JP2014183269A - Wavelength converter - Google Patents

Wavelength converter Download PDF

Info

Publication number
JP2014183269A
JP2014183269A JP2013058162A JP2013058162A JP2014183269A JP 2014183269 A JP2014183269 A JP 2014183269A JP 2013058162 A JP2013058162 A JP 2013058162A JP 2013058162 A JP2013058162 A JP 2013058162A JP 2014183269 A JP2014183269 A JP 2014183269A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light
scattering
scattering member
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013058162A
Other languages
Japanese (ja)
Other versions
JP6122674B2 (en
Inventor
Wakako Shinno
和香子 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013058162A priority Critical patent/JP6122674B2/en
Publication of JP2014183269A publication Critical patent/JP2014183269A/en
Application granted granted Critical
Publication of JP6122674B2 publication Critical patent/JP6122674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance wavelength converter capable of efficiently converting a wavelength of light incident from a light-emitting element and emitting light free from color nonuniformity.SOLUTION: A wavelength converter 23 includes: a support body 25 having a light incident hole 35; a light scattering member 27 mounted on the support body 25 so as to cover the light incident hole 35; and a wavelength conversion member 29 mounted on the light scattering member 27. The wavelength conversion member 29 ranges from an outer edge of the light scattering member 27 to an outside in a top view.

Description

本発明は、レーザーダイオード(LD:Laser Diode)素子等の発光素子とともに使用する波長変換装置に関する。 The present invention relates to a wavelength converter used with a light emitting element such as a laser diode (LD) element.

LD素子を搭載した発光装置が、CDやDVD等の光学ドライブの光ピックアップ、コピー機やレーザープリンター等に従来から用いられてきた。近年では、自動車の前照灯等の自動車用照明にも利用されている。特許文献1には、LD素子からの発光を、波長変換材を含む透光性部材によって例えば白色に変換する発光装置が示されている。   A light emitting device equipped with an LD element has been conventionally used for an optical pickup of an optical drive such as a CD or DVD, a copier, a laser printer, or the like. In recent years, it is also used for automobile lighting such as automobile headlamps. Patent Document 1 discloses a light emitting device that converts light emitted from an LD element into, for example, white using a translucent member including a wavelength conversion material.

特開2010−165834号公報JP 2010-165834 A

特許文献1に示す発光装置においては、LD素子から出射され、レンズによって集光されたレーザ光が、波長変換層に直接入射してしまうために、波長変換層での光の波長変換が十分になされず、発光装置からの出射光に色ムラが発生していた。
本発明は、上述した点に鑑みてなされたものであり、発光素子から入射した光を効率良く波長変換し、色ムラの無い光を出射させることが可能な高性能な波長変換装置を提供することを目的とする。
In the light emitting device shown in Patent Document 1, since the laser light emitted from the LD element and collected by the lens is directly incident on the wavelength conversion layer, the wavelength conversion of the light in the wavelength conversion layer is sufficiently performed. This was not done, and color unevenness occurred in the light emitted from the light emitting device.
The present invention has been made in view of the above-described points, and provides a high-performance wavelength conversion device capable of efficiently converting the wavelength of light incident from a light emitting element and emitting light without color unevenness. For the purpose.

本発明の波長変換装置は、光入射孔を有する保持体と、当該保持体上に当該光入射孔を覆うように搭載されている散乱部材と、当該散乱部材上に載置されている波長変換部材と、を有し、当該波長変換部材は、上面視において当該散乱部材の外縁より外側にまで及んでいることを特徴とする。   The wavelength conversion device of the present invention includes a holding body having a light incident hole, a scattering member mounted on the holding body so as to cover the light incident hole, and a wavelength conversion placed on the scattering member. The wavelength converting member extends to the outside from the outer edge of the scattering member in a top view.

実施例1の発光装置の断面図である。2 is a cross-sectional view of the light emitting device of Example 1. FIG. 実施例1の波長変換装置の上面図である。FIG. 3 is a top view of the wavelength conversion device according to the first embodiment. 図2Aの2B−2B線に沿った断面図である。It is sectional drawing along the 2B-2B line | wire of FIG. 2A. 実施例2の波長変換装置の断面図である。It is sectional drawing of the wavelength converter of Example 2. 実施例3の波長変換装置の断面図である。It is sectional drawing of the wavelength converter of Example 3. 実施例4の波長変換装置の断面図である。It is sectional drawing of the wavelength converter of Example 4. 実施例5の波長変換装置の断面図である。It is sectional drawing of the wavelength converter of Example 5. 他の実施例の波長変換装置の断面図である。It is sectional drawing of the wavelength converter of another Example.

以下に、本発明の実施例1に係る発光装置10について、図1を参照しつつ説明する。図1は、発光装置10の断面図である。図1において、発光装置10内の後述する発光素子から出射し、後述する散乱部材に入射する光の経路を、実線矢印で示している。また、発光素子の出射光の光軸をaxとしている。   Below, the light-emitting device 10 which concerns on Example 1 of this invention is demonstrated, referring FIG. FIG. 1 is a cross-sectional view of the light emitting device 10. In FIG. 1, a solid line arrow indicates a path of light emitted from a light emitting element described later in the light emitting device 10 and incident on a scattering member described later. Further, the optical axis of the emitted light from the light emitting element is ax.

支持体11は、ステム13を支持する第1の内壁部11a、第1の内壁部の上方領域に配されておりレンズ15を支持する第2の内壁部11b、及び第2の内壁部の上方領域に配されており筒部材17を支持する第3の内壁部11cを有する中空円筒形状を有している。   The support body 11 is disposed in the upper region of the first inner wall portion 11a that supports the stem 13, the second inner wall portion 11b that supports the lens 15, and is located above the second inner wall portion. It has a hollow cylindrical shape having a third inner wall portion 11 c that is arranged in the region and supports the cylindrical member 17.

ステム13は、円盤状のステム底部18及びステム底部18の上面から突出している柱状のステム柱体19からなっている。発光素子21は、青色レーザ光(例えば、波長460nm程度)を出射する青色LD素子であり、ステム柱体19の側面に、上方に向けてレーザ光を出射するように配されている。ステム柱体19の上方には、レンズ15が配されている。レンズ15は、発光素子21から出射した光を収束する、例えば凸レンズである。   The stem 13 includes a disc-shaped stem bottom 18 and a columnar stem column 19 projecting from the upper surface of the stem bottom 18. The light emitting element 21 is a blue LD element that emits blue laser light (for example, a wavelength of about 460 nm), and is arranged on the side surface of the stem column 19 so as to emit laser light upward. A lens 15 is disposed above the stem column body 19. The lens 15 is, for example, a convex lens that converges the light emitted from the light emitting element 21.

円筒部材17は、レンズ15の上方に配されレンズ15によって収束された光が通過する中空部を有する円筒形の筒部材である。円筒部材17上には、波長変換装置23が配置されている。   The cylindrical member 17 is a cylindrical cylindrical member having a hollow portion that is disposed above the lens 15 and through which light converged by the lens 15 passes. A wavelength conversion device 23 is disposed on the cylindrical member 17.

図2A波長変換装置の上面図を示し、図2Bに図2Aの波長変換装置23の2B−2B線に沿った断面図を示す。波長変換装置23は、保持体25、保持体25によって保持されている散乱部材27、波長変換部材29及び反射部材31からなっている。保持体25は、例えば略円盤状であり、上面に凹部33を有している。凹部33の中央には、レンズ15によって集光された光が通過する光入射孔35が形成されている。光入射孔35は、レンズ15によって集光された光が通過できるならば、円状、矩形状、楕円状等任意の形状とすることが可能である。   2A shows a top view of the wavelength conversion device, and FIG. 2B shows a cross-sectional view of the wavelength conversion device 23 of FIG. 2A along line 2B-2B. The wavelength conversion device 23 includes a holding body 25, a scattering member 27 held by the holding body 25, a wavelength conversion member 29, and a reflection member 31. The holding body 25 has, for example, a substantially disk shape, and has a recess 33 on the upper surface. A light incident hole 35 through which the light condensed by the lens 15 passes is formed at the center of the recess 33. The light incident hole 35 may have an arbitrary shape such as a circular shape, a rectangular shape, or an elliptical shape as long as the light collected by the lens 15 can pass therethrough.

散乱部材27は、凹部33の底面の中央部に、光入射孔35を塞ぐように搭載されている下面が半径r1の円である円柱形の部材である。散乱部材27は、シリカ、アルミナ、チタニア等からなる光散乱粒子を含んでいる透光性セラミック材(ガラス、石英、アルミナ等)、またはシリコーン樹脂もしくはエポキシ樹脂等の透光性材料からなっている。散乱部材27と凹部33の底面とは、例えばシリコーン樹脂接着材等の透明接着材によって固定されている。レンズ15によって収束されて光入射孔35を通過した光は、散乱部材27に達し、散乱部材27内の光散乱粒子によって散乱される。 The scattering member 27 is a cylindrical member whose lower surface is a circle having a radius r 1 mounted on the center of the bottom surface of the recess 33 so as to block the light incident hole 35. The scattering member 27 is made of a translucent ceramic material (glass, quartz, alumina, etc.) containing light scattering particles made of silica, alumina, titania or the like, or a translucent material such as silicone resin or epoxy resin. . The scattering member 27 and the bottom surface of the recess 33 are fixed by a transparent adhesive such as a silicone resin adhesive. The light converged by the lens 15 and passed through the light incident hole 35 reaches the scattering member 27 and is scattered by the light scattering particles in the scattering member 27.

波長変換部材29は、散乱部材27上に載置されている。波長変換部材29は、下面が散乱部材27の半径r1よりも大きい半径r2(すなわち、r2>r1)の円である円柱形の部材である。すなわち、波長変換部材29は、光出射方向からみた上面視、すなわちレーザ光の光軸axに沿った方向から見た上面視において散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいる。波長変換部材29は、例えばYAG(イットリウム・アルミニウム・ガーネット:Y3Al512)に付活剤としてCe(セリウム)を導入したYAG:Ce蛍光体等からなる黄色蛍光体粒子を含んでいるガラス、シリコーン樹脂またはエポキシ樹脂等の透光性材料からなっている。波長変換部材29と散乱部材27との固定には、例えば、シリコーン樹脂接着材、ガラス接着材等の透明接着材が用いられている。 The wavelength conversion member 29 is placed on the scattering member 27. The wavelength conversion member 29 is a cylindrical member whose lower surface is a circle having a radius r 2 (ie, r 2 > r 1 ) larger than the radius r 1 of the scattering member 27. In other words, the wavelength conversion member 29 is larger than the scattering member 27 in the top view as viewed from the light emitting direction, that is, as viewed from the direction along the optical axis ax of the laser light, and extends outward from the outer edge of the scattering member 27. It extends. The wavelength conversion member 29 includes, for example, yellow phosphor particles made of YAG: Ce phosphor or the like obtained by introducing Ce (cerium) as an activator into YAG (yttrium, aluminum, garnet: Y 3 Al 5 O 12 ). It consists of translucent materials, such as glass, a silicone resin, or an epoxy resin. For fixing the wavelength conversion member 29 and the scattering member 27, for example, a transparent adhesive such as a silicone resin adhesive or a glass adhesive is used.

黄色蛍光体は、発光素子21から発せられ、散乱部材27を通過して散乱された光、例えば、約460nmの青色励起光を吸収して、約560nmの発光ピーク波長を有する黄色光を発する。従って、発光素子21から発せられて蛍光体に吸収されなかった青色光と蛍光体から発せられる黄色光とが混ざり合うことによって白色光が得られる。   The yellow phosphor emits light emitted from the light emitting element 21 and scattered through the scattering member 27, for example, blue excitation light of about 460 nm and emits yellow light having an emission peak wavelength of about 560 nm. Therefore, white light is obtained by mixing the blue light emitted from the light emitting element 21 and not absorbed by the phosphor and the yellow light emitted from the phosphor.

反射部材31は、散乱部材27及び波長変換部材29の側面を覆うように凹部33内に充填されている。反射部材31は、シリカ、アルミナ、チタニア等からなる光散乱粒子を含んでいるシリコーン樹脂またはエポキシ樹脂等からなっている。反射部材31をシリコーン樹脂等の樹脂材で形成する場合、凹部33内に散乱部材27及び波長変換部材29を配置した後に、凹部33の内側面と散乱部材27及び波長変換部材29の側面との間に、反射部材31を形成する光散乱粒子を含む樹脂材をポッティングして、加熱硬化することで反射部材31を形成してもよい。なお、散乱部材27及び波長変換部材29から反射部材31方向に向かう光が、散乱部材27及び波長変換部材29と反射部材31との界面において全反射して、反射部材31内にできるだけ漏れ出すことのないようにするため、反射部材31を形成する材料の屈折率を、散乱部材27及び波長変換部材29を形成する材料の屈折率より小さくすることが好ましい。   The reflecting member 31 is filled in the recess 33 so as to cover the side surfaces of the scattering member 27 and the wavelength conversion member 29. The reflecting member 31 is made of a silicone resin or an epoxy resin containing light scattering particles made of silica, alumina, titania or the like. When the reflecting member 31 is formed of a resin material such as silicone resin, after the scattering member 27 and the wavelength conversion member 29 are disposed in the recess 33, the inner surface of the recess 33 and the side surfaces of the scattering member 27 and the wavelength conversion member 29 are arranged. In the meantime, the reflecting member 31 may be formed by potting a resin material containing light scattering particles forming the reflecting member 31 and heat-curing it. The light traveling from the scattering member 27 and the wavelength conversion member 29 toward the reflection member 31 is totally reflected at the interface between the scattering member 27 and the wavelength conversion member 29 and the reflection member 31 and leaks into the reflection member 31 as much as possible. Therefore, it is preferable to make the refractive index of the material forming the reflecting member 31 smaller than the refractive index of the material forming the scattering member 27 and the wavelength conversion member 29.

発光装置10の波長変換装置23においては、発光素子21から出射して、レンズ15によって集光された青色レーザ光(図中実線矢印)が、散乱部材27において散乱されてから波長変換部材29に入射するので、励起光(青色光)によって波長変換部材29内の蛍光体が均一に効率良く励起され、かつ励起光と蛍光が良好に混合され、色ムラのない白色光を得ることが可能である。   In the wavelength conversion device 23 of the light emitting device 10, the blue laser light (solid arrow in the figure) emitted from the light emitting element 21 and condensed by the lens 15 is scattered by the scattering member 27 and then is applied to the wavelength conversion member 29. Since the light is incident, the phosphor in the wavelength conversion member 29 is uniformly and efficiently excited by the excitation light (blue light), and the excitation light and the fluorescence are well mixed to obtain white light with no color unevenness. is there.

また、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいるので、図中破線で示すような散乱部材27から散乱部材27の周囲の反射部材31に漏洩した光も波長変換部材29を通過させることが可能となり、波長変換部材29を通過しないで発光装置から出射する青色励起光に起因する出射光の色ムラを防止することが可能である。   In addition, since the wavelength conversion member 29 is larger than the scattering member 27 and extends to the outside of the outer edge of the scattering member 27 in a top view, the reflection from the scattering member 27 to the periphery of the scattering member 27 as indicated by a broken line in the figure. Light that has leaked into the member 31 can also pass through the wavelength conversion member 29, and color unevenness of the emitted light caused by the blue excitation light emitted from the light emitting device without passing through the wavelength conversion member 29 can be prevented. is there.

上面視における波長変換部材29の半径r2は、例えば、拡散部材27からの漏れ光が光出射面のどれくらいの領域にまで到達するか、及び波長変換材29を通過せずに出射面から出る青色光をどの程度低減するのかによって決定されてもよい。例えば、青色光が波長変換材29を通過せずに出射面から出ることを完全に防止したいならば、上面視において、波長変換部材29の中心から漏れ光が到達する領域の最外縁までの距離(ここではr3とする)をr2(すなわち、r2=r3)とすればよいし、青色光が波長変換材29を通過せずに出射面から出ることを部分的に防止したいならば、その程度に応じて、r2をr1<r2<r3となる任意の値とすればよい。 The radius r 2 of the wavelength conversion member 29 in the top view is, for example, how far the leakage light from the diffusing member 27 reaches the light emission surface, and exits from the emission surface without passing through the wavelength conversion material 29. It may be determined by how much blue light is reduced. For example, if it is desired to completely prevent blue light from exiting the exit surface without passing through the wavelength conversion material 29, the distance from the center of the wavelength conversion member 29 to the outermost edge of the region where the leaked light reaches in the top view. (Here, r 3 ) may be r 2 (ie, r 2 = r 3 ), and it is desired to partially prevent the blue light from exiting the exit surface without passing through the wavelength conversion material 29. For example, r 2 may be set to an arbitrary value satisfying r 1 <r 2 <r 3 according to the degree.

以下に、本発明の実施例2について、図3を用いて説明する。図3は、実施例2の発光装置10の波長変換装置23の断面図である。実施例2の発光装置10は、波長変換装置23の波長変換部材29の形状が異なる以外は、実施例1の発光装置10と同様の構造を有している。   A second embodiment of the present invention will be described below with reference to FIG. FIG. 3 is a cross-sectional view of the wavelength conversion device 23 of the light emitting device 10 according to the second embodiment. The light-emitting device 10 of Example 2 has the same structure as the light-emitting device 10 of Example 1 except that the shape of the wavelength conversion member 29 of the wavelength conversion device 23 is different.

図3に示すように、実施例2の発光装置10の波長変換装置23において、波長変換部材29は、散乱部材27への載置面である下面よりも上面が大きい逆円錐台形状を有しており、下面が散乱部材27の上面と同一の形状を有している。すなわち、波長変換部材29の側面29aが上方に向かって広がっている形状を有している。また、実施例1と同様に、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいる。   As shown in FIG. 3, in the wavelength conversion device 23 of the light emitting device 10 according to the second embodiment, the wavelength conversion member 29 has an inverted truncated cone shape whose upper surface is larger than the lower surface that is the mounting surface on the scattering member 27. The lower surface has the same shape as the upper surface of the scattering member 27. That is, the side surface 29a of the wavelength conversion member 29 has a shape that widens upward. Similarly to the first embodiment, the wavelength conversion member 29 is larger than the scattering member 27 in the top view and extends outside the outer edge of the scattering member 27.

波長変換部材29をこのような形状とすることで、実施例1と同様に散乱部材27から散乱部材27の周囲の反射部材31に漏洩した光も波長変換部材29を通過させることが可能となり、波長変換部材29を通過しないで発光装置から出射する青色励起光に起因する出射光の色ムラを防止することが可能である。   By making the wavelength conversion member 29 in such a shape, the light leaking from the scattering member 27 to the reflection member 31 around the scattering member 27 can pass through the wavelength conversion member 29 as in the first embodiment. It is possible to prevent color unevenness of the emitted light caused by the blue excitation light emitted from the light emitting device without passing through the wavelength conversion member 29.

また、波長変換部材29より反射部材31の屈折率が低い場合に、波長変換部材29に入射した光の波長変換部材29の側面29aへの入射角が大きくなり、側面29aにおいて全反射が発生しやすくなる。それによって、波長変換部材29に入射した光を、光の出射方向である波長変換装置23の上方により良好に出射することができ、波長変換装置23の光取り出し効率を向上させることが可能となる。さらに、反射部材31を樹脂のポッティングによって形成する場合において、ポッティングした樹脂が、波長変換部材29の上面にまで這い上がることを防止し、製品の歩留まりを向上させることができる。   Further, when the refractive index of the reflecting member 31 is lower than that of the wavelength converting member 29, the incident angle of the light incident on the wavelength converting member 29 to the side surface 29a of the wavelength converting member 29 is increased, and total reflection occurs on the side surface 29a. It becomes easy. Thereby, the light incident on the wavelength conversion member 29 can be emitted more favorably above the wavelength conversion device 23 that is the light emission direction, and the light extraction efficiency of the wavelength conversion device 23 can be improved. . Further, when the reflecting member 31 is formed by resin potting, it is possible to prevent the potted resin from climbing up to the upper surface of the wavelength conversion member 29 and to improve the product yield.

なお、実施例2においては、波長変換部材29の下面が散乱部材27の上面と同一形状であることとしたが、波長変換部材29の下面が散乱部材27の上面よりも大きくともよい。   In the second embodiment, the lower surface of the wavelength conversion member 29 has the same shape as the upper surface of the scattering member 27, but the lower surface of the wavelength conversion member 29 may be larger than the upper surface of the scattering member 27.

以下に、本発明の実施例3について、図4を用いて説明する。図4は、実施例3の発光装置10の波長変換装置23の断面図である。実施例3の発光装置10は、波長変換装置23の散乱部材27及び波長変換部材29の構成が異なる以外は、実施例1の発光装置10と同様の構造を有している。   The third embodiment of the present invention will be described below with reference to FIG. FIG. 4 is a cross-sectional view of the wavelength conversion device 23 of the light emitting device 10 according to the third embodiment. The light emitting device 10 of Example 3 has the same structure as the light emitting device 10 of Example 1 except that the configurations of the scattering member 27 and the wavelength conversion member 29 of the wavelength conversion device 23 are different.

図4に示すように、実施例3の発光装置10の波長変換装置23において、散乱部材27は、保持体25への搭載面である下面よりも上面が大きい逆円錐台形状を有している。すなわち、散乱部材27の側面27aが上方に向かって広がっている形状を有している。また、波長変換部材29も、散乱部材27への載置面である下面よりも上面が大きい逆円錐台形状を有しており、下面が散乱部材27の上面と同一の形状を有している。すなわち、波長変換部材29の側面29aが上方に向かって広がっている形状を有している。また、実施例1と同様に、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいる。   As shown in FIG. 4, in the wavelength conversion device 23 of the light emitting device 10 of Example 3, the scattering member 27 has an inverted frustoconical shape whose upper surface is larger than the lower surface that is the mounting surface to the holding body 25. . That is, the side surface 27a of the scattering member 27 has a shape that spreads upward. The wavelength conversion member 29 also has an inverted frustoconical shape whose upper surface is larger than the lower surface that is the mounting surface on the scattering member 27, and the lower surface has the same shape as the upper surface of the scattering member 27. . That is, the side surface 29a of the wavelength conversion member 29 has a shape that widens upward. Similarly to the first embodiment, the wavelength conversion member 29 is larger than the scattering member 27 in the top view and extends outside the outer edge of the scattering member 27.

散乱部材27及び波長変換部材29をこのような形状とすることで、実施例1と同様に散乱部材27から散乱部材27の周囲の反射部材31に漏洩した光も波長変換部材29を通過させることが可能となり、波長変換部材29を通過しないで発光装置から出射する青色励起光に起因する出射光の色ムラを防止することが可能である。   By forming the scattering member 27 and the wavelength conversion member 29 in such a shape, light leaking from the scattering member 27 to the reflection member 31 around the scattering member 27 also passes through the wavelength conversion member 29 as in the first embodiment. Therefore, it is possible to prevent the color unevenness of the emitted light caused by the blue excitation light emitted from the light emitting device without passing through the wavelength conversion member 29.

また、散乱部材27及び波長変換部材29より反射部材31の屈折率が低い場合に、散乱部材27及び波長変換部材29に入射した光の側面27a及び側面29aへの入射角が大きくなり、側面27a及び側面29aにおいて全反射が発生しやすくなる。それによって、散乱部材27及び波長変換部材29に入射した光が、光の出射方向である波長変換装置23の上方により良好に出射されることで、波長変換装置23の光取り出し効率を向上させることが可能となる。さらに、実施例2の波長変換装置23と同様に反射部材31を樹脂のポッティングによって形成する場合において、ポッティングした樹脂が、波長変換部材29の上面にまで這い上がることを防止し、歩留まりを向上させることができる。   Further, when the refractive index of the reflecting member 31 is lower than that of the scattering member 27 and the wavelength conversion member 29, the incident angle of the light incident on the scattering member 27 and the wavelength conversion member 29 on the side surface 27a and the side surface 29a is increased, and the side surface 27a. In addition, total reflection tends to occur on the side surface 29a. Thereby, the light incident on the scattering member 27 and the wavelength conversion member 29 is emitted more favorably above the wavelength conversion device 23 which is the light emission direction, thereby improving the light extraction efficiency of the wavelength conversion device 23. Is possible. Further, when the reflecting member 31 is formed by resin potting as in the wavelength conversion device 23 of the second embodiment, the potted resin is prevented from creeping up to the upper surface of the wavelength conversion member 29 and the yield is improved. be able to.

なお、実施例3においては、波長変換部材29の下面が散乱部材27の上面と同一形状であることとしたが、波長変換部材29の下面が散乱部材27の上面よりも大きくともよい。   In the third embodiment, the lower surface of the wavelength conversion member 29 has the same shape as the upper surface of the scattering member 27, but the lower surface of the wavelength conversion member 29 may be larger than the upper surface of the scattering member 27.

以下に、本発明の実施例4について、図5を用いて説明する。図5は、実施例4の発光装置10の波長変換装置23の断面図である。実施例4の発光装置10は、波長変換装置23の波長変換部材29の形状が異なる以外は、実施例1の発光装置10と同様の構造を有している。   Embodiment 4 of the present invention will be described below with reference to FIG. FIG. 5 is a cross-sectional view of the wavelength conversion device 23 of the light emitting device 10 according to the fourth embodiment. The light emitting device 10 of Example 4 has the same structure as the light emitting device 10 of Example 1 except that the shape of the wavelength conversion member 29 of the wavelength conversion device 23 is different.

図5に示すように、実施例3の発光装置10の波長変換装置23において、波長変換部材29は、散乱部材27への載置面である下面よりも上面が小さい円錐台形状を有しており、下面が散乱部材27の上面よりも大きな形状を有している。すなわち、波長変換部材29の側面29aが上方に向かって狭まっている形状を有している。また、実施例1と同様に、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいる。   As shown in FIG. 5, in the wavelength conversion device 23 of the light emitting device 10 of Example 3, the wavelength conversion member 29 has a truncated cone shape whose upper surface is smaller than the lower surface that is the mounting surface on the scattering member 27. The lower surface has a shape larger than the upper surface of the scattering member 27. That is, the side surface 29a of the wavelength conversion member 29 has a shape that narrows upward. Similarly to the first embodiment, the wavelength conversion member 29 is larger than the scattering member 27 in the top view and extends outside the outer edge of the scattering member 27.

波長変換部材29をこのような形状とすることで、実施例1と同様に散乱部材27から散乱部材27の周囲の反射部材31に漏洩した光も波長変換部材29を通過させることが可能となり、波長変換部材29を通過しないで発光装置から出射する青色励起光に起因する出射光の色ムラを防止することが可能である。   By making the wavelength conversion member 29 in such a shape, the light leaking from the scattering member 27 to the reflection member 31 around the scattering member 27 can pass through the wavelength conversion member 29 as in the first embodiment. It is possible to prevent color unevenness of the emitted light caused by the blue excitation light emitted from the light emitting device without passing through the wavelength conversion member 29.

また、波長変換部材29を下面よりも上面が小さい円錐台形状とすることで、実施例1、実施例2及び実施例3の波長変換部材29と異なり、波長変換部材29の光出射面である上面をより小さく、例えば、散乱部材27の上面より小さくすることができるので、より光束密度の高い出射光を得ることが可能となる。   In addition, the wavelength conversion member 29 has a truncated conical shape whose upper surface is smaller than the lower surface, so that the wavelength conversion member 29 is a light emitting surface of the wavelength conversion member 29 unlike the wavelength conversion members 29 of the first, second, and third embodiments. Since the upper surface can be made smaller, for example, smaller than the upper surface of the scattering member 27, it is possible to obtain outgoing light with a higher luminous flux density.

さらに、波長変換部材29が下面よりも上面が小さい円錐台形状であるので、波長変換部材29の側面29aによって、励起光または蛍光が波長変換部材29内で複数回反射することによって、励起光と蛍光が良好に混合され、出射光の色ムラがさらに低減され得る。   Furthermore, since the wavelength conversion member 29 has a truncated cone shape whose upper surface is smaller than the lower surface, the side surface 29a of the wavelength conversion member 29 reflects the excitation light or fluorescence multiple times within the wavelength conversion member 29, thereby The fluorescence can be mixed well, and the color unevenness of the emitted light can be further reduced.

以下に、本発明の実施例5について、図6を用いて説明する。図6は、実施例5の発光装置10の波長変換装置23の断面図である。実施例5の発光装置10は、波長変換装置23の散乱部材27及び波長変換部材29の構成が異なる以外は、実施例1の発光装置10と同様の構造を有している。   Embodiment 5 of the present invention will be described below with reference to FIG. FIG. 6 is a cross-sectional view of the wavelength conversion device 23 of the light emitting device 10 according to the fifth embodiment. The light emitting device 10 of Example 5 has the same structure as that of the light emitting device 10 of Example 1 except that the configurations of the scattering member 27 and the wavelength conversion member 29 of the wavelength conversion device 23 are different.

図6に示すように、実施例5の発光装置10の波長変換装置23において、散乱部材27は、保持体25への搭載面である下面よりも上面が大きい逆円錐台形状を有している。すなわち、散乱部材27の側面27aが上方に向かって広がっている形状を有している。また、波長変換部材29は、散乱部材27への載置面である下面よりも上面が小さい円錐台形状を有しており、下面が散乱部材27の上面よりも大きくなっている。すなわち、波長変換部材29の側面29aが上方に向かって狭まっている形状を有している。また、実施例1と同様に、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいる。   As shown in FIG. 6, in the wavelength conversion device 23 of the light emitting device 10 of Example 5, the scattering member 27 has an inverted frustoconical shape whose upper surface is larger than the lower surface that is the mounting surface to the holding body 25. . That is, the side surface 27a of the scattering member 27 has a shape that spreads upward. The wavelength conversion member 29 has a truncated cone shape whose upper surface is smaller than the lower surface, which is a mounting surface on the scattering member 27, and the lower surface is larger than the upper surface of the scattering member 27. That is, the side surface 29a of the wavelength conversion member 29 has a shape that narrows upward. Similarly to the first embodiment, the wavelength conversion member 29 is larger than the scattering member 27 in the top view and extends outside the outer edge of the scattering member 27.

散乱部材27及び波長変換部材29をこのような形状とすることで、実施例1と同様に散乱部材27から散乱部材27の周囲の反射部材31に漏洩した光も波長変換部材29を通過させることが可能となり、波長変換部材29を通過しないで発光装置から出射する青色励起光に起因する出射光の色ムラを防止することが可能である。   By forming the scattering member 27 and the wavelength conversion member 29 in such a shape, light leaking from the scattering member 27 to the reflection member 31 around the scattering member 27 also passes through the wavelength conversion member 29 as in the first embodiment. Therefore, it is possible to prevent the color unevenness of the emitted light caused by the blue excitation light emitted from the light emitting device without passing through the wavelength conversion member 29.

また、散乱部材27より反射部材31の屈折率が低い場合に、散乱部材27に入射した光の側面27aへの入射角が大きくなり、側面27aにおいて全反射が発生しやすくなる。それによって、散乱部材27に入射した光が、光の出射方向である波長変換装置23の上方に向けて良好に出射されることで、波長変換装置23の光取り出し効率を向上させることが可能となる。さらに、波長変換部材29を下面よりも上面が小さい円錐台形状とすることで、実施例1、実施例2及び実施例3の波長変換部材29と異なり、波長変換部材29の光出射面である上面をより小さく、例えば、散乱部材27の上面より小さくすることができるので、より光束密度の高い出射光を得ることが可能となる。   Further, when the refractive index of the reflecting member 31 is lower than that of the scattering member 27, the incident angle of the light incident on the scattering member 27 on the side surface 27a is increased, and total reflection is likely to occur on the side surface 27a. As a result, the light incident on the scattering member 27 is favorably emitted toward the upper side of the wavelength conversion device 23, which is the light emission direction, so that the light extraction efficiency of the wavelength conversion device 23 can be improved. Become. Further, the wavelength conversion member 29 is formed in a truncated cone shape whose upper surface is smaller than the lower surface, so that the wavelength conversion member 29 is a light emitting surface of the wavelength conversion member 29 unlike the wavelength conversion members 29 of the first, second, and third embodiments. Since the upper surface can be made smaller, for example, smaller than the upper surface of the scattering member 27, it is possible to obtain outgoing light with a higher luminous flux density.

また、波長変換部材29が下面よりも上面が小さい円錐台形状であるので、波長変換部材29の側面29aによって、励起光または蛍光が波長変換部材29内で複数回反射されることによって、励起光と蛍光が良好に混合され、出射光の色ムラがさらに低減され得る。   In addition, since the wavelength conversion member 29 has a truncated cone shape whose upper surface is smaller than the lower surface, the excitation light or fluorescence is reflected in the wavelength conversion member 29 a plurality of times by the side surface 29 a of the wavelength conversion member 29. And fluorescence can be mixed well, and the color unevenness of the emitted light can be further reduced.

上記実施例において、散乱部材27及び波長変換部材29は、円柱状または円錐台状としたが、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいるという条件が満たされるならば、散乱部材27及び波長変換部材29が他の形状をとることとしてもよい。例えば、矩形等の多角形状の光出射面を形成したい場合には、散乱部材27及び波長変換部材29を角柱状または角錐台状とし、楕円形状の光出射面を形成したい場合には、楕円柱状または楕円錐台状とする等、散乱部材27及び波長変換部材29は任意の形状とすることができる。   In the above embodiment, the scattering member 27 and the wavelength conversion member 29 are formed in a columnar shape or a truncated cone shape. However, the wavelength conversion member 29 is larger than the scattering member 27 in the top view and extends to the outside of the outer edge of the scattering member 27. The scattering member 27 and the wavelength conversion member 29 may have other shapes as long as the condition of reaching is satisfied. For example, when it is desired to form a polygonal light exit surface such as a rectangle, the scattering member 27 and the wavelength conversion member 29 are in the shape of a prism or truncated pyramid, and when it is desired to form an elliptical light exit surface, an elliptical column Alternatively, the scattering member 27 and the wavelength conversion member 29 can have any shape, such as an elliptic frustum shape.

また、上記実施例において、波長変換部材29の上面及び/または下面が散乱部材27の上面よりも大きいこととしたが、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいるならば、波長変換部材29の上面及び/または下面が散乱部材27の上面よりも大きくともよい。例えば、図7に示すように、波長変換部材29を、高さ方向における中央部において膨らんだ形状とすることで、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の周囲にまで及んでいる構成としてもよい。   In the above embodiment, the upper surface and / or the lower surface of the wavelength conversion member 29 is larger than the upper surface of the scattering member 27. However, the wavelength conversion member 29 is larger than the scattering member 27 in the top view, and The upper surface and / or the lower surface of the wavelength conversion member 29 may be larger than the upper surface of the scattering member 27 as long as it extends outside the outer edge. For example, as shown in FIG. 7, the wavelength conversion member 29 has a shape that swells at the center in the height direction, so that the wavelength conversion member 29 is larger than the scattering member 27 in the top view, and the periphery of the scattering member 27. It is good also as a structure which extends to.

また、上記実施例においては、散乱部材27は、光散乱粒子を含んでいるものとしたが、セラミック、透光性樹脂、またはガラス等の透光性材料の表面に粗し加工したものを散乱部材として用いてもよい。   Moreover, in the said Example, although the scattering member 27 shall contain the light-scattering particle, it scattered the thing roughened on the surface of translucent materials, such as a ceramic, translucent resin, or glass. It may be used as a member.

また、上記実施例においては、散乱部材27及び波長変換部材29の側面を覆うように反射部材31を配することとしたが、反射部材31はなくともよい。反射部材31が無い場合でも、上面視において波長変換部材29が散乱部材27よりも大きく、散乱部材27の外縁よりも外側にまで及んでいる構成とすることで、散乱部材27から散乱部材27の周囲に漏洩した光も波長変換部材29を通過させることが可能となり、波長変換部材29を通過しないで発光装置から出射する青色励起光に起因する出射光の色ムラを防止することが可能である。   In the above embodiment, the reflecting member 31 is disposed so as to cover the side surfaces of the scattering member 27 and the wavelength converting member 29. However, the reflecting member 31 may not be provided. Even when there is no reflecting member 31, the wavelength conversion member 29 is larger than the scattering member 27 in the top view and extends to the outside of the outer edge of the scattering member 27, so that the scattering member 27 to the scattering member 27. Light that has leaked to the surroundings can also pass through the wavelength conversion member 29, and color unevenness of the emitted light due to the blue excitation light emitted from the light emitting device without passing through the wavelength conversion member 29 can be prevented. .

また、上記実施例においては、青色発光素子及び黄色蛍光体を用いて白色光を得るものとしたが、発光素子の発光色と蛍光体の蛍光色は得るべき出射光の色及び用途等によって任意に選択可能である。   In the above embodiment, the blue light emitting element and the yellow phosphor are used to obtain white light. However, the emission color of the light emitting element and the fluorescent color of the phosphor are arbitrary depending on the color of the emitted light to be obtained and the application. Can be selected.

また、上記実施例においては、発光素子としてLD素子を用いる場合を例にして説明したが、LED素子等他の発光素子を用いることとしてもよい。   Moreover, in the said Example, although the case where LD element was used as a light emitting element was demonstrated as an example, it is good also as using other light emitting elements, such as a LED element.

上述した実施例における種々の数値、寸法、材料等は、例示に過ぎず、用途及び使用される発光素子等に応じて、適宜選択することができる。   Various numerical values, dimensions, materials, and the like in the above-described embodiments are merely examples, and can be appropriately selected according to the application and the light-emitting element used.

10 発光装置
11 支持体
13 ステム
15 レンズ
17 円筒部材
18 ステム底部
19 ステム柱体
21 発光素子
23 波長変換装置
25 保持体
27 散乱部材
29 波長変換部材
31 反射部材
33 凹部
35 光入射孔
DESCRIPTION OF SYMBOLS 10 Light-emitting device 11 Support body 13 Stem 15 Lens 17 Cylindrical member 18 Stem bottom part 19 Stem pillar 21 Light-emitting element 23 Wavelength conversion device 25 Holding body 27 Scattering member 29 Wavelength conversion member 31 Reflective member 33 Recessed part 35 Light incident hole

Claims (6)

光入射孔を有する保持体と、
前記保持体上に前記光入射孔を覆うように搭載されている散乱部材と、
前記散乱部材上に載置されている波長変換部材と、を有し、
前記波長変換部材は、上面視において前記散乱部材の外縁より外側にまで及んでいることを特徴とする波長変換装置。
A holder having a light incident hole;
A scattering member mounted on the holding body so as to cover the light incident hole;
A wavelength converting member placed on the scattering member,
The wavelength conversion device, wherein the wavelength conversion member extends to the outside from the outer edge of the scattering member in a top view.
前記波長変換部材は、前記散乱部材上への載置面が前記載置面に対向する面よりも小さい逆錐台形状を有していることを特徴とする請求項1に記載の波長変換装置。   2. The wavelength conversion device according to claim 1, wherein the wavelength conversion member has an inverted frustum shape in which a placement surface on the scattering member is smaller than a surface facing the placement surface. . 前記散乱部材は、前記保持体上への搭載面が前記搭載面に対向する面よりも小さい逆錐台形状を有していることを特徴とする請求項2に記載の波長変換装置。   The wavelength conversion device according to claim 2, wherein the scattering member has an inverted frustum shape in which a mounting surface on the holding body is smaller than a surface facing the mounting surface. 前記波長変換部材は、前記散乱部材上への載置面が前記載置面に対向する面よりも大きい錐台形状を有していることを特徴とする請求項1に記載の波長変換装置。   The wavelength conversion device according to claim 1, wherein the wavelength conversion member has a frustum shape in which a placement surface on the scattering member is larger than a surface facing the placement surface. 前記散乱部材は、前記保持体上への搭載面が前記搭載面に対向する面よりも小さい逆錐台形状を有し、前記波長変換部材は、前記散乱部材上への載置面が前記載置面に対向する面よりも大きい錐台形状を有していることを特徴とする請求項1に記載の波長変換装置。   The scattering member has an inverted frustum shape in which a mounting surface on the holding body is smaller than a surface facing the mounting surface, and the wavelength conversion member has a mounting surface on the scattering member as described above. The wavelength conversion device according to claim 1, wherein the wavelength conversion device has a frustum shape larger than a surface facing the mounting surface. 前記波長変換部材の前記載置面は前記散乱部材の前記搭載面に対向する面よりも大きいことを特徴とする請求項1乃至3のいずれか1に記載の波長変換装置。   4. The wavelength conversion device according to claim 1, wherein the placement surface of the wavelength conversion member is larger than a surface of the scattering member facing the mounting surface. 5.
JP2013058162A 2013-03-21 2013-03-21 Wavelength converter Active JP6122674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013058162A JP6122674B2 (en) 2013-03-21 2013-03-21 Wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013058162A JP6122674B2 (en) 2013-03-21 2013-03-21 Wavelength converter

Publications (2)

Publication Number Publication Date
JP2014183269A true JP2014183269A (en) 2014-09-29
JP6122674B2 JP6122674B2 (en) 2017-04-26

Family

ID=51701668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013058162A Active JP6122674B2 (en) 2013-03-21 2013-03-21 Wavelength converter

Country Status (1)

Country Link
JP (1) JP6122674B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086053A1 (en) * 2015-11-20 2017-05-26 シャープ株式会社 Eye-safe light source
JP2017142479A (en) * 2016-02-05 2017-08-17 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
JP2021106184A (en) * 2019-12-26 2021-07-26 日亜化学工業株式会社 Light-emitting device
JP7506316B2 (en) 2020-09-04 2024-06-26 日亜化学工業株式会社 Light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
JP2007067204A (en) * 2005-08-31 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting diode device
JP2008153617A (en) * 2006-11-21 2008-07-03 Nichia Chem Ind Ltd Semiconductor light-emitting device
US20090152582A1 (en) * 2007-12-12 2009-06-18 Foxsemicon Integrated Technology, Inc. Light emitting diode
JP2010165834A (en) * 2009-01-15 2010-07-29 Nichia Corp Light emitting device
JP2011071404A (en) * 2009-09-28 2011-04-07 Kyocera Corp Light-emitting device and illumination apparatus
JP2011155125A (en) * 2010-01-27 2011-08-11 Kyocera Corp Light-emitting device, and illumination apparatus
WO2011125428A1 (en) * 2010-04-01 2011-10-13 京セラ株式会社 Light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
JP2007067204A (en) * 2005-08-31 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting diode device
JP2008153617A (en) * 2006-11-21 2008-07-03 Nichia Chem Ind Ltd Semiconductor light-emitting device
US20090152582A1 (en) * 2007-12-12 2009-06-18 Foxsemicon Integrated Technology, Inc. Light emitting diode
JP2010165834A (en) * 2009-01-15 2010-07-29 Nichia Corp Light emitting device
JP2011071404A (en) * 2009-09-28 2011-04-07 Kyocera Corp Light-emitting device and illumination apparatus
JP2011155125A (en) * 2010-01-27 2011-08-11 Kyocera Corp Light-emitting device, and illumination apparatus
WO2011125428A1 (en) * 2010-04-01 2011-10-13 京セラ株式会社 Light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086053A1 (en) * 2015-11-20 2017-05-26 シャープ株式会社 Eye-safe light source
JPWO2017086053A1 (en) * 2015-11-20 2018-07-26 シャープ株式会社 Eye-safe light source
US10658812B2 (en) 2015-11-20 2020-05-19 Sharp Kabushiki Kaisha Eye-safe light source
JP2017142479A (en) * 2016-02-05 2017-08-17 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
JP2021106184A (en) * 2019-12-26 2021-07-26 日亜化学工業株式会社 Light-emitting device
JP7481610B2 (en) 2019-12-26 2024-05-13 日亜化学工業株式会社 Light-emitting device
JP7506316B2 (en) 2020-09-04 2024-06-26 日亜化学工業株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP6122674B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6103998B2 (en) Light emitting device
JP6061130B2 (en) Light emitting device
KR100874556B1 (en) LED Spotlight with Funnel Lens
JP5883662B2 (en) Light emitting device
JP6177596B2 (en) Light emitting device
US9316372B2 (en) Light emitting device and vehicle lamp
JP4796031B2 (en) Vehicle headlight light source and vehicle headlight
JP2010225791A (en) Semiconductor light emitting device
JP6890287B2 (en) lighting equipment
JP6122674B2 (en) Wavelength converter
JP2012195350A (en) Light-emitting device and method of manufacturing the same
JP6135032B2 (en) Light emitting device, vehicle lamp, and stress relief part molding method
JP6125666B2 (en) Light emitting device
TW201510433A (en) Optical lens and lighting element using the same
JP2015233057A (en) Light-emitting device
WO2012173085A1 (en) Lighting device
KR20170016815A (en) Light-emitting device
JP2012227536A (en) Led light source and luminous body using the same
JP2020122868A (en) Wavelength conversion component and light-emitting device using the same
JP2017224784A (en) Light-emitting device and waveform conversion member
JP2014187224A (en) Semiconductor light-emitting device
JP5970215B2 (en) Light emitting device and manufacturing method thereof
JP6617481B2 (en) Light emitting module
JP2014170758A (en) Lighting device and vehicle headlight
JP2014225608A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R150 Certificate of patent or registration of utility model

Ref document number: 6122674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250