=βの関係のときに送電側シールド部110の外周長さWsと受電側シールド部210の外周長さWrの差が最小値となることから、送電コイルと受電コイルの間の距離変化や位置ずれが生じた場合であっても、電力伝送効率をより一層高く維持しつつ、不要な輻射ノイズをより一層低減しようとすると、送電側シールド部110の外周長さWsと受電側シールド部210の外周長さWrの差は、以下の関係式(2)を満たすこととなる。
Wr−Ws>(2.4462×Ls−1.4193×Gmax−0.05)×Lr 式(2)
(但し、式中Ws,Wr,Gmax,Lr及びLsの単位はm、Wr−Ws>0である。)
By the way, if the outer peripheral length Wr of the power receiving side shield part 210 is larger than the outer peripheral length Ws of the power transmitting side shield part 110, the effect of reducing unnecessary radiation noise can be improved. Further, the difference β between the outer peripheral length Lr of the power receiving coil L12 and the outer peripheral length Wr of the power receiving side shield part 210 is larger than the difference α between the outer peripheral length Ls of the power transmitting coil L11 and the outer peripheral length Ws of the power transmitting side shield part 110. In other words, if the relationship β> α is satisfied, unnecessary radiation noise can be further reduced. In order to reduce the influence of the inductance reduction action of the power transmission coil L11 by the power transmission side magnetic body protrusion 12b of the power transmission coil L11 and the inductance reduction action of the power reception coil L12 by the power reception side magnetic body protrusion 13b of the power reception coil L12, , Β ≠ 0 must be satisfied. From the above, as the difference between the outer peripheral length Ws of the power transmission side shield part 110 and the outer periphery length Wr of the power receiving side shield part 210 in the relational expression (10) is increased, the effect of reducing unnecessary radiation noise is improved. Can be made. Since the difference between the outer peripheral length Ws of the power transmission side shield part 110 and the outer peripheral length Wr of the power reception side shield part 210 becomes the minimum value when α = β, the distance between the power transmission coil and the power reception coil. Even when there is a change or misalignment, if it is attempted to further reduce unnecessary radiation noise while maintaining higher power transmission efficiency, the outer peripheral length Ws of the power transmission shield part 110 and the power reception shield The difference in the outer peripheral length Wr of the portion 210 satisfies the following relational expression (2).
Wr−Ws> (2.4462 × Ls− 1.4193 × Gmax−0.05) × Lr Formula (2)
(However, the unit of Ws, Wr, Gmax, Lr, and Ls in the formula is m and Wr−Ws> 0.)

図9に示すグラフは、サンプル1、2の不要な輻射ノイズレベル(dBμV/m)を表すグラフである。ここで、図9に示す例におけるサンプル1は上述の関係式(2)を満たしていないワイヤレス電力伝送装置を用い、サンプル2は上述の関係式(2)を満たすワイヤレス電力伝送装置S2を用いて不要な輻射ノイズレベルを測定した。測定結果から、サンプル1に比べて、サンプル2の方が不要な輻射ノイズレベル(dBμV/m)が低減されていることが確認できた。つまり、ワイヤレス電力伝送装置S2において、送電側シールド部110の外周長さWsと受電側シールド部210の外周長さWrの差が上述の関係式(2)を満たすことにより、不要な輻射ノイズをより一層低減できることが確認できた。   The graph shown in FIG. 9 is a graph showing the unnecessary radiation noise level (dBμV / m) of Samples 1 and 2. Here, Sample 1 in the example shown in FIG. 9 uses a wireless power transmission device that does not satisfy the above-described relational expression (2), and Sample 2 uses a wireless power transmission apparatus S2 that satisfies the above-described relational expression (2). Unnecessary radiation noise level was measured. From the measurement results, it was confirmed that the unnecessary radiation noise level (dBμV / m) was reduced in Sample 2 compared to Sample 1. In other words, in the wireless power transmission device S2, the difference between the outer peripheral length Ws of the power transmission side shield unit 110 and the outer peripheral length Wr of the power reception side shield unit 210 satisfies the above-described relational expression (2), thereby causing unnecessary radiation noise. It was confirmed that it could be further reduced.

以上のように、本実施形態に係るワイヤレス電力伝送装置S2では、送電側シールド部110の外周長さWsが、受電側シールド部210の外周長さWrよりも小さく、且つ、送電側シールド部110の中心点と受電側シールド部210の中心点が対向するように位置した状態において、送電コイルL11と受電コイルL12との対向方向から見て、送電側シールド部110の全ての外輪郭が受電側シールド部210の全ての外輪郭よりも外側に位置している。そのため、送電コイルL11と受電コイルL12との間の距離変化や位置ずれが生じた場合であっても、不要な輻射ノイズを低減することができる。   As described above, in the wireless power transmission device S2 according to the present embodiment, the outer peripheral length Ws of the power transmission side shield unit 110 is smaller than the outer peripheral length Wr of the power reception side shield unit 210 and the power transmission side shield unit 110. In the state where the center point of the power receiving side and the center point of the power receiving side shield portion 210 are opposed to each other, all the outer contours of the power transmitting side shield portion 110 are seen on the power receiving side when viewed from the facing direction of the power transmitting coil L11 and the power receiving coil L12. It is located outside the entire outer contour of the shield part 210. Therefore, even if the distance change and position shift between power transmission coil L11 and power reception coil L12 arise, unnecessary radiation noise can be reduced.

本実施形態に係るワイヤレス電力伝送装置S2においては、送電コイルL11の外周長さLsは、受電コイルL12の外周長さLrよりも小さく、且つ、送電コイルL11の中心点と受電コイルL12の中心点が対向するように位置した状態において、送電コイルL11と受電コイルL12との対向方向から見て、送電コイルL11の全ての外輪郭が受電コイルL12の全ての外輪郭よりも内側に位置している。そのため、送電コイルL11と受電コイルL12との間の距離変化や位置ずれが生じた場合であっても、電力伝送効率を高く維持することができる。   In the wireless power transmission device S2 according to the present embodiment, the outer peripheral length Ls of the power transmission coil L11 is smaller than the outer peripheral length Lr of the power receiving coil L12, and the central point of the power transmitting coil L11 and the central point of the power receiving coil L12. Are positioned so as to face each other, all the outer contours of the power transmitting coil L11 are located inside of all the outer contours of the power receiving coil L12 when viewed from the facing direction of the power transmitting coil L11 and the power receiving coil L12. . Therefore, even if the distance change or position shift between the power transmission coil L11 and the power reception coil L12 occurs, the power transmission efficiency can be maintained high.

また、本実施形態に係るワイヤレス電力伝送装置S2においては、送電側シールド部110の外周長さWsは、受電コイルL12の外周長さWrよりも小さく、且つ、送電側シールド部110の中心点と受電コイルL12の中心点が対向するように位置した状態において、送電コイルL11と受電コイルL12との対向方向から見て、送電側シールド部110の全ての外輪郭が受電コイルL12の全ての外輪郭よりも内側に位置している。そのため、送電コイルL11と受電コイルL12との間の距離変化や位置ずれが生じた場合であっても、不要な輻射ノイズを一層低減することができる。   Further, in the wireless power transmission device S2 according to the present embodiment, the outer peripheral length Ws of the power transmission side shield unit 110 is smaller than the outer peripheral length Wr of the power receiving coil L12, and the center point of the power transmission side shield unit 110 is In a state where the center points of the power receiving coil L12 are opposed to each other, all the outer contours of the power transmission side shield unit 110 are all outer contours of the power receiving coil L12 when viewed from the facing direction of the power transmitting coil L11 and the power receiving coil L12. Is located on the inside. Therefore, even if the distance change and position shift between power transmission coil L11 and power reception coil L12 arise, unnecessary radiation noise can be further reduced.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。また、記載した構成要素は、当業者が容易に想定できるもの、実質的に同一なものが含まれる。さらに、記載した構成要素は適宜組み合わせることが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. The constituent elements described include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the described constituent elements can be appropriately combined.

例えば、送電側導電体13及び受電側導電体23は、上記実施形態のものに限られない。図10及び図11に示されるように、送電側導電体13として、送電側導電体基部13aと送電側導電体突出部13bに加えて、送電側導電体突出部13bの周縁端に連結され、送電コイルL11から離れる方向、且つ、送電コイルL11と受電コイルL12の対向方向に対して略直交する方向に延びる送電側導電体延長部13cを備えていてもよく、受電側導電体23として、受電側導電体基部23aと受電側導電体突出部23bに加えて、受電側導電体突出部23bの周縁端に連結され、受電コイルL12から離れる方向、且つ、送電コイルL11と受電コイルL12の対向方向に対して略直交する方向に延びる受電側導電体延長部23cを備えていてもよい。この場合、送電側磁性体突出部12b及び受電側磁性体突出部22bの先端から生じる漏洩磁束が送電側導電体延長部13c及び受電側導電体延長部23cに発生する渦電流によって相殺されるため、より一層不要な輻射ノイズを低減することができる。   For example, the power transmission side conductor 13 and the power reception side conductor 23 are not limited to those in the above embodiment. As shown in FIGS. 10 and 11, as the power transmission side conductor 13, in addition to the power transmission side conductor base 13 a and the power transmission side conductor protrusion 13 b, the power transmission side conductor 13 is connected to the peripheral edge of the power transmission side conductor protrusion 13 b, A power transmission side conductor extension 13c extending in a direction away from the power transmission coil L11 and in a direction substantially orthogonal to the facing direction of the power transmission coil L11 and the power reception coil L12 may be provided. In addition to the side conductor base portion 23a and the power receiving side conductor protruding portion 23b, it is connected to the peripheral edge of the power receiving side conductor protruding portion 23b, away from the receiving coil L12, and the facing direction of the power transmitting coil L11 and the receiving coil L12 There may be provided a power receiving side conductor extension 23c extending in a direction substantially perpendicular to the direction. In this case, the leakage magnetic flux generated from the tips of the power transmission side magnetic projection 12b and the power reception side magnetic projection 22b is offset by eddy currents generated in the power transmission side conductor extension 13c and the power reception side conductor extension 23c. Further, unnecessary radiation noise can be reduced.

10,100…送電ユニット、11,110…送電側シールド部、12…送電側磁性体、12a…送電側磁性体基部、12b…送電側磁性体突出部、13…送電側導電体、13a…送電側導電体基部、13b…送電側導電体突出部、13c…送電側導電体延長部、20,200…受電ユニット、21,210…受電側シールド部、22…受電側磁性体、22a…受電側磁性体基部、22b…受電側磁性体突出部、23…受電側導電体、23a…受電側導電体基部、23b…受電側導電体突出部、23c…受電側導電体延長部、A…送電コイルの外周長さと受電コイルの外周長さの比の傾きの大きさ、Gmax…最大離間距離、L1,L11…送電コイル、L2,L12…受電コイル、Ls…送電コイルの外周長さ、Lr…受電コイルの外周長さ、S1,S2…ワイヤレス電力伝送装置、Ws…送電側シールド部の外周長さ、Wr…受電側シールド部の外周長さ。   DESCRIPTION OF SYMBOLS 10,100 ... Power transmission unit 11, 110 ... Power transmission side shield part, 12 ... Power transmission side magnetic body, 12a ... Power transmission side magnetic body base part, 12b ... Power transmission side magnetic body protrusion part, 13 ... Power transmission side conductor, 13a ... Power transmission Side conductor base, 13b ... Power transmission side conductor protrusion, 13c ... Power transmission side conductor extension, 20, 200 ... Power reception unit, 21, 210 ... Power reception side shield, 22 ... Power reception side magnetic body, 22a ... Power reception side Magnetic base, 22b ... Power receiving side magnetic protrusion, 23 ... Power receiving side conductor, 23a ... Power receiving side conductor base, 23b ... Power receiving side conductor protrusion, 23c ... Power receiving side conductor extension, A ... Power transmission coil Of the ratio of the outer peripheral length of the power receiving coil and the outer peripheral length of the power receiving coil, Gmax: maximum separation distance, L1, L11: power transmitting coil, L2, L12: power receiving coil, Ls: outer peripheral length of the power transmitting coil, Lr: power receiving Coil outer circumference , S1, S2 ... wireless power transmission apparatus, Ws ... power-transmission-side shield portion outer peripheral length of, Wr ... power-receiving-side shield portion outer peripheral length of the.

Claims (5)

送電コイルと受電コイルとが対向することにより電力がワイヤレスにて伝送される装置であって、
前記送電コイルと、
前記送電コイルの前記受電コイルと対向する面とは反対側に配置される送電側シールド部と、
前記受電コイルと、
前記受電コイルの前記送電コイルと対向する面とは反対側に配置される受電側シールド部と、を備え、
前記送電側シールド部の外周長さは、前記受電側シールド部の外周長さよりも小さく、且つ、前記送電側シールド部の中心点と前記受電側シールド部の中心点が対向するように位置した状態において、前記送電コイルと前記受電コイルとの対向方向から見て、前記送電側シールド部の全ての外輪郭が前記受電側シールド部の全ての外輪郭よりも内側に位置しているワイヤレス電力伝送装置。
A device in which power is transmitted wirelessly by facing a power transmission coil and a power reception coil,
The power transmission coil;
A power transmission side shield portion disposed on the opposite side of the surface facing the power receiving coil of the power transmission coil;
The power receiving coil;
A power receiving side shield portion disposed on the opposite side of the surface facing the power transmitting coil of the power receiving coil,
The outer peripheral length of the power transmission side shield part is smaller than the outer peripheral length of the power reception side shield part, and the central point of the power transmission side shield part and the central point of the power reception side shield part are positioned so as to face each other The wireless power transmission device in which all outer contours of the power transmission side shield portion are located inside all outer contours of the power reception side shield portion when viewed from the opposing direction of the power transmission coil and the power reception coil .
前記送電コイルの外周長さは、前記受電コイルの外周長さよりも小さく、且つ、前記送電コイルの中心点と前記受電コイルの中心点が対向するように位置した状態において、前記送電コイルと前記受電コイルとの対向方向から見て、前記送電コイルの全ての外輪郭が前記受電コイルの全ての外輪郭よりも内側に位置している請求項1に記載のワイヤレス電力伝送装置。   In the state where the outer peripheral length of the power transmitting coil is smaller than the outer peripheral length of the power receiving coil and the center point of the power transmitting coil and the center point of the power receiving coil are opposed to each other, the power transmitting coil and the power receiving coil 2. The wireless power transmission device according to claim 1, wherein all outer contours of the power transmission coil are located on an inner side than all outer contours of the power receiving coil as viewed from a direction facing the coil. 前記送電側シールド部の外周長さは、前記受電コイルの外周長さよりも小さく、且つ、前記送電側シールド部の中心点と前記受電コイルの中心点が対向するように位置した状態において、前記送電コイルと前記受電コイルとの対向方向から見て、前記送電側シールド部の全ての外輪郭が前記受電コイルの全ての外輪郭よりも内側に位置している請求項2に記載のワイヤレス電力伝送装置。   In the state where the outer peripheral length of the power transmission side shield portion is smaller than the outer peripheral length of the power receiving coil and the center point of the power transmission side shield portion and the center point of the power receiving coil are opposed to each other, 3. The wireless power transmission device according to claim 2, wherein all outer contours of the power transmission side shield portion are located on an inner side than all outer contours of the power receiving coil as viewed from a facing direction of the coil and the power receiving coil. . 前記送電コイルの外周長さをLs、前記受電コイルの外周長さをLr、前記送電コイルと前記受電コイルとの間の最大離間距離をGmaxとすると、Ls,Lr及びGmaxは以下の関係式(1)を満たす請求項2または3に記載のワイヤレス電力伝送装置。
Ls/Lr=1−2.4462×Ls−1.4193×Gmax±0.05 式(1)
(但し、式中Ls,Lr,Gmaxの単位はm、Ls/Lr<1である。)
When the outer peripheral length of the power transmission coil is Ls, the outer peripheral length of the power receiving coil is Lr, and the maximum separation distance between the power transmitting coil and the power receiving coil is Gmax, Ls, Lr and Gmax are expressed by the following relational expression ( The wireless power transmission device according to claim 2 or 3, which satisfies 1).
Ls / Lr = 1−2.4462 × Ls −1.4193 × Gmax ± 0.05 Formula (1)
(However, the units of Ls, Lr, and Gmax in the formula are m and Ls / Lr <1.)
前記送電側シールド部の外周長さをWs、前記受電側シールド部の外周長さをWr、前記送電コイルと前記受電コイルとの間の最大離間距離をGmax、前記受電コイルの外周長さをLrとすると、Ws,Wr,Gmax及びLrは以下の関係式(2)を満たす請求項4に記載のワイヤレス電力伝送装置。
Wr−Ws>(2.4462×Ls−1.4193×Gmax−0.05)×Lr 式(2)
(但し、式中Ws,Wr,Gmax,Lr及びLsの単位はm、Wr−Ws>0である。)
The outer circumference length of the power transmission side shield part is Ws, the outer circumference length of the power reception side shield part is Wr, the maximum separation distance between the power transmission coil and the power reception coil is Gmax, and the outer circumference length of the power reception coil is Lr. Then, Ws, Wr, Gmax, and Lr satisfy | fill the following relational expression (2), The wireless power transmission apparatus of Claim 4.
Wr−Ws> (2.4462 × Ls− 1.4193 × Gmax−0.05) × Lr Formula (2)
(However, the unit of Ws, Wr, Gmax, Lr, and Ls in the formula is m and Wr−Ws> 0.)
JP2013067860A 2013-03-28 2013-03-28 Wireless power transmission equipment Active JP6179160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067860A JP6179160B2 (en) 2013-03-28 2013-03-28 Wireless power transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067860A JP6179160B2 (en) 2013-03-28 2013-03-28 Wireless power transmission equipment

Publications (2)

Publication Number Publication Date
JP2014193056A true JP2014193056A (en) 2014-10-06
JP6179160B2 JP6179160B2 (en) 2017-08-16

Family

ID=51838874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067860A Active JP6179160B2 (en) 2013-03-28 2013-03-28 Wireless power transmission equipment

Country Status (1)

Country Link
JP (1) JP6179160B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319076A (en) * 2014-10-08 2015-01-28 中兴通讯股份有限公司 Contactless transformer
WO2016056270A1 (en) * 2014-10-10 2016-04-14 株式会社Ihi Power reception coil device and contactless power supply system
JP2017135880A (en) * 2016-01-28 2017-08-03 日立マクセル株式会社 Wireless power supply system
JP2018137271A (en) * 2017-02-20 2018-08-30 トヨタ自動車株式会社 Coil unit
CN109087795A (en) * 2017-06-14 2018-12-25 矢崎总业株式会社 Shield member and electric power transfer unit
JP2020167753A (en) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 Power transmission device, power reception device and non-contact power supply system
WO2022264613A1 (en) * 2021-06-16 2022-12-22 ミネベアミツミ株式会社 Antena device, feeding system, feeding apparatus, and feeding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210099A (en) * 2011-03-30 2012-10-25 Panasonic Corp Charging system
JP2013038893A (en) * 2011-08-08 2013-02-21 Equos Research Co Ltd Power transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210099A (en) * 2011-03-30 2012-10-25 Panasonic Corp Charging system
JP2013038893A (en) * 2011-08-08 2013-02-21 Equos Research Co Ltd Power transmission system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319076A (en) * 2014-10-08 2015-01-28 中兴通讯股份有限公司 Contactless transformer
WO2016056270A1 (en) * 2014-10-10 2016-04-14 株式会社Ihi Power reception coil device and contactless power supply system
JP2016082618A (en) * 2014-10-10 2016-05-16 株式会社Ihi Power receiving coil device and non-contact power supply system
US10315527B2 (en) 2014-10-10 2019-06-11 Ihi Corporation Power reception coil device and wireless power transfer system
JP2017135880A (en) * 2016-01-28 2017-08-03 日立マクセル株式会社 Wireless power supply system
JP2018137271A (en) * 2017-02-20 2018-08-30 トヨタ自動車株式会社 Coil unit
CN109087795A (en) * 2017-06-14 2018-12-25 矢崎总业株式会社 Shield member and electric power transfer unit
JP2020167753A (en) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 Power transmission device, power reception device and non-contact power supply system
JP7272051B2 (en) 2019-03-28 2023-05-12 株式会社豊田中央研究所 Power transmitting device, power receiving device and contactless power supply system
WO2022264613A1 (en) * 2021-06-16 2022-12-22 ミネベアミツミ株式会社 Antena device, feeding system, feeding apparatus, and feeding method

Also Published As

Publication number Publication date
JP6179160B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6179160B2 (en) Wireless power transmission equipment
JP6490585B2 (en) Coil arrangement in a wireless power transfer system for low electromagnetic radiation
EP2953143B1 (en) Coil unit and wireless power transmission device
JP6743432B2 (en) Coil device
EP2576274B1 (en) A wireless power receiving unit, a wireless power transferring unit, a wireless power transferring device and use of a wireless power transferring device
EP2924842B1 (en) Coil unit and wireless power transmission device
JP6086189B2 (en) Coil device
JP6546371B2 (en) Coil unit and non-contact power feeding device
WO2013183665A1 (en) Contactless feeding transformer
WO2014080647A1 (en) Wireless power-transfer device
JP2015106939A (en) Power transmission coil unit and wireless power transmission device
US10199163B2 (en) Ground-side coil unit
JP6003565B2 (en) Non-contact power feeding device
JP2015106581A (en) Power transmission coil unit and wireless power transmission device
JP2017046423A (en) Power supply device
JP6111645B2 (en) Coil device and wireless power transmission system using the same
JP2014036116A (en) Receiver for non-contact power supply
WO2013150784A1 (en) Coil unit, and power transmission device equipped with coil unit
JP5918020B2 (en) Non-contact power supply coil
JP2016093023A (en) Coil system, non-contact power supply system and auxiliary magnetic member
JP2017195693A (en) Non-contact power supply device of external demagnetization type
JP2016105435A (en) Power reception device and power transmission device
JP7106915B2 (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system
JP2017184486A (en) Transmission device
JP2019169527A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150