JP2006130385A - Microwave chemical reactor - Google Patents

Microwave chemical reactor Download PDF

Info

Publication number
JP2006130385A
JP2006130385A JP2004320127A JP2004320127A JP2006130385A JP 2006130385 A JP2006130385 A JP 2006130385A JP 2004320127 A JP2004320127 A JP 2004320127A JP 2004320127 A JP2004320127 A JP 2004320127A JP 2006130385 A JP2006130385 A JP 2006130385A
Authority
JP
Japan
Prior art keywords
cavity resonator
side wall
chemical reaction
sample
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320127A
Other languages
Japanese (ja)
Inventor
Tadashi Okamoto
正 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denshi KK
Original Assignee
Tokyo Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denshi KK filed Critical Tokyo Denshi KK
Priority to JP2004320127A priority Critical patent/JP2006130385A/en
Publication of JP2006130385A publication Critical patent/JP2006130385A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new means of heating, with microwaves, a sample flowing through the central part of a cylindrical cavity resonator or housed in the central part of the resonator to promote the chemical reaction of the sample. <P>SOLUTION: The cavity resonator 1 consists of a metal-made cylindrical side wall 7 and a metal-made end side wall 8 closing electromagnetically both ends of the cylindrical side wall 7 in the axial direction. A tube 2 or a cylindrical container made of an electromagnetic wave transmitting dielectric is arranged coaxially within the cavity resonator, and a sample is housed in the tube or container. Microwaves are combined externally with a combining slot 4 arranged on the cylindrical side wall 7 of the cavity resonator 1 in the axial direction. A microwave electric field which is constant in size along the circumference and changes in the radial direction so as to become practically zero in size at two or three points including the cylindrical side wall is generated within the cavity resonator 1 to heat the sample so as to promote the chemical reaction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、マイクロ波を照射することにより化学反応を促進する化学反応装置に係り、空胴共振器を用いるにもかかわらず、液体、気体、粉体等の被加熱物(以下「試料」という。)の温度変化に伴う試料の比誘電率、tanδ等の誘電体特性の変化に対して共振周波数を調整する必要が殆どないか、その必要性を大幅に軽減したマイクロ波化学反応装置に関する。   The present invention relates to a chemical reaction apparatus that promotes a chemical reaction by irradiating a microwave, and despite using a cavity resonator, an object to be heated (hereinafter referred to as a “sample”) such as a liquid, a gas, or a powder. This is related to a microwave chemical reaction apparatus in which there is almost no need to adjust the resonance frequency with respect to changes in dielectric properties such as the relative dielectric constant and tan δ of the sample accompanying temperature changes, or the necessity is greatly reduced.

マイクロ波は、電子レンジを始め、産業用加熱炉の熱源として広く利用されている。マイクロ波は、物質に含まれる水を加熱するだけでなく、極性を持った誘電物質に作用してこれを直接、かつ選択的に加熱できるので、従来の加熱手段のように外部から試料を加熱する装置に比較して、短時間で効率よく試料を加熱できる特徴を持っている。
近年、化学反応を行わせたい物質にマイクロ波を照射すると、反応を大幅に促進できる現象が見出され、単なる加熱装置に留まらず、短時間で化学反応を行う化学反応装置としての用途が大きく開けつつある。
マイクロ波化学反応装置には、大別して、終端に整合負荷を接続した整合導波管型、終端を短絡した短絡導波管型、空胴共振器を用いる空胴共振器型がある。
一般に化学反応は、これらの方式の装置内に試料を置いて行われる。整合導波管型は殆ど調整を要しないので、使用上、簡便ではあるが、装置の構成上から、終端に向かって伝播するマイクロ波電力しか利用できないという問題があって効率があまり高くないという欠点を持っている。しかしながら、そのような問題があっても、化学反応を相応に大幅に早めることができる能力を持つので、使用上の簡便さから、利用が広まっている。この装置に対し、短絡導波管型は、反射して戻ってくるマイクロ波も反応に利用することができるもので、進行および反射するマイクロ波の位相を試料の位置で同相になるように調整することにより効率を改善できる特徴を持つが、試料の誘電体特性の差や変化に対応して短絡位置を多少、調整しなければならないという欠点を持っている。空胴共振器型は、マイクロ波を空胴壁で多重反射させて試料に何度も照射させるもので、効率が極めて高くなるという利点を持つが、試料の特性の差や変化に対応して共振周波数を調整し常に同調を取る必要があるという欠点を持っている。したがって、短絡導波管型や空胴共振器型の高効率特性を持ち、整合導波管型の簡便さを持つ装置の開発要求が高まっている。すなわち、調整を全く要しないか、あるいは、簡便な方法で、調整が可能な装置の開発が要求されている。
化学反応のもうひとつの重要な要件は反応の均一性である。この要件を満たすには、試料に均等な強さを持つマイクロ波を照射することである。特に、
化学反応に触媒を用いる場合、触媒とその近傍にある試料にほぼ均一なマイクロ波を照射し、この部分のみを選択的に等しい温度に加熱することが望ましい。マイクロ波を化学反応に用いることが広まっているが、将来は、現在、あまり考慮されていない均一照射の要求も高まってくると思われる。
空胴共振器を用いて化学反応の効率を大きく速める技術として、例えば、特許文献1に示す装置が提案されている。この方法は、導波管を伝播するマイクロ波を環状の導波路に導き、この環状導波路の内側に同軸的に円筒状の空間を設け、前記導波路とこの円筒状空間との隔壁に設けられ軸方向に向かう少なくとも3個のスロットから放射されるマイクロ波を、円筒状空間の中心部に配設した試料に照射して化学反応を行わせるものである。試料の誘電体特性が温度上昇に伴って変化しても複数のスロットからマイクロ波が照射され自動的に同調されて、外部から補償する必要がないと説明されている。しかしながら、この方式は装置構成が複雑であり、電磁波的にも複雑な結合になるだけでなく、円筒状空間の中心部で電界が相殺されてゼロになるので、したがって、必ずしも的確な方法とは言えない。
米国特許第6,713,739号
Microwaves are widely used as a heat source for industrial heating furnaces including microwave ovens. Microwaves not only heat water contained in substances, but also act on polar dielectric substances to directly and selectively heat them, so that samples can be heated from outside like conventional heating means. Compared to the device that performs this, it has the feature that the sample can be heated efficiently in a short time.
In recent years, when microwaves are radiated on a substance to be subjected to a chemical reaction, a phenomenon that can greatly accelerate the reaction has been found, and the use as a chemical reaction apparatus that performs a chemical reaction in a short time is not limited to a simple heating device. Opening up.
Microwave chemical reaction devices are roughly classified into a matching waveguide type in which a matching load is connected to the terminal, a short-circuited waveguide type in which the terminal is short-circuited, and a cavity resonator type using a cavity resonator.
In general, a chemical reaction is performed by placing a sample in an apparatus of these types. The matching waveguide type requires almost no adjustment, so it is simple in use, but there is a problem that only the microwave power propagating toward the end can be used due to the configuration of the device, and the efficiency is not so high. Have drawbacks. However, even if there is such a problem, it has the ability to accelerate the chemical reaction correspondingly considerably, so that its use is widespread because of its convenience in use. In contrast to this device, the short-circuited waveguide type can use microwaves reflected and returned for reaction, and the phase of the traveling and reflected microwaves is adjusted to be in phase at the sample position. However, it has the disadvantage that the short-circuit position must be adjusted to some extent according to the difference or change in the dielectric properties of the sample. The cavity resonator type is designed to irradiate the sample multiple times with multiple reflections of the microwaves on the cavity wall, which has the advantage of extremely high efficiency, but responds to differences and changes in sample characteristics. It has the disadvantage that it is necessary to adjust the resonance frequency to always tune. Therefore, there is an increasing demand for development of a device having high efficiency characteristics such as a short-circuited waveguide type and a cavity resonator type and a simple matching waveguide type. That is, there is a demand for development of an apparatus that does not require any adjustment or that can be adjusted by a simple method.
Another important requirement for chemical reactions is reaction uniformity. Satisfying this requirement is to irradiate the sample with microwaves of equal strength. In particular,
When a catalyst is used for a chemical reaction, it is desirable to irradiate the catalyst and a sample in the vicinity thereof with a substantially uniform microwave and selectively heat only this portion to an equal temperature. The use of microwaves for chemical reactions has become widespread, but in the future, the demand for uniform irradiation, which is not much considered at present, will increase.
As a technique for greatly increasing the efficiency of chemical reaction using a cavity resonator, for example, an apparatus shown in Patent Document 1 has been proposed. In this method, a microwave propagating in a waveguide is guided to an annular waveguide, and a coaxial cylindrical space is provided inside the annular waveguide, and provided in a partition wall between the waveguide and the cylindrical space. Microwaves radiated from at least three slots in the axial direction are irradiated to a sample disposed in the center of the cylindrical space to cause a chemical reaction. It is described that even if the dielectric property of the sample changes with increasing temperature, microwaves are irradiated from a plurality of slots and automatically tuned so that there is no need for external compensation. However, this method has a complicated apparatus configuration and not only a complicated coupling in terms of electromagnetic waves, but also an electric field is canceled out to zero at the center of the cylindrical space. I can not say.
U.S. Patent No. 6,713,739

この発明は、上記のような背景と要求のもとになされたものであり、マイクロ波によって化学反応を促進する新しい手段を提供することを目的とする。   The present invention has been made based on the background and requirements as described above, and an object thereof is to provide a new means for promoting a chemical reaction by microwaves.

請求項1に記載された発明においては、上記課題を解決するため、導波管から結合スロットを介して円筒状の空胴共振器内にマイクロ波を結合し、厳密な周波数同調を必要とせずに、円筒空胴の中心部に配した試料の化学反応を促進させるマイクロ波化学反応装置を構成する。   In the invention described in claim 1, in order to solve the above-described problem, a microwave is coupled from a waveguide through a coupling slot into a cylindrical cavity resonator, and strict frequency tuning is not required. In addition, a microwave chemical reaction device for promoting a chemical reaction of a sample disposed in the central portion of the cylindrical cavity is configured.

請求項2に記載された発明は、請求項1に記載のマイクロ波化学反応装置において、簡便な方法でおおまかな周波数同調を行うことを可能とする手段を提供する。   The invention described in claim 2 provides a means that allows the microwave chemical reaction device according to claim 1 to perform rough frequency tuning by a simple method.

請求項3に記載された発明は、請求項1又は2に記載されたマイクロ波化学反応装置において、自動的に周波数同調を行うことを可能とする手段を提供する。   The invention described in claim 3 provides means for enabling automatic frequency tuning in the microwave chemical reaction device described in claim 1 or 2.

請求項1に記載された発明においては、加熱中の誘電体の特性変化に対し周波数同調の必要がないようにした。   In the invention described in claim 1, frequency tuning is not required for the change in the characteristics of the dielectric during heating.

請求項2に記載された発明においては、誘電体の違いによる大きい誘電体特性の差に対して同調を確保できるようにした。   In the invention described in claim 2, tuning can be secured for a large difference in dielectric characteristics due to a difference in dielectric.

請求項3に記載された発明においては、誘電体特性の変化に対し電気機械的な帰還手段を利用して同調を確保できるようにした。   In the invention described in claim 3, tuning can be ensured by utilizing an electromechanical feedback means with respect to a change in dielectric characteristics.

図面を参照してこの発明の一実施形態を説明する。図1は本発明の基本構造を示す断面図、図2は空胴と導波管の結合法を説明する外観図、図3は本発明の構成によって得られる広帯域性を説明する特性図、図4は図3の構成と協働して同調の要求度合いを軽減する共振器のQ特性に関する説明図、図5は、共振周波数を比較的大きく変化させる手段を示す斜視図、図6は誘電体棒を差し込んだ部分からの電磁波の漏洩を防ぐ方法の一実施例を示す部分断面図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the basic structure of the present invention, FIG. 2 is an external view for explaining a coupling method of a cavity and a waveguide, and FIG. 3 is a characteristic diagram for explaining the broadband property obtained by the configuration of the present invention. 4 is an explanatory diagram relating to the Q characteristic of the resonator that reduces the degree of tuning required in cooperation with the configuration of FIG. 3, FIG. 5 is a perspective view showing a means for changing the resonance frequency relatively large, and FIG. 6 is a dielectric. It is a fragmentary sectional view which shows one Example of the method of preventing the leakage of the electromagnetic waves from the part which inserted the stick | rod.

図1において、1は円筒状の空胴共振器で、円筒状の側壁7と、軸線方向両端の端部側壁8とを有する。2はこの空胴と同心的に配設され、内部に化学反応を起させる試料を流す円管である。この円管2は、例えば石英のようなマイクロ波の損失が少なく断熱特性が優れた材料で作られ、マイクロ波はこの円管を透過して内部に流れている試料を加熱し、その化学反応を促進する。この円管2は、空胴とほぼ同軸的に配設される限り、必要に応じて、内部に試料を収容する試験管等の円筒状容器で置き換えてもよい。以下簡単のため、円管の場合を取り上げて説明する。図2に示すごとく、円筒状空胴共振器の側壁7には、軸方向のほぼ中心に中心軸に直角な方向から導波管3が接続される。導波管3の終端の短絡板5は、中心部に空胴共振器1の軸方向に向かうスロット状の結合孔4を持つ。この短絡板3は、空胴共振器1の側壁と部分的に共通となっている。この結合孔4により、導波管3から空胴共振器1内に、TM020またはTM030モードの電磁波が励起される。この電磁波の電界は、円周に沿って変化せず、軸方向に一定で、径方向には、空胴共振器1の側壁を含め、2または3ヶ所でゼロとなるように分布をしている。このゼロとなる位置より内側と外側の電界の向きが互いに逆になっている。軸方向の分布は空胴内に何も入っていないときは一定であるが、マイクロ波を吸収する試料が挿入されているときには、軸の両端に向かうにつれ多少弱くなるような傾向を持つ。軸方向の均一性は、容器の場合のほうが円管の場合より悪くなる。   In FIG. 1, 1 is a cylindrical cavity resonator, which has a cylindrical side wall 7 and end side walls 8 at both ends in the axial direction. A circular tube 2 is arranged concentrically with the cavity and allows a sample to cause a chemical reaction to flow inside. The circular tube 2 is made of a material having a low microwave loss and excellent heat insulating properties, such as quartz, and the microwave heats a sample that passes through the circular tube and flows therein, and its chemical reaction. Promote. The circular tube 2 may be replaced with a cylindrical container such as a test tube that accommodates a sample therein as necessary, as long as the circular tube 2 is disposed substantially coaxially with the cavity. Hereinafter, for the sake of simplicity, the case of a circular pipe will be taken up and described. As shown in FIG. 2, the waveguide 3 is connected to the side wall 7 of the cylindrical cavity resonator from the direction perpendicular to the central axis at the substantially center in the axial direction. The short-circuit plate 5 at the end of the waveguide 3 has a slot-like coupling hole 4 extending in the axial direction of the cavity resonator 1 at the center. The short-circuit plate 3 is partially in common with the side wall of the cavity resonator 1. This coupling hole 4 excites TM020 or TM030 mode electromagnetic waves from the waveguide 3 into the cavity resonator 1. The electric field of this electromagnetic wave does not change along the circumference, is constant in the axial direction, and is distributed so that it is zero in two or three locations including the side wall of the cavity resonator 1 in the radial direction. Yes. The directions of the electric fields inside and outside the zero position are opposite to each other. The axial distribution is constant when nothing is in the cavity, but when a sample that absorbs microwaves is inserted, it tends to become somewhat weaker toward the ends of the shaft. The axial uniformity is worse in the container than in the circular tube.

図3はTM010、TM020、TM030、TM040モードを励起したときの比誘電率に対する共振周端数の変化を示している。なお、図では便宜上、モードを示す記号の最後の0を省略して記載している。空胴の半径は、誘電率が比較的大きいとき、TM020、TM030、TM040に対して、ほぼ2,300ないし2,600MHzで共振するような値に選んである。すなわち、この計算では、誘電体の半径を10mmとし、これらのモードに対して、空胴半径を、それぞれ80、120、180mmとしている。TM010 に対する空胴半径はで45mmである。図から、誘電率に対するTM010の周波数変化は大きいが、TM020以上のモードでは共振周端数の変化が小さいことが判る。なお、高次のモードになるほど、空胴の直径が大きくなって、実用的でなくなるので、TM020、TM030あたりを選ぶのが賢明である。   FIG. 3 shows the change in the resonant peripheral edge with respect to the relative permittivity when the TM010, TM020, TM030, and TM040 modes are excited. In the figure, for the sake of convenience, the last 0 of the symbol indicating the mode is omitted. The cavity radius is chosen to resonate at approximately 2,300 to 2,600 MHz for TM020, TM030, and TM040 when the dielectric constant is relatively large. That is, in this calculation, the radius of the dielectric is 10 mm, and the cavity radius for these modes is 80, 120, and 180 mm, respectively. The cavity radius for TM010 is 45mm. From the figure, it can be seen that the frequency change of TM010 with respect to the dielectric constant is large, but the change in the resonance peripheral number is small in the mode of TM020 or higher. Note that the higher the mode, the larger the cavity diameter becomes impractical, so it is advisable to choose around TM020, TM030.

図4は空胴のQ特性である。円管2内に何も収容しないとき、Qは4,000ないし5,000程度の極めて高い値をとる。このように、Qが高い値をとるときは、極めて帯域が狭くなって、周波数が共振から少しずれると空胴に発生する電界が急激に弱くなる。Qが10程度の低い値になると、周波数が共振から120MHz程度ずれても、電界強度が半分程度に弱まるだけである。化学反応を行わせる試料がマイクロ波をよく吸収する場合はQが低くなるので、同調を厳密に取る必要がなくなる。   FIG. 4 shows the Q characteristics of the cavity. When nothing is accommodated in the circular tube 2, Q takes a very high value of about 4,000 to 5,000. Thus, when Q takes a high value, the band becomes extremely narrow, and the electric field generated in the cavity suddenly weakens when the frequency slightly deviates from resonance. When Q is a low value of about 10, even if the frequency is shifted from resonance by about 120 MHz, the electric field strength is only reduced to about half. If the sample to be subjected to the chemical reaction absorbs microwaves well, the Q will be low, so there is no need to tune closely.

化学反応を起す試料に対し水やエチレングリコールなどの比較的、マイクロ波吸収の大きい溶媒を用いると、装入量にもよるが、Qが十分低くなり、共振特性がブロードになる。この結果、温度変化あるいは化学反応の進行に伴って誘電特性がある程度変化しても、非同調でマイクロ波電力の大部分を吸収できるようになる。   When a relatively large microwave absorption solvent such as water or ethylene glycol is used for a sample that causes a chemical reaction, the Q is sufficiently low and the resonance characteristics are broad, depending on the amount of charge. As a result, even if the dielectric characteristics change to some extent as the temperature changes or the chemical reaction proceeds, most of the microwave power can be absorbed non-tuned.

試料にエタノールのような溶媒を使うときは、上記の溶媒に比較し、誘電率が小さいので、例えば、水に共振する構造のまま、溶剤をエタノールに切り変えるとかなり共振から外れる。その場合は、図5に示すような方法を採用する。ここでは、4本の誘電体製の調整棒6が空胴共振器1の中心軸と直交する端部側壁8に、出入り自在に挿入されている。4本の調整棒6は、空胴共振器1の同軸円周に沿って、中心軸に平行となるように配置される。必要に応じ本数を増やしてよい。この調整棒6の誘電率の効果により、共振周波数が下がるので、同調が取れるようになる。   When a solvent such as ethanol is used for the sample, the dielectric constant is smaller than that of the above-mentioned solvent. For example, when the solvent is switched to ethanol while maintaining a structure that resonates with water, it is considerably out of resonance. In that case, a method as shown in FIG. 5 is adopted. Here, four adjustment rods 6 made of a dielectric are inserted into an end side wall 8 orthogonal to the central axis of the cavity resonator 1 so as to be freely accessible. The four adjusting rods 6 are arranged along the coaxial circumference of the cavity resonator 1 so as to be parallel to the central axis. You may increase the number if necessary. The resonance frequency is lowered due to the effect of the dielectric constant of the adjusting rod 6, so that tuning can be achieved.

共振周波数を高くするには、誘電体の代わりに金属製の調整棒6を用いればよい。適当な本数、直径、材料を選ぶことによってかなりの試料に対し共振周波数を合わせることができる。通常、Qはそれほど高くならないので、厳密に共振周波数を調整する必要はない。しかもこの方法は単に適当な数の調整棒を入れたり、抜いたりするだけであるので、容易に同調の目的を達成することができる。温度上昇、反応の進行によって誘電率が変化するので、その変化の度合いを相殺できるようにあらかじめ同調を少し外しておくなどの手法をとれば、さらに広い範囲で同調を確保できる。   In order to increase the resonance frequency, a metal adjusting rod 6 may be used instead of the dielectric. By selecting an appropriate number, diameter, and material, the resonance frequency can be adjusted for a considerable number of samples. Usually, Q is not so high, and it is not necessary to adjust the resonance frequency strictly. In addition, since this method simply inserts or removes an appropriate number of adjusting rods, the purpose of tuning can be easily achieved. Since the dielectric constant changes as the temperature rises and the reaction progresses, tuning can be secured in a wider range by taking a technique such as removing the tuning in advance so that the degree of the change can be offset.

なお、上記に比較的簡易な方法で同調をとる方法を示したが、特にQが高かったり、あるいは、かなり厳密に同調の確保を望んだりする場合は、カプラーを用いて空胴に発生する電磁波をピックアップし、この値が最大となるように自動制御できる周波数調整手段を使用すればよい。空胴の共振周波数を変える手段としては、上記のような誘電体または金属製の調整棒6の挿入量を変化させる手段を用いるほか、円筒面に誘電体あるいは金属からなる小片を挿入する方法を用いることもできる。本発明では共振モードをTM020またはTM030としているので、比誘電率の変化に対する共振周波数の変化が小さくなっており、その結果、自動制御の場合でも、調整幅が小さくなるという有利を生じている。Qが極めて高い場合はこのような自動共振機構を採用することが必要であるが、通常の化学反応装置ではその必要がない場合が多い。   In addition, the method of tuning by the comparatively simple method was shown above. However, especially when Q is high or when it is desired to ensure the tuning fairly strictly, the electromagnetic wave generated in the cavity using a coupler. It is sufficient to use a frequency adjusting means that can automatically control the value so as to maximize the value. As a means for changing the resonance frequency of the cavity, a means for changing the insertion amount of the dielectric or metal adjusting rod 6 as described above and a method for inserting a small piece made of a dielectric or metal into the cylindrical surface are used. It can also be used. In the present invention, since the resonance mode is TM020 or TM030, the change in the resonance frequency with respect to the change in the dielectric constant is small. As a result, even in the case of automatic control, the adjustment width is advantageously reduced. When the Q is extremely high, it is necessary to adopt such an automatic resonance mechanism, but in many cases, this is not necessary in a normal chemical reaction apparatus.

空胴共振器1の端部側壁7に調整棒6を差し込むと、挿入孔から電磁波が漏れる可能性がある。図6は調整棒6を挿入する場合の電波漏れ対策の一実施例である。図6の金属円管9は、内径がマイクロ波に対しカットオフとなる値となっている。金属円管8の長さは、漏れが十分少なくなるような値になっている。調整棒6が金属製の場合は、端部側壁8と金属棒6との間で放電する可能性があるので、両者を完全に接触させるか、あるいは少し隙間を空けるようにする。この場合、金属円管9と同軸線を形成することになるので、端部で金属円管9と金属棒6が完全に短絡するようにする。   When the adjusting rod 6 is inserted into the end side wall 7 of the cavity resonator 1, electromagnetic waves may leak from the insertion hole. FIG. 6 shows an example of countermeasures against radio wave leakage when the adjustment rod 6 is inserted. In the metal circular tube 9 of FIG. 6, the inner diameter is a value that cuts off the microwave. The length of the metal circular tube 8 is set to such a value that leakage is sufficiently reduced. When the adjusting rod 6 is made of metal, there is a possibility of discharge between the end side wall 8 and the metal rod 6, so that they are completely brought into contact with each other, or a little gap is made. In this case, a coaxial line is formed with the metal circular tube 9, so that the metal circular tube 9 and the metal rod 6 are completely short-circuited at the end.

空胴共振器1内に試料を挿入すると、空胴のインピーダンスが変化し、導波管3との整合が悪くなる。この問題に対しては、3スタブチューナのような整合器を使用する。整合は試料の違いや特性変化によっても変化する。しかし、代表的な条件に対して整合を取っておけば、いちいち整合をとらなくても、ある程度の要求を満たすことができる。常に完全に整合を取りたい場合は、自動整合できる整合器があるのでそれを使用してもよい。   When a sample is inserted into the cavity resonator 1, the impedance of the cavity changes and the matching with the waveguide 3 becomes worse. For this problem, a matching device such as a 3-stub tuner is used. Matching also varies with sample differences and property changes. However, if matching is performed with respect to typical conditions, a certain level of requirements can be satisfied without matching each time. If you want to always achieve perfect matching, you may use a matching unit that can automatically match.

この発明は、空胴の中心部に配設した円管内を流れる試料にマイクロ波を照射することによって高効率な化学反応装置にすることができるほか、円周方向に均一な電界を発生しているので比較的均一に化学反応を促進でき、産業上広い応用展開が可能である。   In addition to being able to make a highly efficient chemical reaction device by irradiating a sample flowing in a circular tube disposed in the center of the cavity with a microwave, this invention can generate a uniform electric field in the circumferential direction. Therefore, the chemical reaction can be promoted relatively uniformly, and a wide range of industrial applications are possible.

この発明の実施形態に係る化学反応装置の断面図である。It is sectional drawing of the chemical reaction apparatus which concerns on embodiment of this invention. この発明の実施形態に係る化学反応装置の外観図である。1 is an external view of a chemical reaction device according to an embodiment of the present invention. この発明の実施形態に係る共振特性の説明図である。It is explanatory drawing of the resonance characteristic which concerns on embodiment of this invention. この発明の実施形態に係る共振特性の説明図である。It is explanatory drawing of the resonance characteristic which concerns on embodiment of this invention. この発明の実施形態に係る化学反応装置の斜視図である。1 is a perspective view of a chemical reaction device according to an embodiment of the present invention. この発明の実施形態に係る化学反応装置の一部の断面図である。It is a partial sectional view of a chemical reaction device concerning an embodiment of this invention.

符号の説明Explanation of symbols

1 空胴共振器
2 円管
3 導波管
4 結合孔
5 短絡板
6 調整棒
7 端部側壁
8 金属円管
DESCRIPTION OF SYMBOLS 1 Cavity resonator 2 Circular tube 3 Waveguide 4 Coupling hole 5 Shorting plate 6 Adjustment rod 7 End side wall 8 Metal circular tube

Claims (3)

金属製の円筒状側壁と、この側壁の軸方向の両端を電磁波的に閉じる金属製の端部側壁とで構成される空胴共振器と、
この空胴共振器内に同軸的に配設され、内部に試料を収容する電磁波透過性誘電体からなる円管または円筒容器を具備し、
前記空胴共振器の円筒状側壁に軸方向に沿って設けられた結合スロットにより外部からマイクロ波が結合され、
前記空胴共振器内に、大きさが円周に沿って一定で、半径方向に対しては円筒状側壁を含めて2または3箇所で大きさが実質的にゼロとなるように変化するマイクロ波電界を発生させ、前記試料を加熱して化学反応を促進することを特徴とするマイクロ波化学反応装置。
A cavity resonator composed of a metal cylindrical side wall and a metal end side wall that electromagnetically closes both axial ends of the side wall;
Coaxially disposed in the cavity resonator, and includes a circular tube or a cylindrical container made of an electromagnetic wave transmitting dielectric material that accommodates a sample therein,
The microwave is coupled from the outside by a coupling slot provided along the axial direction on the cylindrical side wall of the cavity resonator,
In the cavity resonator, the size is constant along the circumference, and the size changes so that the size becomes substantially zero in two or three locations including the cylindrical side wall in the radial direction. A microwave chemical reaction device that generates a wave electric field and heats the sample to promote a chemical reaction.
前記空胴共振器内に棒状の誘電体または金属小片を出入り自在に挿入し、それによって前記空胴共振器の共振周波数を調整することを特徴とする請求項1に記載のマイクロ波化学反応装置。   2. The microwave chemical reaction device according to claim 1, wherein a rod-like dielectric or metal piece is inserted into the cavity resonator so as to freely enter and exit, thereby adjusting a resonance frequency of the cavity resonator. . 前記空胴共振器の壁面にカプラーを設けて空胴内に発生している電磁界の一部を取り出し、この電磁界の強さがほぼ最大となるように空胴の共振周波数を変化させることを特徴とする請求項1又は2に記載のマイクロ波化学反応装置。   A coupler is provided on the wall surface of the cavity resonator to extract a part of the electromagnetic field generated in the cavity, and the resonance frequency of the cavity is changed so that the intensity of the electromagnetic field is substantially maximized. The microwave chemical reaction device according to claim 1 or 2, wherein
JP2004320127A 2004-11-04 2004-11-04 Microwave chemical reactor Pending JP2006130385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320127A JP2006130385A (en) 2004-11-04 2004-11-04 Microwave chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320127A JP2006130385A (en) 2004-11-04 2004-11-04 Microwave chemical reactor

Publications (1)

Publication Number Publication Date
JP2006130385A true JP2006130385A (en) 2006-05-25

Family

ID=36724393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320127A Pending JP2006130385A (en) 2004-11-04 2004-11-04 Microwave chemical reactor

Country Status (1)

Country Link
JP (1) JP2006130385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946605B2 (en) 2008-12-02 2015-02-03 Zhejiang Twrd New Material Co., Ltd. Microwave heating device and its application in chemical reactions
CN110215946A (en) * 2019-05-29 2019-09-10 西南大学 A kind of novel metal test tube device for microwave heating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157770A (en) * 1992-08-18 1994-06-07 E I Du Pont De Nemours & Co Preparation of polymer material
WO2003040630A2 (en) * 2001-11-09 2003-05-15 Personal Chemistry I Uppsala Ab Microwave applicator system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157770A (en) * 1992-08-18 1994-06-07 E I Du Pont De Nemours & Co Preparation of polymer material
WO2003040630A2 (en) * 2001-11-09 2003-05-15 Personal Chemistry I Uppsala Ab Microwave applicator system
JP2005509249A (en) * 2001-11-09 2005-04-07 パーソナル・ケミストリー・イー・ウプサラ・アクチボラゲット Microwave applicator system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946605B2 (en) 2008-12-02 2015-02-03 Zhejiang Twrd New Material Co., Ltd. Microwave heating device and its application in chemical reactions
CN110215946A (en) * 2019-05-29 2019-09-10 西南大学 A kind of novel metal test tube device for microwave heating

Similar Documents

Publication Publication Date Title
JP4759668B2 (en) Microwave heating device
EP1044113B1 (en) Plasma discharge device and method with dynamic tuning
JP6010406B2 (en) Microwave radiation mechanism, microwave plasma source, and surface wave plasma processing apparatus
JP5681847B2 (en) Microwave equipment
JP5268047B2 (en) Microwave chemical reactor
US20060102622A1 (en) Uniform microwave heating method and apparatus
US10091841B2 (en) Microwave device and flow tube used therein
US6960747B2 (en) Microwave applicator system
US7528353B2 (en) Microwave heating device
WO2013005438A1 (en) Microwave heating device
JP2006130385A (en) Microwave chemical reactor
JP2006181533A (en) Microwave chemical reaction apparatus
JP6813175B2 (en) Microwave device and heat treatment system equipped with it
US20100074810A1 (en) Plasma generating system having tunable plasma nozzle
KR100500360B1 (en) High efficient-atmospheric microwave plasma system
AU2002347715B2 (en) Microwave applicator system
JP2006181534A (en) Microwave chemical reaction apparatus
WO2020090812A1 (en) Microwave device
JP2006302721A (en) High pressure heating device with microwave
RU130178U1 (en) CAMERA FOR HIGH-FREQUENCY HEATING OF DIELECTRICIANS
JP5891481B2 (en) Microwave equipment
AU2002347715A1 (en) Microwave applicator system
JP2016112508A (en) Transpiration device, and flow channel organizer applied for transpiration device
US20020122445A1 (en) Laser with substantially uniform microwave excitation
Yen et al. Harmonic generation by a nonlinear plasma cylinder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100519