WO2020090812A1 - Microwave device - Google Patents

Microwave device Download PDF

Info

Publication number
WO2020090812A1
WO2020090812A1 PCT/JP2019/042358 JP2019042358W WO2020090812A1 WO 2020090812 A1 WO2020090812 A1 WO 2020090812A1 JP 2019042358 W JP2019042358 W JP 2019042358W WO 2020090812 A1 WO2020090812 A1 WO 2020090812A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
cavity
wall portion
resonator
introduction
Prior art date
Application number
PCT/JP2019/042358
Other languages
French (fr)
Japanese (ja)
Inventor
博道 小田島
正 岡本
Original Assignee
株式会社Pmt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Pmt filed Critical 株式会社Pmt
Publication of WO2020090812A1 publication Critical patent/WO2020090812A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications

Definitions

  • the present invention relates to a microwave device that irradiates a microwave to subject an object to processing such as heating and accelerating a chemical reaction.
  • microwave Equipment a device using microwaves
  • the microwave device described in Patent Document 1 includes a microwave generator that generates (oscillates) microwaves and outputs the microwaves, a resonator having a cavity inside, and a microwave generator and a resonator.
  • a coaxial feed line (hereinafter, referred to as a coaxial cable) that is connected between them and guides the microwave output from the microwave generator to the resonator.
  • the microwave guided to the resonator by the coaxial cable is introduced into the cavity inside the resonator via the loop antenna. Then, in this microwave device, the microwave is resonated in the cavity to generate a single mode electric field, and the microwave heats the object supplied into the cavity.
  • the coaxial line system using the coaxial cable is adopted as a system for guiding and coupling the microwave output from the microwave generator to the resonator.
  • the coaxial line method is suitable for low output applications (for example, about 100 W or less) because it can reduce the size and cost of the device as compared with the waveguide method.
  • microwaves are introduced through a loop antenna provided in the resonator to generate microwaves. It was configured to couple to a resonator.
  • the loop antenna described in Patent Document 1 is a conductor connected to a coaxial cable via a connector attached to the outer surface of the resonator, and its end portion is U-shaped so as to contact the inner surface of the resonator. It is formed into a shape.
  • the loop antenna is not limited to the U-shape disclosed in Patent Document 1, but an L-shaped bent antenna or a ring antenna is also known.
  • the loop antenna having the predetermined shape is formed outside the resonator in advance, and a large opening through which the loop antenna can be inserted is opened in the sidewall of the resonator and formed in advance.
  • the loop antenna is inserted into the resonator through the large opening.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a microwave device capable of suppressing performance variations with a simple structure.
  • a microwave device includes a microwave generator that generates and outputs a microwave, a power feeding path portion that guides the microwave output from the microwave generator, and the power feeding path portion.
  • a resonator having therein a cavity into which the microwave guided by the above is introduced, and an object supplied into the cavity is heated by the microwave.
  • the power feeding path portion has a center conductor, an insulator covering the center conductor, and an outer conductor covering the insulator, and extends coaxially.
  • An electromagnetic field of TM010 mode or TM110 mode showing a uniform electric field distribution in the direction of the central axis of the cavity is excited in the cavity of the resonator due to the resonance of the microwave.
  • the terminal portion of the outer conductor is electrically connected to one of the upper wall portion and the lower wall portion that closes both ends of the cavity in the central axis direction of the cavity.
  • the center conductor has an introduction part for introducing the microwave into the cavity.
  • the introduction portion penetrates a hole formed in the one wall portion in a state of being electrically insulated from the one wall portion and projects into the cavity, and an inner surface of the resonator. In the vicinity of, it extends parallel to the central axis.
  • a microwave generator that generates and outputs a microwave, a power feeding path portion that guides the microwave output from the microwave generator, and a power feeding path portion.
  • a TM010 mode or a TM110 mode having a cavity into which the guided microwave is introduced and showing a uniform electric field distribution in the direction of the central axis of the cavity due to the resonance of the microwave in the cavity.
  • the introducing portion to be introduced into the body penetrates one wall portion of the upper wall portion and the lower wall portion of the resonator and protrudes into the cavity, and is near the inner surface of the resonator.
  • the introduction part for introducing the microwave into the cavity is constructed with a simple structure without performing a special molding process, and the introduction part having the same shape is constructed with good reproducibility. Further, since the introduction portion only extends linearly, the hole through which the introduction portion penetrates the one wall portion is, for example, matched with the outer diameter of the insulator of the power feeding path portion. The diameter may be small, and the position of the introduction portion (a part of the central conductor) in the cavity can be easily determined by fitting the end portion of the insulator into the small diameter hole.
  • the shape and the position of the introducing portion forming the portion corresponding to the conventional loop antenna and the position and the posture of the introducing portion in the resonator are different. It is not likely to vary from device to device, and the degree of coupling of microwaves with the resonator is unlikely to vary from device to device. Therefore, variations in performance between devices are unlikely to occur, and a microwave device having a predetermined performance can be supplied with a simple structure and good reproducibility.
  • an electromagnetic field of TM010 mode or TM110 mode is excited in the cavity.
  • the electric field is uniform in the direction of the central axis of the cavity, so that the electric field is constant in the direction of the central axis (stretching direction).
  • the hole for penetrating the introduction portion is formed in one of the upper wall portion and the lower wall portion that closes both ends of the cavity in the central axis direction. Therefore, the microwave device according to the one aspect has a structure in which the electric field distribution in the cavity is not easily affected by the opening of the hole.
  • the conventional microwave device when inserting the preformed loop antenna into the resonator as described above, a large opening must be opened in the side wall of the resonator, and the electric field distribution is The structure is easily affected by the large opening formed in the side wall.
  • the microwave device since it is not necessary to open a large opening in the side wall of the resonator, the occurrence of disturbance in the electromagnetic field distribution due to the metal component can be prevented or suppressed. Further, in the microwave device according to the one aspect, the distal end portion of the introduction portion extending in the cavity is brought into contact with the other wall portion of the upper wall portion and the lower wall portion, or the distal end portion of the introduction portion. The introductory portion can be easily and stably supported by the two-point support simply by sandwiching the insulator between the upper wall portion and the other wall portion of the lower wall portion.
  • the hole can be made smaller than the large opening described above which is required when the conventional loop antenna is formed outside the resonator, the microwave through the hole is used. Wave leakage is extremely low and can be easily suppressed or prevented.
  • FIG. 2 It is a schematic structure figure of a microwave device concerning a 1st embodiment of the present invention. It is an expanded sectional view of the A section shown in FIG. FIG. 2 is a sectional view taken along the line BB shown in FIG. It is a graph for demonstrating the apparatus characteristic of the said microwave apparatus, and is a graph at the time of making toluene into a heating object.
  • 6 is a graph for explaining a change in the device characteristic when the target object is changed.
  • 6 is a graph for explaining changes in the device characteristics when the height of the cavity of the microwave device is changed.
  • 6 is a graph for explaining a change in the device characteristic when the minimum separation distance between the inner surface of the resonator of the microwave device and the introduction portion (antenna) is changed.
  • FIG. 13 is a cross-sectional view taken along the line CC of FIG. 12.
  • FIG. 1 is a schematic configuration diagram of a microwave device 100 according to the first embodiment of the present invention.
  • a microwave device 100 includes a microwave generator 10, a power feeding path unit 20, a resonator 30, a flow pipe 40, a power monitor 50, and a control unit 60, and an object is a microwave. It is a device for heating by.
  • the object is a liquid.
  • the said target object is called a heating target object.
  • the microwave device 100 is a flow-type device that can heat-treat a liquid as a heating target that flows so as to pass through the resonator 30.
  • the microwave generator 10 generates and outputs microwaves.
  • the microwave generator 10 is configured to be able to sweep the microwave frequency (oscillation frequency) within a predetermined sweep range, for example.
  • the microwave generator 10 is specifically configured to include a variable frequency oscillator 11, a variable attenuator 12, and an amplifier 13.
  • the variable frequency oscillator 11 outputs microwaves, and is composed of, for example, a voltage controlled oscillator (VCO).
  • VCO voltage controlled oscillator
  • the variable frequency oscillator 11 is configured to be able to sweep the oscillation frequency within the sweep range of 2.4 GHz to 2.5 GHz, which is the ISM frequency band, by changing the applied voltage.
  • the variable attenuator 12 variably attenuates the power of the microwave input from the variable frequency oscillator 11.
  • the amplifier 13 amplifies the power of the microwave input from the variable attenuator 12.
  • the control unit 60 controls the oscillation frequency and power of the microwave oscillated by the variable frequency oscillator 11 and the attenuation rate of the variable attenuator 12.
  • the microwave generator 10 outputs the microwave for entering the resonator 30 with a predetermined incident power P0.
  • the microwave generator 10 is normally configured to be able to sweep in the ISM frequency band, but may be configured to be capable of sweeping in a slightly wider range than the ISM frequency band, if necessary.
  • FIG. 2 is an enlarged cross-sectional view of part A shown in FIG.
  • the power feeding path unit 20 guides the microwave output from the microwave generator 10 with a predetermined incident power P0 to the resonator 30.
  • the power feeding path portion 20 has a center conductor 21, an insulator 22 that covers the center conductor 21, and an outer conductor 23 that covers the insulator 22 and extends coaxially.
  • the power feeding path portion 20 is made of a coaxial cable in this embodiment.
  • the center conductor 21 is made of a single copper wire material that extends in one direction and serves as the center material of the power feeding path portion 20.
  • the insulator 22 is made of a plastic material such as polyethylene that extends coaxially with the center conductor 21 so as to cover the outer periphery of the center conductor 21, and is a member that electrically insulates the center conductor 21 and the outer conductor 23. That is, the insulator 22 is formed in a tubular shape.
  • the outer conductor 23 is composed of a plurality of copper wire rods that are thinner than the central conductor 21.
  • the outer conductor 23 is formed by braiding several layers of the copper wire material so as to cover the outer periphery of the cylindrical insulator 22.
  • the outer periphery of the outer conductor 23 is covered with a protective film 24.
  • One end of the power feeding path 20 is connected to the microwave generator 10, and the other end of the power feeding path 20 is connected to the resonator 30.
  • the microwave output from the microwave generator 10 at a predetermined incident power P0 is guided to the resonator 30 via the isolator 14 and the directional coupler 15 provided on the power feeding path portion 20. Get burned.
  • the net incident power P1 which is the net microwave power, is smaller than the microwave incident power P0 output from the microwave generator 10.
  • the object to be heated can be efficiently heated by minimizing (that is, matching) the reflection of the microwaves from the resonator 30.
  • the reflected wave is absorbed by the non-reflecting terminator 16 by the action of the isolator 14.
  • a semi-rigid type cable described later in which the outer conductor 23 is a metal (for example, copper) cylindrical tubular body and the protective film 24 is omitted is used. May be.
  • the structure and the like of the connection portion of the power feeding path portion 20 to the resonator 30 will be described in detail later. Further, in the present embodiment, only one microwave generator 10 is provided, and the power feeding path portion 20 also forms one path.
  • the resonator 30 internally has a cavity 30a into which the microwave guided by the power feeding path section 20 is introduced, and generates a single-mode electric field in the cavity 30a by the resonance of the microwave.
  • the cavity 30a is formed in a columnar shape.
  • An electromagnetic field of TM010 mode exhibiting a uniform electric field distribution in the direction of the central axis O of the cavity 30a is excited in the cavity 30a by the resonance of microwaves.
  • the liquid as the heating target is supplied into the cavity 30a.
  • the liquid as the heating target is supplied into the cavity 30a by flowing through the cavity 30a through the circulation pipe 40 as described later.
  • the resonator 30 includes a cylindrical tubular body 31 extending in one direction, an upper wall portion 32 that closes an upper end side opening of the tubular body 31, and a lower wall that closes a lower end side opening of the tubular body 31. And a part 33.
  • the tubular body 31 constitutes a side wall portion of the resonator 30, and the upper wall portion 32 and the lower wall portion 33 have both ends in the central axis direction of the cavity 30a of the resonator 30 (that is, the center of the cylindrical cavity 30a). Both ends of the axis O in the stretching direction are closed.
  • the tubular body 31 is made of an aluminum member, and the upper wall portion 32 and the lower wall portion 33 are made of aluminum flat plate members, which are opposed to each other and are formed in a circular shape.
  • the upper wall portion 32 and the lower wall portion 33 are fixed to the ends of the tubular body 31 by bolts (not shown) or the like (not shown).
  • a cylindrical cavity 30a (in other words, an irradiation chamber) is formed in the housing formed by assembling the cylindrical body 31 as the side wall portion, the upper wall portion 32, and the lower wall portion 33.
  • the center axis O of the cavity 30a coincides with the cylinder center axis extending to the center of the cylinder 31.
  • the central axis O coincides with a line connecting the radial center of the circular upper wall portion 32 and the radial center of the circular lower wall portion 33.
  • the circulation pipe 40 is a pipe that is disposed so as to penetrate the cavity of the resonator 30 and that circulates a liquid as a heating target.
  • the flow pipe 40 is made of, for example, a flexible pipe made of borosilicate glass having a spiral portion 41 extending in a spiral shape.
  • the flow tube 40 has the center axis O of the cavity 30a as the spiral center axis. That is, the flow pipe 40 is arranged so that the spiral central axis thereof coincides with the central axis O of the cavity 30a. Further, both end portions of the flow pipe 40 linearly extend along the central axis O of the cavity 30a.
  • the flow tube 40 is positioned with respect to the resonator 30 by supporting both end portions thereof on the upper wall portion 32 and the lower wall portion 33.
  • the liquid as a heating target which is pressure-fed by a pressure-feeding pump (not shown), circulates from one end side to the other end side of the flow pipe 40, and is heat-treated by microwaves in the cavity 30a during this flow. ..
  • the microwave generator 10, the power feeding path portion 20, the resonator 30, and the flow tube 40 are heated by the microwave to heat the liquid as the heating target, which is supplied into the cavity 30a.
  • the microwave device 100 is configured.
  • the power monitor 50 measures the electromagnetic field intensity (electric field or magnetic field intensity) in the resonator 30, and is attached to, for example, the sidewall of the resonator 30 (in other words, the cylindrical body 31). A signal indicating the measurement result of the electromagnetic field strength measured by the power monitor 50 is input to the control unit 60.
  • the control unit 60 controls the operation of the microwave generator 10. For example, a signal from the power monitor 50 is input to the control unit 60, and a measurement result of the temperature of a liquid as a heating target measured by a temperature sensor (not shown) is input to perform optimum heating processing. The operation of the microwave generator 10 is controlled to be performed.
  • the temperature of the liquid flowing through the flow pipe 40 has a distribution that gradually rises from the upstream side to the downstream side by the irradiation of microwaves. It is assumed that the temperature sensor is arranged so as to be able to measure the temperature of the liquid flowing through the downstream side portion of the flow pipe 40 (for example, the portion on the upper wall portion 32 side in FIG. 1) in the resonator 30 as a representative temperature. ..
  • the control unit 60 controls the voltage applied to the variable frequency oscillator 11 of the microwave generator 10 based on the signal from the power monitor 50, for example, so that the microwave generator 10 outputs the voltage. It is possible to execute automatic frequency adjustment control for automatically adjusting (matching) the oscillation frequency f of the microwave to the resonance frequency F of the resonator 30. More specifically, as the frequency automatic adjustment control, the control unit 60 sets the oscillation frequency f at which the intensity of the signal from the power monitor 50 is the largest within the sweep range of the oscillation frequency f as the actual frequency of the resonator 30. The oscillation frequency f is automatically adjusted to the resonance frequency F by detecting the resonance frequency F and controlling the voltage applied to the variable frequency oscillator 11 so as to oscillate the resonance frequency F.
  • a reflected wave power monitor for measuring the power intensity of the reflected wave reflected from the resonator 30 toward the microwave generator 10 may be provided.
  • the control unit 60 may automatically adjust the oscillation frequency f to the resonance frequency F based on the signal indicating the measurement result of the power intensity measured by the power monitor for reflected waves.
  • the control unit 60 has a function of automatically adjusting (tuning) the oscillation frequency f to the resonance frequency F, a function of controlling the output of the microwave generator 10 to a predetermined value, and a directional coupler. It may have a function of detecting the reflected power detected at 15 and automatically adjusting the oscillation frequency f to the resonance frequency F or controlling the output level to a predetermined value according to the signal.
  • connection portion of the power feeding path portion 20 to the resonator 30 will be described in detail with reference to FIGS. 1 to 3.
  • the terminal portion of the outer conductor 23 in the power feeding path portion 20 is electrically connected to one of the upper wall portion 32 and the lower wall portion 33.
  • the one wall portion is the upper wall portion 32, and the end portion of the outer conductor 23 is electrically connected to the upper wall portion 32.
  • the one wall portion is described as the upper wall portion 32, but the present invention is not limited to this, and the one wall portion may be the lower wall portion 33.
  • the center conductor 21 of the power feeding path portion 20 has an introduction portion 21a for introducing microwaves into the cavity 30a.
  • the introduction portion 21a penetrates through the hole 32a formed in the upper wall portion 32 as the one wall portion in a state of being electrically insulated from the upper wall portion 32 and projects into the cavity 30a, and It extends parallel to the central axis O in the vicinity of the inner side surface 30b of the resonator 30 (in other words, the inner peripheral surface of the cylindrical body 31).
  • the inner side surface 30b of the resonator 30 is specifically the inner peripheral surface of the cylindrical body 31 and is exposed to the cavity 30a as a space.
  • the hole 32a has, for example, an inner diameter matching the outer diameter of the insulator 22 and extends parallel to the central axis O.
  • the terminal portion of the outer conductor 23 is in contact with the peripheral portion of the hole 32a on the upper surface of the upper wall portion 32, and is electrically connected and fixed to the peripheral portion by soldering or the like.
  • the terminal end portion of the insulator 22 projects below the terminal end portion of the outer conductor 23 by the wall thickness of the upper wall portion 32, for example.
  • the end portion of the center conductor 21 projects further downward than the end portion of the insulator 22.
  • the power feeding path portion 20 is positioned with respect to the resonator 30 by, for example, fitting the insulator 22 into the hole 32a.
  • the introduction portion 21a is electrically and reliably insulated from the upper wall portion 32 by the insulator 22, for example.
  • the hole 32a formed in the upper wall portion 32 penetrates the upper wall portion 32 in an electrically insulated state to project into the cavity 30a, and the inner surface 30b of the resonator 30.
  • Introducing part 21a extending parallel to central axis O is formed in the vicinity of.
  • the part of the introduction part 21a that projects into the cavity 30a is called an antenna, and the protruding length of this antenna is called the length L of the antenna.
  • the distal end portion 21a1 of the introduction portion 21a is electrically connected to the lower wall portion 33, which is the other wall portion of the upper wall portion 32 and the lower wall portion 33, as shown in FIG. There is.
  • the distal end portion 21a1 of the introduction portion 21a is electrically connected to the lower wall portion 33 by abutting and contacting the lower wall portion 33 as the other wall portion. Therefore, the height H of the cavity 30a (in other words, the distance between the upper wall portion 32 and the lower wall portion 33, or the columnar cavity height) is equal to the length L of the antenna of the introduction portion 21a. I am doing it.
  • the tip portion 21a1 of the introduction portion 21a contacts the upper surface of the lower wall portion 33, whereby the tip portion 21a1 of the introduction portion 21a is electrically connected to and supported by the lower wall portion 33.
  • the minimum separation distance G between the introduction portion 21a (specifically, the antenna) and the inner side surface 30b of the resonator 30 is set to a value of 5% or less of the diameter R0 of the cylindrical cavity 30a.
  • the introduction portion 21a is arranged near the inner side surface 30b of the resonator 30 at a predetermined angular position around the central axis O of the cavity 30a. That is, the minimum separation distance G between the introduction portion 21a and the inner side surface 30b is the inner side surface 30b of the distance between the inner side surface 30b and the introduction portion 21a that is closer to the inner side surface 30b. This indicates the minimum distance from the introduction portion 21a.
  • FIG. 4 is a graph for explaining device characteristics of the microwave device 100, and is a graph showing a result of simulation when liquid toluene is used as a heating target.
  • the horizontal axis represents the length L of the antenna
  • the left vertical axis represents the net incident power P1 [W] of the microwave into the cavity 30a
  • the right vertical axis represents the maximum of the toluene heated by the microwave. Shows the temperature T [° C.] of.
  • FIG. 4 is a graph for explaining device characteristics of the microwave device 100, and is a graph showing a result of simulation when liquid toluene is used as a heating target.
  • the horizontal axis represents the length L of the antenna
  • the left vertical axis represents the net incident power P1 [W] of the microwave into the cavity 30a
  • the right vertical axis represents the maximum of the toluene heated by the microwave. Shows the temperature T [° C.] of.
  • FIG. 4 Shows the temperature T [° C.] of
  • the simulation result of the portion surrounded by the broken line is the result of the example of the microwave device 100 of the present embodiment in which the distal end portion 21a1 of the introduction portion 21a is brought into contact with the lower wall portion 33.
  • the simulation result of the portion surrounded by the dotted chain line is the result of the comparative example.
  • a recess is formed in the lower wall portion 33 at a position corresponding to the tip portion 21a1 of the introducing portion 21a, and the tip portion 21a1 of the introducing portion 21a and the lower wall portion 33 (specifically, the bottom surface of the recess portion are formed). And a side surface), and the tip portion 21a1 is electrically insulated from the lower wall portion 33.
  • the length L of each antenna is the same in the example and the comparative example, but in the example, the leading end 21a1 of the introducing portion 21a is in contact with the lower wall portion 33, and in the comparative example, the introducing portion 21a. The leading end portion 21a1 does not contact the lower wall portion 33.
  • the object to be heated is liquid toluene
  • the incident power P0 of the microwave output from the microwave generator 10 is 10 [W].
  • the flow pipe 40 is made of borosilicate glass, the spiral winding diameter R1 of the spiral portion 41 of the flow pipe 40 is 12 [mm], the winding pitch P of the spiral portion 41 is 8 [mm], and the pipe diameter (inner diameter of the flow pipe 40 is ) R2 is 2.4 [mm].
  • the temperature of the liquid (toluene) at the inlet of the flow pipe 40 is room temperature (for example, 30 [° C.]), and the flow rate of the liquid (toluene) flowing through the flow pipe 40 is 1 [ml / min].
  • the diameter R1 of the cavity 30a (in other words, the inner diameter of the cylindrical body 31) is 91.2 [mm], the height H of the cavity 30a is 32 [mm], and the length L of the antenna is 32 [mm]. is there.
  • the minimum separation distance G between the introduction portion 21a (antenna) and the inner side surface 30b of the resonator 30 is 4 [mm].
  • the oscillation frequency f is assumed to match the frequency at which the net incident power P1 and the temperature T show the highest values when the oscillation frequency f is swept in the ISM frequency band. That is, under the basic conditions, the oscillation frequency f matches the resonance frequency F of the resonator 30.
  • the net incident power P1 is only slightly decreased from the incident power P0 of 10 [W], It is about 7-8 [W]. Therefore, the reflected waves of the microwaves from the cavity 30a are relatively small, and they are almost matched. Further, the temperature T is about 70-80 [° C.], and the microwave device 100 of the present embodiment in which the introduction portion 21a is in contact with the lower wall portion 33 has low microwave power. It has good heating performance. Further, as compared with the result of the comparative example surrounded by the chain double-dashed line in FIG.
  • the microwave device 100 of the present embodiment is similar to the comparative example and the antenna.
  • the length L is the same, the introduction portion 21a comes into contact with the lower wall portion 33, so that the net incident power P1 and the temperature T sharply increase from the comparative example, which is extremely good as compared with the comparative example. It can be seen that it has various device characteristics.
  • the leading end portion (terminal end) 21a1 of the introduction portion 21a contacts the lower wall portion 33 and is electrically short-circuited.
  • the current flows through the introduction portion 21a, the lower wall portion 33, the portion of the tubular body 31 (side wall portion of the resonator 30) close to the introduction portion 21a, and the upper wall portion 32.
  • the current flow path is formed by the introduction portion 21a, the lower wall portion 33, the portion of the cylindrical body 31 close to the introduction portion 21a, and the upper wall portion 32.
  • the introduction portion 21a of the central conductor 21 of the power feeding path portion 20 that introduces the microwave into the cavity 30a includes the upper wall portion 32 and the lower portion of the resonator 30.
  • One of the wall portions 33 (upper wall portion 32 in the figure) is penetrated to protrude into the cavity 30a, and in the vicinity of the inner side surface 30b of the resonator 30 in parallel with the central axis O of the cavity 30a, That is, it is linearly stretched. Therefore, the introduction part 21a for introducing the microwave into the cavity 30a is constructed with a simple structure without performing a special forming process, and the introduction part 21a having the same shape is constructed with good reproducibility.
  • the introduction portion 21a since the introduction portion 21a only extends linearly, the hole 32a through which the introduction portion 21a penetrates the one wall portion is, for example, matched with the outer diameter of the insulator 22 of the power feeding path portion 20.
  • the diameter may be small, and the position of the introduction portion 21a (a part of the central conductor 21) in the cavity 30a can be easily determined by simply fitting the end portion of the insulator 22 into the small diameter hole 32a.
  • the shape and shape of the introduction part 21a and the position and orientation of the introduction part 21a in the resonator 30 that constitute a part corresponding to a conventional loop antenna are different for each device.
  • the microwave device 100 It does not easily fluctuate, and the degree of coupling of the microwave with the resonator 30 does not easily fluctuate from device to device. Therefore, variations in performance between devices are unlikely to occur, and the microwave device 100 having a predetermined performance is supplied with a simple structure and good reproducibility. In this way, it is possible to provide the microwave device 100 capable of suppressing performance variations with a simple structure.
  • an electromagnetic field of TM010 mode is excited in the cavity 30a.
  • the electric field is uniformly distributed in the direction of the central axis O of the cavity 30a, the electric field is constant in the direction of the central axis O (stretching direction).
  • the through hole 32a of the introduction portion 21a is formed in one wall portion (for example, the upper wall portion 32) of the upper wall portion 32 and the lower wall portion 33 that closes both ends in the central axis direction of the cavity 30a. ing. Therefore, the microwave device 100 has a structure in which the electric field distribution and the like are not easily affected by the opening of the hole 32a.
  • the hole 32a can be made smaller than the above-described large opening required when the conventional loop antenna is molded outside the resonator, the microwave leakage through the hole 32a is extremely small, and It can be easily suppressed or prevented. Specifically, as in the present embodiment, by matching the inner diameter of the hole 32a with the outer diameter of the insulator 22 and fitting the insulator 22 into the hole 32a, microwave leakage can be completely prevented.
  • the liquid (solution) has different dielectric properties depending on the liquid type. Therefore, it is desirable that the microwave device 100 can essentially heat liquids of various liquid types as dielectrics having different dielectric properties.
  • FIG. 5 is a graph for explaining the change in the device characteristics of the microwave device 100 when the heating target is changed, and shows the result of simulation under the same conditions as the basic conditions except for the liquid type.
  • the liquid type ethanol, methanol, ethylene glycol, acetonitrile, dimethyl sulfoxide, and water were given as an example in addition to toluene, and simulations were performed for each liquid type.
  • symbols abbreviated Tolu symbols abbreviated Tolu
  • ethanol, methanol, ethylene glycol, acetonitrile, dimethylsulfoxide, and water are shown as Tol, ET, MT, EG, AN, DMSO, and WT, respectively. ing.
  • FIG. 5 for simplification of description, symbols abbreviated Tolu, ethanol, methanol, ethylene glycol, acetonitrile, dimethylsulfoxide, and water are shown as Tol, ET, MT, EG, AN, DMSO, and W
  • the simulation results of the net incident power P1, the temperature T, and the resonance frequency F of the microwave in the cavity 30a for the liquid type corresponding to the symbol are shown in order from the left.
  • the horizontal axis represents the relative permittivity ⁇ ′ of each liquid
  • the left vertical axis represents the net incident power P1 [W] and the resonance frequency F [GHz]
  • the right vertical axis represents each microwave heated.
  • the maximum temperature T [° C] of the liquid is shown.
  • toluene and acetonitrile have higher net incident power P1 and temperature T than other liquid species. That is, with respect to toluene and acetonitrile, which have a relatively small dielectric loss tangent tan ⁇ and a low dielectric loss, the microwaves are less reflected from the cavity 30a and the matching is good.
  • ethylene glycol and water have lower net incident power P1 and temperature T than other liquid species. That is, with respect to ethylene glycol and water, which have a relatively large dielectric loss tangent tan ⁇ and a high dielectric loss, microwaves are often reflected from the cavity 30a, and it is difficult to obtain good matching.
  • the resonance frequency F changes slightly depending on the liquid type, but all liquids are within the ISM frequency band of 2.4 to 2.5 [GHz], and microwaves in the ISM frequency band are included. It turns out that it can be heated with. From these, in the microwave device 100 according to the present embodiment in which the introduction portion 21a is in contact with the lower wall portion 33, good heating is possible except for the case of ethylene glycol or water having a relatively large dielectric loss tangent tan ⁇ . It has been found that it is possible to perform good heat treatment with a single device, from toluene with a low relative permittivity ⁇ 'to dimethylsulfoxide with a relatively high relative permittivity ⁇ ', which has characteristics.
  • the microwave device 100 of the present embodiment can be used in a single device in the ISM frequency band from such a non-polar solvent to a polar solvent having a high relative permittivity ⁇ ′ and a relatively large microwave absorption.
  • a heat treatment can be performed. The above simulation is performed assuming that the parameters of the liquid, that is, the dielectric, do not change with temperature. In practice, the parameters of most liquids change as the temperature rises. Generally, as the temperature rises, the relative permittivity ⁇ ′ of the liquid decreases.
  • the relative permittivity ⁇ ′ decreases in the direction in which the reflection of microwaves from the cavity 30a decreases as the temperature rises. ⁇ 'changes. Therefore, even with water, the actual net incident power P1 and the temperature T are larger than the simulation result shown in FIG. 5, and a practical heating characteristic can be obtained.
  • a matching device in other words, impedance matching
  • the distal end portion 21a1 of the introduction portion 21a is electrically connected to the lower wall portion 33 which is the other wall portion of the upper wall portion 32 and the lower wall portion 33.
  • liquids other than liquids having a relatively high dielectric loss tan ⁇ such as ethylene glycol and water (for example, toluene, ethanol, It is possible to easily provide the microwave device 100 that exhibits good heating characteristics when a heating target is methanol, acetonitrile, dimethyl sulfoxide, or the like.
  • the introduction portion 21a can be stably supported by two-point support with a simple structure.
  • the said one wall part was demonstrated as what is the upper wall part 32, it is not restricted to this and the said one wall part may be the lower wall part 33.
  • the end portion of the outer conductor 23 is electrically connected to the lower wall portion 33
  • the lower wall portion 33 is formed with a hole 32a for penetrating the introduction portion 21a
  • the other wall portion serves as the upper wall portion 32.
  • the tip portion 21a1 of the introduction portion 21a may be brought into contact with the lower surface of the upper wall portion 32. Since the introduction part 21a is a part of the central conductor 21 made of a copper wire, the introduction part 21a penetrates through the hole 32a formed in the lower wall part 33 and linearly stabilizes itself in the cavity 30a. be able to.
  • FIG. 6 is a graph for explaining changes in the device characteristics when the height H of the cavity 30a of the microwave device 100 is changed. Specifically, when the leading end 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, when only the height H of the cavity 30a under the basic conditions is changed for the liquid toluene as the heating object. It is a simulation result.
  • the horizontal axis represents the height H [mm] of the cavity 30a
  • the left vertical axis represents the net incident power P1 [W] and the resonance frequency F [GHz]
  • the right vertical axis is heated by microwaves. It also shows the maximum temperature T [° C] of toluene.
  • the tip portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, the value of the height H of the cavity 30a indicated by the horizontal axis matches the length L of the antenna.
  • the net incident power P1 and the temperature T are changed. Therefore, when the height H of the cavity 30a is changed, the microwave reflection characteristic in the cavity 30a also changes.
  • the net incident power P1 and the temperature T are, for example, from 24 [mm] as the height H of the cavity 30a increases under the influence of the increase or decrease of the height H of the cavity 30a. It increases almost in the same way up to 48 [mm], decreases almost in the same way from 48 [mm] to 64 [mm], and then starts to increase.
  • the net incident power P1 and the temperature T tend to increase and decrease substantially periodically as the height H of the cavity 30a changes.
  • a TM010 mode electromagnetic field showing a uniform electric field distribution in the direction of the central axis O of the cavity 30a (that is, no change in electromagnetic field distribution) is excited.
  • the wave reflection characteristic (coupling degree) varies depending on the height H of the cavity 30a. Specifically, in the present embodiment, since the tip end portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, the length L of the antenna changes according to the height H of the cavity 30a.
  • the path length of the microwave feeding structure equivalent to the loop antenna formed via the introduction portion 21a, the lower wall portion 33, the portion of the cylindrical body 31 close to the introduction portion 21a, and the upper wall portion 32 is It changes according to the change in the height H of the body 30a (that is, the length L of the antenna). Then, as the path length changes, the microwave coupling state in the cavity 30a changes, and as a result, the microwave reflection characteristic (coupling degree) in the cavity 30a is the height H (antenna of the cavity 30a). Of length L). Further, the resonance frequency F is slightly within the ISM frequency band, although it is slightly changed by changing the height H of the cavity 30a (the length L of the antenna).
  • the lower the height H of the cavity 30a the more compact the device.
  • the net incident power P1 is about 7-8 [W] and the temperature T is about 70-80 [° C], which makes the device compact. It is possible to obtain the heating characteristics suitable for practical use.
  • the simulation was performed when the incident power P0 of the microwave was 10 [W], for example, when the incident power P0 is 50 [W], the temperature T can be as high as 250 [° C.].
  • FIG. 7 is a graph for explaining changes in the device characteristics when the minimum separation distance G between the inner surface 30b of the resonator 30 and the introduction portion 21a (specifically, the antenna) is changed. Specifically, when the tip end portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, for the liquid toluene as the heating target, the inner side surface 30b of the resonator 30 and the introduction portion 21a (the above-mentioned It is a simulation result when only the minimum separation distance G between antennas) is changed.
  • the minimum separation distance G between the inner surface 30b of the resonator 30 and the introduction portion 21a specifically, the antenna
  • the horizontal axis represents the minimum separation distance G [mm]
  • the left vertical axis represents the net incident power P1 [W] and the resonance frequency F [GHz]
  • the right vertical axis represents the toluene heated by microwaves.
  • the highest temperature T [° C] is shown.
  • the resonance frequency F is slightly within the ISM frequency band although it changes slightly due to the change in the minimum separation distance G.
  • the present embodiment As described above, the minimum separation distance G between the introduction portion 21a (the antenna) and the inner side surface 30b of the resonator 30 is 5% or less of the diameter R0 of the cylindrical cavity 30a (for example, 4 [mm]). When set to about), the heating characteristics are further improved.
  • the resonance frequency F can be kept within the ISM frequency band, and in this case, the temperature T becomes 57 [° C], Practical heating characteristics can be obtained in the frequency band.
  • the resonance frequency F can be kept within the ISM frequency band, and in this case, the temperature T becomes 97.5 [° C].
  • FIG. 8 is a schematic configuration diagram of a microwave device 100 'according to the second embodiment of the present invention.
  • the same elements as those of the microwave device 100 according to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only different portions will be described.
  • the tip portion 21 a 1 of the introduction portion 21 a is electrically insulated from the lower wall portion 33 which is the other wall portion of the upper wall portion 32 and the lower wall portion 33.
  • the distal end portion 21a1 of the introduction portion 21a is located a predetermined distance before the lower wall portion 33 as the other wall portion. That is, the front end portion 21a1 of the introduction portion 21a does not contact the lower wall portion 33 as the other wall portion of the upper wall portion 32 and the lower wall portion 33. Therefore, the height H of the cavity 30a is larger than the length L of the antenna of the introduction portion 21a.
  • Other configurations are the same as those in the first embodiment.
  • FIG. 9 is a graph for explaining a change in device characteristics when the length L of the antenna is changed in the microwave device 100 '. More specifically, it is a simulation result when only the length L of the antenna under the above-mentioned basic conditions is changed for the liquid toluene as the heating object within a range in which the tip portion 21a1 of the introduction portion 21a does not contact the lower wall portion 33.
  • the horizontal axis represents the length L of the antenna
  • the left vertical axis represents the net incident power P1 [W] of the microwave into the cavity 30a
  • the right vertical axis represents the maximum of the toluene heated by the microwave. Shows the temperature T [° C.] of.
  • the length L of the antenna is the same as 32 [mm] which is the height H of the cavity 30a under the basic conditions (the rightmost plot in the figure) or shorter.
  • the microwave device 100 ′ has a device characteristic having a peak property with respect to the net incident power P 1 and the temperature T.
  • the maximum values of the net incident power P1 and the temperature T in this embodiment are the net incident power P1 and the temperature in the example surrounded by the broken line in FIG. 4 (when the introduction portion 21a is in contact with the lower wall portion 33). Greater than the value of T.
  • the linear shape of the introducing portion 21a is maintained sufficiently stable without contacting the tip portion 21a1 of the introducing portion 21a with the lower wall portion 33, and the introducing portion 21a is cantilevered by the upper wall portion 32. May be stable due to support.
  • the tip portion 21a1 of the introduction portion 21a is not brought into contact with the lower wall portion 33 as in the present embodiment, and the antenna length is increased. It is advisable to set the length L to a length (15 [mm] in the figure) where the net incident power P1 and the temperature T show the maximum value.
  • FIG. 10 is a graph for explaining changes in device characteristics when the heating target is changed in the microwave device 100 ′, and is a graph similar to FIG. 9. More specifically, FIG. 9 shows a simulation result when the heating target is changed to methanol and only the length L of the antenna under the above basic condition is changed within a range in which the tip 21a1 of the introduction portion 21a does not contact the lower wall portion 33. It is the figure which overlapped with the simulation result in the case of the shown toluene (non-contact).
  • the microwave device 100 ′ has a device characteristic having a peak property with respect to the net incident power P 1 and the temperature T even in the case of methanol.
  • the values of the net incident power P1 and the temperature T at the higher peak of the two peaks are not shown in the figure, but the values in the case where the introduction part 21a is in contact with the lower wall part 33 The values are substantially the same as the values of the net incident power P1 and the temperature T.
  • the linear shape of the introduction portion 21a is maintained as described above and is stabilized by cantilever support, priority is given to improvement of the net incident power P1 and the temperature T, and As in the embodiment, the tip 21a1 of the introduction portion 21a is not brought into contact with the lower wall portion 33, and the length L of the antenna is the length at which the net incident power P1 and the temperature T show the peak of the higher side (in the figure, It is preferable to set it to about 28 [mm]. Further, as can be seen from FIG.
  • the net incident power P1 and the temperature T show maximum values when the antenna length L is approximately 15 [mm], and in the case of methanol, the antenna length is When L is approximately 27.5 [mm], the net incident power P1 and the temperature T show maximum values. That is, the length L of the antenna that can perform the efficient heating process changes according to the type of the heating target.
  • the insulator is sandwiched between the distal end portion 21a1 of the introduction portion 21a and the lower wall portion 33 (that is, the other wall portion of the upper wall portion 32 and the lower wall portion 33). You may comprise. As a result, the introduction portion 21a can be stably and reliably supported by the two-point support.
  • the shape of the introduction part 21 a and the position and orientation of the introduction part 21 a in the resonator 30 are unlikely to vary from device to device, and the degree of coupling of the microwave with the resonator 30 is also small. It is possible to provide a device that is less likely to vary from device to device and that can suppress performance variations with a simple structure.
  • FIG. 11 is a diagram for explaining a modification of the introduction unit 21a in the microwave device 100 and the microwave device 100 ', and is a cross-sectional view corresponding to FIG.
  • the number of introduction portions 21a is not limited to this, and may be plural.
  • the introducing portions 21a may be provided in parallel at a plurality of locations (five locations in the figure).
  • a plurality of introduction parts 21a are arranged at intervals in the radial direction of the cavity 30a, and the introduction part 21a to which the microwave is actually guided can be switched from among the plurality of introduction parts 21a.
  • the minimum separation distance G between the inner surface 30b of the resonator 30 and the introduction portion 21a (the antenna) can be appropriately switched according to the liquid type or the like to be heated.
  • the microwave device 100 and the microwave device 100 have only one introduction part 21a in the cavity 30a and can change the minimum separation distance G of this one introduction part 21a.
  • a separate distance adjusting mechanism may be provided.
  • the separation distance adjusting mechanism supports, for example, the introduction portion 21a on the one wall portion so that the position of the introduction portion 21a in the radial direction of the cavity 30a can be changed, and the inner surface 30b of the resonator 30 and the introduction portion can be changed. It is configured such that the minimum separation distance G between 21a can be changed.
  • FIG. 12 is a schematic configuration diagram for explaining an example in which a plurality of microwave output units 70 including the microwave generator 10 and the power feeding path portion 20 are provided in the microwave device 100 and the microwave device 100 ′. is there.
  • FIG. 13 is a sectional view taken along the line CC of FIG.
  • the microwave output units 70 introduce microwaves into the cavity 30a through the introduction portions 21a of the respective power feeding path portions 20 with the same output and the same phase. For example, as shown in FIG.
  • the introduction portions 21a are arranged at equal angular pitches around the central axis O of the cavity 30a and in such a manner that the minimum separation distances G coincide with each other. This makes it possible to combine power.
  • the above-mentioned matching device that reflects the reflected wave and makes it enter the cavity 30a again is further provided between the directional coupler 15 and the resonator 30 (introducing part 21a). Good.
  • the microwave device 100 and the microwave device 100 ′ have an output capacity of 40 w as a whole by the four sets of microwave output units, It is possible to achieve power combination that increases in proportion to the number of the microwave output units.
  • the arrangement and structure of the introduction portion 21a of each power feeding path portion 20 in the cavity 30a are shown symmetrically with respect to the central axis O, but they are strictly symmetrical. It does not have to be arrangement and structure.
  • FIG. 14 is a sectional view for explaining a modified example of the cavity 30a.
  • the cavity 30a is formed in a cylindrical shape, but the present invention is not limited to this.
  • the cavity 30a may be formed in a regular square pole shape as shown in FIG.
  • the TM110 mode electromagnetic field exhibiting a uniform electric field distribution in the direction of the central axis O of the cavity 30a is excited in the cavity 30a by the resonance of microwaves.
  • the regular square columnar cavity 30a may be formed inside the cylindrical body 31.
  • the tubular body 31 may be formed in a rectangular tubular shape.
  • the minimum separation distance G between the introduction portion 21a and the inner side surface 30b of the resonator 30 is equal to that of the cavity 30a facing each other.
  • the value may be set to 5% or less or 20% or less of the distance L1 between the inner side surfaces.
  • liquids other than liquids with a relatively large dielectric loss tangent tan ⁇ such as ethylene glycol and water (for example, toluene, ethanol, methanol, acetonitrile, dimethyl sulfoxide)
  • the minimum separation is required.
  • the heating characteristics are further improved.
  • the minimum separation distance G is the cavity 30a. It is preferable to set the value to 20% or less of the distance L1 between the inner side surfaces facing each other.
  • FIG. 15 is a diagram for explaining a modified example of the power feeding path portion 20 (specifically, the connection portion of the outer conductor 23), and is a main-portion cross-sectional view corresponding to FIG. 2.
  • the end portion of the outer conductor 23 is in contact with the upper surface of the upper wall portion 32, and the end portion of the insulator 22 is larger than the end portion of the outer conductor 23 by the wall thickness of the upper wall portion 32.
  • the invention is not limited to this.
  • the end portions of the outer conductor 23 and the insulator 22 may extend to a position flush with the lower surface of the upper wall portion 32.
  • the inner diameter of the hole 32a may be matched with the outer diameter of the outer conductor 23.
  • the end portion of the outer conductor 23 and / or the end portion of the insulator 22 may be located inside the hole 32a, or slightly inside the cavity 30a from the lower surface of the upper wall portion 32. It may be protruding.
  • FIG. 16 is a diagram for explaining a modified example of the lower wall portion 33 of the resonator 30 in the microwave device 100 'of the second embodiment.
  • the leading end portion 21 a 1 of the introduction portion 21 a does not contact the lower wall portion 33. Therefore, as shown in FIG. 16, the length L of the antenna (in other words, the protruding length from the lower surface of the upper wall portion 32) is made longer than the height H of the cavity 30 a, and the lower wall portion 33 has the introduction portion 21 a.
  • a concave portion 33a may be formed or provided in a portion corresponding to the tip portion 21a1.
  • the tip portion 21a1 of the introduction portion 21a extends into the recess 33a and is not in contact with the inner surface of the recess 33a.
  • the length of the portion functioning as the antenna in the introduction part 21a for introducing the microwave becomes the height H of the cavity 30a.
  • an insulating piece may be provided between the tip end portion 21a1 of the introduction portion 21a and the upper surface of the lower wall portion 33. As a result, the introduction portion 21a can be reliably supported, and the insulation between the introduction portion 21a and the lower wall portion 33 can be reliably performed. Further, an insulating piece may be provided between the recess 33a and the introduction portion 21a shown in FIG.
  • a concave portion into which the tip portion 21a1 of the introduction portion 21a can be fitted is formed in the lower wall portion 33 of the microwave device 100 of the first embodiment, and the tip portion of the introduction portion 21a is formed in this depression portion. 21a1 may be fitted.
  • the introduction portion 21a can be supported and electrically connected to the lower wall portion 33 of the introduction portion 21a.
  • the one wall portion is described as the upper wall portion 32, but the present invention is not limited to this, and the one wall portion may be the lower wall portion 33.
  • the end portion of the outer conductor 23 is electrically connected to the lower wall portion 33, the lower wall portion 33 is formed with a hole 32a for penetrating the introduction portion 21a, and the other wall portion serves as the upper wall portion 32.
  • the distal end portion 21a1 of the introduction portion 21a is electrically insulated from the upper wall portion 32 and is positioned a predetermined distance before the upper wall portion 32. Further, when the recess 33a is provided, it may be provided on the upper wall portion 32.
  • the microwave device 100 ′ of the second embodiment may be provided with an adjusting mechanism (a supporting portion 80 described later) capable of adjusting the length (projection length) L of the antenna, or As shown in FIG. 18, while the length L of the antenna is fixed, the length around the distal end portion 21a1 side of the introduction portion 21a is adjusted by an obstacle (a cylinder 90 described later). Alternatively, the substantial length of the antenna may be adjustable.
  • the microwave device 100 ′ is provided on the one wall portion (upper wall portion 32 in the figure) and can slide the power feeding path portion 20 in the direction of the central axis O.
  • the support part 80 which supports in.
  • the support portion 80 has an inner peripheral surface 80a with which the outer peripheral surface of the end portion side of the outer conductor 23 is in sliding contact, and the end portion of the outer conductor 23 and the one wall portion (upper wall portion 32 in the figure) of the outer conductor 23. It electrically connects the two. For example, by sliding the outer conductor 23 along the support portion 80 from the state shown in FIG. 17 (A) to the state shown in FIG. 17 (B), the outer conductor 23 projects into the cavity 30a of the introduction portion 21a.
  • the support portion 80 is made of, for example, an aluminum member, and is formed in a tubular shape having a flange portion at one end thereof.
  • the support portion 80 is fixed to the one wall portion by fixing the flange portion to the one wall portion by a fastening member such as a bolt (not shown).
  • a small screw is screwed into the cylindrical wall of the support portion 80 so as to penetrate the cylindrical wall, and the tip of the small screw presses the outer peripheral surface of the outer conductor 23.
  • the outer conductor 23 is connected and fixed to the resonator 30 together with the center conductor 21 and the insulator 22.
  • the length L of the antenna of the introduction part 21a is determined.
  • the length L of the antenna in the introducing portion 21a in the state shown in FIG. 17B is shorter than the length L of the antenna in the introducing portion 21a in the state shown in FIG. 17A.
  • the power supply path portion 20 does not need to be provided with the protective film 24 shown in FIG.
  • the power feeding path portion 20 may use a so-called semi-rigid type coaxial cable that uses, for example, a cylindrical cylindrical body made of copper as the outer conductor 23.
  • the microwave device 100 ′ has a central axis O with respect to the other wall portion at a portion corresponding to the introduction portion 21 a in the other wall portion (the lower wall portion 33 in the figure).
  • the cylindrical body 90 may be provided so as to be slidable in the direction.
  • the tubular body 90 surrounds the portion of the introduction portion 21a on the side of the distal end portion 21a1. By sliding the tubular body 90 to an appropriate position in the direction of the central axis O, the length L'of the region of the outer peripheral surface of the introduction portion 21a that is directly exposed to the cavity 30a is adjusted.
  • a portion (LL ′) where the introduction portion 21a and the tubular body 90 overlap is a portion that receives a dielectric effect, and a substantial length that functions as an antenna in this portion (LL ′). Changes according to the value of the relative dielectric constant of the tubular body 90. Accordingly, the length of the portion functioning as the antenna in the introduction portion 21a can be substantially adjusted without changing the antenna length (that is, the protruding length) L, and the antenna length L itself shown in FIG. It is possible to obtain the same operational effect as in the case of directly adjusting. For example, by sliding the tubular body 90 along the hole 33b formed in the other wall from the state shown in FIG. 18A to the state shown in FIG. You can adjust the length of.
  • the tubular body 90 is made of, for example, a ferroelectric material, and has an inner diameter that matches the outer diameter of the introduction portion 21a. Further, a cylindrical body supporting portion 95 for slidably supporting the cylindrical body 90 is attached to the other wall portion.
  • the tubular body supporting portion 95 is made of, for example, an aluminum member, and is formed into a tubular shape having a flange portion at one end thereof.
  • the tubular body support portion 95 is fixed to the other wall portion by fixing the flange portion to the other wall portion by a fastening member such as a bolt (not shown).
  • the tubular body 90 is fixed to the resonator 30.
  • the substantial length of the antenna of the introduction part 21a is determined.
  • the substantial length of the antenna in the introduction portion 21a in the state shown in FIG. 18 (B) is longer than the substantial length of the antenna in the state shown in FIG. 18 (A).
  • the one wall portion has, for example, a structure in which the outer conductor 23 is connected and fixed to the one wall portion as shown in FIG. Further, not limited to this, the structure shown in FIG.
  • the length L of the antenna itself is adjusted by the structure shown in FIG. 17 and shown in FIG.
  • the structure allows the length L of the antenna to be substantially adjusted. That is, in the portion (LL ′) where the introduction portion 21a and the tubular body 90 overlap, a dielectric shortening effect occurs, and the characteristic of the microwave that the substantial length of the antenna changes is used. ..
  • the directional coupler 15 and the resonator 30 (introduction) in the power feeding path portion 20 are not limited to the modifications shown in FIGS.
  • the matching unit described above may be provided between the unit 21a). With this matching device, the reflected wave of the microwave from the cavity 30a can be canceled in a circuit manner. As a result, the net incident power P1 is further increased, and depending on the performance of the matching device, most of the microwave power of the microwave output from the microwave generator 10 at the predetermined incident power P0 is raised to the heating target. It can be used for temperature, and the device characteristics (temperature rising characteristics) can be further improved.
  • the distribution pipe 40 has the spiral portion 41, but the distribution pipe 40 is not limited to this, and may be a straight pipe that extends straight.
  • the insertion hole 32a of the introduction portion 21a is formed in the upper wall portion 32, and the distal end portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, but the present invention is not limited to this.
  • the hole 32a may be formed in the lower wall portion 33, and the leading end portion 21a1 of the introduction portion 21a may be in contact with the upper wall portion 32.
  • the power feeding path portion 20 is made of the coaxial cable, but the present invention is not limited to this, and the center conductor, the insulator covering the center conductor, and the insulator are covered. It suffices as long as it has an external conductor, extends coaxially, and guides the microwave output from the microwave generator 10 at a predetermined incident power P0 to the resonator 30.
  • the power feeding path unit 20 is a microwave output unit (for example, an output terminal unit of an output circuit) in a microwave generator including the microwave generator 10, the isolator 14, the directional coupler 15, the non-reflection terminator 16, and the like.
  • connection connector that connects the resonator 30 and a resonator-side connector that is provided on the one wall portion and that connects to the connection connector.
  • the connector has a copper wire member forming a part of the central conductor, a part of the outer conductor, and a void as the insulator provided around the copper wire member. And a cylindrical body made of aluminum that extends in a line. By fitting or screwing this tubular body, which is a part of the outer conductor, into the resonator-side connector, the end portion of the outer conductor is electrically connected to the one wall portion.
  • the resonator-side connector is electrically connected to a copper wire member forming a part of the central conductor of the connector, and is vacant while being electrically insulated from the one wall portion. It is configured to have an introduction portion 21a that protrudes into the body 30a and extends in the vicinity of the inner side surface 30b of the resonator 30 and parallel to the central axis O.
  • the microwave device 100 and the microwave device 100 ′ have been described by way of example of the case where the microwave device 100 and the microwave device 100 ′ are a flow type in which heat treatment is performed while circulating a liquid, but the present invention is not limited to this.
  • a batch type in which heat treatment is performed in a stationary state may be used.
  • the object to be heated is a liquid, but the object to be heated is not limited to this and may be a solid.
  • the solid also includes aggregates of granular materials and powdery materials.
  • Microwave generator 20 Power supply path section (coaxial cable) 21 ... Central conductor 21a ... Introductory part 21a1 ... Tip part 22 ... Insulator 23 ... Outer conductor 30 ... Resonator 30a ... Cavity 30b ... Inner surface 32. ..Upper wall (one wall) 32a ... Hole 33 ... Lower wall (other wall) 40 ... Distribution pipe 41 ... Spiral part 70 ... Microwave output unit 80 ... Support part 90 ... Cylindrical body 100 ... Microwave device 100 '... Microwave device O ... ⁇ Center axis

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Provided is a microwave device that can suppress a performance variation by means of a simple structure. This microwave device 100 includes a microwave generator 10; a power feeding path unit 20 which guides microwaves; and a resonator 30 which includes therein a cavity 30a into which the microwaves are introduced. The power feeding unit 20 includes a center conductor 21, an insulator and an external conductor. In the cavity 30a, an electromagnetic field of the TM010 mode or TM110 mode is excited. A termination unit of the external conductor is electrically connected to one wall part among an upper wall part and a lower wall part of the resonator 30. The center conductor 21 includes an introduction unit 21a that introduces the microwaves into the cavity 30a. The introduction unit 21a protrudes inside the cavity 30a by penetrating through a hole 32a formed in the one wall part in a state of being electrically insulated from the one wall part to, and extends in parallel to a central axis O around an inner surface 30b of the resonator 30.

Description

マイクロ波装置Microwave equipment
 本発明は、マイクロ波を照射して加熱や化学反応促進などの処理を対象物に施すマイクロ波装置に関する。 The present invention relates to a microwave device that irradiates a microwave to subject an object to processing such as heating and accelerating a chemical reaction.
 近年、マイクロ波の有する高周波エネルギーが対象物(物質)の化学反応を促進することが見出され、バイオケミストリーなどの産業、科学、医療の様々な分野において、マイクロ波を利用した装置(マイクロ波装置)への関心が高まっている。 In recent years, it has been found that high-frequency energy of microwaves promotes a chemical reaction of an object (substance), and in various fields such as biochemistry, industry, science, and medicine, a device using microwaves (microwave Equipment) is increasing.
 このようなマイクロ波装置として、特許文献1に記載されたものが知られている。この特許文献1に記載されたマイクロ波装置は、マイクロ波を発生(発振)して出力するマイクロ波発生器と、空胴を内部に有した共振器と、マイクロ波発生器と共振器との間に接続されマイクロ波発生器から出力されたマイクロ波を共振器へ導く同軸給電線(以下では、同軸ケーブルという)とを備えている。このマイクロ波装置では、同軸ケーブルにより共振器へ導かれたマイクロ波はループアンテナを介して共振器内の空胴に導入されている。そして、このマイクロ波装置では、空胴内において、マイクロ波を共振させてシングルモードの電界を発生させ、このマイクロ波により、空胴内に供給された対象物を加熱している。このマイクロ波装置では、マイクロ波発生器から出力されたマイクロ波を共振器へ導いて結合させる方式として前述したように同軸ケーブルを用いた同軸線方式が採用されている。一般的に、同軸線方式では、導波管方式のような低出力から高出力まで広い出力範囲のマイクロ波を導くことは困難である。しかし、同軸線方式は、導波管方式と比較すると装置の小型化及び低廉化を図ることができるため、低出力用途(例えば、100W以下程度)に好適である。 As such a microwave device, the one described in Patent Document 1 is known. The microwave device described in Patent Document 1 includes a microwave generator that generates (oscillates) microwaves and outputs the microwaves, a resonator having a cavity inside, and a microwave generator and a resonator. A coaxial feed line (hereinafter, referred to as a coaxial cable) that is connected between them and guides the microwave output from the microwave generator to the resonator. In this microwave device, the microwave guided to the resonator by the coaxial cable is introduced into the cavity inside the resonator via the loop antenna. Then, in this microwave device, the microwave is resonated in the cavity to generate a single mode electric field, and the microwave heats the object supplied into the cavity. In this microwave device, as described above, the coaxial line system using the coaxial cable is adopted as a system for guiding and coupling the microwave output from the microwave generator to the resonator. In general, in the coaxial line system, it is difficult to guide microwaves in a wide output range from low output to high output as in the waveguide system. However, the coaxial line method is suitable for low output applications (for example, about 100 W or less) because it can reduce the size and cost of the device as compared with the waveguide method.
特開2006-338895号公報JP, 2006-338895, A
 ここで、従来の同軸線方式を採用するマイクロ波装置では、特許文献1に記載されたマイクロ波装置のように、共振器内に設けられるループアンテナを介してマイクロ波を導入し、マイクロ波を共振器に結合するように構成されていた。特許文献1に記載されたループアンテナは、共振器の外側面に取り付けられたコネクタを介して同軸ケーブルと接続された導体であり、その端部が共振器の内側面に接触するようにU字状に形成されている。ループアンテナとしては、特許文献1に開示されたU字状に限らず、L字状に屈曲したものやリング状に形成されたものも知られている。そして、これらのループアンテナを共振器内に構築する方法としては、共振器内でループアンテナを成形する方法と、共振器外でループアンテナを成形する方法とがある。具体的には、共振器内で成形する場合は、導体としての細線を挿通可能な小孔が共振器の側壁に開けられ、導体の一部が小孔を介して共振器内に挿入された後に、導体の一部が共振器内でU字状、L字状又はリング状等の所定形状に屈曲等されることにより、ループアンテナが成形される。また、共振器外で成形する場合は、共振器外で予め前記所定形状のループアンテナが成形されると共に、このループアンテナを挿通可能な大きな開口部が共振器の側壁に開けられ、予め成形されたループアンテナが大きな開口部を介して共振器内に挿入される。 Here, in the microwave device adopting the conventional coaxial line system, like the microwave device described in Patent Document 1, microwaves are introduced through a loop antenna provided in the resonator to generate microwaves. It was configured to couple to a resonator. The loop antenna described in Patent Document 1 is a conductor connected to a coaxial cable via a connector attached to the outer surface of the resonator, and its end portion is U-shaped so as to contact the inner surface of the resonator. It is formed into a shape. The loop antenna is not limited to the U-shape disclosed in Patent Document 1, but an L-shaped bent antenna or a ring antenna is also known. As a method of constructing these loop antennas inside the resonator, there are a method of forming the loop antenna inside the resonator and a method of forming the loop antenna outside the resonator. Specifically, in the case of molding in a resonator, a small hole through which a thin wire as a conductor can be inserted was opened in the side wall of the resonator, and a part of the conductor was inserted into the resonator through the small hole. After that, a part of the conductor is bent into a predetermined shape such as a U shape, an L shape, or a ring shape in the resonator to form the loop antenna. When molding outside the resonator, the loop antenna having the predetermined shape is formed outside the resonator in advance, and a large opening through which the loop antenna can be inserted is opened in the sidewall of the resonator and formed in advance. The loop antenna is inserted into the resonator through the large opening.
 しかしながら、共振器内でループアンテナを成形する場合は、同一形状のループアンテナを狭い共振器内で再現性良く構築することが困難である。また、共振器外でループアンテナを成形する場合は、ループアンテナが共振器の側壁に開けられた大きな開口部を介して共振器内に挿入された後に、ループアンテナを共振器内で正確に位置決めすることや空胴の中心軸に対するループアンテナの角度等のループアンテナの姿勢を正確に調整することが困難である。したがって、特許文献1に記載されたマイクロ波装置では、ループアンテナの形状やループアンテナの共振器内における位置及び姿勢が装置毎にばらつき易いため、マイクロ波の共振器との結合程度も装置毎にばらつき易い。その結果、装置間の性能にばらつきが生じ易く、所定の性能を有したマイクロ波装置を簡素な構造で再現性良く供給することが困難である。 However, when forming a loop antenna in a resonator, it is difficult to construct a loop antenna of the same shape with good reproducibility in a narrow resonator. Also, when molding the loop antenna outside the resonator, the loop antenna is accurately positioned inside the resonator after it is inserted into the resonator through the large opening on the sidewall of the resonator. It is difficult to accurately adjust the posture of the loop antenna such as the angle of the loop antenna with respect to the center axis of the cavity. Therefore, in the microwave device described in Patent Document 1, since the shape of the loop antenna and the position and orientation of the loop antenna in the resonator easily vary from device to device, the degree of coupling of the microwave with the resonator also varies from device to device. Easy to vary. As a result, the performance between devices is likely to vary, and it is difficult to supply a microwave device having a predetermined performance with a simple structure and good reproducibility.
 本発明は上記課題に着目してなされたもので、簡素な構造で性能ばらつきを抑制可能なマイクロ波装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a microwave device capable of suppressing performance variations with a simple structure.
 本発明の一側面によると、マイクロ波装置は、マイクロ波を発生させて出力するマイクロ波発生器と、前記マイクロ波発生器から出力された前記マイクロ波を導く給電経路部と、前記給電経路部により導かれた前記マイクロ波が導入される空胴を内部に有する共振器と、を含み、前記空胴内に供給される対象物を前記マイクロ波により加熱する。前記給電経路部は、中心導体、当該中心導体を覆う絶縁体及び前記絶縁体を覆う外部導体を有して同軸に延びる。前記共振器の前記空胴内には、前記マイクロ波の共振により前記空胴の中心軸の方向に均一な電界分布を示すTM010モード又はTM110モードの電磁界が励起される。前記外部導体の終端部は、前記共振器における前記空胴の中心軸方向両端を閉塞する上壁部及び下壁部のうちの一方の壁部に電気的に接続される。前記中心導体は、前記空胴内に前記マイクロ波を導入する導入部を有する。前記導入部は、前記一方の壁部に形成された孔を当該一方の壁部に対して電気的に絶縁された状態で貫通して前記空胴内に突出し、且つ、前記共振器の内側面の近傍で前記中心軸と平行に延伸する。 According to one aspect of the present invention, a microwave device includes a microwave generator that generates and outputs a microwave, a power feeding path portion that guides the microwave output from the microwave generator, and the power feeding path portion. A resonator having therein a cavity into which the microwave guided by the above is introduced, and an object supplied into the cavity is heated by the microwave. The power feeding path portion has a center conductor, an insulator covering the center conductor, and an outer conductor covering the insulator, and extends coaxially. An electromagnetic field of TM010 mode or TM110 mode showing a uniform electric field distribution in the direction of the central axis of the cavity is excited in the cavity of the resonator due to the resonance of the microwave. The terminal portion of the outer conductor is electrically connected to one of the upper wall portion and the lower wall portion that closes both ends of the cavity in the central axis direction of the cavity. The center conductor has an introduction part for introducing the microwave into the cavity. The introduction portion penetrates a hole formed in the one wall portion in a state of being electrically insulated from the one wall portion and projects into the cavity, and an inner surface of the resonator. In the vicinity of, it extends parallel to the central axis.
 前記一側面による前記マイクロ波装置によれば、マイクロ波を発生させて出力するマイクロ波発生器と、前記マイクロ波発生器から出力された前記マイクロ波を導く給電経路部と、前記給電経路部により導かれた前記マイクロ波が導入される空胴を内部に有し、前記空胴内には前記マイクロ波の共振により前記空胴の中心軸の方向に均一な電界分布を示すTM010モード又はTM110モードの電磁界が励起される共振器と、を含み、前記空胴内に供給される対象物を前記マイクロ波により加熱するマイクロ波装置において、前記給電経路部の中心導体のうちのマイクロ波を空胴内に導入する導入部は、前記共振器における前記上壁部及び前記下壁部のうちの一方の壁部を貫通して前記空胴内に突出し、前記共振器の内側面の近傍で前記中心軸と平行に、つまり、直線状に延伸している。したがって、マイクロ波を前記空胴内に導入する導入部が特別な成形加工を施すことなく簡素な構造で構築され、同一形状の導入部が再現性良く構築される。また、前記導入部は直線状に延伸しているだけであるため、前記導入部が前記一方の壁部を貫通する前記孔は、例えば、前記給電経路部の前記絶縁体の外径に合わせた小径でよく、前記絶縁体の終端部を前記小径の孔に嵌め込むだけで、前記導入部(中心導体の一部)の前記空胴内における位置が容易に定まる。これらにより、前記一側面による前記マイクロ波装置では、従来のループアンテナに相当する部位を構成する前記導入部の形状や前記導入部の前記共振器(詳しくは、空胴)内における位置及び姿勢が装置毎にばらつき難く、マイクロ波の前記共振器との結合程度も装置毎にばらつき難くなる。したがって、装置間の性能にばらつきが生じ難く、所定の性能を有したマイクロ波装置が簡素な構造で再現性良く供給されることになる。 According to the microwave device of the one aspect, a microwave generator that generates and outputs a microwave, a power feeding path portion that guides the microwave output from the microwave generator, and a power feeding path portion. A TM010 mode or a TM110 mode having a cavity into which the guided microwave is introduced and showing a uniform electric field distribution in the direction of the central axis of the cavity due to the resonance of the microwave in the cavity. A resonator for exciting an electromagnetic field of the microwave generator for heating an object supplied into the cavity by the microwave. The introducing portion to be introduced into the body penetrates one wall portion of the upper wall portion and the lower wall portion of the resonator and protrudes into the cavity, and is near the inner surface of the resonator. Parallel to the central axis, that is, extends in a straight line. Therefore, the introduction part for introducing the microwave into the cavity is constructed with a simple structure without performing a special molding process, and the introduction part having the same shape is constructed with good reproducibility. Further, since the introduction portion only extends linearly, the hole through which the introduction portion penetrates the one wall portion is, for example, matched with the outer diameter of the insulator of the power feeding path portion. The diameter may be small, and the position of the introduction portion (a part of the central conductor) in the cavity can be easily determined by fitting the end portion of the insulator into the small diameter hole. As a result, in the microwave device according to the one aspect, the shape and the position of the introducing portion forming the portion corresponding to the conventional loop antenna and the position and the posture of the introducing portion in the resonator (specifically, the cavity) are different. It is not likely to vary from device to device, and the degree of coupling of microwaves with the resonator is unlikely to vary from device to device. Therefore, variations in performance between devices are unlikely to occur, and a microwave device having a predetermined performance can be supplied with a simple structure and good reproducibility.
 このようにして、簡素な構造で性能ばらつきを抑制可能なマイクロ波装置を提供することができる。 In this way, it is possible to provide a microwave device that can suppress performance variations with a simple structure.
 また、前記空胴内には、TM010モード又はTM110モードの電磁界が励起される。このモードでは、前記空胴の中心軸の方向に均一な電界分布を示すため、前記中心軸の方向(延伸方向)で電界は一定である。そして、前記導入部の貫通用の前記孔は前記空胴の中心軸方向両端を閉塞する上壁部及び下壁部のうちの一方の壁部に開けられている。したがって、前記一側面による前記マイクロ波装置では、前記空胴内における電界分布等が前記孔の開口による影響を受けにくい構造を有している。この点、従来のマイクロ波装置において、前述したように予め成形したループアンテナを共振器内に挿入する場合等には、共振器の側壁に大きな開口部を開けなければならず、電界分布等がこの側壁に開けられた大きな開口部による影響を受けやすい構造となっている。また、従来のマイクロ波装置においては、マイクロ波が共振器の側壁に開けられる大きな開口部の孔内壁面とループアンテナとの間の隙間から漏れないように、補助的な金属部品を追加する必要があるため、この追加した金属部品により空胴内に電磁界分布の乱れが発生し易い。一方、前記一側面による前記マイクロ波装置では、共振器の側壁に大きな開口部を開ける必要がないため前記金属部品に起因する電磁界分布の乱れの発生については防止又は抑制される。さらに、前記一側面による前記マイクロ波装置では、空胴内を延伸する導入部の先端部を前記上壁部及び下壁部のうちの他方の壁部に当接させたり、導入部の先端部と上壁部及び下壁部のうちの他方の壁部との間に絶縁物を挟み込むだけで、導入部を容易に二点支持により安定して支持することができる。なお、前記一側面による前記マイクロ波装置では、前記孔は、従来のループアンテナを共振器外で成形した場合に必要な前述した大きな開口部より小さくすることができるため、この孔を介したマイクロ波の漏れは、極めて少ないと共に、容易に抑制又は防止することができる。 Also, an electromagnetic field of TM010 mode or TM110 mode is excited in the cavity. In this mode, the electric field is uniform in the direction of the central axis of the cavity, so that the electric field is constant in the direction of the central axis (stretching direction). The hole for penetrating the introduction portion is formed in one of the upper wall portion and the lower wall portion that closes both ends of the cavity in the central axis direction. Therefore, the microwave device according to the one aspect has a structure in which the electric field distribution in the cavity is not easily affected by the opening of the hole. In this respect, in the conventional microwave device, when inserting the preformed loop antenna into the resonator as described above, a large opening must be opened in the side wall of the resonator, and the electric field distribution is The structure is easily affected by the large opening formed in the side wall. In addition, in the conventional microwave device, it is necessary to add an auxiliary metal component so that the microwave does not leak from the gap between the inner wall surface of the hole of the large opening formed in the side wall of the resonator and the loop antenna. Therefore, the electromagnetic field distribution is likely to be disturbed in the cavity due to the added metal parts. On the other hand, in the microwave device according to the one aspect, since it is not necessary to open a large opening in the side wall of the resonator, the occurrence of disturbance in the electromagnetic field distribution due to the metal component can be prevented or suppressed. Further, in the microwave device according to the one aspect, the distal end portion of the introduction portion extending in the cavity is brought into contact with the other wall portion of the upper wall portion and the lower wall portion, or the distal end portion of the introduction portion. The introductory portion can be easily and stably supported by the two-point support simply by sandwiching the insulator between the upper wall portion and the other wall portion of the lower wall portion. In the microwave device according to the one aspect, since the hole can be made smaller than the large opening described above which is required when the conventional loop antenna is formed outside the resonator, the microwave through the hole is used. Wave leakage is extremely low and can be easily suppressed or prevented.
本発明の第1実施形態に係るマイクロ波装置の概略構成図である。It is a schematic structure figure of a microwave device concerning a 1st embodiment of the present invention. 図1に示すA部の拡大断面図である。It is an expanded sectional view of the A section shown in FIG. 図1に示すB-B矢視位置における断面図である。FIG. 2 is a sectional view taken along the line BB shown in FIG. 前記マイクロ波装置の装置特性を説明するためのグラフであり、トルエンを加熱の対象物とした場合のグラフである。It is a graph for demonstrating the apparatus characteristic of the said microwave apparatus, and is a graph at the time of making toluene into a heating object. 前記対象物を変更した場合の前記装置特性の変化を説明するためのグラフである。6 is a graph for explaining a change in the device characteristic when the target object is changed. 前記マイクロ波装置の空胴の高さを変更した場合の前記装置特性の変化を説明するためのグラフである。6 is a graph for explaining changes in the device characteristics when the height of the cavity of the microwave device is changed. 前記マイクロ波装置の共振器の内側面と導入部(アンテナ)の間の最小離間距離を変更した場合の前記装置特性の変化を説明するためのグラフである。6 is a graph for explaining a change in the device characteristic when the minimum separation distance between the inner surface of the resonator of the microwave device and the introduction portion (antenna) is changed. 本発明の第2実施形態に係るマイクロ波装置の概略構成図である。It is a schematic block diagram of the microwave device which concerns on 2nd Embodiment of this invention. 第2実形態に係るマイクロ波装置においてアンテナの長さ(突出長)を変更した場合の装置特性の変化を説明するためのグラフである。It is a graph for demonstrating the change of a device characteristic when changing the length (projection length) of an antenna in the microwave device concerning a 2nd form. 第2実形態に係るマイクロ波装置において前記対象物を変更した場合の装置特性の変化を説明するためのグラフである。It is a graph for demonstrating the change of a device characteristic when the said target object is changed in the microwave device which concerns on 2nd Embodiment. 各実施形態に係るマイクロ波装置の導入部の変形例を説明するための断面図である。It is sectional drawing for demonstrating the modification of the introduction part of the microwave device which concerns on each embodiment. 各実施形態に係るマイクロ波装置において、マイクロ波発生器及び給電経路部からなるマイクロ波出力ユニットを複数設けた場合の例を説明するための概略の構成図である。It is a schematic block diagram for explaining an example in the case where a plurality of microwave output units which consist of a microwave generator and a feed route part are provided in a microwave device concerning each embodiment. 図12に示すC-C断面位置における断面図である。FIG. 13 is a cross-sectional view taken along the line CC of FIG. 12. 各実施形態に係るマイクロ波装置の空胴の変形例を説明するための断面図である。It is sectional drawing for demonstrating the modification of the cavity of the microwave device which concerns on each embodiment. 各実施形態に係るマイクロ波装置の給電経路部(同軸ケーブル)の変形例を説明するための要部断面図である。It is a principal part sectional view for demonstrating the modification of the electric power feeding route part (coaxial cable) of the microwave apparatus which concerns on each embodiment. 各実施形態に係るマイクロ波装置の共振器の変形例を説明するための要部断面図である。It is a principal part sectional drawing for demonstrating the modification of the resonator of the microwave device which concerns on each embodiment. 第2実施形態に係るマイクロ波装置において導入部におけるアンテナの長さを調整する機構を設けた場合の一例を説明するための図である。It is a figure for demonstrating an example at the time of providing the mechanism which adjusts the length of the antenna in the introduction part in the microwave device concerning a 2nd embodiment. 第2実施形態に係るマイクロ波装置において導入部におけるアンテナとして機能する実質的な長さを調整する機構を設けた場合の例を説明するための図である。It is a figure for demonstrating the example at the time of providing the mechanism which adjusts the substantial length which functions as an antenna in an introduction part in the microwave device which concerns on 2nd Embodiment.
 以下に本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明の第1実施形態に係るマイクロ波装置100の概略構成図である。図1において、マイクロ波装置100は、マイクロ波発生器10と、給電経路部20と、共振器30と、流通管40と、パワーモニター50と、制御部60とを備え、対象物をマイクロ波により加熱する装置である。本実施形態では、前記対象物は液体である。なお、以下では、前記対象物を加熱対象物という。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a microwave device 100 according to the first embodiment of the present invention. In FIG. 1, a microwave device 100 includes a microwave generator 10, a power feeding path unit 20, a resonator 30, a flow pipe 40, a power monitor 50, and a control unit 60, and an object is a microwave. It is a device for heating by. In this embodiment, the object is a liquid. In addition, below, the said target object is called a heating target object.
 本実施形態では、マイクロ波装置100は、共振器30内を通過するように流通する加熱対象物としての液体を加熱処理可能なフロー式の装置である。 In the present embodiment, the microwave device 100 is a flow-type device that can heat-treat a liquid as a heating target that flows so as to pass through the resonator 30.
 マイクロ波発生器10は、マイクロ波を発生させて出力するものである。マイクロ波発生器10は、例えば、マイクロ波の周波数(発振周波数)を所定の掃引範囲内で掃引可能に構成されている。マイクロ波発生器10は、具体的には、可変周波数発振器11と、可変減衰器12と、増幅器13とを備えて構成される。可変周波数発振器11は、マイクロ波を出力するものであり、例えば、電圧制御発振素子(VCO)からなるものである。可変周波数発振器11は、印加電圧を変えることにより、ISM周波数帯である2.4GHz~2.5GHzの掃引範囲内で発振周波数を掃引可能に構成されている。可変減衰器12は、可変周波数発振器11から入力されたマイクロ波のパワーを可変減衰するものである。増幅器13は、可変減衰器12から入力されたマイクロ波のパワーを増幅するものである。可変周波数発振器11で発振するマイクロ波の発振周波数とパワー、及び、可変減衰器12の減衰率は、制御部60によって制御される。これにより、マイクロ波発生器10は、共振器30に入射するためのマイクロ波を所定の入射電力P0で出力する。また、マイクロ波発生器10は、通常、ISM周波数帯で掃引可能に構成されているが、必要に応じてISM周波数帯より少し広い範囲で掃引可能に構成してもよい。 The microwave generator 10 generates and outputs microwaves. The microwave generator 10 is configured to be able to sweep the microwave frequency (oscillation frequency) within a predetermined sweep range, for example. The microwave generator 10 is specifically configured to include a variable frequency oscillator 11, a variable attenuator 12, and an amplifier 13. The variable frequency oscillator 11 outputs microwaves, and is composed of, for example, a voltage controlled oscillator (VCO). The variable frequency oscillator 11 is configured to be able to sweep the oscillation frequency within the sweep range of 2.4 GHz to 2.5 GHz, which is the ISM frequency band, by changing the applied voltage. The variable attenuator 12 variably attenuates the power of the microwave input from the variable frequency oscillator 11. The amplifier 13 amplifies the power of the microwave input from the variable attenuator 12. The control unit 60 controls the oscillation frequency and power of the microwave oscillated by the variable frequency oscillator 11 and the attenuation rate of the variable attenuator 12. As a result, the microwave generator 10 outputs the microwave for entering the resonator 30 with a predetermined incident power P0. The microwave generator 10 is normally configured to be able to sweep in the ISM frequency band, but may be configured to be capable of sweeping in a slightly wider range than the ISM frequency band, if necessary.
 図2は、図1に示すA部の拡大断面図である。給電経路部20は、マイクロ波発生器10から所定の入射電力P0で出力されたマイクロ波を共振器30へ導くものである。給電経路部20は、中心導体21と、中心導体21を覆う絶縁体22と、絶縁体22を覆う外部導体23とを有して同軸に延びるものである。具体的には、給電経路部20は、本実施形態では同軸ケーブルからなる。中心導体21は、一方向に延伸する一本の銅線材からなり、給電経路部20の中心材となるものである。絶縁体22は、中心導体21の外周を覆うように中心導体21と同軸に延伸するポリエチレン等のプラスチック材からなり、中心導体21と外部導体23との間を電気的に絶縁する部材である。つまり、絶縁体22は筒状に形成されている。外部導体23は、中心導体21より細い複数本の銅線材からなる。この複数本の銅線材が筒状の絶縁体22の外周を覆うように幾層にも編み組みされることにより、外部導体23が形成される。外部導体23の外周は保護皮膜24により被覆されている。給電経路部20の一端部はマイクロ波発生器10に接続され、給電経路部20の他端部は共振器30に接続されている。具体的には、マイクロ波発生器10から所定の入射電力P0で出力されたマイクロ波は、給電経路部20上に設けられたアイソレータ14、方向性結合器15を経由して共振器30へ導かれる。ここで、給電経路部20によって共振器30へ導かれたマイクロ波の一部は共振器30内に入射されず反射するため、共振器30(詳しくは、後述する空胴31)内へ入射する正味のマイクロ波のパワーである正味入射電力P1はマイクロ波発生器10から出力されたマイクロ波の入射電力P0より小さい。したがって、この共振器30からのマイクロ波の反射を極力少なくする(つまり、整合させる)と効率的に加熱対象物を加熱することができる。本実施形態では、反射波はアイソレータ14の作用により無反射終端器16で吸収されるようになっている。なお、給電経路部20を構成する前記同軸ケーブルとしては、外部導体23が金属製(例えば銅製)の円筒状の筒体であり、保護皮膜24が省略された後述するセミリジットタイプのケーブルを利用してもよい。また、給電経路部20の共振器30への接続部分の構造等については、後に詳述する。そして、本実施形態では、マイクロ波発生器10は一つだけ設けられ、給電経路部20も一つの経路をなしている。 FIG. 2 is an enlarged cross-sectional view of part A shown in FIG. The power feeding path unit 20 guides the microwave output from the microwave generator 10 with a predetermined incident power P0 to the resonator 30. The power feeding path portion 20 has a center conductor 21, an insulator 22 that covers the center conductor 21, and an outer conductor 23 that covers the insulator 22 and extends coaxially. Specifically, the power feeding path portion 20 is made of a coaxial cable in this embodiment. The center conductor 21 is made of a single copper wire material that extends in one direction and serves as the center material of the power feeding path portion 20. The insulator 22 is made of a plastic material such as polyethylene that extends coaxially with the center conductor 21 so as to cover the outer periphery of the center conductor 21, and is a member that electrically insulates the center conductor 21 and the outer conductor 23. That is, the insulator 22 is formed in a tubular shape. The outer conductor 23 is composed of a plurality of copper wire rods that are thinner than the central conductor 21. The outer conductor 23 is formed by braiding several layers of the copper wire material so as to cover the outer periphery of the cylindrical insulator 22. The outer periphery of the outer conductor 23 is covered with a protective film 24. One end of the power feeding path 20 is connected to the microwave generator 10, and the other end of the power feeding path 20 is connected to the resonator 30. Specifically, the microwave output from the microwave generator 10 at a predetermined incident power P0 is guided to the resonator 30 via the isolator 14 and the directional coupler 15 provided on the power feeding path portion 20. Get burned. Here, since a part of the microwave guided to the resonator 30 by the power feeding path portion 20 is not incident into the resonator 30 but reflected, it is incident into the resonator 30 (specifically, a cavity 31 described later). The net incident power P1, which is the net microwave power, is smaller than the microwave incident power P0 output from the microwave generator 10. Therefore, the object to be heated can be efficiently heated by minimizing (that is, matching) the reflection of the microwaves from the resonator 30. In this embodiment, the reflected wave is absorbed by the non-reflecting terminator 16 by the action of the isolator 14. As the coaxial cable forming the power feeding path portion 20, a semi-rigid type cable described later in which the outer conductor 23 is a metal (for example, copper) cylindrical tubular body and the protective film 24 is omitted is used. May be. The structure and the like of the connection portion of the power feeding path portion 20 to the resonator 30 will be described in detail later. Further, in the present embodiment, only one microwave generator 10 is provided, and the power feeding path portion 20 also forms one path.
 図3は、図1に示すB-B矢視位置における断面図である。共振器30は、給電経路部20により導かれたマイクロ波が導入される空胴30aを内部に有し、マイクロ波の共振により空胴30a内にシングルモードの電界を発生させるものである。図1及び図3に示すように、本実施形態では、空胴30aは円柱状に形成されている。この空胴30a内には、マイクロ波の共振により空胴30aの中心軸Oの方向に均一な電界分布を示すTM010モードの電磁界が励起される。加熱対象物としての液体は、この空胴30a内に供給される。本実施形態では、加熱対象物としての液体は、後述するように空胴30a内を、流通管40を介して流通することにより、空胴30a内に供給される。 3 is a sectional view taken along the line BB shown in FIG. The resonator 30 internally has a cavity 30a into which the microwave guided by the power feeding path section 20 is introduced, and generates a single-mode electric field in the cavity 30a by the resonance of the microwave. As shown in FIGS. 1 and 3, in this embodiment, the cavity 30a is formed in a columnar shape. An electromagnetic field of TM010 mode exhibiting a uniform electric field distribution in the direction of the central axis O of the cavity 30a is excited in the cavity 30a by the resonance of microwaves. The liquid as the heating target is supplied into the cavity 30a. In the present embodiment, the liquid as the heating target is supplied into the cavity 30a by flowing through the cavity 30a through the circulation pipe 40 as described later.
 具体的には、共振器30は、一方向に延びる円筒状の筒体31と、筒体31の上端側開口を閉塞する上壁部32と、筒体31の下端側開口を閉塞する下壁部33とを含んで構成される。換言すると、筒体31は共振器30の側壁部を構成し、上壁部32及び下壁部33は共振器30における空胴30aの中心軸方向両端(つまり、円柱状の空胴30aにおける中心軸Oの延伸方向両端)を閉塞する。例えば、筒体31はアルミニウム製の部材からなり、上壁部32及び下壁部33はアルミニウム製の平板部材からなり互いに対向しそれぞれ円形に形成されている。上壁部32及び下壁部33はそれぞれ筒体31の端部に図示を省略したボルト等(図示省略)により固定される。このようにして、側壁部としての筒体31、上壁部32及び下壁部33を組み立てて形成された筐体内に、円柱状の空胴30a(換言すると照射室)が形成される。本実施形態の場合、空胴30aの中心軸Oは、筒体31の筒中心に延びる筒中心軸と一致する。また、中心軸Oは、円形の上壁部32の径方向の中心と円形の下壁部33の径方向の中心とを結んだ線と一致している。 Specifically, the resonator 30 includes a cylindrical tubular body 31 extending in one direction, an upper wall portion 32 that closes an upper end side opening of the tubular body 31, and a lower wall that closes a lower end side opening of the tubular body 31. And a part 33. In other words, the tubular body 31 constitutes a side wall portion of the resonator 30, and the upper wall portion 32 and the lower wall portion 33 have both ends in the central axis direction of the cavity 30a of the resonator 30 (that is, the center of the cylindrical cavity 30a). Both ends of the axis O in the stretching direction are closed. For example, the tubular body 31 is made of an aluminum member, and the upper wall portion 32 and the lower wall portion 33 are made of aluminum flat plate members, which are opposed to each other and are formed in a circular shape. The upper wall portion 32 and the lower wall portion 33 are fixed to the ends of the tubular body 31 by bolts (not shown) or the like (not shown). In this way, a cylindrical cavity 30a (in other words, an irradiation chamber) is formed in the housing formed by assembling the cylindrical body 31 as the side wall portion, the upper wall portion 32, and the lower wall portion 33. In the case of the present embodiment, the center axis O of the cavity 30a coincides with the cylinder center axis extending to the center of the cylinder 31. Further, the central axis O coincides with a line connecting the radial center of the circular upper wall portion 32 and the radial center of the circular lower wall portion 33.
 流通管40は、共振器30の空胴を貫通するように配設され、加熱対象物としての液体を流通させるための配管である。本実施形態では、流通管40は、螺旋状に伸延する螺旋部41を有する例えばホウケイ酸ガラス製の蛇管からなるものである。この流通管40は、空胴30aの中心軸Oを螺旋中心軸とする。つまり、流通管40は、その螺旋中心軸が空胴30aの中心軸Oと一致するように配設されている。また、この流通管40の両端部位は、空胴30aの中心軸Oに沿って直線状に延伸している。流通管40は、その両端部位が上壁部32及び下壁部33において支持されることにより、共振器30に対して位置決めされている。圧送ポンプ(図示省略)により圧送された加熱対象物としての液体は、流通管40の一端側から他端側に向かって流通し、この流通途中において空胴30a内でマイクロ波により加熱処理される。このようにして、マイクロ波発生器10と、給電経路部20と、共振器30と、流通管40とを含み、空胴30a内に供給される加熱対象物としての液体をマイクロ波により加熱するマイクロ波装置100が構成される。 The circulation pipe 40 is a pipe that is disposed so as to penetrate the cavity of the resonator 30 and that circulates a liquid as a heating target. In the present embodiment, the flow pipe 40 is made of, for example, a flexible pipe made of borosilicate glass having a spiral portion 41 extending in a spiral shape. The flow tube 40 has the center axis O of the cavity 30a as the spiral center axis. That is, the flow pipe 40 is arranged so that the spiral central axis thereof coincides with the central axis O of the cavity 30a. Further, both end portions of the flow pipe 40 linearly extend along the central axis O of the cavity 30a. The flow tube 40 is positioned with respect to the resonator 30 by supporting both end portions thereof on the upper wall portion 32 and the lower wall portion 33. The liquid as a heating target, which is pressure-fed by a pressure-feeding pump (not shown), circulates from one end side to the other end side of the flow pipe 40, and is heat-treated by microwaves in the cavity 30a during this flow. .. In this way, the microwave generator 10, the power feeding path portion 20, the resonator 30, and the flow tube 40 are heated by the microwave to heat the liquid as the heating target, which is supplied into the cavity 30a. The microwave device 100 is configured.
 パワーモニター50は、共振器30内の電磁界強度(電界又は磁界の強度)を測定するものであり、例えば、共振器30の側壁部(換言すると、筒体31)に取り付けられている。パワーモニター50により測定された電磁界強度の測定結果を示す信号は、制御部60に入力される。 The power monitor 50 measures the electromagnetic field intensity (electric field or magnetic field intensity) in the resonator 30, and is attached to, for example, the sidewall of the resonator 30 (in other words, the cylindrical body 31). A signal indicating the measurement result of the electromagnetic field strength measured by the power monitor 50 is input to the control unit 60.
 制御部60は、マイクロ波発生器10の動作を制御するものである。制御部60には、例えば、パワーモニター50からの信号が入力されると共に、図示を省略した温度センサーにより計測された加熱対象物としての液体の温度の計測結果が入力され、最適の加熱処理が行われるようにマイクロ波発生器10の動作を制御する。流通管40内を流通する液体の温度は、マイクロ波の照射により上流から下流に向かうにしたがって徐々に上昇する分布を示す。前記温度センサーは例えば共振器30内における流通管40の下流側部位(図1では例えば上壁部32側の部位)を流通する液体の温度を代表温度として計測可能に配置されているものとする。具体的には、制御部60は、例えば、パワーモニター50からの信号に基づいて、マイクロ波発生器10の可変周波数発振器11における印加電圧を制御することにより、マイクロ波発生器10から出力されるマイクロ波の発振周波数fを、共振器30の共振周波数Fに自動的に調整する(合わせる)周波数自動調整制御を実行可能である。より具体的には、制御部60は、前記周波数自動調整制御として、発振周波数fの掃引範囲内においてパワーモニター50からの信号の強度が一番大きいところの発振周波数fを共振器30の実際の共振周波数Fとして検出し、その共振周波数Fを発振するように可変周波数発振器11の印加電圧を制御することにより、発振周波数fを共振周波数Fに自動的に調整する。また、図示を省略するが、共振器30からマイクロ波発生器10へ向かって反射された反射波の電力強度を測定する反射波用パワーモニターを設けてもよい。この場合、制御部60は、前記反射波用パワーモニターにより測定された電力強度の測定結果を示す信号に基づいて、発振周波数fを共振周波数Fに自動的に調整するようにしてもよい。また、制御部60は、発振周波数fを共振周波数Fに自動的に調整する(同調させる)機能に加えて、マイクロ波発生器10の出力を所定の値に制御する機能や、方向性結合器15で検出される反射電力を検出してその信号に応じて、発振周波数fを共振周波数Fに自動的に調整したり、出力レベルを所定値に制御する機能を有していてもよい。 The control unit 60 controls the operation of the microwave generator 10. For example, a signal from the power monitor 50 is input to the control unit 60, and a measurement result of the temperature of a liquid as a heating target measured by a temperature sensor (not shown) is input to perform optimum heating processing. The operation of the microwave generator 10 is controlled to be performed. The temperature of the liquid flowing through the flow pipe 40 has a distribution that gradually rises from the upstream side to the downstream side by the irradiation of microwaves. It is assumed that the temperature sensor is arranged so as to be able to measure the temperature of the liquid flowing through the downstream side portion of the flow pipe 40 (for example, the portion on the upper wall portion 32 side in FIG. 1) in the resonator 30 as a representative temperature. .. Specifically, the control unit 60 controls the voltage applied to the variable frequency oscillator 11 of the microwave generator 10 based on the signal from the power monitor 50, for example, so that the microwave generator 10 outputs the voltage. It is possible to execute automatic frequency adjustment control for automatically adjusting (matching) the oscillation frequency f of the microwave to the resonance frequency F of the resonator 30. More specifically, as the frequency automatic adjustment control, the control unit 60 sets the oscillation frequency f at which the intensity of the signal from the power monitor 50 is the largest within the sweep range of the oscillation frequency f as the actual frequency of the resonator 30. The oscillation frequency f is automatically adjusted to the resonance frequency F by detecting the resonance frequency F and controlling the voltage applied to the variable frequency oscillator 11 so as to oscillate the resonance frequency F. Although not shown, a reflected wave power monitor for measuring the power intensity of the reflected wave reflected from the resonator 30 toward the microwave generator 10 may be provided. In this case, the control unit 60 may automatically adjust the oscillation frequency f to the resonance frequency F based on the signal indicating the measurement result of the power intensity measured by the power monitor for reflected waves. The control unit 60 has a function of automatically adjusting (tuning) the oscillation frequency f to the resonance frequency F, a function of controlling the output of the microwave generator 10 to a predetermined value, and a directional coupler. It may have a function of detecting the reflected power detected at 15 and automatically adjusting the oscillation frequency f to the resonance frequency F or controlling the output level to a predetermined value according to the signal.
 次に、給電経路部20の共振器30への接続部分の構造等について、図1~図3を参照して詳述する。 Next, the structure of the connection portion of the power feeding path portion 20 to the resonator 30 will be described in detail with reference to FIGS. 1 to 3.
 給電経路部20における外部導体23の終端部は、上壁部32及び下壁部33のうちの一方の壁部に電気的に接続される。本実施形態では、図2に示すように、前記一方の壁部は上壁部32であり、外部導体23の終端部は上壁部32に電気的に接続されている。なお、以下では、前記一方の壁部は上壁部32であるものとして説明するが、これに限らず、前記一方の壁部は下壁部33であってもよい。 The terminal portion of the outer conductor 23 in the power feeding path portion 20 is electrically connected to one of the upper wall portion 32 and the lower wall portion 33. In the present embodiment, as shown in FIG. 2, the one wall portion is the upper wall portion 32, and the end portion of the outer conductor 23 is electrically connected to the upper wall portion 32. In the following description, the one wall portion is described as the upper wall portion 32, but the present invention is not limited to this, and the one wall portion may be the lower wall portion 33.
 また、給電経路部20の中心導体21は、空胴30a内にマイクロ波を導入する導入部21aを有する。導入部21aは、前記一方の壁部としての上壁部32に形成された孔32aを上壁部32に対して電気的に絶縁された状態で貫通して空胴30a内に突出し、且つ、共振器30の内側面30b(換言すると、筒体31の内周面)の近傍で中心軸Oと平行に延伸する。ここで、共振器30の内側面30bとは、詳しくは、筒体31の内周面であり、空間としての空胴30aに露出している。 Further, the center conductor 21 of the power feeding path portion 20 has an introduction portion 21a for introducing microwaves into the cavity 30a. The introduction portion 21a penetrates through the hole 32a formed in the upper wall portion 32 as the one wall portion in a state of being electrically insulated from the upper wall portion 32 and projects into the cavity 30a, and It extends parallel to the central axis O in the vicinity of the inner side surface 30b of the resonator 30 (in other words, the inner peripheral surface of the cylindrical body 31). Here, the inner side surface 30b of the resonator 30 is specifically the inner peripheral surface of the cylindrical body 31 and is exposed to the cavity 30a as a space.
 具体的には、孔32aは、例えば、絶縁体22の外径に合せた内径を有すると共に中心軸Oと平行に延伸している。そして、外部導体23の終端部は、上壁部32の上面における孔32aの周縁部に当接しており、この周縁部に半田付け等により電気的に接続固定されている。また、絶縁体22の終端部は、例えば、上壁部32の壁厚分だけ外部導体23の終端部よりも下方に突出している。中心導体21の終端部は、絶縁体22の終端部よりもさらに下方に突出している。また、給電経路部20は、例えば、その絶縁体22が孔32aに嵌合することにより共振器30に対して位置決めされる。導入部21aは、例えば、絶縁体22により上壁部32に対して電気的に確実に絶縁される。 Specifically, the hole 32a has, for example, an inner diameter matching the outer diameter of the insulator 22 and extends parallel to the central axis O. The terminal portion of the outer conductor 23 is in contact with the peripheral portion of the hole 32a on the upper surface of the upper wall portion 32, and is electrically connected and fixed to the peripheral portion by soldering or the like. Further, the terminal end portion of the insulator 22 projects below the terminal end portion of the outer conductor 23 by the wall thickness of the upper wall portion 32, for example. The end portion of the center conductor 21 projects further downward than the end portion of the insulator 22. Further, the power feeding path portion 20 is positioned with respect to the resonator 30 by, for example, fitting the insulator 22 into the hole 32a. The introduction portion 21a is electrically and reliably insulated from the upper wall portion 32 by the insulator 22, for example.
 このようにして、上壁部32に形成された孔32aを上壁部32に対して電気的に絶縁された状態で貫通して空胴30a内に突出し、且つ、共振器30の内側面30bの近傍で中心軸Oと平行に延伸する、導入部21aが構成されている。なお、以下では、導入部21aのうちの空胴30a内に突出している部位をアンテナといい、このアンテナの突出長をアンテナの長さLという。 In this way, the hole 32a formed in the upper wall portion 32 penetrates the upper wall portion 32 in an electrically insulated state to project into the cavity 30a, and the inner surface 30b of the resonator 30. Introducing part 21a extending parallel to central axis O is formed in the vicinity of. In addition, below, the part of the introduction part 21a that projects into the cavity 30a is called an antenna, and the protruding length of this antenna is called the length L of the antenna.
 本実施形態では、導入部21aの先端部21a1は、図1に示すように、上壁部32及び下壁部33のうちの他方の壁部である下壁部33に電気的に接続されている。本実施形態では、導入部21aの先端部21a1は、前記他方の壁部としての下壁部33に当接して接触することにより、下壁部33に電気的に接続されている。したがって、空胴30aの高さH(換言すると、上壁部32と下壁部33との間の距離、又は、円柱空胴高さ)は、導入部21aの前記アンテナの長さLと一致している。導入部21aの先端部21a1が下壁部33の上面に接触することにより、導入部21aの先端部21a1が下壁部33に電気的に接続されると共に支持されている。 In the present embodiment, the distal end portion 21a1 of the introduction portion 21a is electrically connected to the lower wall portion 33, which is the other wall portion of the upper wall portion 32 and the lower wall portion 33, as shown in FIG. There is. In the present embodiment, the distal end portion 21a1 of the introduction portion 21a is electrically connected to the lower wall portion 33 by abutting and contacting the lower wall portion 33 as the other wall portion. Therefore, the height H of the cavity 30a (in other words, the distance between the upper wall portion 32 and the lower wall portion 33, or the columnar cavity height) is equal to the length L of the antenna of the introduction portion 21a. I am doing it. The tip portion 21a1 of the introduction portion 21a contacts the upper surface of the lower wall portion 33, whereby the tip portion 21a1 of the introduction portion 21a is electrically connected to and supported by the lower wall portion 33.
 本実施形態では、導入部21a(詳しくは、前記アンテナ)と共振器30の内側面30bとの間の最小離間距離Gは、円柱状の空胴30aの直径R0の5%以下の値に設定されている。導入部21aは、空胴30aの中心軸O周りの所定の角度位置において、共振器30の内側面30bの近傍に寄せて配置されている。つまり、導入部21aと内側面30bとの間の最小離間距離Gとは、内側面30bと導入部21aとの間の距離のうち、内側面30bの近傍に寄せられた方における内側面30bと導入部21aとの最小の距離のことを示している。 In the present embodiment, the minimum separation distance G between the introduction portion 21a (specifically, the antenna) and the inner side surface 30b of the resonator 30 is set to a value of 5% or less of the diameter R0 of the cylindrical cavity 30a. Has been done. The introduction portion 21a is arranged near the inner side surface 30b of the resonator 30 at a predetermined angular position around the central axis O of the cavity 30a. That is, the minimum separation distance G between the introduction portion 21a and the inner side surface 30b is the inner side surface 30b of the distance between the inner side surface 30b and the introduction portion 21a that is closer to the inner side surface 30b. This indicates the minimum distance from the introduction portion 21a.
 次に、本実施形態のマイクロ波装置100の装置特性について図4を参照して説明する。図4は、マイクロ波装置100の装置特性を説明するためのグラフであり、液体のトルエンを加熱対象物とした場合のシミュレーションの結果を示すグラフである。図4において、横軸はアンテナの長さLを示し、左縦軸はマイクロ波の空胴30aへの正味入射電力P1[W]を示し、右縦軸はマイクロ波により加熱されたトルエンの最高の温度T[℃]を示す。なお、図4において、破線で囲まれた部分のシミュレーション結果が導入部21aの先端部21a1を下壁部33に接触させた本実施形態のマイクロ波装置100についての実施例の結果であり、二点鎖線で囲まれた部分のシミュレーション結果は比較例の結果である。この比較例では、例えば、下壁部33における導入部21aの先端部21a1に対応する位置に凹部を形成し、導入部21aの先端部21a1と下壁部33(具体的には前記凹部の底面や側面)との間に隙間があり、先端部21a1は下壁部33に電気的に絶縁している。つまり、実施例と比較例においていずれのアンテナの長さLも同一であるが、実施例では、導入部21aの先端部21a1は下壁部33に接触しており、比較例では、導入部21aの先端部21a1は下壁部33に接触していない。 Next, device characteristics of the microwave device 100 of the present embodiment will be described with reference to FIG. FIG. 4 is a graph for explaining device characteristics of the microwave device 100, and is a graph showing a result of simulation when liquid toluene is used as a heating target. In FIG. 4, the horizontal axis represents the length L of the antenna, the left vertical axis represents the net incident power P1 [W] of the microwave into the cavity 30a, and the right vertical axis represents the maximum of the toluene heated by the microwave. Shows the temperature T [° C.] of. In addition, in FIG. 4, the simulation result of the portion surrounded by the broken line is the result of the example of the microwave device 100 of the present embodiment in which the distal end portion 21a1 of the introduction portion 21a is brought into contact with the lower wall portion 33. The simulation result of the portion surrounded by the dotted chain line is the result of the comparative example. In this comparative example, for example, a recess is formed in the lower wall portion 33 at a position corresponding to the tip portion 21a1 of the introducing portion 21a, and the tip portion 21a1 of the introducing portion 21a and the lower wall portion 33 (specifically, the bottom surface of the recess portion are formed). And a side surface), and the tip portion 21a1 is electrically insulated from the lower wall portion 33. That is, the length L of each antenna is the same in the example and the comparative example, but in the example, the leading end 21a1 of the introducing portion 21a is in contact with the lower wall portion 33, and in the comparative example, the introducing portion 21a. The leading end portion 21a1 does not contact the lower wall portion 33.
 本実施形態における前記シミュレーションでは、以下の条件を基本条件とした。
 加熱対象物は液体のトルエンであり、マイクロ波発生器10から出力されるマイクロ波の入射電力P0は10[W]である。流通管40はホウケイ酸ガラス製であり、流通管40の螺旋部41の螺旋巻径R1は12[mm]、螺旋部41の巻ピッチPは8[mm]、流通管40の管径(内径)R2は2.4[mm]である。流通管40の入口での液体(トルエン)の温度は常温(例えば30[℃])とし、流通管40を流通する液体(トルエン)の流量は1[ml/min]である。空胴30aの直径R1(換言すると、筒体31の内側の直径)は91.2[mm]、空胴30aの高さHは32[mm]、アンテナの長さLも32[mm]である。導入部21a(アンテナ)と共振器30の内側面30bとの間の最小離間距離Gは4[mm]である。また、発振周波数fは、この発振周波数fをISM周波数帯で掃引させたときに、正味入射電力P1や温度Tが一番高い値を示す周波数と一致しているものとする。つまり、基本条件では、発振周波数fは共振器30の共振周波数Fに一致している。
In the simulation in this embodiment, the following conditions were set as basic conditions.
The object to be heated is liquid toluene, and the incident power P0 of the microwave output from the microwave generator 10 is 10 [W]. The flow pipe 40 is made of borosilicate glass, the spiral winding diameter R1 of the spiral portion 41 of the flow pipe 40 is 12 [mm], the winding pitch P of the spiral portion 41 is 8 [mm], and the pipe diameter (inner diameter of the flow pipe 40 is ) R2 is 2.4 [mm]. The temperature of the liquid (toluene) at the inlet of the flow pipe 40 is room temperature (for example, 30 [° C.]), and the flow rate of the liquid (toluene) flowing through the flow pipe 40 is 1 [ml / min]. The diameter R1 of the cavity 30a (in other words, the inner diameter of the cylindrical body 31) is 91.2 [mm], the height H of the cavity 30a is 32 [mm], and the length L of the antenna is 32 [mm]. is there. The minimum separation distance G between the introduction portion 21a (antenna) and the inner side surface 30b of the resonator 30 is 4 [mm]. The oscillation frequency f is assumed to match the frequency at which the net incident power P1 and the temperature T show the highest values when the oscillation frequency f is swept in the ISM frequency band. That is, under the basic conditions, the oscillation frequency f matches the resonance frequency F of the resonator 30.
 前記基本条件でシミュレーションした結果、図4に破線で囲まれた部分で示されているように、正味入射電力P1は、入射電力P0である10[W]から若干減少しているだけであり、7-8[W]程度である。したがって、空胴30aからのマイクロ波の反射波は比較的少なく、概ね整合がとれている。また、温度Tは70-80[℃]程度であり、導入部21aが下壁部33に接触している本実施形態のマイクロ波装置100は、マイクロ波の電力が低電力であるにも拘わらず良好な加熱性能を有している。また、図4に二点鎖線で囲まれた比較例(導入部21aが下壁部33に接触していない場合)の結果と比べると、本実施形態のマイクロ波装置100は、比較例とアンテナの長さLが同一であるにも拘わらず、導入部21aが下壁部33に接触したことにより、正味入射電力P1及び温度Tが比較例から急激に上昇し、比較例と比べて極めて良好な装置特性を有していることが分かる。マイクロ波装置100では、導入部21aの先端部(終端)21a1は、下壁部33に接触して電気的に短絡されている。その結果、電流が、導入部21a、下壁部33、筒体31(共振器30の側壁部)における導入部21aに近接する部位及び上壁部32を経由して流れる。つまり、電流の流れる経路が導入部21a、下壁部33、筒体31における導入部21aに近接する部位及び上壁部32により形成されており、これらにより、ループアンテナに等価なマイクロ波の給電構造が構築されている。 As a result of the simulation under the basic conditions, as shown by a portion surrounded by a broken line in FIG. 4, the net incident power P1 is only slightly decreased from the incident power P0 of 10 [W], It is about 7-8 [W]. Therefore, the reflected waves of the microwaves from the cavity 30a are relatively small, and they are almost matched. Further, the temperature T is about 70-80 [° C.], and the microwave device 100 of the present embodiment in which the introduction portion 21a is in contact with the lower wall portion 33 has low microwave power. It has good heating performance. Further, as compared with the result of the comparative example surrounded by the chain double-dashed line in FIG. 4 (when the introduction portion 21a is not in contact with the lower wall portion 33), the microwave device 100 of the present embodiment is similar to the comparative example and the antenna. Although the length L is the same, the introduction portion 21a comes into contact with the lower wall portion 33, so that the net incident power P1 and the temperature T sharply increase from the comparative example, which is extremely good as compared with the comparative example. It can be seen that it has various device characteristics. In the microwave device 100, the leading end portion (terminal end) 21a1 of the introduction portion 21a contacts the lower wall portion 33 and is electrically short-circuited. As a result, the current flows through the introduction portion 21a, the lower wall portion 33, the portion of the tubular body 31 (side wall portion of the resonator 30) close to the introduction portion 21a, and the upper wall portion 32. In other words, the current flow path is formed by the introduction portion 21a, the lower wall portion 33, the portion of the cylindrical body 31 close to the introduction portion 21a, and the upper wall portion 32. With these, microwave feeding equivalent to the loop antenna is performed. The structure is built.
 第1実施形態に係るマイクロ波装置100によれば、給電経路部20の中心導体21のうちのマイクロ波を空胴30a内に導入する導入部21aは、共振器30における上壁部32及び下壁部33のうちの一方の壁部(図では上壁部32)を貫通して空胴30a内に突出し、共振器30の内側面30bの近傍で空胴30aの中心軸Oと平行に、つまり、直線状に延伸している。したがって、マイクロ波を空胴30a内に導入する導入部21aが特別な成形加工を施すことなく簡素な構造で構築され、同一形状の導入部21aが再現性良く構築される。また、導入部21aは直線状に延伸しているだけであるため、導入部21aが前記一方の壁部を貫通する孔32aは、例えば、給電経路部20の絶縁体22の外径に合わせた小径でよく、絶縁体22の終端部を小径の孔32aに嵌め込むだけで、導入部21a(中心導体21の一部)の空胴30a内における位置が容易に定まる。これらにより、マイクロ波装置100では、従来のループアンテナに相当する部位を構成する導入部21aの形状や導入部21aの共振器30(詳しくは、空胴30a)内における位置及び姿勢が装置毎にばらつき難く、マイクロ波の共振器30との結合程度も装置毎にばらつき難くなる。したがって、装置間の性能にばらつきが生じ難く、所定の性能を有したマイクロ波装置100が簡素な構造で再現性良く供給されることになる。このようにして、簡素な構造で性能ばらつきを抑制可能なマイクロ波装置100を提供することができる。 According to the microwave device 100 of the first embodiment, the introduction portion 21a of the central conductor 21 of the power feeding path portion 20 that introduces the microwave into the cavity 30a includes the upper wall portion 32 and the lower portion of the resonator 30. One of the wall portions 33 (upper wall portion 32 in the figure) is penetrated to protrude into the cavity 30a, and in the vicinity of the inner side surface 30b of the resonator 30 in parallel with the central axis O of the cavity 30a, That is, it is linearly stretched. Therefore, the introduction part 21a for introducing the microwave into the cavity 30a is constructed with a simple structure without performing a special forming process, and the introduction part 21a having the same shape is constructed with good reproducibility. Further, since the introduction portion 21a only extends linearly, the hole 32a through which the introduction portion 21a penetrates the one wall portion is, for example, matched with the outer diameter of the insulator 22 of the power feeding path portion 20. The diameter may be small, and the position of the introduction portion 21a (a part of the central conductor 21) in the cavity 30a can be easily determined by simply fitting the end portion of the insulator 22 into the small diameter hole 32a. As a result, in the microwave device 100, the shape and shape of the introduction part 21a and the position and orientation of the introduction part 21a in the resonator 30 (specifically, the cavity 30a) that constitute a part corresponding to a conventional loop antenna are different for each device. It does not easily fluctuate, and the degree of coupling of the microwave with the resonator 30 does not easily fluctuate from device to device. Therefore, variations in performance between devices are unlikely to occur, and the microwave device 100 having a predetermined performance is supplied with a simple structure and good reproducibility. In this way, it is possible to provide the microwave device 100 capable of suppressing performance variations with a simple structure.
 また、空胴30a内には、TM010モードの電磁界が励起される。このモードでは、空胴30aの中心軸Oの方向に均一な電界分布を示すため、中心軸Oの方向(延伸方向)で電界は一定である。そして、導入部21aの貫通用の孔32aは空胴30aの中心軸方向両端を閉塞する上壁部32及び下壁部33のうちの一方の壁部(例えば、上壁部32)に開けられている。したがって、マイクロ波装置100では、電界分布等が孔32aの開口による影響を受けにくい構造を有している。なお、孔32aは、従来のループアンテナを共振器外で成形した場合に必要な前述した大きな開口部より小さくすることができるため、この孔32aを介したマイクロ波の漏れは、極めて少ないと共に、容易に抑制又は防止することができる。具体的には、本実施形態のように、孔32aの内径を絶縁体22の外径に合せ、絶縁体22を孔32aに嵌め込むだけで、マイクロ波の漏れは完全に防止される。 Also, an electromagnetic field of TM010 mode is excited in the cavity 30a. In this mode, since the electric field is uniformly distributed in the direction of the central axis O of the cavity 30a, the electric field is constant in the direction of the central axis O (stretching direction). Then, the through hole 32a of the introduction portion 21a is formed in one wall portion (for example, the upper wall portion 32) of the upper wall portion 32 and the lower wall portion 33 that closes both ends in the central axis direction of the cavity 30a. ing. Therefore, the microwave device 100 has a structure in which the electric field distribution and the like are not easily affected by the opening of the hole 32a. Since the hole 32a can be made smaller than the above-described large opening required when the conventional loop antenna is molded outside the resonator, the microwave leakage through the hole 32a is extremely small, and It can be easily suppressed or prevented. Specifically, as in the present embodiment, by matching the inner diameter of the hole 32a with the outer diameter of the insulator 22 and fitting the insulator 22 into the hole 32a, microwave leakage can be completely prevented.
 ここで、液体(溶液)は、液種ごとに異なる誘電特性を有している。したがって、マイクロ波装置100は、本質的には、異なった誘電特性を有する誘電体としての様々な液種の液体を加熱できることが望まれる。 Here, the liquid (solution) has different dielectric properties depending on the liquid type. Therefore, it is desirable that the microwave device 100 can essentially heat liquids of various liquid types as dielectrics having different dielectric properties.
 図5は、加熱対象物を変更した場合のマイクロ波装置100の装置特性の変化を説明するためのグラフであり、液種を除いて、前記基本条件と同じ条件でシミュレーションした結果が示されている。液種としては、トルエンの他に、エタノール、メタノール、エチレングリコール、アセトニトリル、ジメチルスルホキシド及び水を一例に挙げ、各液種についてのシミュレーションを行った。図5では、説明の簡略化のため、トルエン、エタノール、メタノール、エチレングリコール、アセトニトリル、ジメチルスルホキシド、水を、それぞれ、Tol、ET、MT、EG、AN、DMSO、WTと略した記号が示されている。図5には、左から順に、前記記号に対応する液種についての、正味入射電力P1、温度T及び空胴30a内のマイクロ波の共振周波数Fのシミュレーション結果が示されている。図5において、横軸は各液体の比誘電率ε’を示し、左縦軸は正味入射電力P1[W]と共振周波数F[GHz]を示し、右縦軸はマイクロ波により加熱された各液体の最高の温度T[℃]を示す。 FIG. 5 is a graph for explaining the change in the device characteristics of the microwave device 100 when the heating target is changed, and shows the result of simulation under the same conditions as the basic conditions except for the liquid type. There is. As the liquid type, ethanol, methanol, ethylene glycol, acetonitrile, dimethyl sulfoxide, and water were given as an example in addition to toluene, and simulations were performed for each liquid type. In FIG. 5, for simplification of description, symbols abbreviated Tolu, ethanol, methanol, ethylene glycol, acetonitrile, dimethylsulfoxide, and water are shown as Tol, ET, MT, EG, AN, DMSO, and WT, respectively. ing. In FIG. 5, the simulation results of the net incident power P1, the temperature T, and the resonance frequency F of the microwave in the cavity 30a for the liquid type corresponding to the symbol are shown in order from the left. In FIG. 5, the horizontal axis represents the relative permittivity ε ′ of each liquid, the left vertical axis represents the net incident power P1 [W] and the resonance frequency F [GHz], and the right vertical axis represents each microwave heated. The maximum temperature T [° C] of the liquid is shown.
 図5から分かるように、トルエンやアセトニトリルは正味入射電力P1及び温度Tが他の液種よりも高い。つまり、誘電正接tanδが比較的に小さく、誘電損失の低いトルエンやアセトニトリルについては、空胴30aからのマイクロ波の反射が少なく、整合がよい。一方、エチレングリコールや水は正味入射電力P1及び温度Tが他の液種よりも低い。つまり、誘電正接tanδが比較的に大きく、誘電損失の高いエチレングリコールや水については、空胴30aからのマイクロ波の反射が多く、良好な整合が得られにくい。また、共振周波数Fについては、液種変更により若干変化するが、いずれの液体でもISM周波数帯である2.4~2.5[GHz]の範囲内に収まっており、ISM周波数帯のマイクロ波で加熱可能であることが分かる。これらのことから、導入部21aが下壁部33に接触している本実施形態に係るマイクロ波装置100では、誘電正接tanδの比較的に大きいエチレングリコールや水の場合を除くと、良好な加熱特性を有しており、比誘電率ε’の低いトルエンから比誘電率ε’の比較的に高いジメチルスルホキシドまで、一つの装置で、良好な加熱処理を実行することが可能であることが分かった。従来は、比誘電率ε’が低くマイクロ波の吸収が小さい、例えば、トルエンのような非極性溶媒は、マイクロ波により加熱することは困難であるとされていた。しかし、本実施形態のマイクロ波装置100は、このような非極性溶媒から、比誘電率ε’が高く且つマイクロ波の吸収が比較的大きい極性溶媒まで、一つの装置で、ISM周波数帯内で加熱処理を実行することができる。なお、上記シミュレーションは、液体、つまり誘電体のパラメータが温度によって変化しないものとして行われている。実際には、殆どの液体で、昇温に伴ってパラメータが変化する。一般的に、昇温に伴って、液体の比誘電率ε’は小さくなり、例えば、水の場合、昇温に伴って空胴30aからのマイクロ波の反射が減少する方向に、比誘電率ε’が変化する。したがって、水であっても、図5に示したシミュレーション結果よりも、実際の正味入射電力P1及び温度Tは大きくなり、実用的な加熱特性を得ることができる。なお、図示を省略するが、さらに方向性結合器15と共振器30(導入部21a)との間に、反射波を反射させてもう一度空胴30a内へ入射させる整合器(換言すると、インピーダンス整合器)を設けることにより、正味入射電力P1及び温度Tはさらに大きくなる。 As can be seen from FIG. 5, toluene and acetonitrile have higher net incident power P1 and temperature T than other liquid species. That is, with respect to toluene and acetonitrile, which have a relatively small dielectric loss tangent tan δ and a low dielectric loss, the microwaves are less reflected from the cavity 30a and the matching is good. On the other hand, ethylene glycol and water have lower net incident power P1 and temperature T than other liquid species. That is, with respect to ethylene glycol and water, which have a relatively large dielectric loss tangent tan δ and a high dielectric loss, microwaves are often reflected from the cavity 30a, and it is difficult to obtain good matching. The resonance frequency F changes slightly depending on the liquid type, but all liquids are within the ISM frequency band of 2.4 to 2.5 [GHz], and microwaves in the ISM frequency band are included. It turns out that it can be heated with. From these, in the microwave device 100 according to the present embodiment in which the introduction portion 21a is in contact with the lower wall portion 33, good heating is possible except for the case of ethylene glycol or water having a relatively large dielectric loss tangent tan δ. It has been found that it is possible to perform good heat treatment with a single device, from toluene with a low relative permittivity ε'to dimethylsulfoxide with a relatively high relative permittivity ε ', which has characteristics. It was Conventionally, it has been considered difficult to heat a non-polar solvent such as toluene, which has a low relative permittivity ε'and a small microwave absorption, by microwaves. However, the microwave device 100 of the present embodiment can be used in a single device in the ISM frequency band from such a non-polar solvent to a polar solvent having a high relative permittivity ε ′ and a relatively large microwave absorption. A heat treatment can be performed. The above simulation is performed assuming that the parameters of the liquid, that is, the dielectric, do not change with temperature. In practice, the parameters of most liquids change as the temperature rises. Generally, as the temperature rises, the relative permittivity ε ′ of the liquid decreases. For example, in the case of water, the relative permittivity ε ′ decreases in the direction in which the reflection of microwaves from the cavity 30a decreases as the temperature rises. ε'changes. Therefore, even with water, the actual net incident power P1 and the temperature T are larger than the simulation result shown in FIG. 5, and a practical heating characteristic can be obtained. Although not shown, a matching device (in other words, impedance matching) that reflects the reflected wave between the directional coupler 15 and the resonator 30 (introducing part 21a) and makes it enter the cavity 30a again. By providing a container, the net incident power P1 and the temperature T are further increased.
 本実施形態では、導入部21aの先端部21a1は、上壁部32及び下壁部33のうちの他方の壁部である下壁部33に電気的に接続されている。これにより、図4及び図5に示すシミュレーション結果等から分かるように、エチレングリコールや水のような誘電正接tanδが比較的に大きく、誘電損失の高い液種以外の液体(例えば、トルエン、エタノール、メタノール、アセトニトリル、ジメチルスルホキシドなど)を加熱対象物とする場合に、容易に良好な加熱特性を示すマイクロ波装置100を提供することができる。また、導入部21aの先端部21a1を下壁部33の上面に接触させることにより、導入部21aを、簡易な構造により二点支持により安定して支持することができる。なお、本実施形態では、前記一方の壁部は上壁部32であるものとして説明したが、これに限らず、前記一方の壁部は下壁部33であってもよい。この場合、外部導体23の終端部は下壁部33に電気的に接続され、下壁部33に導入部21aの貫通用の孔32aが形成され、前記他方の壁部は上壁部32となり、導入部21aの先端部21a1は上壁部32の下面に接触させればよい。導入部21aは銅線材からなる中心導体21の一部であるため、導入部21aは下壁部33に形成される孔32aを貫通して、空胴30a内で直線状に安定して自立することができる。 In the present embodiment, the distal end portion 21a1 of the introduction portion 21a is electrically connected to the lower wall portion 33 which is the other wall portion of the upper wall portion 32 and the lower wall portion 33. As a result, as can be seen from the simulation results and the like shown in FIGS. 4 and 5, liquids other than liquids having a relatively high dielectric loss tan δ such as ethylene glycol and water (for example, toluene, ethanol, It is possible to easily provide the microwave device 100 that exhibits good heating characteristics when a heating target is methanol, acetonitrile, dimethyl sulfoxide, or the like. Further, by bringing the tip end portion 21a1 of the introduction portion 21a into contact with the upper surface of the lower wall portion 33, the introduction portion 21a can be stably supported by two-point support with a simple structure. In addition, in this embodiment, although the said one wall part was demonstrated as what is the upper wall part 32, it is not restricted to this and the said one wall part may be the lower wall part 33. In this case, the end portion of the outer conductor 23 is electrically connected to the lower wall portion 33, the lower wall portion 33 is formed with a hole 32a for penetrating the introduction portion 21a, and the other wall portion serves as the upper wall portion 32. The tip portion 21a1 of the introduction portion 21a may be brought into contact with the lower surface of the upper wall portion 32. Since the introduction part 21a is a part of the central conductor 21 made of a copper wire, the introduction part 21a penetrates through the hole 32a formed in the lower wall part 33 and linearly stabilizes itself in the cavity 30a. be able to.
 図6は、マイクロ波装置100の空胴30aの高さHを変更した場合の前記装置特性の変化を説明するためのグラフである。詳しくは、導入部21aの先端部21a1が下壁部33に接触している場合において、加熱対象物としての液体のトルエンについて、前記基本条件における空胴30aの高さHのみを変更した場合のシミュレーション結果である。図6において、横軸は空胴30aの高さH[mm]を示し、左縦軸は正味入射電力P1[W]と共振周波数F[GHz]を示し、右縦軸はマイクロ波により加熱されたトルエンの最高の温度T[℃]を示す。また、導入部21aの先端部21a1は下壁部33に接触していることが前提であるため、横軸が示す空胴30aの高さHの値はアンテナの長さLと一致する。 FIG. 6 is a graph for explaining changes in the device characteristics when the height H of the cavity 30a of the microwave device 100 is changed. Specifically, when the leading end 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, when only the height H of the cavity 30a under the basic conditions is changed for the liquid toluene as the heating object. It is a simulation result. In FIG. 6, the horizontal axis represents the height H [mm] of the cavity 30a, the left vertical axis represents the net incident power P1 [W] and the resonance frequency F [GHz], and the right vertical axis is heated by microwaves. It also shows the maximum temperature T [° C] of toluene. Further, since it is premised that the tip portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, the value of the height H of the cavity 30a indicated by the horizontal axis matches the length L of the antenna.
 図6から分かるように、空胴30aの高さHを変更すると、正味入射電力P1及び温度Tが変化している。したがって、空胴30aの高さHを変更すると、空胴30aにおけるマイクロ波の反射特性も変化している。具体的には、正味入射電力P1及び温度Tは、それぞれ、空胴30aの高さHの増減の影響を受けて、空胴30aの高さHが増加するほど、例えば、24[mm]から48[mm]まではほぼ同様に増加し、48[mm]から64[mm]まではほぼ同様に減少し、その後、増加傾向に転じる。このように、空胴30aの高さHの変化に伴い、正味入射電力P1及び温度Tは概ね周期的に増減する傾向を示している。共振器30内には、空胴30aの中心軸Oの方向に均一な電界分布を示す(つまり、電磁界分布に変化がない)TM010モードの電磁界が励起されるが、空胴30aにおけるマイクロ波の反射特性(結合程度)は空胴30aの高さHによって変動している。詳しくは、本実施形態では、導入部21aの先端部21a1が下壁部33に接触しているため、アンテナの長さLは空胴30aの高さHに応じて変化する。したがって、導入部21a、下壁部33、筒体31における導入部21aに近接する部位及び上壁部32を経由して形成されるループアンテナに等価なマイクロ波の給電構造の経路長は、空胴30aの高さH(つまり、アンテナの長さL)の変化に応じて変化することになる。そして、前記経路長の変化に伴い、空胴30a内におけるマイクロ波の結合状態が変化し、その結果、空胴30aにおけるマイクロ波の反射特性(結合程度)が空胴30aの高さH(アンテナの長さL)に応じて変化する。また、共振周波数Fについては、空胴30aの高さH(アンテナの長さL)の変更により若干変化するが、概ねISM周波数帯に収まっている。 As can be seen from FIG. 6, when the height H of the cavity 30a is changed, the net incident power P1 and the temperature T are changed. Therefore, when the height H of the cavity 30a is changed, the microwave reflection characteristic in the cavity 30a also changes. Specifically, the net incident power P1 and the temperature T are, for example, from 24 [mm] as the height H of the cavity 30a increases under the influence of the increase or decrease of the height H of the cavity 30a. It increases almost in the same way up to 48 [mm], decreases almost in the same way from 48 [mm] to 64 [mm], and then starts to increase. As described above, the net incident power P1 and the temperature T tend to increase and decrease substantially periodically as the height H of the cavity 30a changes. In the resonator 30, a TM010 mode electromagnetic field showing a uniform electric field distribution in the direction of the central axis O of the cavity 30a (that is, no change in electromagnetic field distribution) is excited. The wave reflection characteristic (coupling degree) varies depending on the height H of the cavity 30a. Specifically, in the present embodiment, since the tip end portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, the length L of the antenna changes according to the height H of the cavity 30a. Therefore, the path length of the microwave feeding structure equivalent to the loop antenna formed via the introduction portion 21a, the lower wall portion 33, the portion of the cylindrical body 31 close to the introduction portion 21a, and the upper wall portion 32 is It changes according to the change in the height H of the body 30a (that is, the length L of the antenna). Then, as the path length changes, the microwave coupling state in the cavity 30a changes, and as a result, the microwave reflection characteristic (coupling degree) in the cavity 30a is the height H (antenna of the cavity 30a). Of length L). Further, the resonance frequency F is slightly within the ISM frequency band, although it is slightly changed by changing the height H of the cavity 30a (the length L of the antenna).
 また、空胴30aの高さHは低いほど、装置の小型化が図られる。例えば、空胴30aの高さHが32[mm]の場合、正味入射電力P1は7-8[W]程度であり、温度Tは70-80[℃]程度であり、装置の小型化を図ることができると共に実用に見合う加熱特性を得ることができる。なお、マイクロ波の入射電力P0は10[W]の場合でシミュレーションしたが、例えば、入射電力P0を50[W]にすると、温度Tは250[℃]程度の高温を得ることができる。 Also, the lower the height H of the cavity 30a, the more compact the device. For example, when the height H of the cavity 30a is 32 [mm], the net incident power P1 is about 7-8 [W] and the temperature T is about 70-80 [° C], which makes the device compact. It is possible to obtain the heating characteristics suitable for practical use. In addition, although the simulation was performed when the incident power P0 of the microwave was 10 [W], for example, when the incident power P0 is 50 [W], the temperature T can be as high as 250 [° C.].
 図7は、共振器30の内側面30bと導入部21a(具体的には前記アンテナ)の間の最小離間距離Gを変更した場合の前記装置特性の変化を説明するためのグラフである。詳しくは、導入部21aの先端部21a1が下壁部33に接触している場合において、加熱対象物としての液体のトルエンについて、前記基本条件における共振器30の内側面30bと導入部21a(前記アンテナ)の間の最小離間距離Gのみを変更した場合のシミュレーション結果である。図7において、横軸は最小離間距離G[mm]を示し、左縦軸は正味入射電力P1[W]と共振周波数F[GHz]を示し、右縦軸はマイクロ波により加熱されたトルエンの最高の温度T[℃]を示す。 FIG. 7 is a graph for explaining changes in the device characteristics when the minimum separation distance G between the inner surface 30b of the resonator 30 and the introduction portion 21a (specifically, the antenna) is changed. Specifically, when the tip end portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, for the liquid toluene as the heating target, the inner side surface 30b of the resonator 30 and the introduction portion 21a (the above-mentioned It is a simulation result when only the minimum separation distance G between antennas) is changed. In FIG. 7, the horizontal axis represents the minimum separation distance G [mm], the left vertical axis represents the net incident power P1 [W] and the resonance frequency F [GHz], and the right vertical axis represents the toluene heated by microwaves. The highest temperature T [° C] is shown.
 図7から分かるように、導入部21aの先端部21a1が下壁部33に接触しており、加熱対象物が液体のトルエンの場合、最小離間距離Gが短くなるほど、正味入射電力P1及び温度Tは増加する。例えば、最小離間距離Gが前記基本条件としての4[mm]より短くなると、正味入射電力P1及び温度Tはさらに増加し、加熱特性がより向上することが分かる。一方、共振周波数Fについては、最小離間距離Gの変更により若干変化するが、概ねISM周波数帯に収まっている。また、図示を省略するが、他の液種(エタノール、メタノール、エチレングリコール、アセトニトリル、DMSO、水)についても同様のシミュレーションを行ったところ、エチレングリコールと水を除き、図7に示すトルエンの場合と同様に、最小離間距離Gが短くなるほど正味入射電力P1及び温度Tが増加するという特性を示すことが分かった。例えば、トルエンと同様に、誘電正接tanδが比較的に小さく、誘電損失の低いアセトニトリルの場合、最小離間距離Gが4[mm]のとき、正味入射電力P1は9.9[W]であり、温度Tは97[℃]であり、極めて良好な加熱特性が得られる。したがって、エチレングリコールや水のような誘電正接tanδが比較的に大きく、誘電損失の高い液種以外の液体(例えば、トルエン、エタノール、メタノール、アセトニトリル、ジメチルスルホキシドなど)の場合には、本実施形態のように、導入部21a(前記アンテナ)と共振器30の内側面30bとの間の最小離間距離Gが円柱状の空胴30aの直径R0の5%以下の値(例えば、4[mm]程度)に設定されると、加熱特性がより向上する。 As can be seen from FIG. 7, when the leading end portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33 and the heating target is liquid toluene, as the minimum separation distance G becomes shorter, the net incident power P1 and the temperature T are increased. Will increase. For example, when the minimum separation distance G becomes shorter than 4 [mm] as the basic condition, it can be seen that the net incident power P1 and the temperature T further increase and the heating characteristic is further improved. On the other hand, the resonance frequency F is slightly within the ISM frequency band although it changes slightly due to the change in the minimum separation distance G. Although not shown, the same simulation was performed for other liquid types (ethanol, methanol, ethylene glycol, acetonitrile, DMSO, and water). In the case of toluene shown in FIG. 7, ethylene glycol and water were removed. Similarly, it was found that as the minimum separation distance G becomes shorter, the net incident power P1 and the temperature T increase. For example, like toluene, in the case of acetonitrile having a relatively small dielectric loss tangent tan δ and a low dielectric loss, when the minimum separation distance G is 4 [mm], the net incident power P1 is 9.9 [W], The temperature T is 97 [° C.], and extremely good heating characteristics can be obtained. Therefore, in the case of a liquid other than the liquid species having a relatively large dielectric loss tangent tan δ such as ethylene glycol or water (for example, toluene, ethanol, methanol, acetonitrile, dimethyl sulfoxide), the present embodiment As described above, the minimum separation distance G between the introduction portion 21a (the antenna) and the inner side surface 30b of the resonator 30 is 5% or less of the diameter R0 of the cylindrical cavity 30a (for example, 4 [mm]). When set to about), the heating characteristics are further improved.
 図示を省略するが、誘電正接tanδが比較的に大きいエチレングリコールや水の場合については、最小離間距離Gが長くなるほど正味入射電力P1及び温度Tが増加するという特性を示すことが分かった。例えば、エチレングリコールの場合、最小離間距離Gを4[mm]から15[mm]の間で長くすると、最小離間距離Gが15[mm]では、温度Tは73[℃]まで上昇するが、共振周波数Fが2.532[GHz]になってISM周波数帯を外れる。また、水の場合、最小離間距離Gを4[mm]から20[mm]の間で長くすると、最小離間距離Gが20[mm]では、温度Tは98[℃]まで上昇するが、共振周波数Fが2.533[GHz]になってISM周波数帯を外れる。ただし、エチレングリコールの場合は、例えば、最小離間距離Gを10[mm]とすれば、共振周波数FをISM周波数帯内に収めることができ、この場合、温度Tは57[℃]となり、ISM周波数帯において実用的な加熱特性を得ることができる。また、水の場合は、例えば、最小離間距離Gを15[mm]とすれば、共振周波数FをISM周波数帯内に収めることができ、この場合、温度Tは97.5[℃]となり、ISM周波数帯において実用的な加熱特性を得ることができる。このように、エチレングリコールや水のような誘電正接tanδが比較的に大きい液種においては、他の液種とは異なり、最小離間距離Gが長くなるほど正味入射電力P1及び温度Tが増加するという特性を示すことが分かった。したがって、エチレングリコールや水のような誘電正接tanδが比較的に大きい液種の場合において、共振周波数Fが確実にISM周波数帯内に収まることを優先する場合は、最小離間距離Gが空胴30aの直径R0(=91.2[mm])の20%以下の値(例えば、エチレングリコールの場合は10[mm]程度、水の場合は15[mm]程度)に設定されるとよい。 Although not shown, in the case of ethylene glycol or water having a relatively large dielectric loss tangent tan δ, it was found that as the minimum separation distance G becomes longer, the net incident power P1 and the temperature T increase. For example, in the case of ethylene glycol, if the minimum separation distance G is increased from 4 [mm] to 15 [mm], the temperature T rises to 73 [° C] when the minimum separation distance G is 15 [mm], The resonance frequency F becomes 2.532 [GHz], which is outside the ISM frequency band. In the case of water, if the minimum separation distance G is increased from 4 [mm] to 20 [mm], the temperature T rises to 98 [° C] at the minimum separation distance G of 20 [mm], but the resonance The frequency F becomes 2.533 [GHz], which is outside the ISM frequency band. However, in the case of ethylene glycol, for example, if the minimum separation distance G is 10 [mm], the resonance frequency F can be kept within the ISM frequency band, and in this case, the temperature T becomes 57 [° C], Practical heating characteristics can be obtained in the frequency band. In the case of water, for example, if the minimum separation distance G is set to 15 [mm], the resonance frequency F can be kept within the ISM frequency band, and in this case, the temperature T becomes 97.5 [° C]. Practical heating characteristics can be obtained in the ISM frequency band. As described above, in the case of a liquid type having a relatively large dielectric loss tangent tan δ, such as ethylene glycol or water, the net incident power P1 and the temperature T increase as the minimum separation distance G increases, unlike other liquid types. It was found to exhibit characteristics. Therefore, in the case of a liquid type having a relatively large dielectric loss tangent tan δ such as ethylene glycol or water, when giving priority to ensuring that the resonance frequency F falls within the ISM frequency band, the minimum separation distance G is the cavity 30a. The diameter R0 (= 91.2 [mm]) of 20% or less (for example, about 10 [mm] for ethylene glycol, about 15 [mm] for water) may be set.
 次に、本発明の第2実施形態に係るマイクロ波装置100’について、図8を参照して説明する。図8は、本発明の第2実施形態に係るマイクロ波装置100’の概略構成図である。なお、第1実施形態におけるマイクロ波装置100と同一の要素には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。 Next, a microwave device 100 'according to a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic configuration diagram of a microwave device 100 'according to the second embodiment of the present invention. The same elements as those of the microwave device 100 according to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only different portions will be described.
 マイクロ波装置100’では、導入部21aの先端部21a1は、上壁部32及び下壁部33のうちの他方の壁部である下壁部33に対して電気的に絶縁されている。本実施形態では、導入部21aの先端部21a1は、前記他方の壁部としての下壁部33から所定距離手前に位置している。つまり、導入部21aの先端部21a1は上壁部32及び下壁部33のうちの他方の壁部としての下壁部33に接触していない。したがって、空胴30aの高さHは、導入部21aの前記アンテナの長さLより大きい。その他の構成については、第1実施形態と同じである。 In the microwave device 100 ′, the tip portion 21 a 1 of the introduction portion 21 a is electrically insulated from the lower wall portion 33 which is the other wall portion of the upper wall portion 32 and the lower wall portion 33. In the present embodiment, the distal end portion 21a1 of the introduction portion 21a is located a predetermined distance before the lower wall portion 33 as the other wall portion. That is, the front end portion 21a1 of the introduction portion 21a does not contact the lower wall portion 33 as the other wall portion of the upper wall portion 32 and the lower wall portion 33. Therefore, the height H of the cavity 30a is larger than the length L of the antenna of the introduction portion 21a. Other configurations are the same as those in the first embodiment.
 図9はマイクロ波装置100’においてアンテナの長さLを変更した場合の装置特性の変化を説明するためのグラフである。詳しくは、加熱対象物としての液体のトルエンについて、前記基本条件におけるアンテナの長さLのみを導入部21aの先端部21a1が下壁部33に接触しない範囲で変更した場合のシミュレーション結果である。図9において、横軸はアンテナの長さLを示し、左縦軸はマイクロ波の空胴30aへの正味入射電力P1[W]を示し、右縦軸はマイクロ波により加熱されたトルエンの最高の温度T[℃]を示す。また、導入部21aの先端部21a1は下壁部33に接触していないことが前提である。アンテナの長さLは前記基本条件における空胴30aの高さHである32[mm]と同じ(図中一番右側のプロット)かそれより短い。 FIG. 9 is a graph for explaining a change in device characteristics when the length L of the antenna is changed in the microwave device 100 '. More specifically, it is a simulation result when only the length L of the antenna under the above-mentioned basic conditions is changed for the liquid toluene as the heating object within a range in which the tip portion 21a1 of the introduction portion 21a does not contact the lower wall portion 33. In FIG. 9, the horizontal axis represents the length L of the antenna, the left vertical axis represents the net incident power P1 [W] of the microwave into the cavity 30a, and the right vertical axis represents the maximum of the toluene heated by the microwave. Shows the temperature T [° C.] of. Further, it is premised that the leading end portion 21a1 of the introduction portion 21a is not in contact with the lower wall portion 33. The length L of the antenna is the same as 32 [mm] which is the height H of the cavity 30a under the basic conditions (the rightmost plot in the figure) or shorter.
 図9から分かるように、空胴30aの高さHを変更せずに32[mm]に固定し、アンテナの長さLを変更すると、正味入射電力P1及び温度Tが変化する。正味入射電力P1及び温度Tは、アンテナの長さLが増加するほど、5[mm]から15[mm]まではほぼ同様に増加し、15[mm]から30[mm]まではほぼ同様に減少し、30[mm]から32[mm]近傍までは微増する。このように、導入部21aの先端部21a1が下壁部33に接触しない範囲で、アンテナの長さLを変更すると、所定のアンテナの長さL(図では、15[mm])において、正味入射電力P1及び温度Tが最大値を示している。このように、マイクロ波装置100’は、正味入射電力P1及び温度Tについてピーク性のある装置特性を有している。 As can be seen from FIG. 9, if the height H of the cavity 30a is fixed to 32 mm without changing and the length L of the antenna is changed, the net incident power P1 and the temperature T change. The net incident power P1 and the temperature T increase in the same manner from 5 [mm] to 15 [mm] as the antenna length L increases, and from 15 [mm] to 30 [mm] almost the same. It decreases and slightly increases from 30 [mm] to around 32 [mm]. In this way, when the length L of the antenna is changed within a range in which the tip 21a1 of the introduction portion 21a does not contact the lower wall portion 33, the net length L (15 [mm] in the figure) of the antenna is changed. The incident power P1 and the temperature T show the maximum values. As described above, the microwave device 100 ′ has a device characteristic having a peak property with respect to the net incident power P 1 and the temperature T.
 また、本実施形態における正味入射電力P1及び温度Tの最大値は、図4に破線で囲まれた例(導入部21aが下壁部33に接触している場合)における正味入射電力P1及び温度Tの値よりも大きい。ここで、例えば、導入部21aの直線形状が導入部21aの先端部21a1を下壁部33に接触させなくても十分に安定して維持されると共に導入部21aが上壁部32による片持ち支持により安定する場合がある。したがって、このような場合等には、正味入射電力P1及び温度Tの向上を優先し、本実施形態のように、導入部21aの先端部21a1を下壁部33に接触させず、アンテナの長さLを正味入射電力P1及び温度Tが前記最大値を示す長さ(図では、15[mm])に設定するとよい。 Further, the maximum values of the net incident power P1 and the temperature T in this embodiment are the net incident power P1 and the temperature in the example surrounded by the broken line in FIG. 4 (when the introduction portion 21a is in contact with the lower wall portion 33). Greater than the value of T. Here, for example, the linear shape of the introducing portion 21a is maintained sufficiently stable without contacting the tip portion 21a1 of the introducing portion 21a with the lower wall portion 33, and the introducing portion 21a is cantilevered by the upper wall portion 32. May be stable due to support. Therefore, in such a case, priority is given to the improvement of the net incident power P1 and the temperature T, and the tip portion 21a1 of the introduction portion 21a is not brought into contact with the lower wall portion 33 as in the present embodiment, and the antenna length is increased. It is advisable to set the length L to a length (15 [mm] in the figure) where the net incident power P1 and the temperature T show the maximum value.
 図10は、マイクロ波装置100’において加熱対象物を変更した場合の装置特性の変化を説明するためのグラフであり、図9と同様のグラフである。詳しくは、加熱対象物をメタノールに変更し、前記基本条件におけるアンテナの長さLのみを導入部21aの先端部21a1が下壁部33に接触しない範囲で変更した場合のシミュレーション結果を図9に示したトルエン(非接触)の場合のシミュレーション結果と重ねて示した図である。 FIG. 10 is a graph for explaining changes in device characteristics when the heating target is changed in the microwave device 100 ′, and is a graph similar to FIG. 9. More specifically, FIG. 9 shows a simulation result when the heating target is changed to methanol and only the length L of the antenna under the above basic condition is changed within a range in which the tip 21a1 of the introduction portion 21a does not contact the lower wall portion 33. It is the figure which overlapped with the simulation result in the case of the shown toluene (non-contact).
 図10から分かるように、メタノールの場合においても、アンテナの長さLを変更すると、正味入射電力P1及び温度Tが変化する。正味入射電力P1及び温度Tは、例えば、アンテナの長さLを5[mm]から32[mm]近傍の範囲まで変更すると、メタノールの場合は、正味入射電力P1及び温度Tのピークが2箇所に現れている。このように、マイクロ波装置100’は、メタノールの場合においても正味入射電力P1及び温度Tについてピーク性のある装置特性を有している。 As can be seen from FIG. 10, even in the case of methanol, changing the antenna length L changes the net incident power P1 and the temperature T. The net incident power P1 and the temperature T are, for example, two peaks of the net incident power P1 and the temperature T in the case of methanol when the length L of the antenna is changed from 5 [mm] to around 32 [mm]. Has appeared in. As described above, the microwave device 100 ′ has a device characteristic having a peak property with respect to the net incident power P 1 and the temperature T even in the case of methanol.
 また、メタノールの場合において、2箇所のピークのうちの高い方のピークにおける正味入射電力P1及び温度Tの値は、図示を省略したが導入部21aが下壁部33に接触している場合における正味入射電力P1及び温度Tの値と略同じである。このように、メタノールの場合においても、前述したように導入部21aの直線形状が維持されると共に片持ち支持により安定する場合等には、正味入射電力P1及び温度Tの向上を優先し、本実施形態のように、導入部21aの先端部21a1を下壁部33に接触させず、アンテナの長さLを正味入射電力P1及び温度Tが前記高い方のピークを示す長さ(図では、概ね28[mm]程度)に設定するとよい。また、図10から分かるように、トルエンの場合は、アンテナの長さLが概ね15[mm]の場合に正味入射電力P1及び温度Tが最大値を示し、メタノールの場合は、アンテナの長さLが概ね27.5[mm]の場合に正味入射電力P1及び温度Tが最大値を示している。つまり、効率的な加熱処理を実行可能なアンテナの長さLは、加熱対象物の種類等に応じて変化する。なお、第2実施形態において、導入部21aの先端部21a1と下壁部33(つまり、上壁部32及び下壁部33のうちの他方の壁部)との間に絶縁物を挟み込むように構成してもよい。これにより、導入部21aを、二点支持により安定して確実に支持することができる。 In the case of methanol, the values of the net incident power P1 and the temperature T at the higher peak of the two peaks are not shown in the figure, but the values in the case where the introduction part 21a is in contact with the lower wall part 33 The values are substantially the same as the values of the net incident power P1 and the temperature T. As described above, even in the case of methanol, when the linear shape of the introduction portion 21a is maintained as described above and is stabilized by cantilever support, priority is given to improvement of the net incident power P1 and the temperature T, and As in the embodiment, the tip 21a1 of the introduction portion 21a is not brought into contact with the lower wall portion 33, and the length L of the antenna is the length at which the net incident power P1 and the temperature T show the peak of the higher side (in the figure, It is preferable to set it to about 28 [mm]. Further, as can be seen from FIG. 10, in the case of toluene, the net incident power P1 and the temperature T show maximum values when the antenna length L is approximately 15 [mm], and in the case of methanol, the antenna length is When L is approximately 27.5 [mm], the net incident power P1 and the temperature T show maximum values. That is, the length L of the antenna that can perform the efficient heating process changes according to the type of the heating target. In the second embodiment, the insulator is sandwiched between the distal end portion 21a1 of the introduction portion 21a and the lower wall portion 33 (that is, the other wall portion of the upper wall portion 32 and the lower wall portion 33). You may comprise. As a result, the introduction portion 21a can be stably and reliably supported by the two-point support.
 第2実施形態に係るマイクロ波装置100’においても、導入部21aの形状や導入部21aの共振器30内における位置及び姿勢が装置毎にばらつき難く、マイクロ波の共振器30との結合程度も装置毎にばらつき難くなり、簡素な構造で性能ばらつきを抑制可能な装置を提供することができる。 Also in the microwave device 100 ′ according to the second embodiment, the shape of the introduction part 21 a and the position and orientation of the introduction part 21 a in the resonator 30 are unlikely to vary from device to device, and the degree of coupling of the microwave with the resonator 30 is also small. It is possible to provide a device that is less likely to vary from device to device and that can suppress performance variations with a simple structure.
 次に、上記各実施形態におけるマイクロ波装置100及びマイクロ波装置100’の変形例について、図11から図18等を参照して説明する。 Next, modified examples of the microwave device 100 and the microwave device 100 ′ in each of the above embodiments will be described with reference to FIGS. 11 to 18.
 図11は、マイクロ波装置100及びマイクロ波装置100’における導入部21aの変形例を説明するための図であり、図3に対応する断面図である。上記各実施形態では、導入部21aは、空胴30a内に一本のみ配設されるものとしたが、導入部21aの本数はこれに限らず、複数本であってもよい。例えば、図11に示すように、導入部21aは、複数個所(図では5箇所)に並列して設けられてもよい。空胴30aの半径方向に間隔を空けて、複数本の導入部21aを配置し、これらの複数の導入部21aの中から、実際にマイクロ波の導かれる導入部21aを切り替え可能に構成する。これにより、共振器30の内側面30bと導入部21a(前記アンテナ)の間の最小離間距離Gを、加熱対象の液種等に応じて適切に切替えることができる。また、図示を省略するが、マイクロ波装置100及びマイクロ波装置100’は、導入部21aを空胴30a内に一本のみ有すると共に、この一本の導入部21aの最小離間距離Gを変更可能な離間距離調整機構を有してもよい。前記離間距離調整機構は、例えば、空胴30aの半径方向についての導入部21aの位置を変更可能に、導入部21aを前記一方の壁部に支持し、共振器30の内側面30bと導入部21aの間の最小離間距離Gを変更可能に構成されるものである。 11 is a diagram for explaining a modification of the introduction unit 21a in the microwave device 100 and the microwave device 100 ', and is a cross-sectional view corresponding to FIG. In each of the above-described embodiments, only one introduction portion 21a is provided in the cavity 30a, but the number of introduction portions 21a is not limited to this, and may be plural. For example, as shown in FIG. 11, the introducing portions 21a may be provided in parallel at a plurality of locations (five locations in the figure). A plurality of introduction parts 21a are arranged at intervals in the radial direction of the cavity 30a, and the introduction part 21a to which the microwave is actually guided can be switched from among the plurality of introduction parts 21a. Thereby, the minimum separation distance G between the inner surface 30b of the resonator 30 and the introduction portion 21a (the antenna) can be appropriately switched according to the liquid type or the like to be heated. Although not shown, the microwave device 100 and the microwave device 100 'have only one introduction part 21a in the cavity 30a and can change the minimum separation distance G of this one introduction part 21a. A separate distance adjusting mechanism may be provided. The separation distance adjusting mechanism supports, for example, the introduction portion 21a on the one wall portion so that the position of the introduction portion 21a in the radial direction of the cavity 30a can be changed, and the inner surface 30b of the resonator 30 and the introduction portion can be changed. It is configured such that the minimum separation distance G between 21a can be changed.
 図12は、マイクロ波装置100及びマイクロ波装置100’において、マイクロ波発生器10及び給電経路部20からなるマイクロ波出力ユニット70を複数設けた場合の例を説明するための概略の構成図である。図13は、図12に示すC-C断面位置における断面図である。図12及び図13に示すように、マイクロ波装置100及びマイクロ波装置100’において、マイクロ波発生器10及び給電経路部20からなるマイクロ波出力ユニット70は複数(図では4セット)設けられる構成としてもよい。この場合、各マイクロ波出力ユニット70は、互いに同出力かつ同位相で、それぞれの給電経路部20における導入部21aを介して、マイクロ波を空胴30a内へ導入する。各導入部21aは、例えば、図13に示すように、空胴30aの中心軸O周りに等角度ピッチで、且つ、最小離間距離Gが互いに一致するように配置される。これにより、電力合成を図ることができる。この場合、図示を省略するが、さらに方向性結合器15と共振器30(導入部21a)との間に、反射波を反射させてもう一度空胴30a内へ入射させる前述した整合器を設けるとよい。これにより、例えば、各マイクロ波発生器10の最大出力能力が10wである場合、マイクロ波装置100及びマイクロ波装置100’は、4セットのマイクロ波出力ユニットにより全体として40wの出力能力を備え、前記マイクロ波出力ユニットのユニット数に比例して増加する電力合成を図ることができる。なお、図12及び図13では、各給電経路部20の導入部21aについての空胴30a内における配置や構造が、中心軸Oを挟んで対称的に示されているが、厳密に対称的な配置及び構造でなくてもよい。 FIG. 12 is a schematic configuration diagram for explaining an example in which a plurality of microwave output units 70 including the microwave generator 10 and the power feeding path portion 20 are provided in the microwave device 100 and the microwave device 100 ′. is there. FIG. 13 is a sectional view taken along the line CC of FIG. As shown in FIGS. 12 and 13, in the microwave device 100 and the microwave device 100 ′, a plurality of microwave output units 70 (four sets in the drawing) each including the microwave generator 10 and the power feeding path portion 20 are provided. May be In this case, the microwave output units 70 introduce microwaves into the cavity 30a through the introduction portions 21a of the respective power feeding path portions 20 with the same output and the same phase. For example, as shown in FIG. 13, the introduction portions 21a are arranged at equal angular pitches around the central axis O of the cavity 30a and in such a manner that the minimum separation distances G coincide with each other. This makes it possible to combine power. In this case, although not shown, if the above-mentioned matching device that reflects the reflected wave and makes it enter the cavity 30a again is further provided between the directional coupler 15 and the resonator 30 (introducing part 21a). Good. Thereby, for example, when the maximum output capacity of each microwave generator 10 is 10 w, the microwave device 100 and the microwave device 100 ′ have an output capacity of 40 w as a whole by the four sets of microwave output units, It is possible to achieve power combination that increases in proportion to the number of the microwave output units. 12 and 13, the arrangement and structure of the introduction portion 21a of each power feeding path portion 20 in the cavity 30a are shown symmetrically with respect to the central axis O, but they are strictly symmetrical. It does not have to be arrangement and structure.
 図14は、空胴30aの変形例を説明するための断面図である。上記各実施形態及び変形例では、空胴30aは、円柱状に形成れるものとしたが、これに限らない。空胴30aは、図14に示すように、正四角柱状に形成されてもよい。この場合、空胴30a内にはマイクロ波の共振により空胴30aの中心軸Oの方向に均一な電界分布を示すTM110モードの電磁界が励起される。具体的には、筒体31の内部に、正四角柱状の空胴30aが形成されるようにすればよい。例えば、図14に示すように、筒体31を角筒状に形成すればよい。また、正四角柱状の空胴30aの場合(つまり、TM110モードの場合)は、導入部21aと共振器30の内側面30bとの間の最小離間距離Gは、空胴30aにおける互いに対向する両内側面間の距離L1の5%以下の値又は20%以下の値に設定されるとよい。詳しくは、エチレングリコールや水のような誘電正接tanδが比較的に大きく、誘電損失の高い液種以外の液体(例えば、トルエン、エタノール、メタノール、アセトニトリル、ジメチルスルホキシドなど)の場合には、最小離間距離Gが空胴30aにおける互いに対向する両内側面間の距離L1の5%以下の値に設定されると、加熱特性がより向上する。また、エチレングリコールや水のような誘電正接tanδが比較的に大きい液種の場合において、共振周波数Fが確実にISM周波数帯内に収まることを優先する場合は、最小離間距離Gが空胴30aにおける互いに対向する両内側面間の距離L1の20%以下の値に設定されるとよい。 FIG. 14 is a sectional view for explaining a modified example of the cavity 30a. In each of the above-described embodiments and modified examples, the cavity 30a is formed in a cylindrical shape, but the present invention is not limited to this. The cavity 30a may be formed in a regular square pole shape as shown in FIG. In this case, the TM110 mode electromagnetic field exhibiting a uniform electric field distribution in the direction of the central axis O of the cavity 30a is excited in the cavity 30a by the resonance of microwaves. Specifically, the regular square columnar cavity 30a may be formed inside the cylindrical body 31. For example, as shown in FIG. 14, the tubular body 31 may be formed in a rectangular tubular shape. Further, in the case of the regular square prism-shaped cavity 30a (that is, in the case of TM110 mode), the minimum separation distance G between the introduction portion 21a and the inner side surface 30b of the resonator 30 is equal to that of the cavity 30a facing each other. The value may be set to 5% or less or 20% or less of the distance L1 between the inner side surfaces. For details, in the case of liquids other than liquids with a relatively large dielectric loss tangent tanδ such as ethylene glycol and water (for example, toluene, ethanol, methanol, acetonitrile, dimethyl sulfoxide), the minimum separation is required. When the distance G is set to a value of 5% or less of the distance L1 between both inner side surfaces of the cavity 30a that face each other, the heating characteristics are further improved. Further, in the case of a liquid type having a relatively large dielectric loss tangent tan δ, such as ethylene glycol or water, when giving priority to ensuring that the resonance frequency F falls within the ISM frequency band, the minimum separation distance G is the cavity 30a. It is preferable to set the value to 20% or less of the distance L1 between the inner side surfaces facing each other.
 図15は、給電経路部20(詳しくは、外部導体23の接続部分)の変形例を説明するための図であり、図2に対応する要部断面図である。上記各実施形態及び変形例では、外部導体23の終端部が上壁部32の上面に当接し、絶縁体22の終端部が上壁部32の壁厚分だけ外部導体23の終端部よりも下方に突出しているものとしたが、これに限らない。例えば、図15に示すように、外部導体23の終端部及び絶縁体22の終端部が上壁部32の下面と面一になるところまで延伸していてもよい。この場合、孔32aの内径は外部導体23の外径に合せればよい。また、図示を省略するが、外部導体23の終端部及び/又は絶縁体22の終端部は、孔32a内に位置してもよいし、上壁部32の下面から僅かに空胴30a内に突出していてもよい。 FIG. 15 is a diagram for explaining a modified example of the power feeding path portion 20 (specifically, the connection portion of the outer conductor 23), and is a main-portion cross-sectional view corresponding to FIG. 2. In each of the above-described embodiments and modified examples, the end portion of the outer conductor 23 is in contact with the upper surface of the upper wall portion 32, and the end portion of the insulator 22 is larger than the end portion of the outer conductor 23 by the wall thickness of the upper wall portion 32. Although it is assumed to project downward, the invention is not limited to this. For example, as shown in FIG. 15, the end portions of the outer conductor 23 and the insulator 22 may extend to a position flush with the lower surface of the upper wall portion 32. In this case, the inner diameter of the hole 32a may be matched with the outer diameter of the outer conductor 23. Although not shown, the end portion of the outer conductor 23 and / or the end portion of the insulator 22 may be located inside the hole 32a, or slightly inside the cavity 30a from the lower surface of the upper wall portion 32. It may be protruding.
 図16は、第2実施形態のマイクロ波装置100’における共振器30の下壁部33の変形例を説明するための図である。マイクロ波装置100’では、導入部21aの先端部21a1が下壁部33に接触していなければよい。したがって、図16に示すように、アンテナの長さL(換言すると、上壁部32の下面からの突出長)を空胴30aの高さHより長くし、下壁部33に導入部21aの先端部21a1に対応する部位に凹状の凹部33aを形成しても有してもよい。この場合、導入部21aの先端部21a1が凹部33a内まで延伸し、凹部33aの内面と接触していなければよい。この場合、マイクロ波を導入するための導入部21aにおけるアンテナとして機能する部位の長さ(つまり、実質的なアンテナの長さ)は空胴30aの高さHになる。また、図示を省略するが、導入部21aの先端部21a1と下壁部33の上面との間に、絶縁片を設けてもよい。これにより、導入部21aを確実に支持すると共に、確実に導入部21aと下壁部33との間を確実に絶縁することができる。また、図16に示す凹部33aと導入部21aとの間に絶縁片を設けてもよい。また、図示を省略するが、第1実施形態のマイクロ波装置100における下壁部33に、導入部21aの先端部21a1が嵌合可能な凹部を形成し、この凹部に導入部21aの先端部21a1を嵌合させてもよい。これにより、導入部21aの支持及び導入部21aの下壁部33への電気的な接続を図ることができる。なお、第2実施形態においても、前記一方の壁部は上壁部32であるものとして説明したが、これに限らず、前記一方の壁部は下壁部33であってもよい。この場合、外部導体23の終端部は下壁部33に電気的に接続され、下壁部33に導入部21aの貫通用の孔32aが形成され、前記他方の壁部は上壁部32となり、導入部21aの先端部21a1が上壁部32に対して電気的に絶縁され、上壁部32から所定距離手前に位置していればよい。また、凹部33aを設ける場合は、上壁部32に設ければよい。 FIG. 16 is a diagram for explaining a modified example of the lower wall portion 33 of the resonator 30 in the microwave device 100 'of the second embodiment. In the microwave device 100 ′, it suffices that the leading end portion 21 a 1 of the introduction portion 21 a does not contact the lower wall portion 33. Therefore, as shown in FIG. 16, the length L of the antenna (in other words, the protruding length from the lower surface of the upper wall portion 32) is made longer than the height H of the cavity 30 a, and the lower wall portion 33 has the introduction portion 21 a. A concave portion 33a may be formed or provided in a portion corresponding to the tip portion 21a1. In this case, it suffices that the tip portion 21a1 of the introduction portion 21a extends into the recess 33a and is not in contact with the inner surface of the recess 33a. In this case, the length of the portion functioning as the antenna in the introduction part 21a for introducing the microwave (that is, the substantial length of the antenna) becomes the height H of the cavity 30a. Although not shown, an insulating piece may be provided between the tip end portion 21a1 of the introduction portion 21a and the upper surface of the lower wall portion 33. As a result, the introduction portion 21a can be reliably supported, and the insulation between the introduction portion 21a and the lower wall portion 33 can be reliably performed. Further, an insulating piece may be provided between the recess 33a and the introduction portion 21a shown in FIG. Although not shown, a concave portion into which the tip portion 21a1 of the introduction portion 21a can be fitted is formed in the lower wall portion 33 of the microwave device 100 of the first embodiment, and the tip portion of the introduction portion 21a is formed in this depression portion. 21a1 may be fitted. As a result, the introduction portion 21a can be supported and electrically connected to the lower wall portion 33 of the introduction portion 21a. In the second embodiment as well, the one wall portion is described as the upper wall portion 32, but the present invention is not limited to this, and the one wall portion may be the lower wall portion 33. In this case, the end portion of the outer conductor 23 is electrically connected to the lower wall portion 33, the lower wall portion 33 is formed with a hole 32a for penetrating the introduction portion 21a, and the other wall portion serves as the upper wall portion 32. It suffices that the distal end portion 21a1 of the introduction portion 21a is electrically insulated from the upper wall portion 32 and is positioned a predetermined distance before the upper wall portion 32. Further, when the recess 33a is provided, it may be provided on the upper wall portion 32.
 図17及び図18は、導入部21aにおけるアンテナとして機能する部位の長さを変更するための長さ調整機構を備える場合の一例を説明するための概念図である。図9及び図10に示したように、加熱対象物の種類によって、効率的な加熱特性を示すアンテナの長さLの値は異なる。よって、上記第2実施形態のマイクロ波装置100’においては、図17に示すように、アンテナの長さ(突出長)Lを調整可能な調整機構(後述する支持部80)を備えたり、図18に示すように、アンテナの長さLは固定とする一方で、導入部21aにおける先端部21a1側の部位の周囲が障害物(後述する筒体90)によって覆われる長さを調整することにより、実質的なアンテナの長さを調整可能に構成してもよい。 17 and 18 are conceptual diagrams for explaining an example of a case where a length adjusting mechanism for changing the length of a portion functioning as an antenna in the introducing unit 21a is provided. As shown in FIG. 9 and FIG. 10, the value of the length L of the antenna showing efficient heating characteristics differs depending on the type of the heating target. Therefore, in the microwave device 100 ′ of the second embodiment, as shown in FIG. 17, the microwave device 100 ′ may be provided with an adjusting mechanism (a supporting portion 80 described later) capable of adjusting the length (projection length) L of the antenna, or As shown in FIG. 18, while the length L of the antenna is fixed, the length around the distal end portion 21a1 side of the introduction portion 21a is adjusted by an obstacle (a cylinder 90 described later). Alternatively, the substantial length of the antenna may be adjustable.
 具体的には、図17に示すように、マイクロ波装置100’は、前記一方の壁部(図では上壁部32)に設けられ、給電経路部20を中心軸Oの方向に摺動可能に支持する支持部80を備える。支持部80は、外部導体23における終端部側の部位の外周面が摺接する内周面80aを有すると共に、外部導体23の終端部と前記一方の壁部(図では上壁部32)との間を電気的に接続するものである。例えば、図17(A)に示す状態から、図17(B)に示す状態に、外部導体23を支持部80に沿って摺動させることにより、導入部21aのうちの空胴30a内に突出している部位(つまりアンテナ)の長さL自体を調整できる。支持部80は、例えば、アルミニウム製の部材からなり、その一端にフランジ部を有する筒状に形成される。支持部80は、前記フランジ部が前記一方の壁部に図示省略したボルト等の締結部材により固定されることにより、前記一方の壁部に固定される。また、図示を省略したが、支持部80の筒壁には小ネジが筒壁を貫通するように螺合されており、前記小ネジの先端部が外部導体23の外周面を押圧することにより、外部導体23が中心導体21、絶縁体22と共に共振器30に接続固定される。これにより、導入部21aのアンテナの長さLが定まる。例えば、図17(B)に示す状態の導入部21aにおけるアンテナの長さLは、図17(A)に示す状態の導入部21aにおけるアンテナの長さLより短くなっている。なお、給電経路部20は、外部導体23の周囲を被覆する図2に示した保護皮膜24は設けなくてよい。この場合、給電経路部20は、外部導体23として例えば銅製の円筒状筒体を用いたいわゆるセミリジットタイプの同軸ケーブルを用いるとよい。 Specifically, as shown in FIG. 17, the microwave device 100 ′ is provided on the one wall portion (upper wall portion 32 in the figure) and can slide the power feeding path portion 20 in the direction of the central axis O. The support part 80 which supports in. The support portion 80 has an inner peripheral surface 80a with which the outer peripheral surface of the end portion side of the outer conductor 23 is in sliding contact, and the end portion of the outer conductor 23 and the one wall portion (upper wall portion 32 in the figure) of the outer conductor 23. It electrically connects the two. For example, by sliding the outer conductor 23 along the support portion 80 from the state shown in FIG. 17 (A) to the state shown in FIG. 17 (B), the outer conductor 23 projects into the cavity 30a of the introduction portion 21a. It is possible to adjust the length L itself of the part (that is, the antenna) in which it is present. The support portion 80 is made of, for example, an aluminum member, and is formed in a tubular shape having a flange portion at one end thereof. The support portion 80 is fixed to the one wall portion by fixing the flange portion to the one wall portion by a fastening member such as a bolt (not shown). Although not shown, a small screw is screwed into the cylindrical wall of the support portion 80 so as to penetrate the cylindrical wall, and the tip of the small screw presses the outer peripheral surface of the outer conductor 23. The outer conductor 23 is connected and fixed to the resonator 30 together with the center conductor 21 and the insulator 22. Thereby, the length L of the antenna of the introduction part 21a is determined. For example, the length L of the antenna in the introducing portion 21a in the state shown in FIG. 17B is shorter than the length L of the antenna in the introducing portion 21a in the state shown in FIG. 17A. The power supply path portion 20 does not need to be provided with the protective film 24 shown in FIG. In this case, the power feeding path portion 20 may use a so-called semi-rigid type coaxial cable that uses, for example, a cylindrical cylindrical body made of copper as the outer conductor 23.
 また、図18に示すように、マイクロ波装置100’は、前記他方の壁部(図では下壁部33)における導入部21aに対応する部位において、前記他方の壁部に対して中心軸Oの方向に摺動可能に支持される筒体90を備えてもよい。筒体90は、導入部21aの先端部21a1側の部位の周りを囲むものである。筒体90を中心軸Oの方向の適宜位置まで摺動させることにより、導入部21aの外周面のうち空胴30aに直接的に露出する領域の長さL’が調整される。ここで、導入部21aと筒体90が重なっている部分(L-L’)は、誘電体効果を受ける部分であり、この部分(L-L’)におけるアンテナとして機能する実質的な長さは筒体90の比誘電率の値に応じて変化する。これにより、前記導入部21aにおけるアンテナとして機能する部位の長さを、アンテナの長さ(つまり、突出長)Lを変えることなく、実質的に調整でき、図17に示すアンテナの長さL自体を直接的に調整する場合と同等の作用効果を奏することができる。例えば、図18(A)に示す状態から、図18(B)に示す状態に、筒体90を前記他方の壁部に形成される孔33bに沿って摺動させることにより、実質的なアンテナの長さを調整できる。筒体90は、例えば、強誘電体の材料からなり、導入部21aの外径に合わせた内径を有している。また、前記他方の壁部には筒体90を摺動可能に支持する筒体支持部95が取付けられている。筒体支持部95は、例えば、アルミニウム製の部材からなり、その一端にフランジ部を有する筒状に形成される。筒体支持部95は、前記フランジ部が前記他方の壁部に図示省略したボルト等の締結部材により固定されることにより、前記他方の壁部に固定される。また、図示を省略したが、筒体支持部95の筒壁には小ネジが筒壁を貫通するように螺合されており、前記小ネジの先端部が筒体90の外周面を押圧することにより、筒体90が共振器30に固定される。これにより、導入部21aの実質的なアンテナの長さが定まる。例えば、図18(B)に示す状態の導入部21aにおける実質的なアンテナの長さは、図18(A)に示す状態の実質的なアンテナの長さより長くなっている。なお、前記一方の壁部においては、例えば、図2に示すように外部導体23を前記一方の壁部に接続固定される構造を採用する。また、これに限らず、前記一方の壁部において、図17に示す構造を採用してもよく、この場合、アンテナの長さL自体を図17に示す構造で調整しつつ、図18に示す構造でそのアンテナの長さLを実質的に調整することができる。つまり、導入部21aと筒体90が重なっている部分(L-L’)において、誘電体短縮効果が生じ、実質的なアンテナの長さが変化するというマイクロ波の性質を利用するものである。 Further, as shown in FIG. 18, the microwave device 100 ′ has a central axis O with respect to the other wall portion at a portion corresponding to the introduction portion 21 a in the other wall portion (the lower wall portion 33 in the figure). The cylindrical body 90 may be provided so as to be slidable in the direction. The tubular body 90 surrounds the portion of the introduction portion 21a on the side of the distal end portion 21a1. By sliding the tubular body 90 to an appropriate position in the direction of the central axis O, the length L'of the region of the outer peripheral surface of the introduction portion 21a that is directly exposed to the cavity 30a is adjusted. Here, a portion (LL ′) where the introduction portion 21a and the tubular body 90 overlap is a portion that receives a dielectric effect, and a substantial length that functions as an antenna in this portion (LL ′). Changes according to the value of the relative dielectric constant of the tubular body 90. Accordingly, the length of the portion functioning as the antenna in the introduction portion 21a can be substantially adjusted without changing the antenna length (that is, the protruding length) L, and the antenna length L itself shown in FIG. It is possible to obtain the same operational effect as in the case of directly adjusting. For example, by sliding the tubular body 90 along the hole 33b formed in the other wall from the state shown in FIG. 18A to the state shown in FIG. You can adjust the length of. The tubular body 90 is made of, for example, a ferroelectric material, and has an inner diameter that matches the outer diameter of the introduction portion 21a. Further, a cylindrical body supporting portion 95 for slidably supporting the cylindrical body 90 is attached to the other wall portion. The tubular body supporting portion 95 is made of, for example, an aluminum member, and is formed into a tubular shape having a flange portion at one end thereof. The tubular body support portion 95 is fixed to the other wall portion by fixing the flange portion to the other wall portion by a fastening member such as a bolt (not shown). Although not shown, a machine screw is screwed into the cylinder wall of the cylinder support portion 95 so as to penetrate the cylinder wall, and the tip of the machine screw presses the outer peripheral surface of the cylinder 90. As a result, the tubular body 90 is fixed to the resonator 30. Thereby, the substantial length of the antenna of the introduction part 21a is determined. For example, the substantial length of the antenna in the introduction portion 21a in the state shown in FIG. 18 (B) is longer than the substantial length of the antenna in the state shown in FIG. 18 (A). It should be noted that the one wall portion has, for example, a structure in which the outer conductor 23 is connected and fixed to the one wall portion as shown in FIG. Further, not limited to this, the structure shown in FIG. 17 may be adopted in the one wall portion. In this case, the length L of the antenna itself is adjusted by the structure shown in FIG. 17 and shown in FIG. The structure allows the length L of the antenna to be substantially adjusted. That is, in the portion (LL ′) where the introduction portion 21a and the tubular body 90 overlap, a dielectric shortening effect occurs, and the characteristic of the microwave that the substantial length of the antenna changes is used. ..
 また、図示を省略するが、図12及び図13に示した変形例の場合に限らず、上記各実施形態及びその変形例において、給電経路部20における方向性結合器15と共振器30(導入部21a)との間に、前述した整合器を設けるとよい。この整合器により、空胴30aからのマイクロ波の反射波を回路的に打ち消すように構成することができる。これにより、正味入射電力P1はさらに大きくなり、整合器の性能にもよるが、マイクロ波発生器10から所定の入射電力P0で出力されたマイクロ波の殆どのマイクロ波電力を加熱対象物の昇温に利用することができ、装置特性(昇温特性)をより向上させることができる。 Although not shown in the drawings, the directional coupler 15 and the resonator 30 (introduction) in the power feeding path portion 20 are not limited to the modifications shown in FIGS. The matching unit described above may be provided between the unit 21a). With this matching device, the reflected wave of the microwave from the cavity 30a can be canceled in a circuit manner. As a result, the net incident power P1 is further increased, and depending on the performance of the matching device, most of the microwave power of the microwave output from the microwave generator 10 at the predetermined incident power P0 is raised to the heating target. It can be used for temperature, and the device characteristics (temperature rising characteristics) can be further improved.
 また、上記各実施形態及びその変形例では、流通管40は螺旋部41を有するものとしたが、これに限らず、流通管40は単に直線状に延びる直管であってもよい。また、第1実施形態では、導入部21aの挿入用の孔32aは上壁部32に形成され、導入部21aの先端部21a1は下壁部33に接触するものとしたが、これに限らず、孔32aは下壁部33に形成され、導入部21aの先端部21a1は上壁部32に接触するものとしてもよい。 Also, in each of the above-described embodiments and the modified examples thereof, the distribution pipe 40 has the spiral portion 41, but the distribution pipe 40 is not limited to this, and may be a straight pipe that extends straight. In addition, in the first embodiment, the insertion hole 32a of the introduction portion 21a is formed in the upper wall portion 32, and the distal end portion 21a1 of the introduction portion 21a is in contact with the lower wall portion 33, but the present invention is not limited to this. The hole 32a may be formed in the lower wall portion 33, and the leading end portion 21a1 of the introduction portion 21a may be in contact with the upper wall portion 32.
 また、上記各実施形態及びその変形例では、給電経路部20は、同軸ケーブルからなるものとしたが、これに限らず、中心導体と、前記中心導体を覆う絶縁体と、前記絶縁体を覆う外部導体とを有して同軸に延び、マイクロ波発生器10から所定の入射電力P0で出力されたマイクロ波を共振器30へ導くものであればよい。例えば、給電経路部20は、マイクロ波発生器10、アイソレータ14、方向性結合器15及び無反射終端器16等からなるマイクロ波発生装置におけるマイクロ波出力部(例えば出力回路の出力端子部)と共振器30との間を接続する接続コネクタと、前記一方の壁部に設けられ前記接続コネクタと接続する共振器側コネクタとからなる構成としてもよい。具体的には、前記接続コネクタは、前記中心導体の一部を構成する銅線部材と、前記外部導体の一部を構成しこの銅線部材の周囲に前記絶縁体としての空隙を設けて筒状に延びるアルミニウム製の筒体とからなる。前記外部導体の一部であるこの筒体が前記共振器側コネクタに嵌合又は螺合することにより、前記外部導体の終端部が、前記一方の壁部に電気的に接続される。そして、前記共振器側コネクタは、前記接続コネクタにおける前記中心導体の一部を構成する銅線部材と電気的に接続すると共に、前記一方の壁部に対して電気的に絶縁された状態で空胴30a内に突出し、且つ、共振器30の内側面30bの近傍で中心軸Oと平行に延伸する導入部21aを有するように構成される。 Further, in each of the above-described embodiments and the modified examples thereof, the power feeding path portion 20 is made of the coaxial cable, but the present invention is not limited to this, and the center conductor, the insulator covering the center conductor, and the insulator are covered. It suffices as long as it has an external conductor, extends coaxially, and guides the microwave output from the microwave generator 10 at a predetermined incident power P0 to the resonator 30. For example, the power feeding path unit 20 is a microwave output unit (for example, an output terminal unit of an output circuit) in a microwave generator including the microwave generator 10, the isolator 14, the directional coupler 15, the non-reflection terminator 16, and the like. It may be configured to include a connection connector that connects the resonator 30 and a resonator-side connector that is provided on the one wall portion and that connects to the connection connector. Specifically, the connector has a copper wire member forming a part of the central conductor, a part of the outer conductor, and a void as the insulator provided around the copper wire member. And a cylindrical body made of aluminum that extends in a line. By fitting or screwing this tubular body, which is a part of the outer conductor, into the resonator-side connector, the end portion of the outer conductor is electrically connected to the one wall portion. The resonator-side connector is electrically connected to a copper wire member forming a part of the central conductor of the connector, and is vacant while being electrically insulated from the one wall portion. It is configured to have an introduction portion 21a that protrudes into the body 30a and extends in the vicinity of the inner side surface 30b of the resonator 30 and parallel to the central axis O.
 また、上記各実施形態及びその変形例では、マイクロ波装置100及びマイクロ波装置100’は液体を流通させつつ加熱処理するフロー式である場合を一例に挙げて説明したが、これに限らず、静止状態で加熱処理するバッチ式でもよい。また、加熱対象物は液体であるものとしたが、これに限らず、固体でもよい。固体には、粒状物や粉状物の集合体も含む。 Further, in each of the above-described embodiments and the modifications thereof, the microwave device 100 and the microwave device 100 ′ have been described by way of example of the case where the microwave device 100 and the microwave device 100 ′ are a flow type in which heat treatment is performed while circulating a liquid, but the present invention is not limited to this. A batch type in which heat treatment is performed in a stationary state may be used. Further, the object to be heated is a liquid, but the object to be heated is not limited to this and may be a solid. The solid also includes aggregates of granular materials and powdery materials.
 以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態及び上記変形例に制限されるものではなく、本発明の技術的思想に基づいて種々の変形及び変更が可能である。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment and the above modification, and various modifications and changes can be made based on the technical idea of the present invention.
 10・・・マイクロ波発生器
 20・・・給電経路部(同軸ケーブル)
 21・・・中心導体
 21a・・・導入部
 21a1・・・先端部
 22・・・絶縁体
 23・・・外部導体
 30・・・共振器
 30a・・・空胴
 30b・・・内側面
 32・・・上壁部(一方の壁部)
 32a・・・孔
 33・・・下壁部(他方の壁部)
 40・・・流通管
 41・・・螺旋部
 70・・・マイクロ波出力ユニット
 80・・・支持部
 90・・・筒体
100・・・マイクロ波装置
100’・・・マイクロ波装置
O・・・中心軸
10 ... Microwave generator 20 ... Power supply path section (coaxial cable)
21 ... Central conductor 21a ... Introductory part 21a1 ... Tip part 22 ... Insulator 23 ... Outer conductor 30 ... Resonator 30a ... Cavity 30b ... Inner surface 32. ..Upper wall (one wall)
32a ... Hole 33 ... Lower wall (other wall)
40 ... Distribution pipe 41 ... Spiral part 70 ... Microwave output unit 80 ... Support part 90 ... Cylindrical body 100 ... Microwave device 100 '... Microwave device O ...・ Center axis

Claims (10)

  1.  マイクロ波を発生させて出力するマイクロ波発生器と、
     中心導体、前記中心導体を覆う絶縁体及び前記絶縁体を覆う外部導体を有して同軸に延び、前記マイクロ波発生器から出力された前記マイクロ波を導く給電経路部と、
     前記給電経路部により導かれた前記マイクロ波が導入される空胴を内部に有し、前記空胴内には前記マイクロ波の共振により前記空胴の中心軸の方向に均一な電界分布を示すTM010モード又はTM110モードの電磁界が励起される共振器と、
     を含み、前記空胴内に供給される対象物を前記マイクロ波により加熱するマイクロ波装置において、
     前記外部導体の終端部は、前記共振器における前記空胴の中心軸方向両端を閉塞する上壁部及び下壁部のうちの一方の壁部に電気的に接続され、
     前記中心導体は、前記空胴内に前記マイクロ波を導入する導入部であって、前記一方の壁部に形成された孔を当該一方の壁部に対して電気的に絶縁された状態で貫通して前記空胴内に突出し、且つ、前記共振器の内側面の近傍で前記中心軸と平行に延伸する前記導入部を有する、マイクロ波装置。
    A microwave generator that generates and outputs microwaves;
    A center conductor, an insulator covering the center conductor, and an outer conductor covering the insulator, and coaxially extending, and a feeding path portion for guiding the microwave output from the microwave generator,
    A cavity into which the microwave guided by the power feeding path is introduced is provided inside, and a uniform electric field distribution is shown in the cavity in the direction of the central axis of the cavity due to the resonance of the microwave. A resonator in which an electromagnetic field of TM010 mode or TM110 mode is excited,
    In a microwave device for heating an object supplied into the cavity by the microwave,
    The end portion of the outer conductor is electrically connected to one wall portion of the upper wall portion and the lower wall portion that closes both ends in the central axis direction of the cavity in the resonator,
    The center conductor is an introduction part for introducing the microwave into the cavity, and penetrates a hole formed in the one wall part in a state of being electrically insulated from the one wall part. The microwave device having the introduction part that protrudes into the cavity and extends parallel to the central axis in the vicinity of the inner surface of the resonator.
  2.  前記導入部の先端部は、前記上壁部及び前記下壁部のうちの他方の壁部に電気的に接続されている、請求項1に記載のマイクロ波装置。 The microwave device according to claim 1, wherein the leading end portion of the introduction portion is electrically connected to the other wall portion of the upper wall portion and the lower wall portion.
  3.  前記空胴は、前記TM010モードの場合は円柱状に形成され、前記TM110モードの場合は正四角柱状に形成されており、
     前記導入部と前記内側面との間の最小離間距離は、前記TM010モードの場合は前記空胴の直径の20%以下の値に設定され、前記TM110モードの場合は前記空胴における互いに対向する両内側面間の距離の20%以下の値に設定されている、請求項2に記載のマイクロ波装置。
    The cavity is formed in a cylindrical shape in the TM010 mode, and is formed in a regular square pillar shape in the TM110 mode.
    The minimum separation distance between the introduction part and the inner side surface is set to a value of 20% or less of the diameter of the cavity in the TM010 mode, and is opposed to each other in the cavity in the TM110 mode. The microwave device according to claim 2, wherein the microwave device is set to a value of 20% or less of a distance between both inner side surfaces.
  4.  前記導入部の先端部は、前記上壁部及び前記下壁部のうちの他方の壁部に対して電気的に絶縁されている、請求項1に記載のマイクロ波装置。 The microwave device according to claim 1, wherein a tip portion of the introduction portion is electrically insulated from the other wall portion of the upper wall portion and the lower wall portion.
  5.  前記導入部の先端部は、前記他方の壁部から所定距離手前に位置しており、
     前記一方の壁部に設けられ、前記給電経路部を前記中心軸の方向に摺動可能に支持する支持部であって、前記外部導体における前記終端部側の部位の外周面が摺接する内周面を有すると共に、前記外部導体の前記終端部と前記一方の壁部との間を電気的に接続する前記支持部を、更に含む、請求項4に記載のマイクロ波装置。
    The tip portion of the introduction portion is located a predetermined distance before the other wall portion,
    An inner periphery, which is provided on the one wall portion and supports the power feeding path portion slidably in the direction of the central axis, and an outer peripheral surface of a portion of the outer conductor on the end portion side is slidably contacted The microwave device according to claim 4, further comprising: the support portion having a surface and electrically connecting the terminal end portion of the outer conductor and the one wall portion.
  6.  前記他方の壁部における前記導入部に対応する部位において、前記他方の壁部に対して前記中心軸の方向に摺動可能に支持される筒体であって、前記導入部の前記先端部側の部位の周りを囲む前記筒体を、更に含む、請求項4に記載のマイクロ波装置。 A cylinder body slidably supported in the direction of the central axis with respect to the other wall portion at a portion of the other wall portion corresponding to the introduction portion, the tip portion side of the introduction portion. The microwave device according to claim 4, further comprising: the cylindrical body surrounding the portion of the.
  7.  前記導入部は、複数個所に並列して設けられる、請求項1に記載のマイクロ波装置。 The microwave device according to claim 1, wherein the introduction unit is provided in parallel at a plurality of locations.
  8.  前記マイクロ波発生器及び前記給電経路部からなるマイクロ波出力ユニットは複数設けられる構成とし、
     各マイクロ波出力ユニットは、互いに同位相で、それぞれの前記給電経路部における前記導入部を介して、前記マイクロ波を前記空胴内へ導入する、請求項1に記載のマイクロ波装置。
    A plurality of microwave output units including the microwave generator and the power feeding path portion are provided,
    The microwave device according to claim 1, wherein the microwave output units have the same phase as each other and introduce the microwave into the cavity through the introduction portion in each of the power feeding path portions.
  9.  前記対象物は液体であり、
     前記共振器の前記空胴を貫通するように配設され、前記対象物としての液体を流通させるための流通管を更に含む、請求項1に記載のマイクロ波装置。
    The object is a liquid,
    The microwave device according to claim 1, further comprising a flow pipe that is provided so as to penetrate the cavity of the resonator and that allows a liquid as the object to flow therethrough.
  10.  前記流通管は、前記中心軸を螺旋中心軸として前記空胴内を螺旋状に延伸する螺旋部を有する、請求項1に記載のマイクロ波装置。 The microwave device according to claim 1, wherein the flow pipe has a spiral portion that spirally extends in the cavity with the central axis as a spiral central axis.
PCT/JP2019/042358 2018-10-30 2019-10-29 Microwave device WO2020090812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-204431 2018-10-30
JP2018204431A JP2020072354A (en) 2018-10-30 2018-10-30 Microwave device

Publications (1)

Publication Number Publication Date
WO2020090812A1 true WO2020090812A1 (en) 2020-05-07

Family

ID=70462081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042358 WO2020090812A1 (en) 2018-10-30 2019-10-29 Microwave device

Country Status (2)

Country Link
JP (1) JP2020072354A (en)
WO (1) WO2020090812A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186410A (en) * 1994-12-30 1996-07-16 Nec Corp Coaxial waveguide converter
JP2017121077A (en) * 2017-03-23 2017-07-06 三菱電機株式会社 High frequency module
JP2018024555A (en) * 2016-08-10 2018-02-15 矢崎総業株式会社 Hydrogen production device
JP2018055940A (en) * 2016-09-28 2018-04-05 株式会社サイダ・Fds Microwave device and heat treatment system including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186410A (en) * 1994-12-30 1996-07-16 Nec Corp Coaxial waveguide converter
JP2018024555A (en) * 2016-08-10 2018-02-15 矢崎総業株式会社 Hydrogen production device
JP2018055940A (en) * 2016-09-28 2018-04-05 株式会社サイダ・Fds Microwave device and heat treatment system including the same
JP2017121077A (en) * 2017-03-23 2017-07-06 三菱電機株式会社 High frequency module

Also Published As

Publication number Publication date
JP2020072354A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP4911852B2 (en) Microwave heating device
KR101490572B1 (en) Electromagnetic-radiation power-supply mechanism and microwave introduction mechanism
US6157015A (en) Microwave heating apparatus for gas chromatographic columns
JP2005322582A (en) Microwave heating device
EP1166603A1 (en) Microwave heating apparatus for gas chromatographic columns
KR102368750B1 (en) Microwave automatic matcher and plasma processing apparatus
JP5681847B2 (en) Microwave equipment
KR100638716B1 (en) Plasma Processor And Plasma Processing Method
JP7175238B2 (en) Electric field sensor, surface wave plasma source, and surface wave plasma processing device
KR102188673B1 (en) Microwave heating device with frequency conversion
WO2020090812A1 (en) Microwave device
KR102387618B1 (en) Plasma density monitor, plasma processing apparatus, and plasma processing method
CN108353472B (en) Meta-device for applying microwave energy with coaxial applicator
JP6553159B2 (en) EPR resonator with enhanced transparency and uniformity in the RF band
JP6813175B2 (en) Microwave device and heat treatment system equipped with it
CN117836897A (en) Method and apparatus for impedance matching in a power delivery system for remote plasma generation
KR102387621B1 (en) Plasma electric field monitor, plasma processing apparatus and plasma processing method
US5293120A (en) Resonator for electron spin resonance spectroscopy
JP3062137B2 (en) Filling state measuring device operated by microwave
US20240297020A1 (en) Plasma processing apparatus
JP2022024257A (en) Microwave processor and microwave processing method
KR20240100246A (en) Filter circuit and plasma processing apparatus
JP2019015587A (en) Dielectric substance measuring device
Bendt et al. Design and Measured Characteristics of Minimum Loss Low-Velocity Helix Resonators
Castro et al. Experimental investigation on gyrotron open resonators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880443

Country of ref document: EP

Kind code of ref document: A1