JP2014182930A - Circulation tube and microwave device having the same - Google Patents

Circulation tube and microwave device having the same Download PDF

Info

Publication number
JP2014182930A
JP2014182930A JP2013056385A JP2013056385A JP2014182930A JP 2014182930 A JP2014182930 A JP 2014182930A JP 2013056385 A JP2013056385 A JP 2013056385A JP 2013056385 A JP2013056385 A JP 2013056385A JP 2014182930 A JP2014182930 A JP 2014182930A
Authority
JP
Japan
Prior art keywords
temperature
pipe
liquid
flow
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013056385A
Other languages
Japanese (ja)
Other versions
JP6182767B2 (en
Inventor
Hiromichi Odajima
博道 小田島
Tadashi Okamoto
正 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saida FDS Inc
Original Assignee
Saida FDS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saida FDS Inc filed Critical Saida FDS Inc
Priority to JP2013056385A priority Critical patent/JP6182767B2/en
Publication of JP2014182930A publication Critical patent/JP2014182930A/en
Application granted granted Critical
Publication of JP6182767B2 publication Critical patent/JP6182767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microwave device capable of obtaining an adequate yield even with an increased throughput, and a circulation tube of the microwave device.SOLUTION: In a microwave device 100 which arranges a circulation tube 60 within a cavity resonator 30 for resonating a microwave and performs heat treatment on a liquid flowing in the circulation tube 60, the circulation tube 60 comprises: a tube part for heating 61 which heats the temperature of the liquid to a first temperature; and a tube part for temperature maintenance 62 which maintains the temperature of the liquid passing through the tube part for heating 61 within a scope between the first temperature and a second temperature that is higher than the first temperature.

Description

本発明は、マイクロ波を照射して加熱や化学反応促進などの処理を物質に施す装置に関する。   The present invention relates to an apparatus for performing processing such as heating and chemical reaction promotion on a substance by irradiation with microwaves.

近年、マイクロ波が物質の化学反応を促進することが見出され、バイオケミストリーなどの分野において、マイクロ波を利用した化学反応装置への関心が高まっている。このような化学反応促進や加熱のためのマイクロ波装置は、試験管やフラスコ等に液体を収容して処理する、いわゆる家庭用電子レンジタイプのバッチ式装置が現在主流である。しかし、バッチ式では連続処理ができず処理能力(処理量)に限界が生じるため、流通管を形成しこれに液体を流しながらマイクロ波を照射して処理するフロー式のマイクロ波装置が検討されている。   In recent years, it has been found that microwaves promote chemical reactions of substances, and in fields such as biochemistry, interest in chemical reaction devices using microwaves is increasing. As such microwave devices for promoting chemical reaction and heating, a so-called microwave oven-type batch type device in which a liquid is contained in a test tube or a flask for processing is currently mainstream. However, since batch processing cannot be performed continuously and processing capacity (amount of processing) is limited, a flow-type microwave device is considered that forms a flow tube and irradiates microwaves while flowing liquid through it. ing.

この種のフロー式のマイクロ波装置としては、特許文献1に記載されているものが知られている。この特許文献1に記載されたマイクロ波装置は、空胴共振器内の空胴にマイクロ波を導入して共振させ、シングルモードの電界を発生させ、空胴内に配設された流通管内を流通する液体を加熱処理している。そして、この流通管は、蛇管からなり、その螺旋中心が空胴内のシングルモードの電界の方向と略平行になるように空胴内に配設されている。   As this type of flow-type microwave device, one described in Patent Document 1 is known. The microwave device described in Patent Document 1 introduces microwaves into a cavity in a cavity resonator to resonate, generates a single-mode electric field, and passes through the flow pipe disposed in the cavity. The flowing liquid is heated. The flow pipe is formed of a serpentine tube, and is arranged in the cavity so that the center of the spiral is substantially parallel to the direction of the single mode electric field in the cavity.

特開2012−75996号公報JP 2012-75996 A

ここで、この種のフロー式のマイクロ波装置おいて、化学反応を十分に促進させ生成対象の物質を得るためには、流通管内の液体の温度を、化学反応が開始する温度(反応開始温度)以上であり、有害な副反応が生じない温度以下の温度範囲内に十分な時間の間、維持させる必要がある。   Here, in this type of flow-type microwave apparatus, in order to sufficiently promote the chemical reaction and obtain the substance to be generated, the temperature of the liquid in the flow pipe is set to the temperature at which the chemical reaction starts (reaction start temperature). It is necessary to maintain for a sufficient time within a temperature range below the temperature at which no harmful side reaction occurs.

特許文献1に記載のマイクロ波装置では、蛇管からなる流通管を流れる液体の流速が低い場合は、流入した液体を加熱し、その後、液体におけるマイクロ波からの吸熱と液体から流通管及び空胴共振器への熱伝導による放熱とのバランス等により、液体温度を上記温度範囲内で十分な時間の間、維持させることができる。   In the microwave device described in Patent Document 1, when the flow velocity of the liquid flowing through the circulation pipe composed of the serpentine pipe is low, the liquid that has flowed is heated, and then the heat absorption from the microwave in the liquid and the circulation pipe and the cavity from the liquid are performed. The liquid temperature can be maintained for a sufficient time within the above temperature range due to a balance with heat radiation by heat conduction to the resonator.

しかしながら、特許文献1に記載のマイクロ波装置では、マイクロ波の出力を変えずに、単位時間当たりの処理量を上げるべく流速を高めた場合、液体の温度上昇は緩やかになって反応開始温度に到達する箇所が流通管の出口側(下流側)に移動するため、液体の温度を反応開始温度で維持する時間が短くなる。一方、マイクロ波の出力を大きくすれば、流速を高めても反応開始温度に到達する箇所が下流側に移動することを抑制することができるが、この場合、液体の温度が反応開始温度に到達した後、さらに昇温して上記温度範囲を超えてしまうおそれがある。これらのため、単位時間当たりの処理量が高まるにつれ、液体の化学反応を十分に促進できなくなり、実際に得られる生成対象の物質の量が減少してしまい収率(=実際に得られる生成対象物質の量/処理量)の低下を招く虞がある。   However, in the microwave device described in Patent Document 1, when the flow rate is increased to increase the throughput per unit time without changing the microwave output, the temperature rise of the liquid becomes gradual and the reaction start temperature is reached. Since the reaching part moves to the outlet side (downstream side) of the flow pipe, the time for maintaining the temperature of the liquid at the reaction start temperature is shortened. On the other hand, if the microwave output is increased, even if the flow rate is increased, the portion that reaches the reaction start temperature can be prevented from moving downstream, but in this case, the temperature of the liquid reaches the reaction start temperature. After that, the temperature may be further raised to exceed the above temperature range. For these reasons, as the throughput per unit time increases, the chemical reaction of the liquid cannot be promoted sufficiently, and the amount of substance to be actually obtained decreases, resulting in a yield (= actually obtained object to be produced). There is a risk of causing a decrease in the amount of substance / the amount of treatment.

本発明は上記課題に着目してなされたもので、単位時間当たりの処理量を上げても十分な収率を得ることが可能なマイクロ波装置及びその流通管を提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a microwave device capable of obtaining a sufficient yield even when the processing amount per unit time is increased, and a distribution pipe thereof.

このため、本発明のマイクロ波装置は、マイクロ波を共振させる空胴共振器内に流通管を配設し、当該流通管内を流通する液体を加熱処理するマイクロ波装置において、前記流通管は、前記液体の温度を第1温度まで上昇させるための加熱用管部と、前記加熱用管部を流通した液体の温度を、前記第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含むことを特徴とする。   For this reason, the microwave device of the present invention is a microwave device in which a circulation pipe is disposed in a cavity resonator that resonates microwaves, and the liquid flowing through the circulation pipe is heated. The heating pipe part for raising the temperature of the liquid to the first temperature and the temperature of the liquid flowing through the heating pipe part are within the range of the second temperature higher than the first temperature from the first temperature. And a temperature maintaining tube for maintaining the temperature.

また、本発明の流通管は、マイクロ波を共振させる空胴共振器を備えるマイクロ波装置の、前記空胴共振器内に配設され液体を流通させる流通管であって、前記液体の温度を第1温度まで上昇させるための加熱用管部と、前記加熱用管部を流通した液体の温度を、前記第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含むことを特徴とする。   The flow tube of the present invention is a flow tube that is disposed in the cavity resonator of the microwave device including a cavity resonator that resonates microwaves, and that circulates the liquid, and the temperature of the liquid is adjusted. A temperature for maintaining the temperature of the heating pipe part for raising to the first temperature and the temperature of the liquid flowing through the heating pipe part within the range of the second temperature higher than the first temperature from the first temperature. And a maintenance pipe part.

本発明のマイクロ波装置によれば、マイクロ波を共振させる空胴共振器内に配設する流通管は、液体の温度を第1温度まで上昇させるための加熱用管部と、当該加熱用管部を流通した液体の温度を、第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含む構成としたので、加熱用(昇温用)の流通管構造と温度維持用の流通管構造を別々に構築することができる。したがって、例えば、温度維持用管部の構造は従来と同じ蛇管構造とし、加熱用管部の構造は従来よりも急速な加熱が可能な直管構造とすることができるため、流速が増大しても反応開始温度に到達する箇所が流通管の出口側に移動することを抑制することができる。これにより、単位時間当たりの処理量を上げても、液体の温度を反応開始温度で維持する時間が短くなることを抑制することができ、十分な収率を得ることができる。   According to the microwave device of the present invention, the flow pipe disposed in the cavity resonator for resonating the microwave includes the heating pipe portion for raising the temperature of the liquid to the first temperature, and the heating pipe. The temperature of the liquid flowing through the section is configured to include a temperature maintaining pipe section for maintaining the temperature within a range from the first temperature to the second temperature higher than the first temperature. It is possible to separately construct the distribution pipe structure and the temperature maintenance distribution pipe structure. Therefore, for example, the structure of the temperature maintaining pipe part can be the same as a conventional tube structure, and the structure of the heating pipe part can be a straight pipe structure that can be heated more rapidly than before, so the flow rate is increased. In addition, it is possible to prevent the portion that reaches the reaction start temperature from moving to the outlet side of the flow pipe. Thereby, even if the throughput per unit time is increased, it is possible to suppress the time for maintaining the temperature of the liquid at the reaction start temperature from being shortened, and a sufficient yield can be obtained.

また、本発明の流通管によれば、液体の温度を第1温度まで上昇させるための加熱用管部と、当該加熱用管部を流通した液体の温度を、第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含む構成としたので、加熱用の流通管構造と温度維持用の流通管構造を別々に構築することができる。したがって、加熱用と温度維持用の流通管構造を適宜構築して、マイクロ波装置の空胴内に配設すれば、単位時間当たりの処理量を上げても十分な収率を得ることが可能な流通管を提供することができる。   Further, according to the flow pipe of the present invention, the heating pipe part for raising the temperature of the liquid to the first temperature and the temperature of the liquid flowing through the heating pipe part are changed from the first temperature to the first temperature. Since it is configured to include the temperature maintaining pipe portion for maintaining within the higher second temperature range, the heating flow pipe structure and the temperature maintaining flow pipe structure can be constructed separately. Therefore, if a flow pipe structure for heating and temperature maintenance is appropriately constructed and placed in the cavity of the microwave device, a sufficient yield can be obtained even if the throughput per unit time is increased. Can be provided.

本発明に係るマイクロ波装置の第1実施形態の概略構成図である。1 is a schematic configuration diagram of a first embodiment of a microwave device according to the present invention. 上記実施形態の空胴共振器の概略図であり、(A)は図1と同じ側面から見た正面図、(B)は左側側面図、(C)は上面図である。It is the schematic of the cavity resonator of the said embodiment, (A) is the front view seen from the same side as FIG. 1, (B) is a left side view, (C) is a top view. 上記実施形態の空胴共振器内の流通管の配置状態を示した図である。It is the figure which showed the arrangement | positioning state of the flow pipe in the cavity resonator of the said embodiment. 上記実施形態における液体の流動方向と電界の方向との関係を説明するための図面であり、(A)は加熱用管部における流通管の部分断面図、(B)は温度維持用管部における流通管の部分断面図である。It is drawing for demonstrating the relationship between the flow direction of the liquid in the said embodiment, and the direction of an electric field, (A) is a fragmentary sectional view of the flow pipe in a heating pipe part, (B) is in a temperature maintenance pipe part. It is a fragmentary sectional view of a distribution pipe. 本発明に係るマイクロ波装置の第2実施形態における流通管を示す図である。It is a figure which shows the flow pipe in 2nd Embodiment of the microwave apparatus which concerns on this invention. 本発明に係るマイクロ波装置の第3実施形態における流通管を示す図である。It is a figure which shows the flow pipe in 3rd Embodiment of the microwave apparatus which concerns on this invention. 本発明に係るマイクロ波装置の空胴共振器内に発生する電界をシミュレーションした一例である。It is an example which simulated the electric field which generate | occur | produces in the cavity resonator of the microwave apparatus which concerns on this invention. 空胴共振器内における流通管の位置調整を説明するための概念図である。It is a conceptual diagram for demonstrating position adjustment of the flow pipe in a cavity resonator. 第1実施形態における流通管の変形例を示す図である。It is a figure which shows the modification of the distribution pipe in 1st Embodiment. 流通管における加熱用管部と温度維持用管部との構成比率を変えた場合の共振周波数の変化を測定した結果を示す図である。It is a figure which shows the result of having measured the change of the resonant frequency at the time of changing the structural ratio of the pipe part for a heating in a flow pipe, and the pipe part for temperature maintenance.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係るマイクロ波装置の第1実施形態の概略構成図を示す。
図1において、このマイクロ波装置100は、マイクロ波発生器10と、導波管20と、空胴共振器30と、制御機器40と、アンテナ50と、流通管60(図2参照)とを備え、マイクロ波発生器10を同軸ケーブル等を介して導波管20に接続し、この導波管20及びアンテナ50を空胴共振器30に組み付け、制御器40で制御するように構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a first embodiment of a microwave device according to the present invention.
1, the microwave device 100 includes a microwave generator 10, a waveguide 20, a cavity resonator 30, a control device 40, an antenna 50, and a flow tube 60 (see FIG. 2). The microwave generator 10 is connected to the waveguide 20 via a coaxial cable or the like, and the waveguide 20 and the antenna 50 are assembled to the cavity resonator 30 and controlled by the controller 40. Yes.

上記マイクロ波発生器10は、マイクロ波を発生するものであり、例えば、可変周波数発振器11と可変増幅器12とを備えて構成される。可変周波数発振器11は、マイクロ波を出力するものであり、例えば、固体素子を用いて、ISM周波数帯である2.4GHz〜2.5GHzの範囲内の所定の周波数で出力する。可変増幅器12は、マイクロ波のパワーを可変増幅するものである。可変周波数発振器11の周波数と可変増幅器12のパワーは、制御器40によって制御される。   The microwave generator 10 generates microwaves and includes, for example, a variable frequency oscillator 11 and a variable amplifier 12. The variable frequency oscillator 11 outputs a microwave and outputs it at a predetermined frequency within a range of 2.4 GHz to 2.5 GHz which is an ISM frequency band using, for example, a solid element. The variable amplifier 12 variably amplifies microwave power. The frequency of the variable frequency oscillator 11 and the power of the variable amplifier 12 are controlled by the controller 40.

上記導波管20は、マイクロ波発生器10から出力されたマイクロ波を導波させて空胴共振器30へ導入するものである。具体的には、マイクロ波発生器10からのマイクロ波は、同軸ケーブルでつながったアイソレータ13、方向性結合器14を介して同軸導波管変換器21に送られる。そして、同軸導波管変換器21を経て導波管20により導波されたマイクロ波は、後述するアイリス31を通って、空胴共振器30内へ導入される。   The waveguide 20 guides the microwave output from the microwave generator 10 and introduces it to the cavity resonator 30. Specifically, the microwave from the microwave generator 10 is sent to the coaxial waveguide converter 21 via the isolator 13 and the directional coupler 14 connected by a coaxial cable. Then, the microwave guided by the waveguide 20 through the coaxial waveguide converter 21 is introduced into the cavity resonator 30 through an iris 31 described later.

上記空胴共振器30は、マイクロ波発生器10からのマイクロ波を導入して共振させる空胴としての照射室32を有し、マイクロ波の共振により照射室32内にシングルモードの電界を発生させるものである。具体的には、空胴共振器30は、図2(A)〜図2(C)に示すように、上壁33、底壁34及び側壁35,36,37,38を含んで構成される。この上壁33及び底壁34は互いに対向しそれぞれ正方形である。側壁35,36,37,38はそれぞれ長方形であり、その短辺側が上壁33及び底壁34の各辺にボルト等(図示省略)で固定される。このようにして上壁33、底壁34及び側壁35,36,37,38を組み立てて形成された筐体内に四角柱状(正四角柱状)の空胴の照射室32が形成される。本実施形態の場合、導波管20側の側壁35は、図2(B)及び図2(C)に示すように、導波管20を接続するために、導波管20のフランジ22に対応させて面積が広げられている。   The cavity resonator 30 has an irradiation chamber 32 as a cavity that resonates by introducing the microwave from the microwave generator 10, and generates a single mode electric field in the irradiation chamber 32 by the resonance of the microwave. It is something to be made. Specifically, as shown in FIGS. 2A to 2C, the cavity resonator 30 includes an upper wall 33, a bottom wall 34, and side walls 35, 36, 37, and 38. . The upper wall 33 and the bottom wall 34 face each other and are square. The side walls 35, 36, 37, and 38 are each rectangular, and the short sides thereof are fixed to the sides of the upper wall 33 and the bottom wall 34 with bolts or the like (not shown). In this way, a rectangular columnar (regular quadratic columnar) cavity irradiation chamber 32 is formed in the casing formed by assembling the upper wall 33, the bottom wall 34, and the side walls 35, 36, 37, 38. In the case of the present embodiment, the side wall 35 on the waveguide 20 side is connected to the flange 22 of the waveguide 20 to connect the waveguide 20 as shown in FIGS. 2 (B) and 2 (C). The area has been expanded in correspondence.

上記アイリス31は、照射室32にマイクロ波を導入する結合スリットであり、図2(B)に示すように、照射室側面を形成する側壁35の中央部位に、矩形開口として開けられる。この矩形開口は、長方形で、その長軸が、照射室32の上面及び底面の中心どうし、すなわち上壁33及び底壁34の中心どうしを結んだ中心軸Cと平行に伸延する。   The iris 31 is a coupling slit for introducing microwaves into the irradiation chamber 32, and is opened as a rectangular opening at the central portion of the side wall 35 that forms the side surface of the irradiation chamber, as shown in FIG. This rectangular opening is rectangular, and its long axis extends parallel to the center axis C connecting the centers of the upper surface and the bottom surface of the irradiation chamber 32, that is, the centers of the upper wall 33 and the bottom wall 34.

上記四角柱状空胴の照射室32にアイリス31を介して導入されたマイクロ波は、共振時、中心軸Cと平行な方向にシングルモードの電界を発生する。厳密に言えば、空胴共振器30内に何も入っていなければ、TM110モードの電磁界が励起される。したがって、おおよそTM110モードの電磁界分布に従った分布の電磁界が照射室32に発生することになる。例えば、加熱等において一般的に用いられる周波数2.45GHzのマイクロ波の場合において、照射室32内に何も無いときにシングルモードの電界を発生させるには、側壁35と側壁37との間の距離L、側壁36と側壁38との間の距離L(図2(C)参照)は、それぞれ、86.5mmで設計する。しかし実際には、照射室32内には誘電体となる液体が存在するので、その影響を受けて照射室32の共振周波数は下がる。そこで、側壁間の上記距離Lは、空のときの寸法(本例では86.5m)より小さく設計し、照射室32内に液体が有って共振周波数が下がったときに共振できる値とするのがよい。なお、Lの誤差は±数%程度許容される。また、照射室32において上壁33と底壁34との間の距離H(図2(A)参照)、つまり四角柱の高さは、適宜、必要な長さで設計すればよい。   The microwave introduced through the iris 31 into the irradiation chamber 32 of the square columnar cavity generates a single mode electric field in a direction parallel to the central axis C at the time of resonance. Strictly speaking, if nothing is contained in the cavity resonator 30, the electromagnetic field of the TM110 mode is excited. Therefore, an electromagnetic field having a distribution approximately in accordance with the TM110 mode electromagnetic field distribution is generated in the irradiation chamber 32. For example, in the case of a microwave having a frequency of 2.45 GHz that is generally used in heating or the like, a single mode electric field can be generated between the side wall 35 and the side wall 37 when there is nothing in the irradiation chamber 32. The distance L and the distance L between the side wall 36 and the side wall 38 (see FIG. 2C) are each designed to be 86.5 mm. However, in reality, since there is a liquid serving as a dielectric in the irradiation chamber 32, the resonance frequency of the irradiation chamber 32 decreases due to the influence. Therefore, the distance L between the side walls is designed to be smaller than the dimension when empty (86.5 m in this example), and is set to a value that can resonate when there is liquid in the irradiation chamber 32 and the resonance frequency is lowered. It is good. Note that an error of L is allowed about ± several percent. Further, the distance H (see FIG. 2A) between the upper wall 33 and the bottom wall 34 in the irradiation chamber 32, that is, the height of the quadrangular prism may be designed with a necessary length as appropriate.

アイリス31は、照射室32に励起される電磁界を、予定したシングルモード(TM110)のみとすることに関与する。図2(B)に示すアイリス31においては、その長辺(側縁)においてマイクロ波による電流が中心軸Cと平行な方向に流れ、この電流に起因して、中心軸Cを囲繞する磁界と中心軸Cに平行な電界が発生する。アイリス31の幅(中心軸Cと直交する方向)は、シミュレーション及び実験により最適値を求めることができる。空胴共振器30はTEモードを発生する可能性があるが、TEモードが発生すると想定外の現象が起き得るので、TEモードは極力抑制する必要がある。図2の導波管20及びアイリス31の関係においては、中心軸Cに関し構造的対称性が保たれる限り、図中の横方向の電界が存在しないので、TEモードを抑制することが可能である。   The iris 31 is involved in setting the electromagnetic field excited in the irradiation chamber 32 only to the scheduled single mode (TM110). In the iris 31 shown in FIG. 2B, a microwave current flows in the long side (side edge) in a direction parallel to the central axis C, and the magnetic field surrounding the central axis C due to this current An electric field parallel to the central axis C is generated. An optimum value of the width of the iris 31 (direction orthogonal to the central axis C) can be obtained by simulation and experiment. The cavity resonator 30 may generate a TE mode. However, since an unexpected phenomenon may occur when the TE mode occurs, it is necessary to suppress the TE mode as much as possible. In the relationship between the waveguide 20 and the iris 31 in FIG. 2, as long as the structural symmetry with respect to the central axis C is maintained, there is no electric field in the horizontal direction in the figure, so that the TE mode can be suppressed. is there.

また、上壁33及び底壁34の中央部位には、照射室32内に導入されたマイクロ波を外部へ逃がすことなく流通管60の両端を支持する筒状部材39,39’がそれぞれ配置されている。例えば、図3に示すように、上壁33側の筒状部材39は、円筒部39aとフランジ部39bとを含んで構成され、底壁34側の筒状部材39’は、円筒部39a’とフランジ部39b’とを含んで構成される。各円筒部39a,39a’は、例えば、高さが50mm程度、筒内径が22mm程度(流通管60のサイズに応じて適宜設計)で形成され、その一端側にフランジ部39b,39b’が周設されており、上壁33及び底壁34の外面に設けられた凹部にフランジ部39b,39b’が受容され、六角穴付ボルト等により締め付け固定される。各円筒部39a,39a’の他端側は、流通管60の端部側にそれぞれ取り付けられた蓋部材60a,60a’により閉塞される。この蓋部材60a,60a’は、流通管60に固定されており、流通管60と一緒に円筒部空洞共振器30から取り外せるように構成されている。筒状部材39,39’の筒内部39c,39c’は、上壁33、底壁34の上記凹部の中央に設けられた貫通孔を介して照射室32と連通する。筒状部材39,39’は、その中心軸が照射室32の中心軸Cとほぼ一致するように位置決めされる。蓋部材60a,60a’はその中央に流通管60の外径に相応する直径の貫通孔が開けられており、この貫通孔に流通管60の端部を嵌挿して外側へそれぞれ突出させている。筒状部材39,39’は、照射室32の中心軸Cと、下流側蛇管62の螺旋中心及び流通管60の後述する直管部61の軸線C’とがほぼ一致するように、蓋部材60a,60a’を介して、流通管60を位置決めして、流通管60の両端を支持すると共に、照射室32から外部へのマイクロ波漏洩を防止する。   In addition, cylindrical members 39 and 39 ′ that support both ends of the flow pipe 60 without escaping the microwave introduced into the irradiation chamber 32 to the outside are disposed at the central portions of the upper wall 33 and the bottom wall 34, respectively. ing. For example, as shown in FIG. 3, the cylindrical member 39 on the upper wall 33 side includes a cylindrical portion 39a and a flange portion 39b, and the cylindrical member 39 ′ on the bottom wall 34 side has a cylindrical portion 39a ′. And a flange portion 39b '. Each cylindrical portion 39a, 39a 'is formed with, for example, a height of about 50 mm and a cylinder inner diameter of about 22 mm (designed appropriately according to the size of the flow pipe 60), and a flange portion 39b, 39b' is formed around one end thereof. The flange portions 39b and 39b ′ are received in the concave portions provided on the outer surfaces of the upper wall 33 and the bottom wall 34, and are fastened and fixed by hexagon socket head bolts or the like. The other end sides of the cylindrical portions 39a and 39a 'are closed by lid members 60a and 60a' attached to the end portions of the flow pipe 60, respectively. The lid members 60 a and 60 a ′ are fixed to the flow pipe 60 and configured to be removable from the cylindrical cavity resonator 30 together with the flow pipe 60. The cylinder interiors 39c and 39c 'of the cylindrical members 39 and 39' communicate with the irradiation chamber 32 through a through hole provided in the center of the concave portion of the upper wall 33 and the bottom wall 34. The cylindrical members 39 and 39 ′ are positioned so that their central axes substantially coincide with the central axis C of the irradiation chamber 32. The lid members 60a and 60a 'have a through hole having a diameter corresponding to the outer diameter of the flow pipe 60 at the center thereof, and the ends of the flow pipe 60 are inserted into the through holes so as to protrude outward. . The cylindrical members 39, 39 ′ are lid members so that the center axis C of the irradiation chamber 32 and the spiral center of the downstream side serpentine tube 62 and the axis C ′ of the straight pipe portion 61 (described later) of the flow pipe 60 substantially coincide. The flow pipe 60 is positioned through 60a and 60a ′ to support both ends of the flow pipe 60 and prevent microwave leakage from the irradiation chamber 32 to the outside.

図1に戻って、上記制御器40は、マイクロ波発生器10を制御するものである。例えば、制御部40には、中心軸方向へ離間設置された2本のアンテナ50(例えばループ形のアンテナ)により検知された電界又は磁界の強度の検知結果が入力されると共に、液体の温度の計測結果が入力され、これらの入力にしたがってマイクロ波発生器10を制御する。2つのアンテナ出力の一方は観測用に、他方は制御用に利用される。例えば、空胴共振器30の下側のアンテナが制御用に、上側のアンテナが観測用に利用される。なお、アンテナ50は、少なくとも制御用のものがあればよい。   Returning to FIG. 1, the controller 40 controls the microwave generator 10. For example, the control unit 40 is input with the detection result of the strength of the electric field or magnetic field detected by two antennas 50 (for example, loop-shaped antennas) spaced apart in the central axis direction, and the temperature of the liquid Measurement results are input, and the microwave generator 10 is controlled according to these inputs. One of the two antenna outputs is used for observation and the other is used for control. For example, the lower antenna of the cavity resonator 30 is used for control, and the upper antenna is used for observation. The antenna 50 only needs to be at least for control.

より具体的には、制御器40は、マイクロ波照射開始の操作が行われると、マイクロ波発生器10によりマイクロ波出力を開始させ、周波数制御過程を実行する。周波数制御過程は、例えば、下側のアンテナ50による検知結果に従って、マイクロ波発生器10から出力されるマイクロ波の周波数を、照射室32の共振周波数に同調させる制御過程である。制御器40は、可変周波数発振器11の周波数を掃引しつつアンテナ50による検出結果から同調周波数を判断する。このとき、制御部40は、アンテナ50による検出に支障ない範囲で最低限の微弱パワーで増幅するように可変増幅器12に指令するとよい。照射室32へ導入するマイクロ波の出力パワーを弱くすることで、周波数制御過程の実行中に液体へ与え得る影響を抑制することができる。制御器40は、周波数制御過程による同調に続いて、マイクロ波のパワーを制御するパワー制御過程を実行する。パワー制御過程は、マイクロ波照射開始前にオペレーターにより液体の種類や後述する反応開始温度等に基づいて設定された条件に従ってマイクロ波発生器10の可変増幅器12を制御し、マイクロ波のパワーを制御する過程である。パワー制御過程において制御器40は、アンテナ50による検知結果(又は被処理物の温度計測結果)にしたがって、マイクロ波発生器10から出力されるマイクロ波のパワーを調整する。アンテナ50の検知結果及び温度計測結果の両方を使用して、パワー制御過程におけるパワー調整の正確性を向上させてもよい。   More specifically, when an operation for starting microwave irradiation is performed, the controller 40 starts microwave output by the microwave generator 10 and executes a frequency control process. The frequency control process is, for example, a control process for tuning the frequency of the microwave output from the microwave generator 10 to the resonance frequency of the irradiation chamber 32 according to the detection result by the lower antenna 50. The controller 40 determines the tuning frequency from the detection result by the antenna 50 while sweeping the frequency of the variable frequency oscillator 11. At this time, the control unit 40 may instruct the variable amplifier 12 to perform amplification with a minimum weak power within a range that does not interfere with detection by the antenna 50. By weakening the output power of the microwave introduced into the irradiation chamber 32, it is possible to suppress the influence that can be given to the liquid during the execution of the frequency control process. The controller 40 executes a power control process for controlling the power of the microwave following the tuning by the frequency control process. In the power control process, the microwave power is controlled by controlling the variable amplifier 12 of the microwave generator 10 according to the conditions set based on the type of liquid and the reaction start temperature described later by the operator before the start of microwave irradiation. It is a process to do. In the power control process, the controller 40 adjusts the power of the microwave output from the microwave generator 10 according to the detection result by the antenna 50 (or the temperature measurement result of the object to be processed). Both the detection result of the antenna 50 and the temperature measurement result may be used to improve the accuracy of power adjustment in the power control process.

制御器40は、例えば、マイクロ波の照射開始にあたって最初に周波数制御過程を実行した後、パワー制御過程を実行し、このパワー制御過程実行中に一定の間隔で周波数制御過程を割り込ませて実行する。そして、その周波数制御過程において制御器40は、可変増幅器12を制御して上述の微弱パワーでマイクロ波を出力させつつ、可変周波数発振器11を制御して周波数の同調を図る。   For example, the controller 40 first executes a frequency control process at the start of microwave irradiation, then executes a power control process, and interrupts and executes the frequency control process at regular intervals during the execution of the power control process. . In the frequency control process, the controller 40 controls the variable amplifier 12 to output the microwave with the above-mentioned weak power, and controls the variable frequency oscillator 11 to tune the frequency.

次に、空胴共振器30の照射室32内に配置される流通管60について、図3を参照して詳述する。   Next, the flow pipe 60 disposed in the irradiation chamber 32 of the cavity resonator 30 will be described in detail with reference to FIG.

まず、流通管60の基本構成について説明する。流通管60は、加熱処理対象の液体を流通させるものであり、液体の温度を第1温度まで上昇させるための加熱用管部と、この加熱用管部の下流側に設けられ、加熱用管部を流通した液体の温度を、第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含んで構成されている。この第1温度とは、生成対象の物質を得るための化学反応の開始温度(以下、「反応開始温度」という)であり、第2温度とは、有害な副反応が生じるおそれのない温度、つまり、生成対象とは別の物質が生成されるおそれがない上限の温度である。   First, the basic configuration of the distribution pipe 60 will be described. The circulation pipe 60 circulates the liquid to be heat-treated, and is provided on the downstream side of the heating pipe part and the heating pipe part for raising the temperature of the liquid to the first temperature. And a temperature maintaining pipe section for maintaining the temperature of the liquid flowing through the section within a range from the first temperature to the second temperature higher than the first temperature. The first temperature is a starting temperature of a chemical reaction for obtaining a substance to be generated (hereinafter referred to as “reaction starting temperature”), and the second temperature is a temperature at which no harmful side reaction occurs, That is, it is the upper limit temperature at which there is no possibility that a substance different from the generation target is generated.

具体的には、マイクロ波の共振により空胴共振器30(照射室32)内に発生するシングルモードの電界の方向と加熱用管部における液体の流動方向F1とのなす角度は、電界の方向と温度維持用管部における液体の流動方向F2とのなす角度より小さくなるように構成されている。前述したように、電界は照射室32の中心軸Cと略平行な方向に発生しているため、電界の方向と流動方向(F1,F2)とのなす角度は、中心軸Cと流動方向(F1,F2)とのなす角度θで表せる。この角度θは、厳密にいうと、中心軸Cと流動方向(F1,F2)とのなす小さい方の角度(つまり劣角)である。より具体的には、本実施形態においては、流通管60は、例えば石英ガラス製で形成され、加熱用管部としての直管部61と、温度維持用管部としての下流側蛇管部62とを含んで構成される。 Specifically, the angle formed between the direction of the single-mode electric field generated in the cavity resonator 30 (irradiation chamber 32) by microwave resonance and the flow direction F 1 of the liquid in the heating tube section is expressed as follows. It is configured to be smaller than an angle formed by the direction and the flow direction F 2 of the liquid in the temperature maintaining pipe portion. As described above, since the electric field is generated in a direction substantially parallel to the central axis C of the irradiation chamber 32, the angle between the direction of the electric field and the flow direction (F 1 , F 2 ) is the flow between the central axis C and the flow. It can be expressed by an angle θ formed with the direction (F 1 , F 2 ). Strictly speaking, the angle θ is a smaller angle (that is, an inferior angle) between the central axis C and the flow direction (F 1 , F 2 ). More specifically, in the present embodiment, the flow pipe 60 is made of, for example, quartz glass, and includes a straight pipe section 61 as a heating pipe section and a downstream side serpentine pipe section 62 as a temperature maintaining pipe section. It is comprised including.

上記直管部61は、下流側蛇管部62の上流側に配設され電界の方向(つまり中心軸C)と略平行な方向に伸延する直管であり、一端側が筒状部材39’に蓋部材60a’を介して支持され、他端側が下流側蛇管部62に接続する。この直管部61における流れ方向F1と、中心軸Cは略平行であるため、上記角度は略ゼロである。したがって、直管部61における上記角度は、下流側蛇管部62における流れ方向F2と中心軸Cとのなす角度θ(劣角)より小さい。このように、本実施形態における流通管60は、加熱用管部を直管とし、温度維持用管部を蛇管とすることにより、電界の方向と加熱用管部における液体の流動方向F1とのなす角度を、電界の方向と温度維持用管部における液体の流動方向F2とのなす角度より小さくなるように構成している。 The straight pipe portion 61 is a straight pipe disposed on the upstream side of the downstream side serpentine pipe portion 62 and extending in a direction substantially parallel to the direction of the electric field (that is, the central axis C), and one end side is covered with the cylindrical member 39 ′. It is supported via the member 60 a ′, and the other end side is connected to the downstream side serpentine tube portion 62. The flow direction F 1 in the straight pipe portion 61, since the center axis C is substantially parallel to, the angle is substantially zero. Therefore, the angle in the straight pipe portion 61 is smaller than the angle θ (subordinate angle) formed by the flow direction F 2 and the central axis C in the downstream side serpentine tube portion 62. As described above, the flow pipe 60 in the present embodiment uses the heating pipe section as a straight pipe and the temperature maintaining pipe section as a serpentine pipe, whereby the electric field direction and the liquid flow direction F 1 in the heating pipe section are Is configured to be smaller than an angle formed between the direction of the electric field and the flow direction F 2 of the liquid in the temperature maintaining tube portion.

また、本実施形態の場合、直管部61は、前述したように筒状部材39’及び蓋部材60a’を利用して、直管の軸線C’を中心軸Cとほぼ一致するように位置決めされる。直管部61の内径は、例えば、3mm〜5mm程度である。この直管部61の内径及び直管部61の照射室32内でマイクロ波が照射される部分の長さは、液体の種類、照射室32の大きさ、反応開始温度及び液体の流速等に応じて適宜設計される。   In this embodiment, the straight pipe portion 61 is positioned so that the straight pipe axis C ′ substantially coincides with the central axis C by using the tubular member 39 ′ and the lid member 60a ′ as described above. Is done. The inner diameter of the straight pipe portion 61 is, for example, about 3 mm to 5 mm. The inner diameter of the straight pipe portion 61 and the length of the portion of the straight pipe portion 61 where the microwave is irradiated in the irradiation chamber 32 depend on the type of liquid, the size of the irradiation chamber 32, the reaction start temperature, the liquid flow rate, and the like. It is designed accordingly.

上記下流側蛇管部62は、直管部61の下流側に配設され、直管部61から螺旋状に伸延する蛇管からなるものであり、例えば、その螺旋中心を直管部61の軸線C’と一致させこの軸線C’回りに螺旋状に巻回されている。この下流側蛇管部62は、一端側が直管部61に接続され、他端側が筒状部材39に蓋部材60aを介して支持される直管と接続する。この下流側蛇管部62における上記角度θは、直管部61における角度より大きい。なお、螺旋中心と軸線C’とは必ずしも一致させなくてもよい。この変形例については、後述の図9において詳述する。   The downstream serpentine tube portion 62 is a serpentine tube that is disposed on the downstream side of the straight tube portion 61 and extends spirally from the straight tube portion 61. For example, the center of the spiral is the axis C of the straight tube portion 61. It is wound in a spiral around this axis C 'in line with'. One end side of the downstream side serpentine tube portion 62 is connected to the straight tube portion 61, and the other end side is connected to a straight tube supported by the tubular member 39 via the lid member 60a. The angle θ in the downstream side serpentine tube portion 62 is larger than the angle in the straight tube portion 61. It should be noted that the spiral center and the axis C ′ are not necessarily coincident. This modification will be described in detail later with reference to FIG.

また、本実施形態の場合、下流側蛇管部62は、前述したように筒状部材39を利用して、螺旋中心(軸線C’)を中心軸Cとほぼ一致するように位置決めされる。下流側蛇管部62の他端側(筒状部材39側)は、例えば、図3に示すように、流通管60を照射室32に設置したときに、当該他端側の端部(巻終わり部)が筒状部材39の筒内部39cに位置するように配置される。下流側蛇管部62の内径は、例えば、3mm〜5mm程度であり、直管部61の内径と合わせてもよいし異ならせてもよい。流通管60の製造コストを考慮すると、直管部61と下流側蛇管部62の内径及び外径は合わせた方がよい。下流側蛇管部62の巻外径Dは、例えば、φ20mm程度である。下流側蛇管部62の螺旋の巻ピッチは下流側蛇管部62の上記角度θと巻外径Dにより定まり、本実施形態においては、一定の巻ピッチで巻回されている。例えば、下流側蛇管部62の電界方向(中心軸C)の長さ(つまり、全長)及び巻外径Dが同じ場合、角度θを大きくすると、全体の巻き数が増えて液体の流動長が長くなるため、液体の照射室32内での滞留時間が増え、反対に角度θを小さくすると、全体の巻き数が減って流動長が短くなるため、滞留時間が減る。また、これら下流側蛇管部62の内径、巻外径、角度θ及び全長は、液体の種類、照射室32の大きさ、反応開始温度及び液体の流速等に応じて適宜設計される。   In the case of the present embodiment, the downstream side serpentine tube portion 62 is positioned so that the spiral center (axis C ′) substantially coincides with the central axis C using the tubular member 39 as described above. The other end side (tubular member 39 side) of the downstream side serpentine tube portion 62 is, for example, as shown in FIG. 3, when the flow pipe 60 is installed in the irradiation chamber 32, Part) is disposed so as to be located in the cylinder interior 39c of the cylindrical member 39. The inner diameter of the downstream side serpentine tube portion 62 is, for example, about 3 mm to 5 mm, and may be matched with or different from the inner diameter of the straight tube portion 61. Considering the manufacturing cost of the flow pipe 60, it is better to match the inner diameter and outer diameter of the straight pipe section 61 and the downstream side serpentine pipe section 62. The winding outer diameter D of the downstream side serpentine tube portion 62 is, for example, about φ20 mm. The spiral winding pitch of the downstream side serpentine tube portion 62 is determined by the angle θ and the winding outer diameter D of the downstream side serpentine tube portion 62. In the present embodiment, the spiral winding pitch is wound at a constant winding pitch. For example, when the length of the electric field direction (central axis C) (ie, the total length) and the winding outer diameter D of the downstream side serpentine tube 62 are the same, increasing the angle θ increases the total number of turns and increases the liquid flow length. Since the length of the liquid becomes longer, the residence time of the liquid in the irradiation chamber 32 is increased. Conversely, when the angle θ is decreased, the total number of turns is reduced and the flow length is shortened, so that the residence time is reduced. Further, the inner diameter, outer diameter, angle θ, and total length of the downstream side serpentine tube portion 62 are appropriately designed according to the type of liquid, the size of the irradiation chamber 32, the reaction start temperature, the liquid flow rate, and the like.

ここで、図4を参照して、液体の流動方向と電界の方向との関係について説明する。
図4(A)は、直管部61内を流れる液体の流動方向F1が電界の方向(中心軸C)と略平行であることを表し、図4(B)は、下流側蛇管部62内を流れる液体の流動方向F2が中心軸Cを横切ることを表している。流通管60を流れる液体は、誘電体と見なせるので、図4(A)の場合は誘電体境界が電界と平行であり、図4(B)の場合は誘電体境界が電界を横切ることになる。したがって、電界と誘電体境界が平行な場合、誘電体の内外で電界の強さが同じになる。そして、誘電体境界の方向が、電界の方向に対して、平行な状態(図4(A))から直交する状態に変化するにつれて、誘電体の中の電界の強さは弱まる。したがって、流動方向と電界の方向とのなす角度(劣角)θが大きいほど誘電体内の電界の強度は弱まる。言い換えると、電界の方向と直交する方向に対する蛇管の螺旋の傾斜角が小さいほど誘電体内の電界の強度は弱まる。
Here, the relationship between the flow direction of the liquid and the direction of the electric field will be described with reference to FIG.
4A shows that the flow direction F 1 of the liquid flowing in the straight pipe portion 61 is substantially parallel to the direction of the electric field (center axis C), and FIG. 4B shows the downstream side serpentine portion 62. The flow direction F 2 of the liquid flowing inside traverses the central axis C. Since the liquid flowing through the flow pipe 60 can be regarded as a dielectric, in the case of FIG. 4A, the dielectric boundary is parallel to the electric field, and in the case of FIG. 4B, the dielectric boundary crosses the electric field. . Therefore, when the electric field and the dielectric boundary are parallel, the electric field strength is the same inside and outside the dielectric. Then, as the direction of the dielectric boundary changes from a state parallel to the direction of the electric field (FIG. 4A) to a state orthogonal to the direction of the electric field, the strength of the electric field in the dielectric decreases. Therefore, the strength of the electric field in the dielectric body becomes weaker as the angle (recess angle) θ between the flow direction and the electric field direction becomes larger. In other words, the strength of the electric field in the dielectric body decreases as the inclination angle of the spiral of the serpentine tube with respect to the direction orthogonal to the direction of the electric field decreases.

また、誘電体が吸収するマイクロ波電力(単位時間当りのエネルギー)は次式で与えられる。
=(1/2)・∫ωεε″Edv
式中、ωは角周波数、εは真空の誘電率で8.854×10−12(Coulomb/m)である。比誘電率(複素数)εrは、εr=εr′−jεr″で定義される。
図4(B)において、説明を簡略化するため、液体を水とし、角度θを90°とした場合、水のεr′は80(常温)、εr″は10程度であるから、図4(A)の場合に比べて電界が1/80(1/εr′)になる。
すなわち、流通管60に液体を流したとすると、中心軸Cに沿って液体が流れる図4(A)の場合は、液体へのマイクロ波の吸収が非常に多いが、中心軸Cを螺旋状に取り巻いて液体が流れる図4(B)の場合は、液体へのマイクロ波の吸収は大幅に減少する。つまり、角度θが90°から0°に近づくにつれ、液体へのマイクロ波の吸収は多くなるという特性がある。また、角度θが90°から0°に近づくにつれ、空胴共振器30の共振周波数を低下させる作用が強まる。
Further, the microwave power (energy per unit time) absorbed by the dielectric is given by the following equation.
P L = (1/2) · ∫ V ωε 0 ε r ″ E 2 dv
In the equation, ω is an angular frequency, and ε 0 is a vacuum dielectric constant of 8.854 × 10 −12 (Coulomb / m). The relative dielectric constant (complex number) εr is defined by εr = εr′−jεr ″.
In FIG. 4B, in order to simplify the description, when the liquid is water and the angle θ is 90 °, εr ′ of water is about 80 (room temperature) and εr ″ is about 10, so that FIG. Compared with the case of A), the electric field is 1/80 (1 / εr ′).
That is, assuming that the liquid flows through the flow pipe 60, in the case of FIG. 4A in which the liquid flows along the central axis C, the absorption of microwaves into the liquid is very large, but the central axis C is spiral. In the case of FIG. 4B in which the liquid flows around, the absorption of microwaves into the liquid is greatly reduced. That is, as the angle θ approaches 90 ° from 0 °, there is a characteristic that the absorption of microwaves into the liquid increases. Further, as the angle θ approaches 90 ° from 0 °, the action of reducing the resonance frequency of the cavity resonator 30 becomes stronger.

次に、本実施形態のマイクロ波装置100の動作について概略説明する。なお、説明の簡略化のため、制御部40による周波数制御及びパワー制御は完了しているものとし、照射室32内にはマイクロ波が導入されて電界が中心軸Cと略平行な方向に発生しているものとして説明する。   Next, the operation of the microwave device 100 of this embodiment will be schematically described. For simplification of explanation, it is assumed that frequency control and power control by the control unit 40 have been completed, and a microwave is introduced into the irradiation chamber 32 to generate an electric field in a direction substantially parallel to the central axis C. It will be described as being.

流通管60に液体が所定の流速で流入され始めると、直管部61により液体を中心軸Cに沿って下流側蛇管部62側へ流動させる。このとき、電界は液体の流動方向と略平行であるため、直管部61内の液体にはマイクロ波が十分に吸収される。これにより、液体を所定の昇温速度で加熱させ、液体の温度が直管部61における下流側端部近辺で反応開始温度(第1温度)に達するように昇温させる。反応開始温度まで昇温された液体は、続いて下流側蛇管部62内を流動する。このとき、電界は下流側蛇管部62を横切るため、電界の方向と流動方向とのなす角度θに応じて液体内の電界の強度は弱まり、液体へのマイクロ波の吸収は直管部61における吸収よりも減少する。そして、下流側蛇管部62を流動中、液体の温度は、下流側蛇管部62内を流動する液体におけるマイクロ波からの吸熱と、液体から下流側蛇管部62及び空胴共振器30への熱伝導による放熱とのバランス等により、第1温度以上第2温度以下の温度範囲内に所定の時間の間、維持される。これにより、目的とする化学反応処理を行い生成対象の物質を流通管60から流出させる。なお、上記所定の時間は、生成対象の物質に応じて適宜定められる。   When the liquid begins to flow into the flow pipe 60 at a predetermined flow rate, the straight pipe portion 61 causes the liquid to flow along the central axis C to the downstream side serpentine portion 62 side. At this time, since the electric field is substantially parallel to the flow direction of the liquid, the microwave is sufficiently absorbed by the liquid in the straight pipe portion 61. Thereby, the liquid is heated at a predetermined temperature increase rate, and the temperature of the liquid is increased so as to reach the reaction start temperature (first temperature) in the vicinity of the downstream end of the straight pipe portion 61. The liquid heated up to the reaction start temperature then flows in the downstream side serpentine tube portion 62. At this time, since the electric field crosses the downstream side serpentine tube part 62, the strength of the electric field in the liquid is weakened according to the angle θ formed by the direction of the electric field and the flow direction, and the absorption of the microwave into the liquid is absorbed in the straight pipe unit 61. Decrease than absorption. During the flow through the downstream side serpentine tube 62, the temperature of the liquid is determined by the heat absorption from the microwave in the liquid flowing in the downstream side serpentine tube 62 and the heat from the liquid to the downstream side serpentine tube 62 and the cavity resonator 30. The temperature is maintained within a temperature range between the first temperature and the second temperature for a predetermined time due to balance with heat dissipation by conduction. Thereby, the target chemical reaction process is performed, and the substance to be generated is caused to flow out of the flow pipe 60. The predetermined time is appropriately determined according to the substance to be generated.

かかる構成のマイクロ波装置100によれば、マイクロ波を共振させる空胴共振器30内に配設する流通管60は、液体の温度を第1温度まで上昇させるための加熱用管部と、当該加熱用管部を流通した液体の温度を、第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含む構成としたので、加熱用(昇温用)の流通管構造と温度維持用の流通管構造を別々に構築することができる。例えば、温度維持用管部の構造は従来と同じ蛇管構造の下流側蛇管部62とし、加熱用管部の構造は従来よりも急速な加熱が可能である直管構造の直管部61とすることで、流速が増大しても反応開始温度に到達する箇所が流通管の出口側に移動することを抑制することができる。これにより、単位時間当たりの処理量を上げても、液体の温度を所定の温度範囲で維持する時間が短くなることを抑制することができ、十分な収率を得ることができる。   According to the microwave device 100 having such a configuration, the flow pipe 60 disposed in the cavity resonator 30 that resonates the microwave includes the heating pipe section for raising the temperature of the liquid to the first temperature, Since the temperature of the liquid flowing through the heating pipe section is configured to include the temperature maintaining pipe section for maintaining the temperature within the range from the first temperature to the second temperature higher than the first temperature, The temperature distribution pipe structure and the temperature maintenance flow pipe structure can be constructed separately. For example, the structure of the temperature maintaining pipe section is the downstream side serpentine pipe section 62 having the same serpentine pipe structure as the conventional one, and the structure of the heating pipe section is the straight pipe section 61 having a straight pipe structure capable of heating more rapidly than the conventional one. Thereby, even if the flow rate increases, it is possible to prevent the portion that reaches the reaction start temperature from moving to the outlet side of the flow pipe. As a result, even if the throughput per unit time is increased, it is possible to suppress the time for maintaining the temperature of the liquid in a predetermined temperature range from being shortened, and a sufficient yield can be obtained.

また、本実施形態において、流通管60は、蛇管の一端側の直管を他端側の直管より長く形成するだけでよいため、加熱用管部と温度維持用管部とを組み合わせた流通管60を容易に形成することができる。そして、本実施形態において、照射室32の中心軸Cは、電界の方向に一致し且つ電界が最も強い所であるから、この中心軸Cに直管部61の軸線C’をほぼ一致させて、直管部61を設置することで、直管部61において最も効率良く液体を昇温させることができる。なお、必要な電界の強度が得られる場合は、軸線C’は必ずしも中心軸Cに一致させなくてもよい。また、本実施形態において、下流側蛇管部62は、一定の巻ピッチで巻回される例を示したが、これに限らず、例えば、下流側に向かうにつれて巻ピッチが小さくなるように形成してもよい。つまり、この場合、電界の方向と温度維持用管部における液体の流動方向F2とのなす角度θは、液体流動の下流側に向かうにつれて大きくなるように設定される。この変形例においては、下流側蛇管部62において、液体へのマイクロ波の吸収量を下流側に向かうにつれて減少させることができる。 Further, in the present embodiment, the flow pipe 60 only needs to form a straight pipe on one end side of the serpentine pipe longer than a straight pipe on the other end side, and therefore, a flow combining a heating pipe section and a temperature maintaining pipe section. The tube 60 can be easily formed. In the present embodiment, since the central axis C of the irradiation chamber 32 coincides with the direction of the electric field and is the place where the electric field is strongest, the axis C ′ of the straight pipe portion 61 is substantially coincident with the central axis C. By installing the straight pipe portion 61, the temperature of the liquid can be most efficiently raised in the straight pipe portion 61. Note that the axis C ′ does not necessarily coincide with the central axis C when the required electric field strength is obtained. In the present embodiment, the downstream side serpentine tube portion 62 is shown as being wound at a constant winding pitch. However, the present invention is not limited to this example. For example, the downstream side serpentine tube portion 62 is formed so that the winding pitch decreases toward the downstream side. May be. In other words, in this case, the angle θ formed by the direction of the electric field and the flow direction F 2 of the liquid in the temperature maintaining tube portion is set so as to increase toward the downstream side of the liquid flow. In this modification, in the downstream side serpentine tube portion 62, the amount of absorption of microwaves into the liquid can be reduced toward the downstream side.

図5は、本発明の第2実施形態に係るマイクロ波装置100の空胴共振器30断面図を示す。なお、第1実施形態と同一の要素には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。   FIG. 5 shows a cross-sectional view of the cavity resonator 30 of the microwave device 100 according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the element same as 1st Embodiment, description is abbreviate | omitted, and only a different part is demonstrated.

本実施形態において、流通管60の加熱用管部及び温度維持用管部は、それぞれ蛇管からなる。具体的には、加熱用管部は、図5に示すように、その螺旋中心を中心軸Cと一致させこの中心軸C回りに螺旋状に巻回される上流側蛇管部61’からなる。温度維持用管部は、上流側蛇管部61’の下流側に配設され、その螺旋中心を上流側蛇管部61’の螺旋中心(つまり中心軸C)と一致させこの中心軸C回りに螺旋状に巻回される下流側蛇管部62’からなる。流通管60は、例えば、第1実施形態の下流側蛇管部62を上記下流側蛇管部62’として利用し、第1実施形態の直管部61に替って上流側蛇管部61’を下流側蛇管部62’(62)に接続して構成される。なお、上流側蛇管部の螺旋中心と下流側蛇管部の螺旋中心とは必ずしも一致させなくてもよい。   In the present embodiment, the heating pipe part and the temperature maintaining pipe part of the flow pipe 60 are each made of a serpentine pipe. Specifically, as shown in FIG. 5, the heating tube portion is composed of an upstream side serpentine tube portion 61 ′ whose spiral center coincides with the central axis C and is spirally wound around the central axis C. The temperature maintaining pipe part is disposed on the downstream side of the upstream side serpentine part 61 ', and the spiral center thereof coincides with the spiral center (that is, the central axis C) of the upstream side serpentine part 61' so It consists of downstream side serpentine tube part 62 'wound in a shape. The flow pipe 60 uses, for example, the downstream side serpentine part 62 of the first embodiment as the downstream side serpentine part 62 ', and replaces the upstream side serpentine part 61' downstream with the straight pipe part 61 of the first embodiment. It is configured to be connected to the side serpentine tube 62 ′ (62). It should be noted that the spiral center of the upstream serpentine tube portion and the spiral center of the downstream serpentine tube portion do not necessarily have to coincide with each other.

上流側蛇管部61’は、電界の方向と直交する方向に対する螺旋の傾斜角が下流側蛇管部62’における傾斜角より大きくなるように形成されている。このように、本実施形態における流通管60は、各蛇管61’,62’の螺旋の傾斜角を上流側と下流側とで異ならせ、上流側は粗い所定の巻ピッチの蛇管(上流側蛇管部61’)とし、下流側は細かい所定の巻ピッチの蛇管(下流側蛇管部62’)とすることにより、電界の方向と加熱用管部における液体の流動方向F1’とのなす角度θ1を、電界の方向と温度維持用管部における液体の流動方向F2とのなす角度θ2より小さくなるように構成している。 The upstream side serpentine part 61 ′ is formed such that the spiral inclination angle with respect to the direction orthogonal to the direction of the electric field is larger than the inclination angle of the downstream side serpentine part 62 ′. As described above, the flow pipe 60 in the present embodiment makes the spiral inclination angles of the respective serpentine tubes 61 ′ and 62 ′ different between the upstream side and the downstream side, and the upstream side has a rough predetermined winding pitch (upstream side serpentine pipe). part 61 ') and, downstream of the fine predetermined winding pitch flexible tube (downstream flexible tube section 62' by a), the angle between the flow direction F 1 'of the liquid in the direction and the heating tube portion of the field θ 1 is configured to be smaller than an angle θ 2 formed by the direction of the electric field and the flow direction F 2 of the liquid in the temperature maintaining tube portion.

上流側蛇管部61’の内径は、例えば、3mm〜5mm程度であり、下流側蛇管部62’(下流側蛇管部62)の内径と合わせてもよいし異ならせてもよい。流通管60の製造コストを考慮すると、上流側蛇管部61’と下流側蛇管部62’の内径及び外径は合わせた方がよい。また、上流側蛇管部61’の巻外径は、例えば、下流側蛇管部62’(下流側蛇管部62)の巻外径Dと合わせて、φ20mm程度である。なお、上流側蛇管部61’及び下流側蛇管部62’の内径、巻外径、角度及び全長(電界方向の長さ)は、それぞれ液体の種類、照射室32の大きさ、反応開始温度及び液体の流速等に応じて適宜設計される。   The inner diameter of the upstream side serpentine part 61 ′ is, for example, about 3 mm to 5 mm, and may be matched with or different from the inner diameter of the downstream side serpentine part 62 ′ (downstream side serpentine pipe part 62). Considering the manufacturing cost of the flow pipe 60, it is better to match the inner diameter and the outer diameter of the upstream side serpentine part 61 'and the downstream side serpentine part 62'. In addition, the winding outer diameter of the upstream side serpentine tube 61 ′ is, for example, about φ20 mm together with the winding outer diameter D of the downstream side serpentine tube 62 ′ (downstream side serpentine tube 62). The inner diameter, outer winding diameter, angle, and total length (length in the electric field direction) of the upstream side serpentine tube portion 61 ′ and the downstream side serpentine tube portion 62 ′ are respectively the type of liquid, the size of the irradiation chamber 32, the reaction start temperature, and the reaction start temperature. It is designed appropriately according to the flow rate of the liquid.

かかる構成のマイクロ波装置100によれば、第1実施形態と同様に、単位時間当たりの処理量を上げても、液体の温度を所定の温度範囲で維持する時間が短くなることを抑制することができ、十分な収率を得ることができる。   According to the microwave device 100 having such a configuration, as in the first embodiment, even when the processing amount per unit time is increased, it is possible to suppress the time during which the liquid temperature is maintained in a predetermined temperature range from being shortened. And a sufficient yield can be obtained.

なお、第2実施形態において、上流側蛇管部61’及び下流側蛇管部62’は、図5に示したようにそれぞれ一定の巻ピッチで巻回される場合で説明したが、これに限らず、各蛇管部61’,62’を、下流側に向かうにつれて巻ピッチが小さくなるようにそれぞれ形成してもよい。また、各蛇管部61’,62’の一方の巻ピッチは一定にして、他方の巻ピッチは流出側に向かうにつれて小さくなるようにしてもよい。つまり、加熱用管部及び温度維持用管部の少なくとも一方の前記角度(θ1、θ2)は、下流側に向かうにつれて大きくなるように設定されるようにしてもよい。この変形例の場合、上流側蛇管部61’と下流側蛇管部62’の境界部(接続部分)におけるそれぞれの巻ピッチは、図5のように異ならせてもよいし、一致するようにしてもよい。 In the second embodiment, the upstream side serpentine tube portion 61 ′ and the downstream side serpentine tube portion 62 ′ have been described as being wound at a constant winding pitch as shown in FIG. 5, but the present invention is not limited thereto. Each of the serpentine tube portions 61 ′ and 62 ′ may be formed so that the winding pitch becomes smaller toward the downstream side. Further, one winding pitch of each of the serpentine tube portions 61 ′ and 62 ′ may be constant, and the other winding pitch may be reduced toward the outflow side. That is, the angle (θ 1 , θ 2 ) of at least one of the heating tube portion and the temperature maintaining tube portion may be set so as to increase toward the downstream side. In the case of this modification, the respective winding pitches at the boundary portion (connection portion) between the upstream side serpentine tube portion 61 ′ and the downstream side serpentine tube portion 62 ′ may be different as shown in FIG. Also good.

図6は、本発明の第3実施形態に係るマイクロ波装置100の空胴共振器30断面図を示す。なお、第1実施形態と同一の要素には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。   FIG. 6 is a sectional view of the cavity resonator 30 of the microwave device 100 according to the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the element same as 1st Embodiment, description is abbreviate | omitted, and only a different part is demonstrated.

本実施形態において、流通管60の加熱用管部は、電界の方向(中心軸C)と略平行な方向に伸延する第1直管63からなる。そして、流通管60の温度維持用管部は、第1直管63から伸延し当該第1直管63の径より大きな径の直管であり、その内部に液体の流れを乱す阻害物64aを収容した第2直管64からなる。   In the present embodiment, the heating pipe portion of the flow pipe 60 includes a first straight pipe 63 that extends in a direction substantially parallel to the direction of the electric field (center axis C). The temperature maintaining pipe portion of the flow pipe 60 is a straight pipe extending from the first straight pipe 63 and having a diameter larger than the diameter of the first straight pipe 63, and an inhibitor 64 a that disturbs the flow of the liquid is contained therein. It consists of the accommodated second straight pipe 64.

具体的には、流通管60は、第1実施形態の直管部61を上記第1直管63として利用し、第1実施形態の下流側蛇管部62に替って第2直管64を第1直管63(直管部61)に接続して構成される。
ここで、第2直管部64の断面積が第1直管部63の断面積より小さいと、第2直管64内の液体の流速が第1直管63内の流速より高くなってしまう。その結果、温度維持用管部としての第2直管64内での滞留時間が短くなってしまう。したがって、第2直管64の内径は、内部に阻害物64aを収容したときに流体が流通可能な有効断面積が、第1直管部63の断面積と略一致、又は、第1直管部63の断面積より大きくなるように設定する。第2直管64は、例えば、第1直管63(直管部61)の軸線C’及び中心軸Cと一致させて伸延し、一端側が第1直管63と接続され、他端側は開口して形成されている。上記阻害物64aは、上記他端側の開口から投入される。阻害物64aが投入された後、第2直管部64の他端側の開口は比誘電率の低い蓋材64bにより閉塞される。上壁33側の筒状部材39に蓋部材60aを介して支持される直管64cは、蓋部材60aの中央部に形成された貫通孔に嵌挿される。
Specifically, the flow pipe 60 uses the straight pipe portion 61 of the first embodiment as the first straight pipe 63, and replaces the downstream straight pipe portion 62 of the first embodiment with the second straight pipe 64. It is configured to be connected to the first straight pipe 63 (straight pipe portion 61).
Here, if the cross-sectional area of the second straight pipe portion 64 is smaller than the cross-sectional area of the first straight pipe portion 63, the flow rate of the liquid in the second straight pipe 64 becomes higher than the flow rate in the first straight pipe 63. . As a result, the residence time in the second straight pipe 64 as the temperature maintaining pipe portion is shortened. Therefore, the inner diameter of the second straight pipe 64 is such that the effective cross-sectional area through which the fluid can flow when the inhibitor 64a is accommodated therein substantially matches the cross-sectional area of the first straight pipe portion 63, or the first straight pipe It is set to be larger than the cross-sectional area of the portion 63. The second straight pipe 64 extends, for example, so as to coincide with the axis C ′ and the central axis C of the first straight pipe 63 (straight pipe portion 61), one end side is connected to the first straight pipe 63, and the other end side is An opening is formed. The inhibitor 64a is introduced from the opening on the other end side. After the inhibitor 64a is introduced, the opening on the other end side of the second straight pipe portion 64 is closed by the lid member 64b having a low relative dielectric constant. The straight pipe 64c supported by the cylindrical member 39 on the upper wall 33 side via the lid member 60a is fitted into a through hole formed in the center of the lid member 60a.

上記阻害物64aは、例えば、同一材料の多数の粒体(球体として示したが、球体以外もあり得る)であり、この粒体により流通管60内に流れる液体の流れが乱される。この粒体は、第1直管63及び上壁33側の筒状部材39に蓋部材60aを介して支持される直管64cの内径より大きなサイズで形成されているため、第2直管64内に収容支持される。   The inhibitor 64a is, for example, a large number of particles of the same material (shown as a sphere, but may be other than a sphere), and the flow of liquid flowing in the flow pipe 60 is disturbed by the particles. The granules are formed in a size larger than the inner diameter of the straight pipe 64c supported by the first straight pipe 63 and the tubular member 39 on the upper wall 33 side via the lid member 60a. Housed and supported within.

また、阻害物64aは、流通させる液体より低い比誘電率を有する材料から形成され、マイクロ波吸収の少ない(又は吸収の無い)材料、例えば、アルミナ(酸化アルミニウム)、フッ素樹脂、石英やホウケイ酸ガラスから形成されている。なお、阻害物64aには化学反応のための触媒を担持させてもよい。   The inhibitor 64a is formed of a material having a relative dielectric constant lower than that of the liquid to be circulated, and has a low microwave absorption (or no absorption) material such as alumina (aluminum oxide), fluororesin, quartz, and borosilicate. It is formed from glass. The inhibitor 64a may carry a catalyst for a chemical reaction.

第2直管64内に何も無ければ、この第2直管64内を流通する液体の流れは層流となるが、この阻害物64aが存在することにより、第2直管64内に乱流が生じる。これにより、液体の撹拌作用が生じ、液体の化学反応が促進される。さらに、阻害物64aの比誘電率は、液体の比誘電率と異ならせているため、第2直管64内の電界分布が一様ではなくなると共に、電界の強さが平均的に減少する。液体へのマイクロ波の吸収は電界の強さの2乗に比例するため、第2直管64内のマイクロ波の吸収は、第1直管63内のマイクロ波の吸収に比べて小さくなる。一方、第1直管63内には阻害物が収容されていないため、電界の分布が乱されることなくかつ、電界の方向と平行に伸延しているため、マイクロ波の吸収は大きい。   If there is nothing in the second straight pipe 64, the flow of the liquid flowing through the second straight pipe 64 becomes a laminar flow, but the presence of the obstruction 64a causes turbulence in the second straight pipe 64. A flow occurs. Thereby, the stirring action of a liquid arises and the chemical reaction of a liquid is accelerated | stimulated. Furthermore, since the relative permittivity of the inhibitor 64a is different from the relative permittivity of the liquid, the electric field distribution in the second straight pipe 64 is not uniform, and the strength of the electric field decreases on average. Since the absorption of the microwave into the liquid is proportional to the square of the strength of the electric field, the absorption of the microwave in the second straight pipe 64 is smaller than the absorption of the microwave in the first straight pipe 63. On the other hand, since the obstruction is not accommodated in the first straight pipe 63, the distribution of the electric field is not disturbed and extends parallel to the direction of the electric field, so that the absorption of the microwave is large.

かかる構成のマイクロ波装置100によれば、加熱用管部は、電界の方向と略平行な方向に伸延する第1直管63(直管部61)からなり、温度維持用管部は、第1直管63から伸延し第1直管63の径より大きな径の直管であり、その内部に液体より低い比誘電率を有して液体の流れを乱す阻害物64aを収容した第2直管64からなる、という構成としたので、阻害物64aにより第2直管64内の電界の強さを、第1直管63内の電界の強さより小さくすることができる。これにより、第1及び第2実施形態と同様に、加熱用管部では液体を急速に昇温させることができ、温度維持用管部では液体の温度を第1温度以上第2温度以下の温度範囲内に所定の時間の間、維持させることができる。したがって、第1及び第2実施形態と同様に、単位時間当たりの処理量を上げても、液体の温度を所定の温度範囲で維持する時間が短くなることを抑制することができ、十分な収率を得ることができる。   According to the microwave device 100 having such a configuration, the heating pipe section is composed of the first straight pipe 63 (straight pipe section 61) extending in a direction substantially parallel to the direction of the electric field. A second straight pipe extending from the first straight pipe 63 and having a diameter larger than the diameter of the first straight pipe 63 and containing therein an inhibitor 64a having a dielectric constant lower than that of the liquid and disturbing the flow of the liquid. Since the configuration is made of the tube 64, the strength of the electric field in the second straight tube 64 can be made smaller than the strength of the electric field in the first straight tube 63 by the inhibitor 64a. Thereby, similarly to the first and second embodiments, the temperature of the liquid can be rapidly raised in the heating pipe part, and the temperature of the liquid in the temperature maintaining pipe part is a temperature not lower than the first temperature and not higher than the second temperature. The range can be maintained for a predetermined time. Therefore, as in the first and second embodiments, even if the processing amount per unit time is increased, it is possible to suppress a reduction in the time for maintaining the temperature of the liquid in a predetermined temperature range, and a sufficient yield can be obtained. Rate can be obtained.

また、上記第1〜第3実施形態では、図3、図5及び図6に示したように、底壁34側の筒状部材39’の筒内径は、上壁33側の筒状部材39の筒内径と同じ寸法にした場合で説明したが、これに限らず、上壁33側の筒状部材39の筒内径より小さい寸法にしてもよい。例えば、底壁34側の筒状部材39’の筒内径を、筒状部材39’内に挿通される直管を嵌挿可能な径まで小さくすることができる。この場合、蓋部材60a’は不要であり、筒状部材39’の筒内面に流通管60の端部が直接支持される。   In the first to third embodiments, as shown in FIGS. 3, 5, and 6, the cylindrical inner diameter of the cylindrical member 39 ′ on the bottom wall 34 side is the cylindrical member 39 on the upper wall 33 side. However, the present invention is not limited to this and may be smaller than the cylinder inner diameter of the cylindrical member 39 on the upper wall 33 side. For example, the cylindrical inner diameter of the cylindrical member 39 ′ on the bottom wall 34 side can be reduced to a diameter that allows a straight pipe inserted into the cylindrical member 39 ′ to be inserted. In this case, the lid member 60a 'is unnecessary, and the end of the flow pipe 60 is directly supported by the cylindrical inner surface of the cylindrical member 39'.

図7は、照射室32内に発生する電界をシミュレーションした一例である。照射室32内に第1実施形態の流通管60を配置させた場合のシミュレーション結果を図7(A)及び図7(C)に示し、上述したように底壁34側の筒状部材39’の筒内径を下流側蛇管部62側より小さくした場合を図7(B)及び図7(D)に示す。なお、計算の簡略化のため、シミュレーションにおいては、流通管60自体の比誘電率は無視できるほど小さいものとし、下流側蛇管部62の巻き数は4として計算した。図7(A)及び図7(B)は液体がアセトニトリル(比誘電率=37.5(常温))の場合で、図7(C)及び図7(D)は液体がエタノール(比誘電率=24.5(常温))の場合のシミュレーション結果である。図7において、横軸が中心軸Cの方向の距離、縦軸が中心軸Cから半径方向(中心軸に直交する方向)への距離であり、○印は下流側蛇管部62の蛇管断面を表す。   FIG. 7 is an example in which the electric field generated in the irradiation chamber 32 is simulated. 7A and 7C show simulation results when the flow pipe 60 of the first embodiment is arranged in the irradiation chamber 32, and as described above, the cylindrical member 39 ′ on the bottom wall 34 side. FIGS. 7B and 7D show a case where the cylinder inner diameter is made smaller than the downstream side serpentine tube 62 side. For simplification of the calculation, in the simulation, the relative permittivity of the flow pipe 60 itself is assumed to be negligibly small, and the number of turns of the downstream side serpentine tube portion 62 is four. 7A and 7B show the case where the liquid is acetonitrile (relative dielectric constant = 37.5 (room temperature)), and FIGS. 7C and 7D show the liquid is ethanol (relative dielectric constant). = 24.5 (room temperature)). In FIG. 7, the horizontal axis is the distance in the direction of the central axis C, the vertical axis is the distance from the central axis C in the radial direction (the direction orthogonal to the central axis), and the circles indicate the cross section of the serpentine tube of the downstream side serpentine tube portion 62. Represent.

図7中、おおよそ横方向に表された線が電気力線で、電界の包絡線であり、電界はこの線に沿っている。電気力線や電界は液体(○印)の近傍で僅かながら乱れるが、ほぼ中心軸Cに平行な直線になる。すなわち、照射室32内に発生する電界の方向は、中心軸Cに略平行である。図7に示すように、筒状部材39’の内径が小さい(図7(B)及び図7(D))ほど、直管部61に電界を集中させることができる。また、比誘電率が大きい(図7(A)及び図7(B))ほど、直管部61に電界を集中させることができる。したがって、底壁34側の筒状部材39’の内径が小さく、液体の比誘電率が大きいほど、直管部61内の液体をより急速に加熱させることができる。   In FIG. 7, a line represented approximately in the horizontal direction is an electric field line, which is an electric field envelope, and the electric field is along this line. The electric field lines and electric field are slightly disturbed in the vicinity of the liquid (circles), but become a straight line substantially parallel to the central axis C. That is, the direction of the electric field generated in the irradiation chamber 32 is substantially parallel to the central axis C. As shown in FIG. 7, the smaller the inner diameter of the cylindrical member 39 ′ is (FIG. 7B and FIG. 7D), the more the electric field can be concentrated on the straight pipe portion 61. In addition, the electric field can be concentrated on the straight pipe portion 61 as the relative dielectric constant is larger (FIGS. 7A and 7B). Therefore, the liquid in the straight pipe portion 61 can be heated more rapidly as the inner diameter of the tubular member 39 ′ on the bottom wall 34 side is smaller and the relative dielectric constant of the liquid is larger.

ところで、流通管60に流通させる液体は、1種類ではなく様々である。したがって、例えば、ISM帯域の共振周波数で所定の液体を加熱処理したあと、比誘電率の異なる別の種類の液体を加熱処理する場合もある。例えば、初めの液体より比誘電率の大きい液体(例えば水)を流通管60に流通させる場合、空胴共振器30の共振周波数は初めの共振周波数より低くなって、ISM帯域の周波数帯の下限を超えて外れてしまうことがある。一方、初めの液体より比誘電率が小さい液体(例えばトルエン)を流通管60に流通させる場合、逆に、空胴共振器30の共振周波数は初めの共振周波数より高くなって、ISM帯域の周波数帯の上限を超えて外れてしまうことがある。また、空胴共振器30のインピーダンスと導波管20のインピーダンス等との整合が不適切な場合、マイクロ波の反射が多くなりマイクロ波の吸収効率が悪くなる。これらの場合に、好適な第1〜第3実施形態の変形例を、以下に説明する。   By the way, the liquid circulated through the circulation pipe 60 is not one type but various. Therefore, for example, after a predetermined liquid is heat-treated at a resonance frequency in the ISM band, another type of liquid having a different dielectric constant may be heat-treated. For example, when a liquid (for example, water) having a relative dielectric constant larger than that of the first liquid is circulated through the flow pipe 60, the resonance frequency of the cavity resonator 30 becomes lower than the first resonance frequency, and the lower limit of the frequency band of the ISM band. May come off beyond. On the other hand, when a liquid (for example, toluene) having a relative dielectric constant smaller than that of the first liquid is circulated through the flow pipe 60, on the contrary, the resonance frequency of the cavity resonator 30 becomes higher than the first resonance frequency, and the frequency in the ISM band. It may go beyond the upper limit of the belt. In addition, when the matching between the impedance of the cavity resonator 30 and the impedance of the waveguide 20 or the like is inappropriate, the reflection of the microwave is increased, and the absorption efficiency of the microwave is deteriorated. In these cases, preferred modifications of the first to third embodiments will be described below.

上記第1〜第3実施形態では、流通管60は、筒状部材39,39’に蓋部材60,60’を介して位置決め支持された場合で説明したが、これに限らず、空胴共振器30内における位置を調整可能に構成してもよい。具体的には、図示省略するが、空胴共振器30内における流通管60の位置を調整可能な位置調整手段を更に備えて構成する。   In the first to third embodiments described above, the flow pipe 60 is described as being positioned and supported by the cylindrical members 39, 39 ′ via the lid members 60, 60 ′. The position in the container 30 may be adjustable. Specifically, although not shown in the figure, it further includes a position adjusting means capable of adjusting the position of the flow pipe 60 in the cavity resonator 30.

図8は、空胴共振器30内における流通管60の位置調整を説明するための概念図であり、一例として第1実施形態の流通管60の場合を示す。流通管60は、位置調整手段(図示省略)により、例えば、直管部61の軸線C’(中心軸C)に沿う軸方向及び軸線C’と直交する方向(以下、「径方向」という)に移動調整可能な状態で支持されている。   FIG. 8 is a conceptual diagram for explaining the position adjustment of the flow pipe 60 in the cavity resonator 30, and shows the case of the flow pipe 60 of the first embodiment as an example. The flow pipe 60 is, for example, positioned by means of position adjustment (not shown), for example, an axial direction along the axis C ′ (center axis C) of the straight pipe portion 61 and a direction orthogonal to the axis C ′ (hereinafter referred to as “radial direction”). It is supported in a state where movement can be adjusted.

ここで、流通管60が軸方向に移動すると、直管部61と下流側蛇管部62との境界部Z(つまり、加熱用管部と温度維持用管部の境界部)の位置が空胴共振器30内で上下する。ここで、直管部61は下流側蛇管部62と比べて空胴共振器30の共振周波数を低下させる作用が強い。このため、図8において、境界部Zの位置が上側に移動して、空胴共振器30内における直管部61の占める割合(構成比率)が増えた場合、空胴共振器30の共振周波数は低くなり、逆に境界部Zの位置が下側に移動して、空胴共振器30内における直管部61の占める割合が減る場合、空胴共振器30の共振周波数は高くなる。   Here, when the flow pipe 60 moves in the axial direction, the position of the boundary part Z between the straight pipe part 61 and the downstream side serpentine pipe part 62 (that is, the boundary part between the heating pipe part and the temperature maintaining pipe part) is the cavity. Moves up and down in the resonator 30. Here, the straight pipe portion 61 has a stronger effect of lowering the resonance frequency of the cavity resonator 30 than the downstream side serpentine portion 62. For this reason, in FIG. 8, when the position of the boundary Z moves upward and the proportion (configuration ratio) of the straight pipe portion 61 in the cavity resonator 30 increases, the resonance frequency of the cavity resonator 30 increases. On the contrary, when the position of the boundary portion Z moves downward and the proportion of the straight pipe portion 61 in the cavity resonator 30 decreases, the resonance frequency of the cavity resonator 30 increases.

したがって、流通管60の空胴共振器30内における軸方向の位置を調整可能に構成することにより、流通させる液体の種類、つまり、比誘電率に応じて、空胴共振器30の共振周波数をISM帯域内に入るように調整することができる。なお、前述したように、マイクロ波は、固体素子を用いた可変周波数発振器11から出力する構成としたが、上記のように、共振周波数を調整可能に構成した場合は、マイクロ波の発振器はこれに限らない。この場合、マイクロ波の周波数を広範囲に掃引させる必要がないため、マイクロ波の発振器は、電子レンジで用いられるマグネトロン等の周波数の掃引幅の狭いものを用いることもできる。   Therefore, by configuring the axial position of the flow pipe 60 in the cavity resonator 30 so as to be adjustable, the resonance frequency of the cavity resonator 30 is set according to the type of liquid to be circulated, that is, the relative dielectric constant. It can be adjusted to fall within the ISM band. As described above, the microwave is configured to be output from the variable frequency oscillator 11 using a solid element. However, when the resonant frequency is configured to be adjustable as described above, the microwave oscillator is configured to output the microwave. Not limited to. In this case, since it is not necessary to sweep the microwave frequency over a wide range, a microwave oscillator having a narrow frequency sweep width such as a magnetron used in a microwave oven can be used.

また、図8に示すように、空胴共振器30内における流通管60の径方向の位置及び軸方向の位置を調整可能に構成することにより、空胴共振器30のインピーダンスを調整することもできる。これにより、インピーダンスを調整して、マイクロ波の反射波が少なくなるようにすることができる。例えば、図8に示すように、軸線C’及び螺旋中心が中心軸Cに対して平行のまま流通管60全体を径方向にも平行移動できるように位置調整手段を構成して、流通管60の径方向の位置調整を行う。この場合、上壁側の筒状部材39及び底壁側の筒状部材39’は、流通管60の軸方向の移動及び上記平行移動が可能なように流通管60を支持するように構成する。   In addition, as shown in FIG. 8, the impedance of the cavity resonator 30 can be adjusted by configuring the radial position and the axial position of the flow pipe 60 in the cavity resonator 30 to be adjustable. it can. Thereby, impedance can be adjusted and the reflected wave of a microwave can be decreased. For example, as shown in FIG. 8, the position adjusting means is configured so that the entire flow pipe 60 can also be translated in the radial direction while the axis C ′ and the spiral center are parallel to the central axis C. Adjust the position in the radial direction. In this case, the tubular member 39 on the upper wall side and the tubular member 39 ′ on the bottom wall side are configured to support the flow pipe 60 so that the flow pipe 60 can move in the axial direction and the parallel movement. .

なお、図8に示すように、下流側蛇管部62の直管部61との接続箇所と、下流側蛇管部62の上壁33側の直管との接続箇所を、中心軸Cと合わせた場合で説明したが、これに限らず、中心軸Cに対して偏心させてもよい。例えば、図9に示すように、下流側蛇管部62の直管部61との接続箇所と、下流側蛇管部62の上壁33側の直管との接続箇所を、中心軸Cに対して蛇管の巻外径に応じて偏心させた軸線C’’上にそれぞれ設定してもよい。つまり、下流側蛇管部62の螺旋中心は中心軸Cに合わせ、直管部61及び上壁33側の直管は中心軸Cに対して偏心させた軸線C’’に沿って伸延させる。この場合、流通管60の径方向の位置調整は、図9に示すように、流通管60を軸線C’’回りに回転させることにより行うとよい。これにより、流通管60を平行移動させることなく径方向の位置調整を行うことができるため、流通管60の両端部を支持する各筒状部材39、39’の構造を簡素化することができる。また、流通管60の径方向の位置調整を両端部の回転により行う構成とした場合、前述した筒状部材39’の筒内径を直管部61を嵌挿可能な径まで小さくするという構成を採用することができる。また、流通管60の位置を調整可能に構成した本変形例は、第1実施形態の流通管60を例にして説明したが、流通管60は、第2及び第3実施形態に示した構成のものであってもよい。   In addition, as shown in FIG. 8, the connection location with the straight pipe part 61 of the downstream side serpentine pipe part 62 and the connection place with the straight pipe on the upper wall 33 side of the downstream side serpentine pipe part 62 are aligned with the central axis C. However, the present invention is not limited to this, and the center axis C may be decentered. For example, as shown in FIG. 9, the connection location between the downstream side serpentine tube portion 62 and the straight pipe portion 61 and the downstream side serpentine tube portion 62 on the upper wall 33 side are connected to the central axis C. Each may be set on an axis C ″ that is eccentric according to the winding outer diameter of the snake tube. That is, the spiral center of the downstream side serpentine tube portion 62 is aligned with the central axis C, and the straight tube portion 61 and the straight tube on the upper wall 33 side are extended along the axis C ″ that is eccentric with respect to the central axis C. In this case, the radial position adjustment of the flow pipe 60 may be performed by rotating the flow pipe 60 about the axis C ″ as shown in FIG. Thereby, since it is possible to adjust the position in the radial direction without moving the flow pipe 60 in parallel, the structure of each cylindrical member 39, 39 ′ that supports both ends of the flow pipe 60 can be simplified. . Moreover, when it is set as the structure which adjusts the position of the radial direction of the flow pipe 60 by rotation of both ends, the structure which makes small the cylinder internal diameter of cylindrical member 39 'mentioned above to the diameter which can insert the straight pipe part 61 is possible. Can be adopted. Moreover, although this modification which comprised the position of the flow pipe 60 adjustable was demonstrated taking the flow pipe 60 of 1st Embodiment as an example, the flow pipe 60 is the structure shown in 2nd and 3rd embodiment. It may be.

図10は、空胴共振器30内における加熱用管部(直管部61)と温度維持用管部(下流側蛇管部62)の構成比率を変えた場合の、共振周波数の測定結果の一例を示している。空胴共振器30(照射室32)の高さH(図2参照)は50mm、照射室32の幅方向の寸法L(図2参照)は79mm、直管部61及び下流側蛇管部62の管外径は6mm、内径は3.6mm、下流側蛇管部62の巻外径は20mm、巻ピッチは12.5mmとし、下流側蛇管部62の巻き数は1巻から4巻の4種類の場合で測定した。この測定結果より、流通管60の全体の長さを一定にして、全体に占める直管部61の長さの割合を高くするほど、共振周波数は低くなり、直管部61の長さの割合を低くするほど、共振周波数は高くなることが分かる。このため、空胴共振器30内における加熱用管部と温度維持用管部の構成比率を変えた流通管60を複数用意しておき、空胴共振器30に着脱可能に装着できるようして、空胴共振器30内における流通管60の位置を調整可能に構成することで、共振周波数の調整することもできる。この場合、上記位置調整手段を備える必要はない。   FIG. 10 shows an example of the measurement result of the resonance frequency when the composition ratio of the heating pipe section (straight pipe section 61) and the temperature maintenance pipe section (downstream serpentine pipe section 62) in the cavity resonator 30 is changed. Is shown. The height H (see FIG. 2) of the cavity resonator 30 (irradiation chamber 32) is 50 mm, the dimension L (see FIG. 2) in the width direction of the irradiation chamber 32 is 79 mm, and the straight pipe portion 61 and the downstream side serpentine portion 62 The outer diameter of the tube is 6 mm, the inner diameter is 3.6 mm, the outer diameter of the downstream side serpentine tube portion 62 is 20 mm, the winding pitch is 12.5 mm, and the downstream side serpentine tube portion 62 has four types of windings, 1 to 4. Measured in case. From this measurement result, as the overall length of the flow pipe 60 is made constant and the proportion of the length of the straight pipe portion 61 occupying the whole is increased, the resonance frequency becomes lower and the proportion of the length of the straight pipe portion 61 is increased. It can be seen that the lower the value, the higher the resonance frequency. For this reason, a plurality of flow pipes 60 having different ratios of the heating pipe part and the temperature maintaining pipe part in the cavity resonator 30 are prepared so that they can be detachably attached to the cavity resonator 30. The resonance frequency can also be adjusted by configuring the position of the flow pipe 60 in the cavity resonator 30 to be adjustable. In this case, it is not necessary to provide the position adjusting means.

上記第1〜第3実施形態及びこれらの変形例では、空胴共振器30は、図2に示したように、四角柱状空胴の照射室32を備えて構成された場合で説明したが、これに限らず、図示省略するが、円柱状空胴の照射室を備えて構成するようにしてもよい。図2の照射室32の寸法Lがこの円柱状空胴の照射室の直径に相当する。この場合、照射室が円柱状空胴なので、空胴共振器内に何も入っていなければTM010モードの電磁界が励起される。共振するマイクロ波の周波数を2,450MHzとする場合、照射室内に何も無いときの直径Lは93.7mmである。なお、第1実施形態と同様にLについての±数%程度の誤差が許容される。   In the first to third embodiments and the modifications thereof, the cavity resonator 30 has been described as being configured to include the irradiation chamber 32 of a square columnar cavity as shown in FIG. Although not limited to this, although not shown in the drawings, a cylindrical cavity irradiation chamber may be provided. The dimension L of the irradiation chamber 32 in FIG. 2 corresponds to the diameter of the irradiation chamber of this cylindrical cavity. In this case, since the irradiation chamber is a cylindrical cavity, the electromagnetic field in the TM010 mode is excited if nothing is contained in the cavity resonator. When the frequency of the resonating microwave is 2,450 MHz, the diameter L when there is nothing in the irradiation chamber is 93.7 mm. As in the first embodiment, an error of about ± several percent with respect to L is allowed.

また、第1〜第3実施形態及びこれらの変形例における流通管60は、本発明に係る流通管でもある。これら実施形態の流通管60によれば、液体の温度を第1温度まで上昇させるための加熱用管部と、当該加熱用管部を流通した液体の温度を、第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含む構成としたので、加熱用の流通管構造と温度維持用の流通管構造を別々に構築することができる。したがって、加熱用と温度維持用の流通管構造を適宜構築して、マイクロ波装置100の照射室32内に配設すれば、単位時間当たりの処理量を上げても十分な収率を得ることが可能な流通管を提供することができる。   Moreover, the flow pipe 60 in the first to third embodiments and the modified examples thereof is also a flow pipe according to the present invention. According to the flow pipes 60 of these embodiments, the heating pipe part for raising the temperature of the liquid to the first temperature, and the temperature of the liquid flowing through the heating pipe part are changed from the first temperature to the first temperature. Since it is configured to include the temperature maintaining pipe portion for maintaining within the higher second temperature range, the heating flow pipe structure and the temperature maintaining flow pipe structure can be constructed separately. Therefore, if a flow pipe structure for heating and temperature maintenance is appropriately constructed and disposed in the irradiation chamber 32 of the microwave device 100, a sufficient yield can be obtained even if the throughput per unit time is increased. Can be provided.

10・・・・・・マイクロ波発生器
30・・・・・・空胴共振器
32・・・・・・照射室(空胴)
33・・・・・・上壁
34・・・・・・底壁
39,39’・・・筒状部材
60・・・・・・流通管
61・・・・・・直管部(加熱用管部)
61’・・・・・上流側蛇管部(加熱用管部)
62,62’・・・下流側蛇管部(温度維持用管部)
63・・・・・・第1直管(加熱用管部)
64・・・・・・第2直管(温度維持用管部)
64a・・・・・障害手段
100・・・・・マイクロ波装置
10 .... Microwave generator 30 ... Cavity resonator 32 ... Irradiation chamber (cavity)
33 ··· Upper wall 34 ······ Bottom wall 39, 39 '··· Cylindrical member 60 ······· Distribution pipe 61 ······ Straight pipe portion Pipe)
61 ′ ・ ・ ・ ・ ・ Upstream side serpentine section (heating pipe section)
62, 62 '... downstream side serpentine part (temperature maintaining pipe part)
63 ······ 1st straight pipe (heating pipe)
64 ······ 2nd straight pipe (temperature maintaining pipe)
64a... Obstacle means 100... Microwave device

Claims (10)

マイクロ波を共振させる空胴共振器内に流通管を配設し、当該流通管内を流通する液体を加熱処理するマイクロ波装置において、
前記流通管は、前記液体の温度を第1温度まで上昇させるための加熱用管部と、前記加熱用管部を流通した液体の温度を、前記第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含むことを特徴とするマイクロ波装置。
In the microwave device that arranges the flow pipe in the cavity resonator that resonates the microwave, and heats the liquid flowing in the flow pipe,
The flow pipe has a heating pipe part for raising the temperature of the liquid to the first temperature, and a temperature of the liquid flowing through the heating pipe part from the first temperature to the second higher than the first temperature. A microwave device comprising: a temperature maintaining tube portion for maintaining within a temperature range.
前記マイクロ波の共振により前記空胴共振器内に発生するシングルモードの電界の方向と当該加熱用管部における前記液体の流動方向とのなす角度は、前記電界の方向と前記温度維持用管部における前記液体の流動方向とのなす角度より小さい、請求項1に記載のマイクロ波装置。   The angle formed by the direction of the single-mode electric field generated in the cavity resonator due to the resonance of the microwave and the flow direction of the liquid in the heating tube is determined by the direction of the electric field and the temperature maintaining tube. The microwave device according to claim 1, wherein the microwave device is smaller than an angle formed by a flow direction of the liquid in the liquid crystal. 前記加熱用管部は、前記電界の方向と略平行な方向に伸延する直管からなり、
前記温度維持用管部は、前記直管から螺旋状に伸延する蛇管からなる、請求項2に記載のマイクロ波装置。
The heating tube portion is a straight tube extending in a direction substantially parallel to the direction of the electric field,
The microwave device according to claim 2, wherein the temperature maintaining tube portion is a serpentine tube extending spirally from the straight tube.
前記温度維持用管部の前記角度は、前記液体流動の下流側に向かうにつれて大きくなるように設定される、請求項3に記載のマイクロ波装置。   4. The microwave device according to claim 3, wherein the angle of the temperature maintaining pipe section is set so as to increase toward a downstream side of the liquid flow. 5. 前記加熱用管部及び温度維持用管部は、それぞれ蛇管からなる、請求項2に記載のマイクロ波装置。   The microwave device according to claim 2, wherein each of the heating tube portion and the temperature maintaining tube portion is a serpentine tube. 前記加熱用管部及び温度維持用管部の少なくとも一方の前記角度は、前記液体流動の下流側に向かうにつれて大きくなるように設定される、請求項5に記載のマイクロ波装置。   The microwave device according to claim 5, wherein the angle of at least one of the heating tube portion and the temperature maintaining tube portion is set so as to increase toward a downstream side of the liquid flow. 前記加熱用管部は、前記電界の方向と略平行な方向に伸延する第1直管からなり、
前記温度維持用管部は、前記第1直管から伸延し当該第1直管の径より大きな径の直管であり、その内部に前記液体より低い比誘電率を有して前記液体の流れを乱す阻害物を収容した第2直管からなる、請求項1に記載のマイクロ波装置。
The heating tube portion is composed of a first straight tube extending in a direction substantially parallel to the direction of the electric field,
The temperature maintaining pipe portion is a straight pipe extending from the first straight pipe and having a diameter larger than the diameter of the first straight pipe, and has a relative dielectric constant lower than that of the liquid therein and the flow of the liquid. The microwave device according to claim 1, comprising a second straight pipe containing an obstruction that disturbs.
前記空胴共振器内における前記流通管の位置を調整可能に構成した、請求項1〜7のいずれか1つに記載のマイクロ波装置。   The microwave device according to claim 1, wherein the position of the flow pipe in the cavity resonator is adjustable. 前記空胴共振器の上壁及び底壁のそれぞれに、筒状部材を、当該筒状部材の筒内部を前記空胴共振器内の空胴と連通させて配置し、当該各筒状部材により前記流通管の両端を支持する構成とし、
前記加熱用管部側の前記筒状部材の筒内径は、前記温度維持用管部の前記筒状部材の筒内径より小さい、請求項1〜8のいずれか1つに記載のマイクロ波装置。
A cylindrical member is disposed on each of the upper wall and the bottom wall of the cavity resonator so that the inside of the cylindrical member communicates with the cavity in the cavity resonator. It is configured to support both ends of the flow pipe,
The microwave device according to any one of claims 1 to 8, wherein a cylindrical inner diameter of the cylindrical member on the heating tube portion side is smaller than a cylindrical inner diameter of the cylindrical member of the temperature maintaining tube portion.
マイクロ波を共振させる空胴共振器を備えるマイクロ波装置の、前記空胴共振器内に配設され液体を流通させる流通管であって、
前記液体の温度を第1温度まで上昇させるための加熱用管部と、前記加熱用管部を流通した液体の温度を、前記第1温度から当該第1温度より高い第2温度の範囲内に維持するための温度維持用管部とを含む、流通管。
A microwave device comprising a cavity resonator for resonating microwaves, a flow pipe disposed in the cavity resonator for circulating a liquid,
The heating pipe part for raising the temperature of the liquid to the first temperature and the temperature of the liquid flowing through the heating pipe part are within the range of the second temperature higher than the first temperature from the first temperature. A flow pipe including a temperature maintaining pipe part for maintaining.
JP2013056385A 2013-03-19 2013-03-19 Microwave device with flow tube Active JP6182767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056385A JP6182767B2 (en) 2013-03-19 2013-03-19 Microwave device with flow tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056385A JP6182767B2 (en) 2013-03-19 2013-03-19 Microwave device with flow tube

Publications (2)

Publication Number Publication Date
JP2014182930A true JP2014182930A (en) 2014-09-29
JP6182767B2 JP6182767B2 (en) 2017-08-23

Family

ID=51701446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056385A Active JP6182767B2 (en) 2013-03-19 2013-03-19 Microwave device with flow tube

Country Status (1)

Country Link
JP (1) JP6182767B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055940A (en) * 2016-09-28 2018-04-05 株式会社サイダ・Fds Microwave device and heat treatment system including the same
JP2021158023A (en) * 2020-03-27 2021-10-07 国立研究開発法人産業技術総合研究所 Microwave processing device and microwave processing method
JP7368846B2 (en) 2020-03-27 2023-10-25 国立研究開発法人産業技術総合研究所 Microwave processing device and microwave processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458006B2 (en) 2021-07-08 2024-03-29 株式会社ステルテック Misfeed prevention system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270515A (en) * 1990-04-02 1993-12-14 Long Raymond E Microwave plasma detoxification reactor and process for hazardous wastes
JP2009001468A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for producing highly functional carbon fiber
WO2012043753A1 (en) * 2010-09-30 2012-04-05 株式会社サイダ・Fds Microwave device and flow tube thereof
JP2012531304A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Equipment for continuous chemical reactions at high temperatures
JP2013037882A (en) * 2011-08-08 2013-02-21 Saida Fds Inc Microwave device and circulation pipe thereof
US20140251986A1 (en) * 2013-03-11 2014-09-11 Sterling L.C. Single-mode microwave popping device
CN104332257A (en) * 2014-10-29 2015-02-04 江苏俊知技术有限公司 Vacuum microwave drying method and drying recycling treater of high temperature-resistant communication cable insulation process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270515A (en) * 1990-04-02 1993-12-14 Long Raymond E Microwave plasma detoxification reactor and process for hazardous wastes
JP2009001468A (en) * 2007-06-25 2009-01-08 Ihi Corp Apparatus and method for producing highly functional carbon fiber
JP2012531304A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Equipment for continuous chemical reactions at high temperatures
WO2012043753A1 (en) * 2010-09-30 2012-04-05 株式会社サイダ・Fds Microwave device and flow tube thereof
JP2013037882A (en) * 2011-08-08 2013-02-21 Saida Fds Inc Microwave device and circulation pipe thereof
US20140251986A1 (en) * 2013-03-11 2014-09-11 Sterling L.C. Single-mode microwave popping device
CN104332257A (en) * 2014-10-29 2015-02-04 江苏俊知技术有限公司 Vacuum microwave drying method and drying recycling treater of high temperature-resistant communication cable insulation process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055940A (en) * 2016-09-28 2018-04-05 株式会社サイダ・Fds Microwave device and heat treatment system including the same
JP2021158023A (en) * 2020-03-27 2021-10-07 国立研究開発法人産業技術総合研究所 Microwave processing device and microwave processing method
JP7368846B2 (en) 2020-03-27 2023-10-25 国立研究開発法人産業技術総合研究所 Microwave processing device and microwave processing method
JP7417225B2 (en) 2020-03-27 2024-01-18 国立研究開発法人産業技術総合研究所 Microwave processing device and microwave processing method

Also Published As

Publication number Publication date
JP6182767B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP5681847B2 (en) Microwave equipment
JP4759668B2 (en) Microwave heating device
JP6182767B2 (en) Microwave device with flow tube
US10091841B2 (en) Microwave device and flow tube used therein
JP5107278B2 (en) Microwave heating apparatus and heating method
JP5490192B2 (en) Microwave heat treatment apparatus and treatment method
JP4014300B2 (en) Plasma processing equipment
JP2009105054A (en) Microwave heating device, microwave heating system, and method of using microwave heating device or microwave heating system
JP4299862B2 (en) Microwave heating device
JP5408566B2 (en) Microwave heating of conductive thin films
JPWO2019107402A1 (en) Microwave processing equipment, microwave processing method and chemical reaction method
JP5914804B2 (en) Microwave device and its distribution pipe
JPWO2013005438A1 (en) Microwave heating device
JP2016100130A (en) Microwave device and circulation pipe thereof
JP6533783B2 (en) Microwave irradiation device
JP2016064318A (en) Chemical reaction apparatus
JP6813175B2 (en) Microwave device and heat treatment system equipped with it
JP5891481B2 (en) Microwave equipment
KR101361648B1 (en) Waterload for absorbing high power microwave
JP2016112508A (en) Transpiration device, and flow channel organizer applied for transpiration device
JP7368846B2 (en) Microwave processing device and microwave processing method
JP7417225B2 (en) Microwave processing device and microwave processing method
JP2006130385A (en) Microwave chemical reactor
JP2006181534A (en) Microwave chemical reaction apparatus
WO2020090812A1 (en) Microwave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6182767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250