JP2014183256A - Joining body, semiconductor device using the same, and manufacturing method for them - Google Patents

Joining body, semiconductor device using the same, and manufacturing method for them Download PDF

Info

Publication number
JP2014183256A
JP2014183256A JP2013057914A JP2013057914A JP2014183256A JP 2014183256 A JP2014183256 A JP 2014183256A JP 2013057914 A JP2013057914 A JP 2013057914A JP 2013057914 A JP2013057914 A JP 2013057914A JP 2014183256 A JP2014183256 A JP 2014183256A
Authority
JP
Japan
Prior art keywords
winding
joined body
width direction
stress
stress relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013057914A
Other languages
Japanese (ja)
Inventor
Hiroteru Kamiya
博輝 神谷
Rikiya Kamimura
力也 上村
Atsushi Furumoto
敦司 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013057914A priority Critical patent/JP2014183256A/en
Publication of JP2014183256A publication Critical patent/JP2014183256A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a joining body that is able to relax stress and is excellent in electrical conductivity and thermal conductivity, to provide a semiconductor device using this, and to provide a manufacturing method for them.SOLUTION: A joining body 21 has a wound part 31 and a stress relaxing part/parts 41, and joins a base material 10 and an element 15 such that electrical current is supplied and heat can be transmitted. A wound part 31 is wound up from a wind start end 121, which is one end in the longitudinal direction thereof, to a wind final end 131, which is the other end in the longitudinal direction. Thus, winds are densely layered in the direction of thickness. The stress relaxing part/parts 41 is/are formed on one side or both sides of the wound part 31 in the lateral direction thereof, and has/have a plurality of teeth 51 capable of being bent by stress caused between the base material 10 and the element 15. A joining body 21 is disposed between the base material 10 and the element 15 in a state where the joining body 21 is wound up. The joining body 21 joins to the base material 10 on one side 101 in the lateral direction, and joins to the element 15 on the other side 111 in the lateral direction. Thus, while a stress relaxing function is maintained, electric conductivity and thermal conductivity can be ensured.

Description

本発明は、接合体およびこれを用いた半導体装置、ならびにそれらの製造方法に関する。   The present invention relates to a bonded body, a semiconductor device using the same, and a method for manufacturing the same.

近年、インバータなどのスイッチング素子の低損失化が求められている。例えば、スイッチング素子を従来のシリコン(Si)からシリコンカーバイド(SiC)に変更することにより、耐圧が同等のとき、素子の抵抗を下げることができるため、スッチング効率を高めることができる。また、SiC素子は、Si素子よりも高温で動作可能である。そのため、半導体装置全体として高温に耐えうる実装技術が求められる。
ところで、半導体装置にて素子の発熱等による温度変化が生じると、線膨張率の異なる素材が接合されている場合、線膨張率差に起因する応力が接合部位に加わる。そのため例えば特許文献1では、アレイ状の接続部材により放熱部材と半導体チップとを接続している。
In recent years, low loss of switching elements such as inverters has been demanded. For example, by changing the switching element from conventional silicon (Si) to silicon carbide (SiC), the resistance of the element can be lowered when the withstand voltage is equivalent, so that the switching efficiency can be increased. Further, the SiC element can operate at a higher temperature than the Si element. For this reason, a mounting technique that can withstand high temperatures as a whole semiconductor device is required.
By the way, when a temperature change occurs due to element heat generation or the like in the semiconductor device, when materials having different linear expansion coefficients are bonded, stress due to the difference in linear expansion coefficient is applied to the bonding site. Therefore, for example, in Patent Document 1, the heat dissipation member and the semiconductor chip are connected by an array-shaped connection member.

特開2007−142461号公報JP 2007-142461 A

特許文献1の接続部材は、ハンダ印刷とリフローなどにより形成可能である。しかしながら、アレイを密に配置できないため、電気的な抵抗および熱抵抗が大きくなるという問題がある。
本発明は、上述の課題に鑑みてなされたものであり、応力を緩和可能であり、電気的抵抗および熱的抵抗を低減可能な接合体およびこれを用いた半導体装置、ならびにそれらの製造方法を提供することにある。
The connecting member of Patent Document 1 can be formed by solder printing, reflow, or the like. However, since the array cannot be densely arranged, there is a problem that electrical resistance and thermal resistance increase.
The present invention has been made in view of the above-described problems, and provides a bonded body that can relieve stress and that can reduce electrical resistance and thermal resistance, a semiconductor device using the same, and a method of manufacturing the same. It is to provide.

本発明は、半導体装置において第1部材と第2部材とを通電および熱伝達可能に接合する接合体であって、巻回部と、応力緩和部と、を備える。巻回部は、長手方向の一側である巻回始端から長手方向の他端である巻回終端へ巻き取られる。応力緩和部は、巻回部の幅方向の片側または両側に形成され、第1部材と第2部材との間に生じる応力により撓み可能な複数の歯部を有する。接合体は、巻き取られた状態にて第1部材と第2部材との間に配置され、幅方向の一側にて第1部材と接合し、幅方向の他側にて第2部材と接合する。   The present invention is a joined body that joins a first member and a second member in a semiconductor device so as to be capable of energization and heat transfer, and includes a winding part and a stress relaxation part. The winding portion is wound from a winding start end that is one side in the longitudinal direction to a winding end that is the other end in the longitudinal direction. The stress relaxation portion is formed on one side or both sides in the width direction of the winding portion, and has a plurality of tooth portions that can be bent by the stress generated between the first member and the second member. The joined body is disposed between the first member and the second member in a wound state, joined to the first member on one side in the width direction, and the second member on the other side in the width direction. Join.

本発明では、例えば線膨張率の違いにより第1部材と第2部材との間に応力が生じると、歯部が撓むことにより、応力が緩和される。また、接合体を巻回して形成することにより、厚み方向に高密度に積層することができるので、第1部材と第2部材とを接合する十分な面積を確保することができる。これにより、電気的抵抗および熱的抵抗を低減可能である。   In the present invention, for example, when stress is generated between the first member and the second member due to a difference in linear expansion coefficient, the stress is relieved by bending of the tooth portion. Moreover, since the joined body is wound and formed, it can be stacked with a high density in the thickness direction, so that a sufficient area for joining the first member and the second member can be ensured. Thereby, electrical resistance and thermal resistance can be reduced.

また本発明は、半導体装置において第1部材と第2部材とを通電および熱伝達可能に接合する接合体の製造方法であって、応力緩和部形成工程と、巻回工程と、を備える。応力緩和部形成工程は、第1部材と第2部材との間に生じる応力により撓み可能な複数の歯部を有する応力緩和部を巻回部の幅方向の片側または両側に形成する。巻回工程は、長手方向の一側である巻回始端から長手方向の他端である巻回終端へ巻回部を巻き取る。   Moreover, this invention is a manufacturing method of the conjugate | zygote which joins a 1st member and a 2nd member in a semiconductor device so that electricity supply and heat transfer are possible, Comprising: A stress relaxation part formation process and a winding process are provided. In the stress relaxation portion forming step, a stress relaxation portion having a plurality of tooth portions that can be bent by the stress generated between the first member and the second member is formed on one side or both sides of the winding portion in the width direction. In the winding step, the winding portion is wound from a winding start end that is one side in the longitudinal direction to a winding end that is the other end in the longitudinal direction.

本発明では、応力緩和部形成工程にて応力緩和部が形成されるので、第1部材と第2部材との間に生じる応力を緩和することができる。また、例えば巻線機等によりテンションをかけながら巻回部を巻き取ることにより、厚み方向において、接合体を容易に高密度に積層することができるので、第1部材と第2部材とを接合する十分な面積を確保することができる。これにより、応力緩和部の歯部が撓むことによる応力緩和機能を有し、電気的抵抗および熱的抵抗を低減可能な接合体および半導体装置を製造することができる。
なお、応力緩和部形成工程および巻回工程は、順序を入れ替えてもよい。
In the present invention, since the stress relaxation portion is formed in the stress relaxation portion forming step, the stress generated between the first member and the second member can be relaxed. In addition, for example, by winding the winding portion while applying tension with a winding machine or the like, the joined body can be easily laminated with high density in the thickness direction, so the first member and the second member are joined. A sufficient area can be secured. As a result, it is possible to manufacture a joined body and a semiconductor device that have a stress relaxation function due to bending of the tooth portion of the stress relaxation portion and can reduce electrical resistance and thermal resistance.
Note that the order of the stress relaxation portion forming step and the winding step may be interchanged.

本発明の第1実施形態による接合体および半導体装置の断面図である。1 is a cross-sectional view of a joined body and a semiconductor device according to a first embodiment of the present invention. 本発明の第1実施形態による接合体および半導体装置の製造方法を説明する図である。It is a figure explaining the manufacturing method of the zygote and semiconductor device by a 1st embodiment of the present invention. 本発明の第1実施形態による巻回前の接合体を示す平面図である。It is a top view which shows the joined body before the winding by 1st Embodiment of this invention. 本発明の第1実施形態による巻回前の接合体の一部を拡大した図である。It is the figure which expanded a part of joined body before winding by a 1st embodiment of the present invention. 本発明の第1実施形態による接合体および半導体装置の平面図である。1 is a plan view of a joined body and a semiconductor device according to a first embodiment of the present invention. 本発明の第2実施形態による接合体および半導体装置の平面図である。It is a top view of the zygote and semiconductor device by a 2nd embodiment of the present invention. 本発明の第3実施形態による巻回前の接合体を示す平面図である。It is a top view which shows the joined body before winding by 3rd Embodiment of this invention. 本発明の第4実施形態による巻回前の接合体を示す平面図である。It is a top view which shows the joined body before winding by 4th Embodiment of this invention. 本発明の第5実施形態による巻回前の接合体を示す平面図である。It is a top view which shows the joined body before winding by 5th Embodiment of this invention. 本発明の第6実施形態による巻回前の接合体を示す平面図である。It is a top view which shows the joined body before winding by 6th Embodiment of this invention. 本発明の第7実施形態による巻回前の接合体を示す平面図である。It is a top view which shows the joined body before winding by 7th Embodiment of this invention. 本発明の第8実施形態による巻回前の接合体を示す平面図である。It is a top view which shows the joined body before winding by 8th Embodiment of this invention. 本発明の第9実施形態による巻回前の接合体を示す平面図である。It is a top view which shows the joined body before winding by 9th Embodiment of this invention. 本発明の第10実施形態による接合体および半導体装置を示す断面図である。It is sectional drawing which shows the conjugate | zygote and semiconductor device by 10th Embodiment of this invention.

以下、本発明による接合体およびこれを用いた半導体装置、ならびにそれらの製造方法を図面に基づいて説明する。なお、以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
本発明の第1実施形態による接合体およびこれを用いた半導体装置を図1〜図5に示す。図1〜図5は、いずれも模式的な図である。他の実施形態に係る図についても同様である。なお、図1は図2(e)のI−I線断面を示す図である。
図1および図2に示すように、半導体装置1は、第1部材としての基材10、第2部材としての素子15、および、接合体21等を備える。
Hereinafter, a bonded body according to the present invention, a semiconductor device using the same, and a manufacturing method thereof will be described with reference to the drawings. Hereinafter, in a plurality of embodiments, substantially the same configuration is denoted by the same reference numeral, and description thereof is omitted.
(First embodiment)
1 to 5 show a joined body according to a first embodiment of the present invention and a semiconductor device using the joined body. 1 to 5 are all schematic views. The same applies to the drawings according to other embodiments. FIG. 1 is a cross-sectional view taken along the line II of FIG.
As shown in FIGS. 1 and 2, the semiconductor device 1 includes a base material 10 as a first member, an element 15 as a second member, a joined body 21, and the like.

基材10は、銅ベースの基板或いはリードフレーム等である。
素子15は、SiC素子である。
本実施形態では、基材10と素子15とは、異なる素材で形成されているので、線膨張率が異なる。
The base material 10 is a copper-based substrate or a lead frame.
Element 15 is a SiC element.
In this embodiment, since the base material 10 and the element 15 are formed of different materials, the linear expansion coefficients are different.

接合体21は、アルミ等の電気伝導性および熱伝導性の高い素材により形成され、基材10と素子15との接合に用いられる。基材10と素子15とは、接合体21により通電および熱伝達可能に接合される。基材10と素子15とは、熱伝達可能に接合されるので、例えば素子15の駆動により発生する熱を基材10側へ放熱可能である。   The joined body 21 is formed of a material having high electrical conductivity and heat conductivity such as aluminum, and is used for joining the base material 10 and the element 15. The base material 10 and the element 15 are joined by the joined body 21 so as to be capable of energization and heat transfer. Since the base material 10 and the element 15 are joined so that heat can be transferred, for example, heat generated by driving the element 15 can be radiated to the base material 10 side.

ここで、接合体21および半導体装置1の製造方法を、図2に基づいて説明する。
接合体21は、図2(a)に示す元箔Fから、幅方向よりも長手方向が長い帯状の箔状物が形成される。もちろん、予め帯状に形成された箔状物を用いてもよい。
図2(b)に示す応力緩和部形成工程では、応力緩和部41が形成される。
Here, a method for manufacturing the bonded body 21 and the semiconductor device 1 will be described with reference to FIG.
The joined body 21 is formed from a base foil F shown in FIG. 2A as a strip-like foil-like material having a longer longitudinal direction than the width direction. Of course, a foil-like material previously formed in a strip shape may be used.
In the stress relaxation portion forming step shown in FIG. 2B, the stress relaxation portion 41 is formed.

図3は、図2(b)の状態の接合体21の拡大図である。また図4は、図3の一部を拡大した拡大図である。図3および図4に示すように、本実施形態の接合体21は、巻回部31および応力緩和部41を有する。
巻回部31は、接合体21の幅方向の一側101に形成される。巻回部31は、幅方向の一側101おいて、長手方向に亘って連続的に形成される。
FIG. 3 is an enlarged view of the joined body 21 in the state of FIG. FIG. 4 is an enlarged view of a part of FIG. As shown in FIGS. 3 and 4, the joined body 21 of the present embodiment includes a winding part 31 and a stress relaxation part 41.
The winding part 31 is formed on one side 101 of the bonded body 21 in the width direction. The winding part 31 is continuously formed in the longitudinal direction on one side 101 in the width direction.

応力緩和部41は、例えばロールプレス等により、接合体21の幅方向の他側111に形成される。換言すると、応力緩和部41は、巻回部31の片側に形成される。
応力緩和部41は、巻回部31から突出して形成される複数の歯部51を有する。複数の歯部51の間には、スリット部61が形成される。すなわち、応力緩和部41は、歯部51とスリット部61とが長手方向に亘って交互に形成されることにより、櫛形状に形成される。
The stress relaxation part 41 is formed on the other side 111 in the width direction of the bonded body 21 by, for example, a roll press. In other words, the stress relaxation part 41 is formed on one side of the winding part 31.
The stress relaxation part 41 has a plurality of tooth parts 51 formed so as to protrude from the winding part 31. A slit portion 61 is formed between the plurality of tooth portions 51. That is, the stress relaxation part 41 is formed in a comb shape by alternately forming the tooth parts 51 and the slit parts 61 in the longitudinal direction.

本実施形態では、歯部51の高さT1は、巻回始端121から巻回終端131にかけて、略一定に形成される。また、歯部51の幅W11は、巻回始端121から巻回終端131にかけて略一定に形成される。さらにまた、スリット部61の幅W12は、巻回始端121から巻回終端131にかけて略一定に形成される。スリット部61の幅W12は、「隣り合う歯部との間隔」に対応する。
なお、歯部51の高さT1は接合体21における幅方向の長さであり、歯部51の幅W11およびスリット部61の幅W12は接合体21における長手方向の長さであると捉えることもできる。
In the present embodiment, the height T <b> 1 of the tooth portion 51 is formed substantially constant from the winding start end 121 to the winding end 131. Further, the width W11 of the tooth portion 51 is formed to be substantially constant from the winding start end 121 to the winding end 131. Furthermore, the width W12 of the slit portion 61 is formed to be substantially constant from the winding start end 121 to the winding end 131. The width W12 of the slit portion 61 corresponds to “the interval between adjacent tooth portions”.
The height T1 of the tooth portion 51 is the length in the width direction of the joined body 21, and the width W11 of the tooth portion 51 and the width W12 of the slit portion 61 are taken as the length in the longitudinal direction of the joined body 21. You can also.

図2に戻り、図2(c)に巻回工程では、本実施形態の接合体21は、接合体21の長手方向の一端である巻回始端121が巻回中心となるように、巻回始端121側から長手方向の他端である巻回終端131側へ、巻線機等によりテンションをかけながら巻き取られて形成される。本実施形態では、接合体21は、略円筒形状に形成されるので、上面視略円形に形成される(図5参照)。テンションをかけながら箔状物を巻き取ることにより、箔状物が高密度に積層され、一体化される。また、その後のろう材との接合を鑑み、巻回された接合体21の表面は、ニッケルによりメタライズされる。   Returning to FIG. 2, in the winding step shown in FIG. 2C, the joined body 21 of this embodiment is wound so that the winding start end 121, which is one end in the longitudinal direction of the joined body 21, is the winding center. It is formed by being wound from the start end 121 side to the winding end end 131 side which is the other end in the longitudinal direction while applying tension with a winding machine or the like. In this embodiment, since the joined body 21 is formed in a substantially cylindrical shape, it is formed in a substantially circular shape when viewed from above (see FIG. 5). By winding the foil-like material while applying tension, the foil-like material is laminated and integrated at a high density. Further, in view of subsequent bonding with the brazing material, the surface of the wound bonded body 21 is metallized with nickel.

そして図2(d)、(e)に示す第1接合工程および第2接合工程では、接合体21は、軸線が基材10および素子15の面と略垂直となるように、基材10と素子15との間に配置される。本実施形態では、接合体21の巻回部31が形成される幅方向の一側101が基材10側、応力緩和部41が形成される幅方向の他側111が素子15側となるように配置される。
接合体21の幅方向の一側101と基材10との間には、りん銅ろう箔11(図1参照)が配置され、N2中にて800[℃]に加熱することにより、接合体20の幅方向の一側101と基材10とが接合される。
また、接合体21の軸方向の他側111と素子15との間にはんだ箔16(図1参照)が配置され、リフローにより、接合体21の幅方向の他側111と素子15とが接合される。
これにより、基材10と素子15とは、接合体21を介して接合される。
なお、図2においては、りん銅ろう箔11およびはんだ箔16は省略した。
In the first joining step and the second joining step shown in FIGS. 2 (d) and 2 (e), the joined body 21 is aligned with the base material 10 so that the axis is substantially perpendicular to the surfaces of the base material 10 and the element 15. It arrange | positions between the elements 15. In the present embodiment, one side 101 in the width direction where the winding part 31 of the joined body 21 is formed is the base material 10 side, and the other side 111 in the width direction where the stress relaxation part 41 is formed is the element 15 side. Placed in.
A phosphor copper brazing foil 11 (see FIG. 1) is disposed between one side 101 in the width direction of the joined body 21 and the base material 10 and heated to 800 [° C.] in N 2. One side 101 of the body 20 in the width direction and the substrate 10 are joined.
Also, the solder foil 16 (see FIG. 1) is disposed between the other side 111 in the axial direction of the joined body 21 and the element 15, and the other side 111 in the width direction of the joined body 21 and the element 15 are joined by reflow. Is done.
Thereby, the base material 10 and the element 15 are joined via the joined body 21.
In FIG. 2, the phosphor copper brazing foil 11 and the solder foil 16 are omitted.

巻回された状態の接合体21を図1および図5に基づいて説明する。なお、図5は、素子15およびはんだ箔16を省略した。図5では、歯部51およびスリット部61の説明のため、スリット部61を梨地で示している。後述の図6も同様である。   The joined body 21 in a wound state will be described with reference to FIGS. 1 and 5. In FIG. 5, the element 15 and the solder foil 16 are omitted. In FIG. 5, the slit portion 61 is shown with a satin finish for the description of the tooth portion 51 and the slit portion 61. The same applies to FIG. 6 described later.

図1および図5に示すように、箔状物が巻き取られた状態の接合体21は、巻回部31が形成される幅方向の一側101が基材10側、応力緩和部41が形成される幅方向の他側111が素子15側となるように配置される。
素子15への通電等による発熱があり、基材10と素子15との間に応力が生じた場合、応力緩和部41の歯部51が撓むことにより、応力が緩和される。特に、歯部51が接合体21の径方向(箔状物として捉えた場合の厚み方向)に撓むことにより、素子15の中央部から外周部方向にかかる応力を好適に緩和することができる。
As shown in FIG. 1 and FIG. 5, in the joined body 21 in a state where the foil-like material is wound, one side 101 in the width direction in which the winding part 31 is formed is the base material 10 side, and the stress relaxation part 41 is It arrange | positions so that the other side 111 of the width direction formed may turn into the element 15 side.
When the element 15 generates heat due to energization or the like and a stress is generated between the base material 10 and the element 15, the tooth 51 of the stress relaxation part 41 is bent to relieve the stress. In particular, the stress applied from the central portion of the element 15 toward the outer peripheral portion can be preferably alleviated by bending the tooth portion 51 in the radial direction of the bonded body 21 (the thickness direction when viewed as a foil-like object). .

また、本実施形態では、箔状物を巻き取ることにより接合体21を形成しているので、箔状物が径方向に高密度に積層された状態となっている。そのため、基材10と素子15とを接合する十分な面積を確保することができるので、電気的抵抗および熱的抵抗を低減することができる。
したがって、本実施形態の接合体21は、応力緩和機能を維持しつつ、電気伝導性および熱伝導性に優れている、といえる。
Moreover, in this embodiment, since the joined body 21 is formed by winding up a foil-like object, the foil-like object is in a state of being laminated with high density in the radial direction. Therefore, since a sufficient area for joining the base material 10 and the element 15 can be ensured, electrical resistance and thermal resistance can be reduced.
Therefore, it can be said that the bonded body 21 of this embodiment is excellent in electrical conductivity and thermal conductivity while maintaining the stress relaxation function.

ここで、応力緩和の面では、箔状物の厚みは薄い方がよい。一方、箔状物の厚みを薄くすると、接合体21にて一定の面積(例えば図5における接合体21の外周にて規定される面積)をカバーするためには、積層数(巻数)が増える。これらの点を鑑み、箔状物の厚さDは、緩和すべき応力等に応じて適宜設定可能であるが、例えば0.5[mm]以下が好ましい。
また、箔状物の幅が大きくなると、基材10と素子15との間の電気的および熱的な抵抗が大きくなる。そのため、箔状物の幅は、小さい方が好ましく、例えば2[mm]以下とする。なお、箔状物の長さは、巻回可能な程度に幅と比較して十分に長いものとする。
Here, in terms of stress relaxation, the thickness of the foil-like material is preferably thin. On the other hand, when the thickness of the foil-like material is reduced, the number of layers (the number of turns) increases in order to cover a certain area (for example, the area defined by the outer periphery of the joined body 21 in FIG. 5) with the joined body 21. . In view of these points, the thickness D of the foil can be appropriately set according to the stress to be relaxed, and is preferably 0.5 [mm] or less, for example.
Further, when the width of the foil-like material is increased, the electrical and thermal resistance between the substrate 10 and the element 15 is increased. For this reason, the width of the foil is preferably small, for example, 2 [mm] or less. The length of the foil is sufficiently long compared to the width so that it can be wound.

さらにまた、図3および図4に示す歯部51の高さT1が大きいほど、また、歯部51の幅W11が小さいほど、応力緩和効果は高い。また、形成されるスリット部61の面積が小さいほど、電気伝導性および熱伝導性が高い。なおスリット部61の面積とは、歯部51の高さT1とスリット部61の幅W12の積で表される。
これらの点を鑑み、緩和すべき応力等に応じ、応力緩和部41の歯部51およびスリット部61の形状を適宜設計することができる。
Furthermore, the stress relaxation effect is higher as the height T1 of the tooth portion 51 shown in FIGS. 3 and 4 is larger and as the width W11 of the tooth portion 51 is smaller. Further, the smaller the area of the formed slit portion 61, the higher the electrical conductivity and thermal conductivity. The area of the slit portion 61 is represented by the product of the height T1 of the tooth portion 51 and the width W12 of the slit portion 61.
In view of these points, the shape of the tooth part 51 and the slit part 61 of the stress relaxation part 41 can be appropriately designed according to the stress to be relaxed.

本実施形態では、素子15に、高温動作が可能なSiC素子を用いている。素子15を高温動作させる場合、確保すべきヒートサイクルの温度範囲が広くなりため、基材10と素子15との間に生じる応力が大きくなる。そこで、応力緩和機能を有する接合体21を用いることにより、素子15を高温動作させたときに基材10と素子15との間に生じる応力を緩和可能であるので、素子15を高温動作させたとしても、基材10と素子15との間にクラック等が発生するのを抑制でき、接合状態を適切に維持することができる。   In the present embodiment, a SiC element capable of high temperature operation is used as the element 15. When the element 15 is operated at a high temperature, the temperature range of the heat cycle to be ensured is widened, so that the stress generated between the substrate 10 and the element 15 is increased. Therefore, by using the bonded body 21 having a stress relaxation function, it is possible to relieve stress generated between the base material 10 and the element 15 when the element 15 is operated at a high temperature. Therefore, the element 15 is operated at a high temperature. Even so, the occurrence of cracks or the like between the substrate 10 and the element 15 can be suppressed, and the bonding state can be appropriately maintained.

SiC素子である素子15を高温動作させることが可能になれば、素子15を小型化可能であり、コストを抑えることができる。また、例えば、水冷が必要であった装置が空冷でも実現可能となるなど、冷却や放熱に係る構成の簡略化にも繋がる。
また、SiC素子は、Si素子よりもスイッチング効率が高いので、例えばSiC素子である素子15を用いた半導体装置1を車両主機のインバータに適用した場合、車両の燃費向上に寄与する。
If the element 15 which is a SiC element can be operated at a high temperature, the element 15 can be miniaturized and the cost can be reduced. In addition, for example, a device that requires water cooling can be realized even with air cooling, which leads to simplification of the configuration related to cooling and heat dissipation.
Further, since the SiC element has higher switching efficiency than the Si element, for example, when the semiconductor device 1 using the element 15 that is an SiC element is applied to an inverter of a vehicle main machine, it contributes to an improvement in fuel consumption of the vehicle.

以上詳述したように、本実施形態の接合体21は、巻回部31と、応力緩和部41と、を備え、基材10と素子15とを通電および熱伝達可能に接合する。巻回部31は、長手方向の一端である巻回始端121から長手方向の他端である巻回終端131へ巻き取られる。応力緩和部41は、巻回部31の幅方向の片側または両側に形成され、基材10と素子15との間に生じる応力により撓み可能な複数の歯部51を有する。本実施形態では、応力緩和部41は、巻回部31の片側に形成される。接合体21は、巻き取られた状態にて基材10と素子15との間に配置され、幅方向の一側101にて基材10と接合し、幅方向の他側111にて素子15と接合する。
また、本実施形態では、歯部51の高さT1、歯部51の幅W11、および、隣り合う歯部51との間隔であるスリット部61の幅W12は、巻回始端121から巻回終端131にかけて、一定に形成される。
また、半導体装置1は、接合体21と、接合体21の幅方向の一側101に設けられる基材10と、接合体21の幅方向の他側111に設けられる素子15と、を備える。
As described above in detail, the joined body 21 of the present embodiment includes the winding part 31 and the stress relaxation part 41, and joins the base material 10 and the element 15 so as to allow conduction and heat transfer. The winding part 31 is wound from a winding start end 121 which is one end in the longitudinal direction to a winding end 131 which is the other end in the longitudinal direction. The stress relaxation portion 41 is formed on one side or both sides of the winding portion 31 in the width direction, and has a plurality of tooth portions 51 that can be bent by the stress generated between the base material 10 and the element 15. In the present embodiment, the stress relaxation part 41 is formed on one side of the winding part 31. The joined body 21 is disposed between the base material 10 and the element 15 in a wound state, joined to the base material 10 on one side 101 in the width direction, and on the other side 111 in the width direction. Join with.
In the present embodiment, the height T1 of the tooth portion 51, the width W11 of the tooth portion 51, and the width W12 of the slit portion 61 that is the distance between the adjacent tooth portions 51 are from the winding start end 121 to the winding end. It is formed uniformly over 131.
The semiconductor device 1 includes a bonded body 21, a base material 10 provided on one side 101 in the width direction of the bonded body 21, and an element 15 provided on the other side 111 in the width direction of the bonded body 21.

本実施形態では、線膨張率の違いにより基材10と素子15との間に応力が生じると、歯部51が撓むことにより、応力が緩和され、クラック等の発生を抑制することができる。
また、接合体21を巻回して形成することにより、厚み方向(巻回された状態における径方向)に高密度に積層することができるので、基材10と素子15とを接合する十分な面積を確保することができる。これにより、電気的抵抗および熱的抵抗を低減可能である。したがって、本実施形態の接合体21は、応力緩和機能を維持しつつ、電気伝導性および熱伝導性に優れている。
In the present embodiment, when a stress is generated between the base material 10 and the element 15 due to a difference in linear expansion coefficient, the tooth portion 51 is bent, so that the stress is relieved and generation of a crack or the like can be suppressed. .
In addition, since the joined body 21 is formed by winding, it can be stacked with a high density in the thickness direction (the radial direction in the wound state), so that a sufficient area for joining the base material 10 and the element 15 is sufficient. Can be secured. Thereby, electrical resistance and thermal resistance can be reduced. Therefore, the joined body 21 of the present embodiment is excellent in electrical conductivity and thermal conductivity while maintaining the stress relaxation function.

本実施形態における接合体21の製造方法は、応力緩和部形成工程と、巻回工程と、を備える。応力緩和部形成工程では、基材10と素子15の線膨張率の違いにより生じる応力により撓み可能な歯部51を有する応力緩和部41を巻回部31の幅方向の片側または両側に形成する(図2(b)参照)。また、巻回工程では、長手方向の一端である巻回始端121から長手方向の他端である巻回終端131へ巻回部31を巻き取る(図2(c)参照)。   The manufacturing method of the joined body 21 in the present embodiment includes a stress relaxation part forming step and a winding step. In the stress relaxation part forming step, the stress relaxation part 41 having the tooth part 51 that can be bent by the stress generated by the difference in linear expansion coefficient between the base material 10 and the element 15 is formed on one side or both sides of the winding part 31 in the width direction. (See FIG. 2 (b)). In the winding process, the winding portion 31 is wound from the winding start end 121 that is one end in the longitudinal direction to the winding end 131 that is the other end in the longitudinal direction (see FIG. 2C).

また、本実施形態における半導体装置1の製造方法は、上記製造方法にて製造される接合体21の幅方向の一側101と基材10とを通電および熱伝達可能に接合する第1接合工程と、接合体21の幅方向の他側111と、基材10と線膨張率の異なる素子15とを通電および熱伝達可能に接合する第2接合工程と、を備える(図2(d)、(e)参照)。   Moreover, the manufacturing method of the semiconductor device 1 in the present embodiment is a first bonding step in which the one side 101 in the width direction of the bonded body 21 manufactured by the above manufacturing method and the base material 10 are bonded so as to allow current and heat transfer. And a second joining step of joining the other side 111 of the joined body 21 in the width direction and the base material 10 and the element 15 having a different linear expansion coefficient so as to be capable of energization and heat transfer (FIG. 2D). (See (e)).

本実施形態では、応力緩和部形成工程にて応力緩和部41が形成されるので、基材10と素子15との間に生じる応力を緩和することができる。また、例えば巻線機等によるテンションをかけながら巻回部31を巻き取ることにより、厚み方向(巻回された状態における径方向)において、接合体21を容易に高密度に積層することができる。これにより、電気的抵抗および熱的抵抗を低減可能である。したがって、本実施形態では、応力緩和機能を維持しつつ、電気伝導性および熱伝導性に優れた接合体および半導体装置を製造することができる。   In the present embodiment, since the stress relaxation part 41 is formed in the stress relaxation part forming step, the stress generated between the base material 10 and the element 15 can be relaxed. Further, for example, by winding the winding part 31 while applying tension by a winding machine or the like, the joined body 21 can be easily laminated at a high density in the thickness direction (the radial direction in the wound state). . Thereby, electrical resistance and thermal resistance can be reduced. Therefore, in this embodiment, it is possible to manufacture a bonded body and a semiconductor device that are excellent in electrical conductivity and thermal conductivity while maintaining the stress relaxation function.

(第2実施形態)
本発明の第2実施形態による接合体を図6に示す。図6は、上記形態の図5と対応する図である。
本形態の接合体22は、上記実施形態と巻回前の形状は同じであり、巻回した形状が異なっている。すなわち上記形態では、接合体21は、巻回されて略円筒形状をなし、図5に示すように上面視略円形であった。本形態の接合体22は、巻回されて略直方体状をなし、図6に示すように上面視略四角形である。
このように形成しても、応力緩和部41の歯部51が撓むことにより、基材10と素子15との間に生じる応力を緩和することができる。特に、箔状物の厚み方向に歯部51が撓むことにより、接合体22の巻回中心から外周方向にかかる応力を緩和することができる。
なお、巻回形状は、第1実施形態のような上面視略円形や本形態のような上面視略四角形に限らず、例えば上面視三角形等、どのような形状としてもよい。
これにより、第1実施形態と同様の効果を奏する。
(Second Embodiment)
FIG. 6 shows a joined body according to the second embodiment of the present invention. FIG. 6 is a diagram corresponding to FIG. 5 of the above embodiment.
The joined body 22 of the present embodiment has the same shape before winding as that of the above embodiment, and the wound shape is different. That is, in the above embodiment, the joined body 21 is wound to form a substantially cylindrical shape, and is substantially circular in top view as shown in FIG. The joined body 22 of this embodiment is wound to form a substantially rectangular parallelepiped shape, and has a substantially rectangular shape in top view as shown in FIG.
Even if it forms in this way, the stress which arises between the base material 10 and the element 15 can be relieve | moderated because the tooth | gear part 51 of the stress relaxation part 41 bends. In particular, the stress applied in the outer peripheral direction from the winding center of the joined body 22 can be relaxed by bending the tooth portion 51 in the thickness direction of the foil.
The winding shape is not limited to a substantially circular shape in a top view as in the first embodiment or a substantially rectangular shape in a top view as in this embodiment, and may be any shape such as a triangular shape in a top view.
Thereby, there exists an effect similar to 1st Embodiment.

(第3実施形態〜第9実施形態)
以下、図7〜図13に示す第3実施形態〜第9実施形態は、接合部の形状のバリエーションである。図7〜図13は、第1実施形態の図3に対応する図であり、巻回する前の接合体23〜29を示している。接合体23〜29は、上記形態と同様、巻回部33〜39、および、応力緩和部43〜49を有しており、長手方向の一端である巻回始端123〜129から長手方向の他端である巻回終端133〜139へ巻き取られて形成される。また、接合体23〜39の幅方向の一側103〜109側にて基材10と接合し、幅方向の他側113〜119にて素子15と接合する。
また、応力緩和部43〜49は、基材10と素子15との間に生じる応力により撓み可能な歯部53〜59を有する。隣り合う歯部53〜59の間には、スリット部63〜69が形成される。
(Third to ninth embodiments)
Hereinafter, the third to ninth embodiments shown in FIGS. 7 to 13 are variations in the shape of the joint. 7 to 13 are views corresponding to FIG. 3 of the first embodiment, and show the joined bodies 23 to 29 before being wound. The joined bodies 23 to 29 have winding portions 33 to 39 and stress relaxation portions 43 to 49 as in the above embodiment, and the other ends in the longitudinal direction from the winding start ends 123 to 129 that are one end in the longitudinal direction. It is formed by being wound around winding ends 133 to 139 which are ends. Moreover, it joins with the base material 10 on the one side 103-109 side of the width direction of the joined bodies 23-39, and it joins with the element 15 on the other side 113-119 of the width direction.
Further, the stress relaxation parts 43 to 49 have tooth parts 53 to 59 that can be bent by the stress generated between the base material 10 and the element 15. Slit portions 63 to 69 are formed between the adjacent tooth portions 53 to 59.

(第3実施形態)
図7に示すように、本発明の第3実施形態による接合体23は、幅方向の略中央に巻回部33が形成される。また、応力緩和部43は、巻回部33の両側に形成される。
本形態では、歯部53の高さT3、歯部53の幅W31、および、隣り合う歯部53との間隔であるスリット部63の幅W32は、巻回始端123から巻回終端133にかけて略一定に形成される。
このように構成しても、第1実施形態と同様の効果を奏する。
(Third embodiment)
As shown in FIG. 7, the joined body 23 according to the third embodiment of the present invention has a winding portion 33 formed at substantially the center in the width direction. Further, the stress relaxation parts 43 are formed on both sides of the winding part 33.
In this embodiment, the height T3 of the tooth portion 53, the width W31 of the tooth portion 53, and the width W32 of the slit portion 63 that is the distance between the adjacent tooth portions 53 are substantially from the winding start end 123 to the winding end 133. It is formed uniformly.
Even if comprised in this way, there exists an effect similar to 1st Embodiment.

(第4実施形態)
図8に示すように、本発明の第4実施形態による接合体24は、幅方向の両端に巻回部34が形成される。また、応力緩和部44は、幅方向の略中央に形成される。換言すると、応力緩和部44は、幅方向の両端に形成される2つの巻回部34の間に形成される。また、応力緩和部44は、巻回部34の片側に形成されている、と捉えることもできる。
本形態では、歯部54の高さT4、歯部54の幅W41、および、隣り合う歯部54との間隔であるスリット部64の幅42は、巻回始端124から巻回終端134にかけて略一定に形成される。
このように構成しても、第1実施形態と同様の効果を奏する。
(Fourth embodiment)
As shown in FIG. 8, the joined body 24 according to the fourth embodiment of the present invention has winding portions 34 formed at both ends in the width direction. Moreover, the stress relaxation part 44 is formed in the approximate center of the width direction. In other words, the stress relaxation portion 44 is formed between the two winding portions 34 formed at both ends in the width direction. Further, it can be considered that the stress relaxation portion 44 is formed on one side of the winding portion 34.
In this embodiment, the height T4 of the tooth portion 54, the width W41 of the tooth portion 54, and the width 42 of the slit portion 64, which is the distance between the adjacent tooth portions 54, are substantially from the winding start end 124 to the winding end end 134. It is formed uniformly.
Even if comprised in this way, there exists an effect similar to 1st Embodiment.

(第5実施形態)
図9に示すように、本発明の第5実施形態による接合体25は、応力緩和部45が巻回部35の片側に形成される。
本形態では、応力緩和部45の歯部55の幅W51、および、隣り合う歯部55との間隔であるスリット部65の幅W52は、巻回始端125から巻回終端135にかけて略一定に形成される。
(Fifth embodiment)
As shown in FIG. 9, in the joined body 25 according to the fifth embodiment of the present invention, the stress relaxation portion 45 is formed on one side of the winding portion 35.
In this embodiment, the width W51 of the tooth portion 55 of the stress relaxation portion 45 and the width W52 of the slit portion 65, which is the distance between the adjacent tooth portions 55, are formed substantially constant from the winding start end 125 to the winding end end 135. Is done.

また、歯部55の高さT5は、巻回始端125から巻回終端135にかけて、異なるように形成される。特に本形態では、歯部55の高さT5は、巻回始端125側にて小さく形成され、巻回終端135側にて大きく形成される。
ここで、巻回始端125が巻回中心となるように巻回すると、巻回中心側の歯部55の高さT5が小さく、外周側の歯部55の高さT5が大きくなる。これにより、応力が集中しやすい外周側における応力緩和機能を高めるとともに、熱密度が高くなる素子15の中央部の熱抵抗を低減することができる。
また、第1実施形態と同様の効果を奏する。
Further, the height T5 of the tooth portion 55 is formed to be different from the winding start end 125 to the winding end end 135. In particular, in this embodiment, the height T5 of the tooth portion 55 is formed smaller on the winding start end 125 side and larger on the winding end end 135 side.
Here, when winding is performed so that the winding start end 125 is the winding center, the height T5 of the tooth portion 55 on the winding center side is small, and the height T5 of the tooth portion 55 on the outer peripheral side is large. As a result, the stress relaxation function on the outer peripheral side where stress tends to concentrate can be enhanced, and the thermal resistance of the central portion of the element 15 where the heat density becomes high can be reduced.
In addition, the same effects as those of the first embodiment are obtained.

(第6実施形態)
図10に示すように、本発明の第6実施形態による接合体26は、応力緩和部46が巻回部36の片側に形成される。
本形態では、応力緩和部46の歯部56の幅W61、および、隣り合う歯部56との間隔であるスリット部66の幅W62は、巻回始端126から巻回終端136にかけて略一定に形成される。
(Sixth embodiment)
As shown in FIG. 10, in the joined body 26 according to the sixth embodiment of the present invention, the stress relaxation part 46 is formed on one side of the winding part 36.
In this embodiment, the width W61 of the tooth portion 56 of the stress relaxation portion 46 and the width W62 of the slit portion 66, which is the interval between the adjacent tooth portions 56, are formed substantially constant from the winding start end 126 to the winding end 136. Is done.

また、歯部56の高さT6は、巻回始端126から巻回終端136にかけて、異なるように形成される。本形態の歯部56の高さT6は、巻回始端126および巻回終端136側で小さく、中間部146にて大きい。
このように構成しても第1実施形態と同様の効果を奏する。
Further, the height T6 of the tooth portion 56 is formed to be different from the winding start end 126 to the winding end 136. The height T6 of the tooth portion 56 in this embodiment is small on the winding start end 126 and winding end 136 side, and is large at the intermediate portion 146.
Even if comprised in this way, there exists an effect similar to 1st Embodiment.

(第7実施形態)
図11に示すように、本発明の第7実施形態による接合体27は、応力緩和部47が巻回部37の片側に形成される。
本形態では、応力緩和部47の歯部57の幅W71、および、隣り合う歯部57との間隔であるスリット部67の幅W72は、巻回始端127から巻回終端137にかけて略一定に形成される。
(Seventh embodiment)
As shown in FIG. 11, in the joined body 27 according to the seventh embodiment of the present invention, the stress relaxation portion 47 is formed on one side of the winding portion 37.
In this embodiment, the width W71 of the tooth portion 57 of the stress relaxation portion 47 and the width W72 of the slit portion 67, which is the distance from the adjacent tooth portion 57, are formed substantially constant from the winding start end 127 to the winding end 137. Is done.

また、歯部57の高さは、巻回始端127から巻回終端137にかけて、異なるように形成される。本形態では、歯部57の高さがT71である区間Aと、歯部57の高さがT71より小さい高さT72である区間Bとが繰り返されている。
このように構成しても第1実施形態と同様の効果を奏する。
Further, the height of the tooth portion 57 is formed to be different from the winding start end 127 to the winding end end 137. In this embodiment, a section A in which the height of the tooth portion 57 is T71 and a section B in which the height of the tooth portion 57 is a height T72 smaller than T71 are repeated.
Even if comprised in this way, there exists an effect similar to 1st Embodiment.

(第8実施形態)
図12に示すように、本発明の第8実施形態による接合体28は、応力緩和部48が巻回部38の片側に形成される。
本形態では、応力緩和部48の歯部58の高さT8、および、隣り合う歯部58との間隔であるW82は、巻回始端128から巻回終端138にかけて略一定に形成される。
(Eighth embodiment)
As shown in FIG. 12, in the joined body 28 according to the eighth embodiment of the present invention, the stress relaxation portion 48 is formed on one side of the winding portion 38.
In this embodiment, the height T8 of the tooth portion 58 of the stress relaxation portion 48 and the distance W82 between the adjacent tooth portions 58 are formed substantially constant from the winding start end 128 to the winding end end 138.

また、歯部58の幅W81は、巻回始端128から巻回終端138にかけて、異なるように形成される。本形態の歯部58の幅W81は、巻回始端128側にて大きく形成され、巻回終端138側にて小さく形成される。
これにより、応力が集中しやすい外周側における応力緩和機能を高めるとともに、熱密度が高くなる素子15の中央部の熱抵抗を低減することができる。
また、第1実施形態と同様の効果を奏する。
Further, the width W81 of the tooth portion 58 is formed to be different from the winding start end 128 to the winding end 138. The width W81 of the tooth portion 58 in this embodiment is formed larger on the winding start end 128 side and smaller on the winding end end 138 side.
As a result, the stress relaxation function on the outer peripheral side where stress tends to concentrate can be enhanced, and the thermal resistance of the central portion of the element 15 where the heat density becomes high can be reduced.
In addition, the same effects as those of the first embodiment are obtained.

(第9実施形態)
図13に示すように、本発明の第9実施形態による接合体29は、応力緩和部49が巻回部39の片側に形成される。
本形態では、応力緩和部49の歯部59の高さT9、および、歯部59の幅W91は、巻回始端129から巻回終端139にかけて略一定に形成される。
また、隣り合う歯部59との間隔であるスリット部69の幅W92は、巻回始端129から巻回終端139にかけて、異なるように形成される。本形態のスリット部69の幅92は、巻回始端129側にて小さく形成され、巻回終端139側にて大きく形成される。
これにより、応力が集中しやすい外周側における応力緩和機能を高めるとともに、熱密度が高くなる素子15の中央部の熱的抵抗を低減することができる。
また、第1実施形態と同様の効果を奏する。
(Ninth embodiment)
As shown in FIG. 13, in the joined body 29 according to the ninth embodiment of the present invention, the stress relaxation portion 49 is formed on one side of the winding portion 39.
In this embodiment, the height T9 of the tooth portion 59 of the stress relaxation portion 49 and the width W91 of the tooth portion 59 are formed to be substantially constant from the winding start end 129 to the winding end end 139.
Further, the width W92 of the slit portion 69, which is an interval between the adjacent tooth portions 59, is formed to be different from the winding start end 129 to the winding end end 139. The width 92 of the slit portion 69 of this embodiment is formed to be small on the winding start end 129 side and large on the winding end end 139 side.
As a result, the stress relaxation function on the outer peripheral side where stress tends to concentrate can be enhanced, and the thermal resistance of the central portion of the element 15 where the heat density becomes high can be reduced.
In addition, the same effects as those of the first embodiment are obtained.

(第10実施形態)
本発明の第10実施形態による半導体装置を図14に示す。
本形態の半導体装置2は、両面放熱の半導体装置である。すなわち、素子15の第1面151側だけでなく、第2面152側にも接合体21を介して基材10が設けられる。
なお、図14においては、第1実施形態の接合体21を図示しているが、第2実施形態〜第9実施形態の接合体22〜29を採用してもよい。また、素子15の第1面151側の接合体と第2面152側の接合体とは、異なる形状のものとしてもよい。
本実施形態のように、接合体21〜29を両面放熱の半導体装置2に適用しても、第1実施形態と同様の効果を奏する。
(10th Embodiment)
FIG. 14 shows a semiconductor device according to the tenth embodiment of the present invention.
The semiconductor device 2 according to this embodiment is a double-sided heat dissipation semiconductor device. That is, the substrate 10 is provided not only on the first surface 151 side of the element 15 but also on the second surface 152 side via the joined body 21.
In FIG. 14, the joined body 21 of the first embodiment is illustrated, but the joined bodies 22 to 29 of the second to ninth embodiments may be employed. The joined body on the first surface 151 side and the joined body on the second surface 152 side of the element 15 may have different shapes.
Even if the joined bodies 21 to 29 are applied to the double-sided heat dissipation semiconductor device 2 as in the present embodiment, the same effects as those of the first embodiment are obtained.

(他の実施形態)
上記実施形態では、接合体が接合する第1部材が銅ベースの基材であり、第2部材がSiC素子であった。他の実施形態では、第1部材および第2部材は、基材および素子の組み合わせに限らず、基材同士でもよいし、素子同士でもよいし、他の部材であってもよい。また、上記実施形態では、素子はSiC素子であった。他の実施形態では、Si素子等、どのような素子を用いてもよい。
(Other embodiments)
In the said embodiment, the 1st member which a joined body joins was a copper base base material, and the 2nd member was a SiC element. In other embodiments, the first member and the second member are not limited to the combination of the base material and the element, but may be the base materials, the elements, or another member. Moreover, in the said embodiment, the element was a SiC element. In other embodiments, any element such as a Si element may be used.

なお、第1部材と第2部材とが同一の素材で形成されており、部材単独での線膨張率が等しいとしても、例えば一方が基板に実装され、他方が基板に実装されていない場合等、素材以外の要因により、第1部材と第2部材との間に応力が生じる場合がある。このような場合についても、「第1部材と第2部材との線膨張率が異なる」とみなす。   In addition, even if the first member and the second member are formed of the same material and the linear expansion coefficient of the member alone is equal, for example, when one is mounted on the substrate and the other is not mounted on the substrate, etc. Stress may occur between the first member and the second member due to factors other than the material. Also in such a case, it is considered that “the linear expansion coefficients of the first member and the second member are different”.

上記実施形態では、接合体の素材としてアルミを例示した。他の実施形態では、熱伝導率および電気伝導度の高い素材であれば、アルミに替えて、例えば銅、ニッケル等の金属であってもよい。また例えば、カーボンナノチューブ等の非金属素材であってもよい。
上記実施形態では、接合体の巻回後にメタライズ処理を行った。他の実施形態では、接合体の巻回前にメタライズ処理を行ってもよいし、メタライズ処理を行わなくてもよい。
In the said embodiment, aluminum was illustrated as a raw material of a joined body. In another embodiment, as long as the material has high thermal conductivity and electrical conductivity, a metal such as copper or nickel may be used instead of aluminum. Further, for example, a non-metallic material such as a carbon nanotube may be used.
In the said embodiment, the metallization process was performed after winding of a conjugate | zygote. In other embodiments, the metallization process may be performed before winding the bonded body, or the metallization process may not be performed.

上記実施形態では、基材と接合体との接合にりん銅ろうを用い、素子と接合体との接合にはんだを用いた。他の実施形態では、第1部材および第2部材と接合体との接合には、電気および熱を伝達可能な素材であれば、一般的なろう材の他、金属ナノ材料を含む導電性接着剤等を用いてもよい。また、素材によって、可能であれば、ろう材や導電性接着剤等を用いず、直接的に接合してもよい。   In the above embodiment, phosphor copper solder is used for joining the base material and the joined body, and solder is used for joining the element and the joined body. In another embodiment, for bonding the first member and the second member to the bonded body, a conductive adhesive containing a metal nanomaterial in addition to a general brazing material as long as it is a material capable of transmitting electricity and heat. An agent or the like may be used. Further, depending on the material, if possible, bonding may be performed directly without using a brazing material or a conductive adhesive.

また、例えば第1実施形態では、基材と接合される幅方向の一側に巻回部が形成され、素子と接合される幅方向の他側に応力緩和部が形成された。他の実施形態では、基材と接合される幅方向の一側に応力緩和部を形成し、素子と接合される幅方向の他側に巻回部を形成してもよい。   For example, in 1st Embodiment, the winding part was formed in the one side of the width direction joined to a base material, and the stress relaxation part was formed in the other side of the width direction joined to an element. In another embodiment, the stress relaxation portion may be formed on one side in the width direction to be bonded to the base material, and the winding portion may be formed on the other side in the width direction to be bonded to the element.

上記実施形態では、隣り合う歯部の間には、スリット部が形成される。他の実施形態では、第1部材と第2部材との間に生じる応力により歯部が撓み可能であれば、応力緩和部をどのようなに形成してもよい。
例えば、上記実施形態の如く、隣り合う歯部との間はスリット部(空間)であってもよい。この場合、歯部の先端側において、歯部が応力にて撓み可能な程度、第1部材または第2部材との接合に用いるろう材や導電性接着剤等が歯部間の空間に入り込むことは許容される。また、スリット部の幅を可及的小さく、隣り合う歯部同士が接触するような状態であっても構わない。
In the said embodiment, a slit part is formed between adjacent tooth parts. In other embodiments, the stress relief portion may be formed in any manner as long as the tooth portion can be bent by the stress generated between the first member and the second member.
For example, as in the above embodiment, a slit portion (space) may be provided between adjacent tooth portions. In this case, the brazing material or conductive adhesive used for joining to the first member or the second member enters the space between the tooth portions to the extent that the tooth portions can be bent by stress on the tip side of the tooth portion. Is acceptable. Moreover, the width | variety of a slit part may be as small as possible, and it may be in the state where adjacent tooth parts contact.

また例えば、隣り合う歯部の間に形成されるスリット部は、歯部が応力にて撓み可能な程度の弾性率の充填部材にて充填されていてもよい。充填部材の弾性率は、例えばスズ(Sn)の弾性率である20[GPa]以下であることが望ましい。
さらにまた例えば、隣り合う歯部同士の間をプレス等にて薄く加工した連結部を形成することにより、歯部を形成してもよい。
また、応力緩和部は、プレスに限らず、エッチング等、どのような手法により形成してもよい。
Further, for example, the slit portion formed between adjacent tooth portions may be filled with a filling member having an elastic modulus such that the tooth portion can be bent by stress. The elastic modulus of the filling member is preferably 20 [GPa] or less, which is the elastic modulus of tin (Sn), for example.
Furthermore, for example, the tooth portion may be formed by forming a connecting portion obtained by thinly processing between adjacent tooth portions with a press or the like.
Further, the stress relaxation portion is not limited to pressing, and may be formed by any method such as etching.

上記実施形態では、巻回前の状態にて応力緩和部を形成し、応力緩和部が形成された箔状物を巻き取ることにより接合体を形成する。すなわち、応力緩和部形成工程の後に巻回工程を行う。他の実施形態では、箔状物を巻き取った後に、応力緩和部を形成して接合体を形成してもよい。すなわち、巻回工程の後に応力緩和部形成工程を行うようにしてもよい。また、第1接合工程および第2接合工程は、応力緩和部形成工程および巻回工程の後に実施されれば、順番を入れ替えてもよいし、同時に行ってもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
In the said embodiment, a stress relaxation part is formed in the state before winding, and a joined body is formed by winding up the foil-like object in which the stress relaxation part was formed. That is, a winding process is performed after a stress relaxation part formation process. In another embodiment, after winding up the foil, a stress relaxation part may be formed to form a joined body. That is, you may make it perform a stress relaxation part formation process after a winding process. Moreover, if a 1st joining process and a 2nd joining process are implemented after a stress relaxation part formation process and a winding process, the order may be replaced and may be performed simultaneously.
As mentioned above, this invention is not limited to the said embodiment at all, In the range which does not deviate from the meaning of invention, it can implement with a various form.

1、2・・・半導体装置
10・・・基材(第1部材)
15・・・素子(第2部材)
21〜29・・・接合体
31、33〜39・・・巻回部
41、43〜49・・・応力緩和部
51、53〜59・・・歯部
1, 2 ... Semiconductor device 10 ... Base material (first member)
15 ... Element (second member)
21-29 ... joined body 31, 33-39 ... winding part 41, 43-49 ... stress relaxation part 51, 53-59 ... tooth part

Claims (10)

半導体装置(1、2)において第1部材(10)と第2部材(15)とを通電および熱伝達可能に接合する接合体(21〜29)であって、
長手方向の一端である巻回始端(121、123〜129)から長手方向の他端である巻回終端(131、133〜139)へ巻き取られる巻回部(31、33〜39)と、
前記巻回部の幅方向の片側または両側に形成され、前記第1部材と前記第2部材との間に生じる応力により撓み可能な複数の歯部(51、53〜59)を有する応力緩和部(41、43〜49)と、
を備え、
巻き取られた状態にて前記第1部材と前記第2部材との間に配置され、幅方向の一側(101、103〜109)にて前記第1部材と接合し、幅方向の他側(111、113〜119)にて前記第2部材と接合することを特徴とする接合体。
A joined body (21-29) for joining the first member (10) and the second member (15) in the semiconductor device (1, 2) so as to be capable of energization and heat transfer,
Winding portions (31, 33-39) wound from the winding start end (121, 123-129) which is one end in the longitudinal direction to the winding end (131, 133-139) which is the other end in the longitudinal direction;
A stress relieving part that is formed on one or both sides in the width direction of the winding part and has a plurality of tooth parts (51, 53 to 59) that can be bent by the stress generated between the first member and the second member. (41, 43-49),
With
It is arrange | positioned between the said 1st member and the said 2nd member in the wound state, and it joins with the said 1st member at one side (101, 103-109) of the width direction, and the other side of the width direction (111, 113 to 119) A joined body characterized by joining to the second member.
前記歯部(51、53、54、58、59)の高さは、前記巻回始端(121、123、124、128、129)から前記巻回終端(131、133、134、138、139)にかけて、一定に形成されることを特徴とする請求項1に記載の接合体(21〜24、28、29)。   The height of the teeth (51, 53, 54, 58, 59) is from the winding start end (121, 123, 124, 128, 129) to the winding end (131, 133, 134, 138, 139). The joined body (21 to 24, 28, 29) according to claim 1, wherein the joined body is formed uniformly over the distance. 前記歯部(55)の高さは、前記巻回始端(125)側にて小さく形成され、前記巻回終端(135)側にて大きく形成されることを特徴とする請求項1に記載の接合体(25)。   The height of the tooth portion (55) is formed smaller on the winding start end (125) side and larger on the winding end end (135) side. The joined body (25). 前記歯部(51、53〜57、59)の幅は、前記巻回始端(121、123〜127、129)から前記巻回終端(131、133〜137、139)にかけて、一定に形成されることを特徴とする請求項1〜3のいずれか一項に記載の接合体(21〜27、29)。   The teeth (51, 53-57, 59) have a constant width from the winding start end (121, 123-127, 129) to the winding end (131, 133-137, 139). The joined body (21-27, 29) as described in any one of Claims 1-3 characterized by the above-mentioned. 前記歯部(58)の幅は、前記巻回始端(128)側で大きく形成され、前記巻回終端(138)側にて小さく形成されることを特徴とする請求項1〜3のいずれか一項に記載の接合体(28)。   The width of the said tooth | gear part (58) is formed large in the said winding start end (128) side, and is formed small in the said winding termination | terminus (138) side, The one of Claims 1-3 characterized by the above-mentioned. The joined body (28) according to one item. 隣り合う前記歯部(51、53〜58)との間隔は、前記巻回始端(121、123〜128)から前記巻回終端(131、133〜138)にかけて、一定に形成されることを特徴とする請求項1〜5のいずれか一項に記載の接合体(21〜28)。   An interval between the adjacent tooth portions (51, 53 to 58) is formed to be constant from the winding start end (121, 123 to 128) to the winding end (131, 133 to 138). The joined body (21 to 28) according to any one of claims 1 to 5. 隣り合う前記歯部(59)との間隔は、前記巻回始端(129)側にて小さく形成され、前記巻回終端(139)側にて大きく形成されることを特徴とする請求項1〜5のいずれか一項に記載の接合体(29)。   An interval between the adjacent tooth portions (59) is formed smaller on the winding start end (129) side and larger on the winding end end (139) side. The joined body (29) according to any one of 5 above. 請求項1〜7のいずれか一項に記載の接合体と、
巻き取られた状態における前記接合体の幅方向の一側と接合する前記第1部材と、
巻き取られた状態における前記接合体の幅方向の他側と接合する前記第2部材と、
を備えることを特徴とする半導体装置。
The joined body according to any one of claims 1 to 7,
The first member joined to one side in the width direction of the joined body in a wound state;
The second member joined to the other side in the width direction of the joined body in the wound state;
A semiconductor device comprising:
半導体装置(1、2)において第1部材(10)と第2部材(15)とを通電および熱伝達可能に接合する接合体(21〜29)の製造方法であって、
前記第1部材と前記第2部材との間に生じる応力により撓み可能な複数の歯部(51、53〜59)を有する応力緩和部(41、43〜49)を巻回部(31、33〜39)の幅方向の片側または両側に形成する応力緩和部形成工程と、
長手方向の一端である巻回始端(121、123〜129)から長手方向の他端である巻回終端(131、133〜139)へ前記巻回部を巻き取る巻回工程と、
を備えることを特徴とする接合体の製造方法。
A method of manufacturing a joined body (21-29) for joining a first member (10) and a second member (15) in a semiconductor device (1, 2) so as to allow conduction and heat transfer,
Winding portions (31, 33) include stress relaxation portions (41, 43-49) having a plurality of tooth portions (51, 53-59) that can be bent by the stress generated between the first member and the second member. To 39) a stress relaxation portion forming step formed on one side or both sides in the width direction;
A winding step of winding the winding part from a winding start end (121, 123-129) which is one end in the longitudinal direction to a winding end (131, 133-139) which is the other end in the longitudinal direction;
A method for producing a joined body comprising:
請求項9に記載の製造方法にて製造された接合体の幅方向の一側(101、103〜109)と前記第1部材とを通電および熱伝達可能に接合する第1接合工程と、
前記接合体の幅方向の他側(111、113〜119)と、前記第1部材と線膨張率の異なる前記第2部材とを通電および熱伝達可能に接合する第2接合工程と、
を備えることを特徴とする半導体装置の製造方法。
A first joining step of joining one side (101, 103 to 109) in the width direction of the joined body produced by the production method according to claim 9 and the first member so that energization and heat transfer are possible;
A second joining step for joining the other side (111, 113 to 119) in the width direction of the joined body and the second member having a linear expansion coefficient different from that of the first member so as to allow conduction and heat transfer;
A method for manufacturing a semiconductor device, comprising:
JP2013057914A 2013-03-21 2013-03-21 Joining body, semiconductor device using the same, and manufacturing method for them Pending JP2014183256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057914A JP2014183256A (en) 2013-03-21 2013-03-21 Joining body, semiconductor device using the same, and manufacturing method for them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057914A JP2014183256A (en) 2013-03-21 2013-03-21 Joining body, semiconductor device using the same, and manufacturing method for them

Publications (1)

Publication Number Publication Date
JP2014183256A true JP2014183256A (en) 2014-09-29

Family

ID=51701658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057914A Pending JP2014183256A (en) 2013-03-21 2013-03-21 Joining body, semiconductor device using the same, and manufacturing method for them

Country Status (1)

Country Link
JP (1) JP2014183256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054899A (en) * 2014-09-09 2016-04-21 サミー株式会社 Slot machine
JP2016054898A (en) * 2014-09-09 2016-04-21 サミー株式会社 Slot machine
EP3226314A2 (en) 2016-03-31 2017-10-04 Hitachi Metals, Ltd. Stress relaxation structure and thermoelectric conversion module
WO2019198584A1 (en) * 2018-04-09 2019-10-17 株式会社ダイセル Filter for gas generator, and gas generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196442A (en) * 1977-06-03 1980-04-01 Hitachi, Ltd. Semiconductor device
JPS62293745A (en) * 1986-06-13 1987-12-21 Hitachi Cable Ltd Heat transfer element
US5510650A (en) * 1994-09-02 1996-04-23 General Motors Corporation Low mechanical stress, high electrical and thermal conductance semiconductor die mount
JP2005197377A (en) * 2004-01-06 2005-07-21 Hitachi Ltd Conductive adhesive sheet, its manufacturing method and power converter
US20110063812A1 (en) * 2009-09-11 2011-03-17 Fujitsu Limited Electronic device, method of manufacturing electronic device, and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196442A (en) * 1977-06-03 1980-04-01 Hitachi, Ltd. Semiconductor device
JPS62293745A (en) * 1986-06-13 1987-12-21 Hitachi Cable Ltd Heat transfer element
US5510650A (en) * 1994-09-02 1996-04-23 General Motors Corporation Low mechanical stress, high electrical and thermal conductance semiconductor die mount
JP2005197377A (en) * 2004-01-06 2005-07-21 Hitachi Ltd Conductive adhesive sheet, its manufacturing method and power converter
US20110063812A1 (en) * 2009-09-11 2011-03-17 Fujitsu Limited Electronic device, method of manufacturing electronic device, and electronic equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054899A (en) * 2014-09-09 2016-04-21 サミー株式会社 Slot machine
JP2016054898A (en) * 2014-09-09 2016-04-21 サミー株式会社 Slot machine
EP3226314A2 (en) 2016-03-31 2017-10-04 Hitachi Metals, Ltd. Stress relaxation structure and thermoelectric conversion module
WO2019198584A1 (en) * 2018-04-09 2019-10-17 株式会社ダイセル Filter for gas generator, and gas generator
JP2019182175A (en) * 2018-04-09 2019-10-24 株式会社ダイセル Gas generator filter and gas generator
CN111936355A (en) * 2018-04-09 2020-11-13 株式会社大赛璐 Filter for gas generator, and gas generator
JP7078442B2 (en) 2018-04-09 2022-05-31 株式会社ダイセル Filters for gas generators and gas generators
CN111936355B (en) * 2018-04-09 2023-02-17 株式会社大赛璐 Gas generator filter and gas generator

Similar Documents

Publication Publication Date Title
US11908957B2 (en) Solar cell module
JP2014183256A (en) Joining body, semiconductor device using the same, and manufacturing method for them
WO2009084172A1 (en) Thermoelectric device
US20180190892A1 (en) Thermoelectric conversion module, method of manufacturing thermoelectric conversion module, and thermally conductive substrate
JP2013077666A (en) Wiring material, and semiconductor module using the same
JP2011129838A (en) Thermoelectric conversion module and method of manufacturing the same
JP2017139304A (en) Electrode terminal, semiconductor device, and power conversion device
US20180182947A1 (en) Thermoelectric conversion device
JP2011124375A (en) Thermoelectric device and thermoelectric module
CN106663639B (en) Semiconductor device
JP2015076562A (en) Power module
WO2014109014A1 (en) Semiconductor device and method for manufacturing same
JP2017034152A (en) Power semiconductor device
JP2012142466A (en) Semiconductor device
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP6252219B2 (en) Power conversion apparatus and manufacturing method thereof
JP2013222919A (en) Thermoconductive sheet, method for manufacturing the same, and thermal conductor using the same
JP2015228447A (en) Semiconductor device manufacturing method
JP2011204968A (en) Semiconductor device and method of manufacturing the same
JP2012151172A (en) Semiconductor device and manufacturing method of the same
US10236430B2 (en) Thermoelectric module
JP5950586B2 (en) High frequency module
US20150048720A1 (en) Piezoelectric actuator module and method of manufacturing the same
JP2010171091A (en) Bonding structure
KR102336649B1 (en) Thermoelectric module having single crystal thermoelectric material and fabrication method for thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115