JP2013037882A - Microwave device and circulation pipe thereof - Google Patents

Microwave device and circulation pipe thereof Download PDF

Info

Publication number
JP2013037882A
JP2013037882A JP2011172926A JP2011172926A JP2013037882A JP 2013037882 A JP2013037882 A JP 2013037882A JP 2011172926 A JP2011172926 A JP 2011172926A JP 2011172926 A JP2011172926 A JP 2011172926A JP 2013037882 A JP2013037882 A JP 2013037882A
Authority
JP
Japan
Prior art keywords
flow
liquid
irradiation chamber
pipe
flow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011172926A
Other languages
Japanese (ja)
Other versions
JP5914804B2 (en
Inventor
Hiromichi Odajima
博道 小田島
Kuniyuki Oneda
訓之 大根田
Saori Yokozawa
早織 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saida FDS Inc
Original Assignee
Saida FDS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saida FDS Inc filed Critical Saida FDS Inc
Priority to JP2011172926A priority Critical patent/JP5914804B2/en
Priority to CN201110303418.6A priority patent/CN102573161B/en
Priority to PCT/JP2011/072443 priority patent/WO2012043753A1/en
Priority to US13/876,584 priority patent/US10091841B2/en
Publication of JP2013037882A publication Critical patent/JP2013037882A/en
Application granted granted Critical
Publication of JP5914804B2 publication Critical patent/JP5914804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure uniform and efficient processing by increasing the flow rate of a processed liquid, in a microwave device using a single mode cavity resonator.SOLUTION: The circulation pipe 60 houses an obstacle means 63 having a dielectric constant different from that of the processed liquid and disturbing the flow thereof, and is installed in the irradiation chamber of a cavity resonator while aligning the axis with the direction of an electric field generated in the irradiation chamber. When the circulation pipe is installed in the irradiation chamber of a microwave device, the electric field distribution is not uniform in the circulation pipe for feeding the processed liquid, and since the microwaves being absorbed into the processed liquid are reduced, lowering of Q is minimized, and since detuning is less likely to occur, flow rate of the processed liquid can be increased.

Description

マイクロ波を照射して加熱や化学反応促進などの処理を物質に施すための装置に関する技術が以下に開示される。   Techniques relating to an apparatus for performing treatment such as heating and chemical reaction promotion on a substance by irradiating microwaves are disclosed below.

近年、マイクロ波が物質の化学反応を促進することが見出され、バイオケミストリーなどの分野において、マイクロ波を利用した化学反応装置への関心が高まっている。このような化学反応促進や加熱のためのマイクロ波装置は、試験管やフラスコ等に被処理液を収容して処理する、いわゆる電子レンジタイプのバッチ式装置が現在主流である。しかし、バッチ式では処理能力に限界があるため、流通路を形成してこれに被処理液を流しながらマイクロ波を照射して処理するフロー式の装置が検討されている(特許文献1参照)。   In recent years, it has been found that microwaves promote chemical reactions of substances, and in fields such as biochemistry, interest in chemical reaction devices using microwaves is increasing. As such microwave devices for promoting chemical reaction and heating, a so-called microwave-type batch-type device in which a liquid to be processed is accommodated and processed in a test tube or a flask is currently mainstream. However, since the processing capability is limited in the batch type, a flow type apparatus that forms a flow path and irradiates microwaves while flowing a liquid to be processed in the flow path is being studied (see Patent Document 1). .

特許文献1のマイクロ波装置は、方形導波管内に流通路を配設したものであるが、空胴共振器を用いたほうがマイクロ波の吸収効率が高まり、結果として処理の効率は良い。特に、シングルモードの空胴共振器に流通路を形成した装置とすると、反応の再現性に優れ、また、共振時に空胴共振器内に発生する電磁界が強いので処理時間を短縮することができる。ただし、空胴共振器を用いたマイクロ波装置の場合、空胴共振器とマイクロ波の同調をとる仕組みが難しいとされている。   The microwave device of Patent Document 1 has a flow path disposed in a rectangular waveguide. However, the use of a cavity resonator increases the absorption efficiency of the microwave, resulting in better processing efficiency. In particular, a device having a flow path formed in a single-mode cavity resonator has excellent reaction reproducibility, and the electromagnetic field generated in the cavity resonator at the time of resonance can reduce the processing time. it can. However, in the case of a microwave device using a cavity resonator, it is considered difficult to tune the cavity resonator and the microwave.

特開2006−272055号公報JP 2006-272055 A

シングルモードの空胴共振器では、電磁界が強いことが逆に災いとなって、被処理液の吸収するマイクロ波が大きすぎることが、同調を難しくしている原因と言える。すなわち、空胴共振器に蓄えられるマイクロ波エネルギーに対し、被処理液に吸収される単位時間当りのエネルギーが大きすぎ、これら2つの量の比に角周波数を乗じた式で定義される共振の“Q”が低くなってしまう。Qが低くなると、共振器としての特長を失うばかりか、共振を維持するために必要な共振周波数に対して同調を取ること自体、難しくなる。   In a single-mode cavity resonator, the strong electromagnetic field is a disaster, and it can be said that the microwave absorbed by the liquid to be treated is too large, which makes tuning difficult. That is, the energy per unit time absorbed by the liquid to be treated is too large compared to the microwave energy stored in the cavity resonator, and the resonance frequency defined by the ratio of these two quantities multiplied by the angular frequency. “Q” becomes low. When Q is lowered, not only the characteristics as a resonator are lost, but also tuning itself with respect to the resonance frequency necessary for maintaining resonance becomes difficult.

現状では、流通路の断面積をできるだけ小さくし、空胴共振器内に存在する被処理液の容積が、空胴容積に比較して極力小さくなるようにして、被処理液に吸収される単位時間当りのエネルギーを減らす、といった対処で回避が図れている。すなわち、一般的に円筒管である流通路の径を極力小さくして、流通路を流れる被処理液の時間あたりの液量、つまり、空胴共振器内に存在する被処理液の容積を抑えるということである。この対処法でQを適切な値に留めるためには、現在一般的なマイクロ波の周波数2,450MHzで動作する空胴共振器の場合、流通路は、径が1.0mm以下の細いものにせざるを得ない。これでは、実用化に向けて十分な処理能力があるとは言い難い。   Currently, the cross-sectional area of the flow path is made as small as possible so that the volume of the liquid to be processed existing in the cavity resonator is as small as possible compared to the cavity volume, and the unit to be absorbed by the liquid to be processed Efforts can be made by reducing energy per hour. That is, the diameter of the flow path, which is generally a cylindrical tube, is made as small as possible to suppress the amount of liquid to be processed flowing through the flow path per time, that is, the volume of the liquid to be processed existing in the cavity resonator. That's what it means. In order to keep Q at an appropriate value by this countermeasure, in the case of a cavity resonator operating at a current microwave frequency of 2,450 MHz, the flow path should be narrow with a diameter of 1.0 mm or less. I must. In this case, it is hard to say that there is sufficient processing capacity for practical use.

このような背景に鑑みて本発明は、シングルモードの空胴共振器を使用したマイクロ波装置に関し、被処理液の流量を多くして均一に効率良く処理可能にする手法を提案する。   In view of such a background, the present invention relates to a microwave device using a single-mode cavity resonator, and proposes a technique for increasing the flow rate of the liquid to be processed so as to enable uniform and efficient processing.

当課題に対して提案するのは、四角柱状空胴又は円柱状空胴とした照射室を有するシングルモードの空胴共振器と、前記照射室内に生じる電界方向に対し軸線を沿わせて前記照射室に設置される流通管と、前記流通管を通して流す被処理液とは異なる誘電率を有し、前記流通管内に収容されて前記被処理液の流れを乱す障害手段と、を含んで構成されるマイクロ波装置である。   The present invention proposes a single-mode cavity resonator having a rectangular columnar cavity or a cylindrical cavity, and the irradiation along the axis with respect to the direction of the electric field generated in the irradiation chamber. A circulation pipe installed in the chamber, and a failure means that has a dielectric constant different from that of the liquid to be treated flowing through the circulation pipe and is contained in the circulation pipe and disturbs the flow of the liquid to be treated. This is a microwave device.

すなわち、四角柱状空胴又は円柱状空胴とした照射室を含んで構成されるマイクロ波装置で使用可能な流通管であって、当該流通管を通して流す被処理液とは異なる誘電率を有すると共に前記被処理液の流れを乱す障害手段を収容してあり、前記照射室内に生じる電界方向に対し軸線を沿わせて前記照射室に設置される流通管、が提案される。   That is, a flow pipe that can be used in a microwave device including an irradiation chamber having a rectangular columnar cavity or a cylindrical cavity, and has a dielectric constant different from that of the liquid to be treated flowing through the flow pipe. Proposed is a flow pipe that accommodates obstruction means for disturbing the flow of the liquid to be treated and is installed in the irradiation chamber along an axis with respect to the direction of the electric field generated in the irradiation chamber.

上記提案に係る流通管は、被処理液の誘電率と異なる誘電率をもち、被処理液の流れを乱す障害手段を収容している。この流通管を、マイクロ波装置の照射室(共振空胴)に設置すると、被処理液を流す流通管内において電界分布が一様ではなくなり、平均的な電界の強さを軽減する作用を生じる結果、被処理液によるマイクロ波の吸収が抑制される。その結果、流通管の径を従来より太くして、照射室内に存在する被処理液の容積を多くしても、共振周波数の低減率が抑制されるため、各種の被処理液に対する共振周波数をISM(Industry-Science-Medical)帯域内に納めることが容易になり、さらにQの低下が抑えられて同調をとりやすくなり、照射室内に存在する被処理液の容積を増やして処理効率を向上させることが可能となる。   The distribution pipe according to the above proposal has a dielectric constant different from the dielectric constant of the liquid to be treated, and contains obstacle means for disturbing the flow of the liquid to be treated. When this flow tube is installed in the irradiation chamber (resonance cavity) of the microwave device, the electric field distribution is not uniform in the flow tube through which the liquid to be treated flows, and the effect of reducing the average electric field strength is produced. The absorption of microwaves by the liquid to be treated is suppressed. As a result, even if the diameter of the flow pipe is made larger than before and the volume of the liquid to be processed existing in the irradiation chamber is increased, the reduction rate of the resonance frequency is suppressed. It is easy to fit within the ISM (Industry-Science-Medical) band, and further, the Q is prevented from being lowered to facilitate tuning, and the volume of the liquid to be processed in the irradiation chamber is increased to improve the processing efficiency. It becomes possible.

マイクロ波装置の全体構成例を示すブロック図。The block diagram which shows the example of whole structure of a microwave apparatus. 空胴共振器の第1の例を示し、(A)は図1と同じ側面から見た正面図、(B)は左側面図、(C)は平面図。The 1st example of a cavity resonator is shown, (A) is the front view seen from the same side as FIG. 1, (B) is a left view, (C) is a top view. 空胴共振器の第2の例を示し、(A)は図1と同じ側面から見た正面図、(B)は左側面図、(C)は平面図。The 2nd example of a cavity resonator is shown, (A) is the front view seen from the same side as FIG. 1, (B) is a left view, (C) is a top view. 流通管の第1実施形態を示す空胴共振器の断面図。Sectional drawing of the cavity resonator which shows 1st Embodiment of a flow pipe. 第1実施形態に係る流通管を説明する拡大図。The enlarged view explaining the distribution pipe which concerns on 1st Embodiment. 障害手段を入れた流通管における電界シミュレーション結果を示す図。The figure which shows the electric field simulation result in the flow pipe which put the obstruction means. 第1実施形態に係る流通管の実験結果を示す図。The figure which shows the experimental result of the flow pipe which concerns on 1st Embodiment. 流通管の第2実施形態を示す図5相当の図。The figure equivalent to FIG. 5 which shows 2nd Embodiment of a distribution pipe. 流通管の第3実施形態を示す図5相当の図。The figure equivalent to FIG. 5 which shows 3rd Embodiment of a distribution pipe. 流通管の第4実施形態を示す空胴共振器の断面図。Sectional drawing of the cavity resonator which shows 4th Embodiment of a flow pipe. 流通管の第5実施形態を示す空胴共振器の断面図。Sectional drawing of the cavity resonator which shows 5th Embodiment of a flow pipe. 図11に示した空胴共振器内の電界に関して中心軸周りの円周方向電界変化シミュレーション結果を示す図。The figure which shows the circumferential direction electric field change simulation result around a central axis regarding the electric field in the cavity resonator shown in FIG. 流通管に被処理液を流す流動機構の一例を示す図。The figure which shows an example of the flow mechanism which flows a to-be-processed liquid into a flow pipe.

まず、図1に、マイクロ波装置の全体構成に関して一例を示す。図示のマイクロ波装置は、空胴共振器10に導波管20及びマイクロ波発生器30を組み付け、パーソナルコンピュータ等による制御器40で制御するようにした構成である。   First, FIG. 1 shows an example of the overall configuration of the microwave device. The illustrated microwave device has a configuration in which a waveguide 20 and a microwave generator 30 are assembled to a cavity resonator 10 and controlled by a controller 40 such as a personal computer.

マイクロ波発生器30は、可変周波数発振器31及び可変増幅器32を含んでいる。可変周波数発振器31により周波数が可変(例えば2.4GHz〜2.5GHz)のマイクロ波が出力され、可変増幅器32により該マイクロ波のパワーが可変増幅される。可変周波数発振器31の周波数と可変増幅器32のパワーは、制御器40に従い制御される。マイクロ波発生器30から出力されたマイクロ波は、同軸ケーブルでつながったアイソレータ33、方向性結合器34などを介して同軸導波管変換器21に送られる。同軸導波管変換器21を経て導波管20により導波されるマイクロ波は、図2や図3に示すアイリス11,11’を通して、空胴共振器10内に形成された共振空胴の照射室12,12’へ導入される。   The microwave generator 30 includes a variable frequency oscillator 31 and a variable amplifier 32. A variable frequency oscillator 31 outputs a microwave having a variable frequency (for example, 2.4 GHz to 2.5 GHz), and a variable amplifier 32 variably amplifies the power of the microwave. The frequency of the variable frequency oscillator 31 and the power of the variable amplifier 32 are controlled according to the controller 40. The microwave output from the microwave generator 30 is sent to the coaxial waveguide converter 21 via an isolator 33, a directional coupler 34, and the like connected by a coaxial cable. The microwave guided by the waveguide 20 through the coaxial waveguide converter 21 passes through the irises 11 and 11 ′ shown in FIG. 2 and FIG. 3, and passes through the resonance cavity formed in the cavity resonator 10. It is introduced into the irradiation chamber 12, 12 ′.

照射室12,12’にマイクロ波が導入されると、中心軸方向へ離間設置した2本のアンテナ50(例えばループ形のアンテナ)により電界又は磁界の強度が検知され、該検知結果が制御器40へ入力される。例えば、2つのアンテナ出力の一方は観測用に、他方は制御用に利用される。ただし、2本のアンテナ設置が必須ということではない。後述するように制御器40には、被処理液の温度を計測した結果も入力され得る。制御器40は、これら入力に従ってマイクロ波発生器30を制御する。   When microwaves are introduced into the irradiation chambers 12 and 12 ', the strength of the electric field or magnetic field is detected by two antennas 50 (for example, loop-shaped antennas) spaced apart from each other in the direction of the central axis, and the detection result is a controller. 40. For example, one of the two antenna outputs is used for observation and the other is used for control. However, the installation of two antennas is not essential. As will be described later, the controller 40 can also receive the result of measuring the temperature of the liquid to be treated. The controller 40 controls the microwave generator 30 according to these inputs.

マイクロ波照射開始の操作が行われると、制御器40は、マイクロ波発生器30によりマイクロ波出力を開始し、周波数制御過程を実行する。周波数制御過程は、アンテナ50による検知結果に従って、マイクロ波発生器30から出力されるマイクロ波の周波数を、照射室12,12’の共振周波数に同調させる制御である。周波数制御過程を実行する制御器40は、可変周波数発振器31の周波数を掃引しつつアンテナ50による検出結果から同調周波数を判断する。このとき、制御器40は、可変増幅器32によるパワーについて、アンテナ50による検出に支障ない範囲で最低限の微弱パワーにするとよい。照射室12,12’へ導入するマイクロ波の出力パワーを弱くすることで、周波数制御過程の実行中に被処理液へ与え得る影響を抑制することができる。   When an operation for starting microwave irradiation is performed, the controller 40 starts microwave output by the microwave generator 30 and executes a frequency control process. The frequency control process is control for tuning the frequency of the microwave output from the microwave generator 30 to the resonance frequency of the irradiation chambers 12 and 12 ′ in accordance with the detection result by the antenna 50. The controller 40 that executes the frequency control process determines the tuning frequency from the detection result of the antenna 50 while sweeping the frequency of the variable frequency oscillator 31. At this time, the controller 40 may set the power from the variable amplifier 32 to a minimum weak power within a range that does not interfere with detection by the antenna 50. By weakening the output power of the microwave introduced into the irradiation chambers 12 and 12 ′, it is possible to suppress the influence that can be given to the liquid to be processed during the execution of the frequency control process.

この場合の微弱パワーは、例えば次の値とする。可変増幅器32は、一般的に可変減衰部+増幅部の組み合わせで構成されるので、その可変減衰部の減衰率を最大値(99%等)としたときの可変増幅器32の出力パワーを、微弱パワーとすることができる。一例としては、微弱パワーは100mW以下とすることが可能である。   The weak power in this case is set to the following value, for example. Since the variable amplifier 32 is generally configured by a combination of a variable attenuation unit and an amplification unit, the output power of the variable amplifier 32 when the attenuation rate of the variable attenuation unit is set to the maximum value (99% or the like) is weak. It can be power. As an example, the weak power can be 100 mW or less.

制御器40は、周波数制御過程による同調に続いて、マイクロ波のパワーを制御するパワー制御過程を実行する。パワー制御過程は、マイクロ波照射開始前にオペレーターにより設定された条件に従ってマイクロ波発生器30の可変増幅器32を制御し、マイクロ波のパワーを制御する過程である。パワー制御過程において制御器40は、アンテナ50による検知結果(又は被処理液の温度計測結果)に従って、マイクロ波発生器30から出力されるマイクロ波のパワーを調整する。正確性を追求したければ、アンテナ50の検知結果及び温度計測結果の両方を使用するのがよい。   The controller 40 executes a power control process for controlling the power of the microwave following the tuning by the frequency control process. The power control process is a process of controlling the microwave power by controlling the variable amplifier 32 of the microwave generator 30 according to the conditions set by the operator before the start of microwave irradiation. In the power control process, the controller 40 adjusts the power of the microwave output from the microwave generator 30 according to the detection result by the antenna 50 (or the temperature measurement result of the liquid to be processed). If accuracy is desired, both the detection result of the antenna 50 and the temperature measurement result should be used.

制御器40は、一例として、マイクロ波の照射開始にあたって最初に周波数制御過程を実行した後、パワー制御過程を実行し、当該パワー制御過程実行中に一定の間隔で周波数制御過程を割り込ませ、実行する。そして、その周波数制御過程において制御器40は、可変増幅器3bを制御して上述の微弱パワーでマイクロ波を出力させつつ、可変周波数発振器31を制御して周波数の同調を図る。   For example, the controller 40 first executes the frequency control process at the start of microwave irradiation, then executes the power control process, interrupts the frequency control process at regular intervals during execution of the power control process, and executes it. To do. In the frequency control process, the controller 40 controls the variable amplifier 3b to output the microwave with the above-described weak power, and controls the variable frequency oscillator 31 to tune the frequency.

以上のようなマイクロ波装置における空胴共振器10の第1の例が図2に示されている。   A first example of the cavity resonator 10 in the microwave device as described above is shown in FIG.

第1の例に係る空胴共振器10は、図中では上下に示す2枚の対向する底面壁13,14が正方形で、当該正方形の底面壁13,14の各辺に、長方形の側面壁15,16,17,18をボルト等で固定することにより、構成されている。この例の場合、4枚の側面壁15,16,17,18のうち、図2Bに示す1枚の側面壁15は、導波管20を接続するために、導波管20のフランジ22に対応させて面積が広げられており、その拡張部分が底面壁13,14の端からはみ出している。   In the cavity resonator 10 according to the first example, two opposed bottom walls 13 and 14 shown in the upper and lower sides are square in the figure, and rectangular side walls are provided on each side of the square bottom walls 13 and 14. It is configured by fixing 15, 16, 17, 18 with bolts or the like. In this example, of the four side walls 15, 16, 17, 18, one side wall 15 shown in FIG. 2B is connected to the flange 22 of the waveguide 20 to connect the waveguide 20. The area is expanded correspondingly, and the expanded portion protrudes from the ends of the bottom walls 13 and 14.

これら底面壁13,14及び側面壁15,16,17,18を組み立てて形成される直方体の空胴共振器10の中には、底面壁13,14による正方形の底面及び側面壁15,16,17,18による長方形の側面を有した四角柱状(正四角柱状)空胴の照射室12が形成される。この照射室12にマイクロ波を導入するアイリス11は、照射室側面を形成する側面壁15の中央部位に、矩形開口として開けられる。第1の例のアイリス11は長方形で、その長軸が、照射室底面の中心どうし、すなわちこの例では底面壁13,14の中心どうしを結んだ中心軸Cと平行に伸延する。   In the rectangular parallelepiped cavity resonator 10 formed by assembling the bottom walls 13, 14 and the side walls 15, 16, 17, 18, the square bottom and side walls 15, 16, The irradiation chamber 12 having a rectangular columnar shape (regular quadrangular columnar shape) having rectangular side surfaces 17 and 18 is formed. The iris 11 for introducing the microwave into the irradiation chamber 12 is opened as a rectangular opening at the central portion of the side wall 15 that forms the side surface of the irradiation chamber. The iris 11 of the first example is rectangular and its long axis extends parallel to the center of the irradiation chamber bottom, that is, in this example, the center axis C connecting the centers of the bottom walls 13 and 14.

導波管20から結合スリットであるアイリス11を通して四角柱状空胴の照射室12に導入されたマイクロ波は、共振時、中心軸Cの方向に沿ったシングルモードの電界を発生する。厳密に言えば、空胴共振器10内に何も入っていなければ、TM110モードの電磁界が励起される。したがって、おおよそTM110モードの電磁界分布に従った分布の電磁界が照射室12に発生することになる。   The microwave introduced from the waveguide 20 into the irradiation chamber 12 of the quadrangular columnar cavity through the iris 11 serving as a coupling slit generates a single mode electric field along the direction of the central axis C at the time of resonance. Strictly speaking, if nothing is contained in the cavity resonator 10, the electromagnetic field of the TM110 mode is excited. Therefore, an electromagnetic field having a distribution roughly following the electromagnetic field distribution of the TM110 mode is generated in the irradiation chamber 12.

照射室12に関し、その底面のなす正方形の1辺の長さをLとする。なお、Lについての±数%程度の寸法差は許容され得る。加熱等に一般的なマイクロ波の周波数2,450MHzの場合、照射室12内に何も無いときのLは86.5mmである。しかし実際には、照射室12には誘電体となる被処理液が存在することになるので、その影響を受けて照射室12の共振周波数は下がる。そこで、照射室12のLは、空のときの寸法より小さく設計し、照射室12内に被処理液が有って共振周波数が下がったときに共振できる値とするのがよい。また、Lを長めにとった場合、予定したシングルモードでの共振に加えて、その近傍の周波数において高次モードで共振する、モード競合のような不具合を生じ得る。これらの条件を勘案してシミュレーションなどの試行を重ねた結果、照射室12において底面のなす正方形の1辺の長さLは、照射室12に導入するマイクロ波の波長の75%以下に設計するのが適している。なお、照射室12において各側面のなす長方形の長辺の長さH(正四角柱の高さ)は、電界が中心軸Cの方向に生じることから、適宜、必要な長さを設計すればよい。   Regarding the irradiation chamber 12, let L be the length of one side of the square formed by its bottom surface. It should be noted that a dimensional difference of about ± several percent with respect to L can be allowed. In the case of a microwave frequency of 2450 MHz, which is general for heating and the like, L when there is nothing in the irradiation chamber 12 is 86.5 mm. However, in reality, since the liquid to be treated which is a dielectric exists in the irradiation chamber 12, the resonance frequency of the irradiation chamber 12 is lowered under the influence. Therefore, L in the irradiation chamber 12 is designed to be smaller than the dimension when empty, and should be a value that can resonate when there is a liquid to be processed in the irradiation chamber 12 and the resonance frequency is lowered. Further, when L is set longer, in addition to the planned resonance in the single mode, a problem such as mode competition that resonates in a higher-order mode at a nearby frequency may occur. As a result of repeated trials such as simulation in consideration of these conditions, the length L of one side of the square formed in the bottom surface of the irradiation chamber 12 is designed to be 75% or less of the wavelength of the microwave introduced into the irradiation chamber 12. Is suitable. In addition, since the electric field is generated in the direction of the central axis C, the length H of the long side of the rectangle formed by each side in the irradiation chamber 12 (height of the regular quadrangular prism) may be designed as appropriate. .

導波管20から空胴共振器10へマイクロ波を結合するアイリス11は、照射室12に励起される電磁界を、予定したシングルモード(TM110、あるいは後述のTM010)のみとすることに関与する。図2Bに示すアイリス11においては、その長辺(側縁)においてマイクロ波による電流が中心軸Cの方向に流れ、当該電流に起因して、中心軸Cを囲繞する磁界と中心軸Cに平行な電界が発生する。アイリス11の幅(中心軸Cと直交する方向)は、シミュレーション及び実験により最適値を求めることができる。空胴共振器10はTEモードを発生する可能性があるが、TEモードが発生すると想定外の現象が起き得るので、TEモードは極力抑制する必要がある。図2の導波管20及びアイリス11の関係においては、中心軸Cに関し構造的対称性が保たれる限り、図中の横方向の電界が存在しないので、TEモードを抑制することが可能である。   The iris 11 that couples the microwave from the waveguide 20 to the cavity resonator 10 is involved in setting the electromagnetic field excited in the irradiation chamber 12 only to the planned single mode (TM110 or TM010 described later). . In the iris 11 shown in FIG. 2B, a microwave current flows in the direction of the central axis C on the long side (side edge), and the magnetic field surrounding the central axis C is parallel to the central axis C due to the current. Electric field is generated. An optimum value of the width of the iris 11 (direction orthogonal to the central axis C) can be obtained by simulation and experiment. Although the cavity resonator 10 may generate the TE mode, an unexpected phenomenon may occur when the TE mode occurs, so the TE mode needs to be suppressed as much as possible. In the relationship between the waveguide 20 and the iris 11 in FIG. 2, as long as the structural symmetry with respect to the central axis C is maintained, there is no electric field in the horizontal direction in the figure, so that the TE mode can be suppressed. is there.

図3に、空胴共振器10の第2の例を示す。
第2の例の空胴共振器10は、円柱状空胴の照射室12’を有し、照射室12’の直径がLとされる。
FIG. 3 shows a second example of the cavity resonator 10.
The cavity resonator 10 of the second example has a cylindrical cavity irradiation chamber 12 ′, and the diameter of the irradiation chamber 12 ′ is L.

円柱状空胴の照射室12’は、正四角柱状の胴部材を円形にくりぬき(削り出し)、その両端に正方形の底面壁13’,14’をボルト止め等することで形成される。そして、照射室12’の側面(つまり胴部材内周面)を形成する側面壁の1箇所、この例の場合、胴部材の外側面15’,16’,17’,18’のうちの外側面15’に、第1の例同様のアイリス11’が開口する。すなわち、このアイリス11’も、照射室12’の両底面の中心を互いに結んだ中心軸Cと平行に長軸が伸延する矩形開口である。また、アイリス11’を介してマイクロ波を結合する導波管20のフランジ22を固定するために、外側面15’に対して鍔部15a’が拡張形成されている。   The irradiation chamber 12 ′ having a cylindrical cavity is formed by hollowing out (cutting out) a regular quadrangular prism-shaped body member and bolting square bottom walls 13 ′ and 14 ′ to both ends thereof. And one place of the side wall which forms the side surface (namely, inner circumferential surface of the barrel member) of the irradiation chamber 12 ', in this case, the outer side of the outer side surfaces 15', 16 ', 17', 18 'of the barrel member On the side surface 15 ', an iris 11' similar to the first example opens. That is, the iris 11 ′ is also a rectangular opening whose major axis extends parallel to the central axis C connecting the centers of both bottom surfaces of the irradiation chamber 12 ′. Further, in order to fix the flange 22 of the waveguide 20 that couples microwaves through the iris 11 ′, a flange portion 15 a ′ is extended from the outer surface 15 ′.

導波管20からアイリス11’を通して照射室12’に導入されたマイクロ波は、共振時、中心軸Cの方向に沿ったシングルモードの電界を発生する。照射室12’が円柱状空胴なので、第2の例の場合、空胴共振器10内に何も入っていなければTM010モードの電磁界が励起される。共振するマイクロ波の周波数を2,450MHzとする場合、照射室12’内に何も無いときの直径Lは93.7mmである。なお、第1実施形態同様、Lについての±数%程度の寸法差は許容され得る。   The microwave introduced from the waveguide 20 through the iris 11 ′ into the irradiation chamber 12 ′ generates a single mode electric field along the direction of the central axis C at the time of resonance. Since the irradiation chamber 12 ′ is a cylindrical cavity, in the case of the second example, if nothing is contained in the cavity resonator 10, the electromagnetic field in the TM010 mode is excited. When the frequency of the resonating microwave is 2,450 MHz, the diameter L when there is nothing in the irradiation chamber 12 'is 93.7 mm. As in the first embodiment, a dimensional difference of about ± several percent for L can be allowed.

第1の例と同様に、照射室12’には誘電体となる被処理液が存在することになるので、その影響を受けて照射室12’の共振周波数は下がる。そこで、照射室12’のLも、空のときの寸法より小さく設計する。また、上述したように、Lを長めにとった場合は高次モードで共振するモード競合のような不具合を生じ得るので、これらの条件を勘案して、照射室12’において底面のなす円形の直径Lは、照射室12’に導入するマイクロ波の波長の80%以下に設計するのが適している。なお、照射室12’の側面の軸方向長さH(円柱の高さ)は、電界が中心軸Cの方向に生じることから、適宜、必要な長さを設計すればよい。   As in the first example, since the liquid to be processed which is a dielectric exists in the irradiation chamber 12 ′, the resonance frequency of the irradiation chamber 12 ′ is lowered under the influence. Therefore, L of the irradiation chamber 12 'is also designed to be smaller than the dimension when empty. In addition, as described above, when L is set to be long, problems such as mode competition that resonates in a higher-order mode may occur. Therefore, in consideration of these conditions, the circular shape formed by the bottom surface in the irradiation chamber 12 ′ is considered. The diameter L is suitably designed to be 80% or less of the wavelength of the microwave introduced into the irradiation chamber 12 ′. Note that the axial length H (the height of the cylinder) of the side surface of the irradiation chamber 12 ′ may be designed as appropriate because an electric field is generated in the direction of the central axis C.

第1の例と第2の例の空胴共振器10を比べると、第1の例の方が、6枚の板材を互いに組み付けるだけで制作でき、導波管20の取り付けもより容易なため、作りやすいという利点をもつ。   Comparing the cavity resonator 10 of the first example and the second example, the first example can be produced simply by assembling the six plate members together, and the waveguide 20 is also easier to attach. It has the advantage of being easy to make.

上記第1及び第2の例に係る空胴共振器10の照射室12,12’に設置される流通管の第1実施形態について、図4及び図5に示し、説明する。   A first embodiment of the flow pipe installed in the irradiation chambers 12 and 12 ′ of the cavity resonator 10 according to the first and second examples will be described with reference to FIGS. 4 and 5.

第1実施形態の流通管60は、一例として石英ガラス製で、照射室12,12’を貫通する長さの直管とされる。この流通管60は、その軸線C’を照射室12,12’の電界方向である中心軸Cに沿わせて、特に本実施形態の場合は軸線C’を中心軸Cとほぼ一致させて(数mmの誤差は許容される)、照射室12,12’に設置される。上述のように、照射室12,12’の中心軸Cは電界方向に一致し且つ電界が最も強い所であるから、当該中心軸Cに軸線C’をほぼ一致させて流通管60を設置することで、最も効率良く被処理液を処理することができる。このように中心軸Cに軸線C’をほぼ一致させて流通管60を設置する仕組みについて、図4の断面図に示している。   The flow pipe 60 of the first embodiment is made of quartz glass as an example, and is a straight pipe having a length penetrating the irradiation chambers 12 and 12 ′. The flow pipe 60 has its axis C ′ aligned with the central axis C, which is the electric field direction of the irradiation chambers 12 and 12 ′, and in this embodiment, in particular, the axis C ′ is substantially coincident with the central axis C ( An error of several millimeters is allowed) and is installed in the irradiation chambers 12 and 12 '. As described above, since the central axis C of the irradiation chambers 12 and 12 ′ coincides with the direction of the electric field and the electric field is strongest, the flow pipe 60 is installed with the axial line C ′ substantially coincided with the central axis C. Thus, the liquid to be processed can be processed most efficiently. A mechanism for installing the flow pipe 60 so that the axis C ′ substantially coincides with the central axis C is shown in the sectional view of FIG.

空胴共振器10を構成する底面壁13,14(13’,14’)の中央部位には、照射室12,12’内に発生するマイクロ波を外へ逃がすことなく流通管60を保持するために、50mm程度の高さの円筒部材19が外へ向けて立設されている。円筒部材19は、直径が20mm程度(流通管60のサイズに応じて適宜設計)で裾部分にフランジ19aが周設されており、底面壁13,14(13’,14’)の外側面に設けられた相応形状の凹部にフランジ19aが受容され、六角穴付ボルト等により締め付けることで固定される。固定された円筒部材19の内部空間は、底面壁13,14(13’,14’)の凹部中央に設けられた貫通孔13a,14a(13’a,14’a)と連通する。また、固定された円筒部材19の中心軸は、照射室12,12’の中心軸Cとほぼ一致する。   A circulation pipe 60 is held at the central portion of the bottom wall 13, 14 (13 ′, 14 ′) constituting the cavity resonator 10 without escaping microwaves generated in the irradiation chambers 12, 12 ′ to the outside. Therefore, the cylindrical member 19 having a height of about 50 mm is erected outward. The cylindrical member 19 has a diameter of about 20 mm (designed appropriately according to the size of the flow pipe 60), and a flange 19a is provided around the skirt portion, and on the outer surface of the bottom wall 13, 14 (13 ', 14'). The flange 19a is received in the correspondingly formed recess, and is fixed by tightening with a hexagon socket head cap screw or the like. The fixed internal space of the cylindrical member 19 communicates with through holes 13a and 14a (13'a and 14'a) provided in the center of the recesses of the bottom walls 13 and 14 (13 'and 14'). The central axis of the fixed cylindrical member 19 substantially coincides with the central axis C of the irradiation chambers 12 and 12 '.

流通管60の一端側所定部位には、金属製、あるいは天然樹脂や合成樹脂製の円板形とした蓋部材61を装着してある。当該蓋部材61は、本実施形態の場合、底面壁13,13’の側の円筒部材19と嵌合する。すなわち、蓋部材61の内側面に、円筒部材19の内径に相応する直径の膨出部61aが形成されており、該膨出部61aが円筒部材19に嵌合することで、蓋部材61が固定され、該蓋部材61を装着した流通管60が円筒部材19に保持される。なお、蓋部材61は、円筒部材19にねじ込む方式とすることも可能である。   A lid member 61 made of a metal or a disk made of natural resin or synthetic resin is attached to a predetermined portion on one end side of the flow pipe 60. In the case of this embodiment, the lid member 61 is fitted to the cylindrical member 19 on the side of the bottom wall 13, 13 '. That is, a bulging portion 61 a having a diameter corresponding to the inner diameter of the cylindrical member 19 is formed on the inner surface of the lid member 61, and the bulging portion 61 a is fitted to the cylindrical member 19, so that the lid member 61 is The flow pipe 60 fixed and fitted with the lid member 61 is held by the cylindrical member 19. The lid member 61 can be screwed into the cylindrical member 19.

一端側に蓋部材61を装着した流通管60は、他端側を先(図中下向き)にして、図中で上に位置する底面壁13,13’の円筒部材19を通し照射室12,12’内に挿入する。挿入された流通管60の他端側は、照射室12,12’を通り過ぎて、反対側に位置する底面壁14,14’の円筒部材19内へ進入する。該円筒部材19の先端側部位内には、流通管60の他端側を貫通させて位置決めするための位置保持部材62がねじ込み等で固定されている。位置保持部材62は円板形で中央に流通管60の外径に相応する直径の貫通孔が開けられており、該貫通孔に流通管60の他端側を刺し通すことで、中心軸Cと軸線C’とがほぼ一致するように位置決めされたうえで、流通管60の他端側が外へ突出する。これにより、一端側が蓋部材61により保持されて円筒部材19を通り照射室12,12’内に垂下し、他端側が反対側の円筒部材19を通り位置保持部材62から外へ突出するようにして、流通管60が照射室12,12’に設置される。空胴共振器10の外方へ煙突状に突出する円筒部材19を利用して流通管60を設置することにより、照射室12,12’から外へのマイクロ波漏洩が防止される。   The flow pipe 60 with the lid member 61 mounted on one end side is arranged with the other end side first (downward in the figure) and through the cylindrical member 19 of the bottom wall 13, 13 ′ located on the upper side in the figure, Insert into 12 '. The other end side of the inserted flow pipe 60 passes through the irradiation chambers 12 and 12 'and enters the cylindrical member 19 of the bottom wall 14 and 14' located on the opposite side. A position holding member 62 for positioning through the other end side of the flow pipe 60 is fixed in the distal end portion of the cylindrical member 19 by screwing or the like. The position holding member 62 has a disc shape, and a through hole having a diameter corresponding to the outer diameter of the flow pipe 60 is opened at the center. The other end of the flow pipe 60 is pierced through the through hole so that the central axis C And the axial line C ′ are positioned so as to substantially coincide with each other, and the other end side of the flow pipe 60 projects outward. Thus, one end side is held by the lid member 61 and passes through the cylindrical member 19 and hangs down in the irradiation chambers 12 and 12 ′, and the other end side passes through the opposite cylindrical member 19 and protrudes outward from the position holding member 62. The circulation pipe 60 is installed in the irradiation chambers 12 and 12 ′. By installing the flow pipe 60 using the cylindrical member 19 projecting in a chimney shape outward from the cavity resonator 10, microwave leakage from the irradiation chambers 12, 12 'is prevented.

このように、蓋部材61を装着した流通管60を円筒部材19を通して挿入する方式とすることにより、径の異なる流通管60を交換して設置することが可能となる。すなわち、単位時間あたりの処理量等に応じ適切な直径の流通管60を選択して交換し、マイクロ波処理を実施可能である。   In this way, by adopting a system in which the flow pipe 60 fitted with the lid member 61 is inserted through the cylindrical member 19, the flow pipes 60 having different diameters can be replaced and installed. That is, the microwave processing can be performed by selecting and replacing the flow pipe 60 having an appropriate diameter according to the processing amount per unit time or the like.

照射室12,12’に設置される流通管60の中には、図5に示すように、障害手段63が収容される。障害手段60は、例えば流通管60の両端(又は下端のみ)に脱脂綿や不織布等のフィルタ材64を詰め込んで蓋をすることにより、流通管60の中に保持される。この図5に示す障害手段63は、流通管60内に収容された同一材料の多数の粒体(球体として説明するが、球体以外もあり得る)63であり、当該障害手段63が在ることにより、流通管60内を流れる被処理液の流れが乱される。すなわち、障害手段63は、単に流通管60内の被処理液容積を減少させているのではなく、以下の重要な機能をもつ。   As shown in FIG. 5, the obstacle means 63 is accommodated in the flow pipe 60 installed in the irradiation chambers 12 and 12 '. The obstruction means 60 is held in the flow pipe 60 by, for example, packing the filter material 64 such as absorbent cotton or non-woven fabric at both ends (or only the lower end) of the flow pipe 60 and closing the cover. The obstacle means 63 shown in FIG. 5 is a large number of particles 63 of the same material accommodated in the flow pipe 60 (which will be described as a sphere, but may be other than a sphere), and the obstacle means 63 is present. As a result, the flow of the liquid to be processed flowing in the flow pipe 60 is disturbed. That is, the obstacle means 63 does not simply reduce the volume of the liquid to be processed in the flow pipe 60 but has the following important functions.

流通管60内に何も無ければ、該流通管60を通って流れる被処理液は層流となるが、障害手段63が存在することにより、被処理液に乱流が生じる。障害手段63で乱流とすることにより、被処理液の攪拌作用が生じ、被処理液の化学反応が促進される結果を得ることができる。   If there is nothing in the flow pipe 60, the liquid to be processed flowing through the flow pipe 60 becomes a laminar flow, but the presence of the obstacle means 63 causes a turbulent flow in the liquid to be processed. By making the turbulent flow in the obstacle means 63, a stirring action of the liquid to be processed occurs, and a result of promoting the chemical reaction of the liquid to be processed can be obtained.

また、障害手段63は、被処理液とは異なる誘電率の材料から形成される。本実施形態の障害手段63は、被処理液に比べ低誘電率でマイクロ波吸収の少ない(又は吸収の無い)材料、例えば、アルミナ(酸化アルミニウム)、フッ素樹脂、石英やホウケイ酸ガラスから形成されている。上記の乱流に加えて、被処理液と障害手段63の誘電率が異なることから、被処理液の流れる流通管60内において電界分布が一様ではなくなると共に、電界の強さが平均的に減少する。   Further, the obstacle means 63 is made of a material having a dielectric constant different from that of the liquid to be processed. The obstacle means 63 of the present embodiment is made of a material having a low dielectric constant and less microwave absorption (or no absorption) than the liquid to be treated, such as alumina (aluminum oxide), fluororesin, quartz, or borosilicate glass. ing. In addition to the above turbulent flow, since the dielectric constants of the liquid to be treated and the obstacle means 63 are different, the electric field distribution is not uniform in the flow pipe 60 through which the liquid to be treated flows, and the strength of the electric field is average. Decrease.

詳述すると、第一に、被処理液の反応を加速するためには、次の2つの事項を考慮する必要がある。
(1)適切な活性化エネルギーを被処理液へ迅速に与えることを考える必要がある。ただし、部分的に与えすぎると副生成物発生要因になる。したがって、照射室内の被処理液に対して活性化エネルギーを短時間で均一に与える必要がある。
(2)被処理液内で反応する物質相互の接触機会を増やすことを考える必要がある。すなわち、均一加熱が実現されても、流通管内を被処理液が層流で流れるのであれば、反応の十分な加速には至らない。したがって、流通管内で被処理液の乱流を意図的に発生させる工夫が必要である。
More specifically, first, in order to accelerate the reaction of the liquid to be treated, the following two matters need to be considered.
(1) It is necessary to consider giving appropriate activation energy to the liquid to be treated quickly. However, if too much is given, it will be a by-product generation factor. Therefore, it is necessary to apply activation energy uniformly to the liquid to be processed in the irradiation chamber in a short time.
(2) It is necessary to consider increasing the chance of contact between substances that react in the liquid to be treated. That is, even if uniform heating is realized, if the liquid to be treated flows in a laminar flow in the flow pipe, the reaction cannot be accelerated sufficiently. Therefore, a device for intentionally generating a turbulent flow of the liquid to be treated in the flow pipe is necessary.

第二に、活性化エネルギーを均一且つ迅速に与えるためには、照射室内の電界の強い部分に被処理液を配置することを考慮する必要がある。例えば、照射室の中心軸Cに沿って流通管を配置する等である。しかし、この場合、水等のマイクロ波吸収の大きい被処理液ではQの低下が進んでしまい、共振周波数が大幅に低下してISM帯域から外れるというリスクが生じる。   Second, in order to uniformly and quickly apply the activation energy, it is necessary to consider placing the liquid to be processed in a portion where the electric field in the irradiation chamber is strong. For example, a flow pipe is arranged along the central axis C of the irradiation chamber. However, in this case, in the liquid to be treated that absorbs a large amount of microwaves such as water, the Q is further lowered, and there is a risk that the resonance frequency is greatly lowered and falls out of the ISM band.

これら、乱流の意図的生成、Qの低下抑制、ISM帯域の維持という3つの観点に対し、障害手段63が適切に機能する。なお、障害手段63には化学反応のための触媒(固体触媒)を担持させることもでき、また、障害手段63をサセプタとして利用することもできる。   The obstacle means 63 functions appropriately with respect to these three viewpoints: intentional generation of turbulent flow, suppression of Q reduction, and maintenance of the ISM band. The obstacle means 63 can carry a catalyst (solid catalyst) for a chemical reaction, and the obstacle means 63 can be used as a susceptor.

上記機能に関して図6に、障害手段63を収容した石英製の流通管60に、被処理液として水を流したときの電界シミュレーションの一例を示す。図6(A)は、障害手段63をアルミナ粒体として、水に対する比誘電率を低くした場合の結果を示し、図6(B)は、障害手段63の比誘電率が水に等しい場合の結果を示す。水の比誘電率は80とし、アルミナ粒体の比誘電率は10として計算した。被処理液としての水は、比誘電率が大きいため、共振周波数を低下させる現象が顕著であり、マイクロ波吸収が大きく、Qを大幅に下げる特徴を有する。このため、従来技術では、流通管の内径を1mm以下に制限する必要があった。   FIG. 6 shows an example of an electric field simulation when water is passed as a liquid to be treated in the quartz flow pipe 60 containing the obstacle means 63 with respect to the above function. FIG. 6 (A) shows the result when the relative permittivity for water is lowered by using the obstacle means 63 as alumina particles, and FIG. 6 (B) shows the case where the relative permittivity of the obstacle means 63 is equal to water. Results are shown. The relative dielectric constant of water was set to 80, and the relative dielectric constant of alumina particles was calculated to be 10. Since water as the liquid to be treated has a large relative dielectric constant, a phenomenon that the resonance frequency is lowered is remarkable, microwave absorption is large, and Q is greatly reduced. For this reason, in the prior art, it was necessary to limit the inner diameter of the flow pipe to 1 mm or less.

図6(A)に示されるように、上記の機能を発揮する障害手段63が存在することによって、流通管60内で電界分布が乱れて一様ではなくなり、特に、水中の電界の強さが平均的に弱くなる。そして、電界の二乗に比例するマイクロ波吸収が減少し、Qの低下が抑えられる。一方の図6(B)の場合は電界分布に変化がなく強いままであるため、共振周波数とQの低下をもたらすことが分かる。すなわち、被処理液と異なる誘電率の障害手段63を流通管60に収容して流れを乱すことにより、共振周波数の低下及びQの低下が抑制され、ISM帯域内において共振をとることが容易となり、装置の設計上極めて有利である。   As shown in FIG. 6 (A), the presence of the obstacle means 63 that exhibits the above function makes the electric field distribution turbulent and non-uniform in the flow pipe 60. In particular, the strength of the electric field in water is reduced. It becomes weak on average. And the microwave absorption proportional to the square of an electric field reduces, and the fall of Q is suppressed. On the other hand, in the case of FIG. 6B, it can be seen that the electric field distribution does not change and remains strong, resulting in a decrease in resonance frequency and Q. That is, the disturbance means 63 having a dielectric constant different from that of the liquid to be treated is accommodated in the flow pipe 60 and the flow is disturbed, so that the decrease in the resonance frequency and the decrease in the Q are suppressed, and the resonance can be easily achieved in the ISM band. This is extremely advantageous in terms of device design.

図7(A)は、外径3mmと4mm(内径1.6mmと2.4mm)のガラス製流通管60を用意して、この中に直径0.5mmと1mmのアルミナ粒体障害手段63を収容し、TM110の図2に示す空胴共振器10に入れて実験を行った結果の図である。縦軸は照射室12内のマイクロ波周波数であり、横軸には条件1〜7をふってある。条件1は照射室12に何も入っていない条件、条件2は空の流通管60を照射室12にセットした条件、条件3は1mm径の障害手段63を収容した流通管60を照射室12にセットし且つ被処理液(水)を流さない条件、条件4は0.5mm径の障害手段63を収容した流通管60を照射室12にセットし且つ被処理液(水)を流さない条件、条件5は1mm径の障害手段63を収容した流通管60を照射室12にセットし且つ被処理液(水)を流した条件、条件6は0.5mm径の障害手段63を収容した流通管60を照射室12にセットし且つ被処理液(水)を流した条件、条件7は障害手段63を収容していない空の流通管60を照射室12にセットし且つ被処理液(水)を流した条件である。条件7では、ISM帯域を大きく外れるほどに周波数が低下しているが、これに比べて条件5及び条件6では、ISM帯域内で制御可能な程度に周波数の低下が軽減されることが分かる。すなわち、何も無いときの条件1での周波数に対し、条件5,6の周波数低下範囲が100MHz内に収まり、容易に制御可能であることが読み取れる。   FIG. 7A shows a glass flow tube 60 having outer diameters of 3 mm and 4 mm (inner diameters of 1.6 mm and 2.4 mm), in which alumina particle obstruction means 63 having a diameter of 0.5 mm and 1 mm are provided. It is the figure of the result of having accommodated and experimenting in the cavity resonator 10 shown in FIG. 2 of TM110. The vertical axis represents the microwave frequency in the irradiation chamber 12, and the horizontal axis represents conditions 1 to 7. Condition 1 is a condition in which nothing is contained in the irradiation chamber 12, Condition 2 is a condition in which an empty distribution pipe 60 is set in the irradiation chamber 12, and Condition 3 is a condition in which the distribution pipe 60 containing 1 mm diameter obstacle means 63 is connected to the irradiation chamber 12. The condition 4 is set so that the treatment liquid (water) does not flow, and the condition 4 is a condition in which the flow pipe 60 containing the obstacle means 63 having a diameter of 0.5 mm is set in the irradiation chamber 12 and the treatment liquid (water) is not flowed. Condition 5 is a condition in which a flow pipe 60 containing 1 mm diameter obstruction means 63 is set in the irradiation chamber 12 and a liquid to be treated (water) is flowed. Condition 6 is a flow containing 0.5 mm diameter obstruction means 63. Condition 7 in which the tube 60 is set in the irradiation chamber 12 and the liquid to be processed (water) is flowed, condition 7 is that an empty flow pipe 60 that does not contain the obstacle means 63 is set in the irradiation chamber 12 and the liquid to be processed (water) ). In condition 7, the frequency decreases as the ISM band deviates significantly. In contrast, in conditions 5 and 6, it can be seen that the decrease in frequency is reduced to a level that can be controlled within the ISM band. That is, it can be read that the frequency reduction range of the conditions 5 and 6 is within 100 MHz with respect to the frequency of the condition 1 when there is nothing and can be easily controlled.

障害手段の無い流通管におけるQの計算例を図7(B)に示す。一般にはQの値が100以下になると共振を探すのが困難となるが、例えば水の場合、流通管内径が1.5mmを超えるとQが落ち込み、同調制御が困難になることが分かる。このQの低下が、障害手段63を収容することで抑制され、流通管60を太くすることが可能となる。   FIG. 7B shows an example of calculating Q in a distribution pipe without obstruction means. In general, it is difficult to find resonance when the value of Q is 100 or less. However, in the case of water, for example, when the inner diameter of the flow pipe exceeds 1.5 mm, Q falls and tuning control becomes difficult. This decrease in Q is suppressed by accommodating the obstacle means 63, and the flow pipe 60 can be made thicker.

以上のように、被処理液に吸収されるマイクロ波が抑制される結果、流通管60の径を従来より太く、例えば3mmや4mm(内径1.5mm以上)として、被処理液の流量を多くしても、Qの低下が抑えられて同調をとりやすくなる。すなわち、被処理液の流量を増やして処理効率を向上させることができる。   As described above, as a result of the suppression of the microwave absorbed in the liquid to be treated, the flow pipe 60 has a larger diameter than before, for example, 3 mm or 4 mm (inner diameter 1.5 mm or more), and the flow rate of the liquid to be treated is increased. Even so, the decrease in Q is suppressed and it becomes easy to achieve synchronization. That is, the processing efficiency can be improved by increasing the flow rate of the liquid to be processed.

図8に、流通管の第2実施形態を示す。この実施形態の流通管70は、一例として石英ガラス製で、内側流路71と該内側流路71を囲繞する外側流路72とを有する二重管構造である。その内側流路71の周囲を取り囲む外側流路72に、第1実施形態同様で径の小さい多数の粒体の障害手段73を収容してある。内側流路71の内径は1.5mm以下として流量を抑え、中を流れる液体によるマイクロ波の吸収を抑制する。外側流路72は、上述の作用をもつ障害手段73を収容してあるので、径を太くして被処理液の流量を多くすることができる。外側流路72の両端には、脱脂綿や不織布等のフィルタ体74を詰めて蓋をする。この第2実施形態によれば、内側流路71に被処理液とは別の、例えば水等の冷却液を流すことも可能である。   FIG. 8 shows a second embodiment of the distribution pipe. The flow pipe 70 of this embodiment is made of quartz glass as an example, and has a double pipe structure having an inner flow path 71 and an outer flow path 72 surrounding the inner flow path 71. In the outer flow path 72 surrounding the inner flow path 71, a large number of small-diameter obstacle means 73 are accommodated as in the first embodiment. The inner flow path 71 has an inner diameter of 1.5 mm or less to suppress the flow rate and suppress the absorption of microwaves by the liquid flowing inside. Since the outer flow path 72 contains the obstacle means 73 having the above-described action, the diameter of the outer flow path 72 can be increased to increase the flow rate of the liquid to be processed. Both ends of the outer flow path 72 are covered with filter bodies 74 such as absorbent cotton or nonwoven fabric. According to the second embodiment, a coolant such as water other than the liquid to be treated can be allowed to flow through the inner flow path 71.

図9は、流通管の第3実施形態を示す。この実施形態の流通管80は、一例として石英ガラス製で、例えば内径3mm以上の直管である。この流通管80の中に、第1実施形態と同様の材料からなり、螺旋に巻いた線状の障害手段81が収容されている。流通管80の両端は、脱脂綿や不織布等のフィルタ体82を詰め込んで、障害手段81が抜け落ちないように蓋をしてある。このような螺旋状の障害手段81であっても、流通管80内を流れる被処理液に乱流を起こすことができ、第1実施形態と同様の機能を発揮可能である。障害手段81は、螺旋に巻く他にも、網状に組むなど層流を阻害するその他の形状を採用可能である。   FIG. 9 shows a third embodiment of the flow pipe. The flow pipe 80 of this embodiment is made of quartz glass as an example, and is, for example, a straight pipe having an inner diameter of 3 mm or more. The distribution pipe 80 is made of the same material as that of the first embodiment, and a linear obstacle means 81 wound in a spiral is accommodated. Both ends of the flow pipe 80 are filled with a filter body 82 such as absorbent cotton or nonwoven fabric so that the obstacle means 81 does not fall off. Even such a helical obstacle means 81 can cause a turbulent flow in the liquid to be processed flowing in the flow pipe 80, and can exhibit the same function as in the first embodiment. The obstruction means 81 can adopt other shapes that obstruct laminar flow, such as a mesh, in addition to being wound in a spiral.

以上の他、流通管は三重管構造とすることも可能であり、この場合、最も内側の流路を上記流路71とし、最も外側の流路を上記流路72として使用することができる。そして、これらの間の中間流路に、図9の第3実施形態のような螺旋状の障害手段を収容する例が可能である。この例において、螺旋状障害手段が十分に太ければ、中間流路内において被処理液を螺旋状態に流すことができる。   In addition to the above, the flow pipe may have a triple pipe structure. In this case, the innermost flow path can be used as the flow path 71 and the outermost flow path can be used as the flow path 72. And the example which accommodates a helical obstruction means like 3rd Embodiment of FIG. 9 in the intermediate flow path between these is possible. In this example, if the spiral obstruction means is sufficiently thick, the liquid to be treated can flow in a spiral state in the intermediate flow path.

図10には、流通管の第4実施形態を示す。この実施形態は、第1実施形態の流通管60において両端に熱収縮チューブ65を装着したもので、これら熱収縮チューブ65の先端に後述のジョイントが取り付けられる。図10(B)に示すように、第4実施形態の場合、両端に熱収縮チューブ65が装着されるので、蓋部材61及び位置保持部材62の両方を予め流通管60に通しておいて、両端に装着する熱収縮チューブ65にて抜け落ちないように保持してある。この流通管60は、位置保持部材62の方を下にして上側円筒部材19を通し照射室12,12’へ挿入される。そして、照射室12,12’内に垂下した流通管60の先端側にある熱収縮チューブ65及び位置保持部材62を下側円筒部材19内へ挿入し、熱収縮チューブ65を円筒部材19から外へ突出させるようにしてセットされる。位置保持部材62は円筒部材19の中に留まり、第1実施形態同様、流通管60の先端側位置をキープする。つまり、流通管60をセットした後の状態は、第1実施形態同様である。   FIG. 10 shows a fourth embodiment of the distribution pipe. In this embodiment, heat shrinkable tubes 65 are attached to both ends of the flow pipe 60 of the first embodiment, and a joint described later is attached to the tips of these heat shrinkable tubes 65. As shown in FIG. 10 (B), in the case of the fourth embodiment, since the heat shrink tube 65 is attached to both ends, both the lid member 61 and the position holding member 62 are passed through the flow pipe 60 in advance, The heat shrinkable tubes 65 attached to both ends are held so as not to fall off. The flow pipe 60 is inserted into the irradiation chambers 12 and 12 ′ through the upper cylindrical member 19 with the position holding member 62 facing down. Then, the heat-shrinkable tube 65 and the position holding member 62 on the distal end side of the flow pipe 60 suspended in the irradiation chambers 12 and 12 ′ are inserted into the lower cylindrical member 19, and the heat-shrinkable tube 65 is removed from the cylindrical member 19. It is set so that it protrudes to. The position holding member 62 stays in the cylindrical member 19 and keeps the position of the distal end side of the flow pipe 60 as in the first embodiment. That is, the state after the distribution pipe 60 is set is the same as in the first embodiment.

図11には、流通管の形状を変えた第5実施形態を示す。この実施形態の流通管90は、材質は上記実施形態と同じく石英やホウケイ酸ガラス等であるが、蓋部材61及び位置保持部材62を通す両端の直管部分以外の中間部分が、螺旋管として形成されている。ただし、上記実施形態同様に螺旋式の流通管90も、蓋部材61、挿通部材62、円筒部材19を使用して、その螺旋中心の軸線C’が中心軸Cとほぼ一致するように設置される。   FIG. 11 shows a fifth embodiment in which the shape of the flow pipe is changed. The flow pipe 90 of this embodiment is made of quartz, borosilicate glass or the like as in the above embodiment, but the intermediate part other than the straight pipe part at both ends through which the cover member 61 and the position holding member 62 are passed is a spiral pipe. Is formed. However, similarly to the above embodiment, the spiral flow pipe 90 is also installed using the lid member 61, the insertion member 62, and the cylindrical member 19 so that the axis C ′ of the spiral center substantially coincides with the central axis C. The

流通管90において、両端の直管部分と螺旋管部分との境界部位(両端における螺旋管部分始まり部位)は、流通管90を照射室12,12’に設置したときに、当該境界部位が円筒部材19の中に位置するように形成される。つまり、螺旋管部分の形成長さは照射室12,12’(長さH)よりも長く、円筒部材19の中まで螺旋管部分が達する長さに形成される。この螺旋式流通管90の中に、上記各実施形態同様の障害手段が収容される。   In the flow pipe 90, the boundary part between the straight pipe part and the helical pipe part at both ends (the helical pipe part starting part at both ends) is cylindrical when the flow pipe 90 is installed in the irradiation chamber 12, 12 ′. It is formed so as to be located in the member 19. That is, the formation length of the spiral tube portion is longer than the irradiation chambers 12 and 12 ′ (length H), and the spiral tube portion is formed to reach the inside of the cylindrical member 19. In the spiral flow pipe 90, the obstacle means similar to the above embodiments is accommodated.

第5実施形態の場合、流通管90の螺旋の巻き数(ピッチ)を多くすると管長が長くなって処理時間が増え、反対に螺旋の巻き数を少なくすると管長が短くなって処理時間が減る。したがって、被処理液に応じて適切な巻き数、太さの流通管90を選択して交換し、マイクロ波処理を行うことができる。なお、螺旋式流通管の場合、被処理液が流れる方向に関し、照射室内電界方向を横切る方向の流れが加わるので、障害手段を収容しない場合もあり得る。   In the case of the fifth embodiment, if the number of turns (pitch) of the circulation pipe 90 is increased, the length of the pipe increases and the processing time increases. Conversely, if the number of turns of the spiral is reduced, the length of the pipe decreases and the processing time decreases. Therefore, the microwave treatment can be performed by selecting and replacing the circulation tube 90 having an appropriate number of turns and thickness according to the liquid to be treated. In the case of the spiral flow pipe, the flow in the direction crossing the direction of the electric field in the irradiation chamber is applied with respect to the direction in which the liquid to be processed flows.

第5実施形態に係る流通管90の螺旋巻き径d1については、次の設定とする。
第1の例に係る空胴共振器10の場合、照射室12の横断面が正方形なので、電界は、中心軸Cを中心に回る円周方向において場所により変化する。つまり、流通管90の流れの方向に沿って電界は変化する。この様子をシミュレーションしたのが図12である。図12のグラフは、横軸に円周方向の角度をとって示した電界変化のグラフであり、同図を参照すると分かる通り、照射室12のLに対してd1が大きくなるほど、すなわち、中心軸Cから流通管90の内径中心までの距離(d1/2)が長くなるほど、流通管90に沿った電界の変化は大きくなる。したがって、処理の均一性を考えると、d1は、その変化の影響を受けない程度の大きさまでに抑えた方がよい。シミュレーション結果から考えると、d1/L≦0.5であれば電界はほぼ一定とみなすことができるので、d1は、照射室12の底面のなす正方形の1辺Lの50%以下に設定、すなわち、中心軸Cから流通管90の内径中心までの距離であるd1/2は、25%以下に設定するのが好ましい。
The spiral winding diameter d1 of the flow pipe 90 according to the fifth embodiment is set as follows.
In the case of the cavity resonator 10 according to the first example, since the cross section of the irradiation chamber 12 is a square, the electric field changes depending on the location in the circumferential direction around the central axis C. That is, the electric field changes along the flow direction of the circulation pipe 90. This situation is simulated in FIG. The graph of FIG. 12 is a graph of the electric field change shown with the angle in the circumferential direction on the horizontal axis. As can be seen from FIG. 12, as d1 increases with respect to L of the irradiation chamber 12, that is, the center. The longer the distance (d1 / 2) from the axis C to the center of the inner diameter of the flow tube 90, the greater the change in the electric field along the flow tube 90. Therefore, in consideration of the uniformity of processing, it is better to suppress d1 to a level that is not affected by the change. Considering from the simulation results, if d1 / L ≦ 0.5, the electric field can be regarded as almost constant, so d1 is set to 50% or less of one side L of the square formed by the bottom surface of the irradiation chamber 12, that is, The distance d1 / 2 from the central axis C to the center of the inner diameter of the flow pipe 90 is preferably set to 25% or less.

上記各実施形態の流通管60,70,80,90に被処理液を流す流動機構の一例を図13に示している。
第1の例に係る空胴共振器10が設置されており、その照射室12の中に、上記実施形態のいずれかに係る流通管60,70,80,90が円筒部材19を使用して上記の通り収められている。円筒部材19から引き出されている流通管60,70,80,90の両端には、第4実施形態(図10)に示した熱収縮チューブ65が装着されている。両端の熱収縮チューブ65のうち、下側から出ている方が処理前の被処理液を貯留した容器100の送液チューブ101へ、また、上側から出ている方が処理後の被処理液を貯留する容器102の送液チューブ103へ、それぞれジョイント104を介して接続される。
FIG. 13 shows an example of a flow mechanism for flowing the liquid to be processed through the flow pipes 60, 70, 80, 90 of the above embodiments.
A cavity resonator 10 according to the first example is installed, and in the irradiation chamber 12, the flow pipes 60, 70, 80, 90 according to any of the above embodiments use the cylindrical member 19. It is stored as above. The heat-shrinkable tubes 65 shown in the fourth embodiment (FIG. 10) are attached to both ends of the flow pipes 60, 70, 80, 90 drawn from the cylindrical member 19. Of the heat shrinkable tubes 65 at both ends, the one coming out from the lower side is directed to the liquid feeding tube 101 of the container 100 storing the liquid to be treated before treatment, and the one coming out from the upper side is the liquid to be treated after treatment. Are connected to the liquid feeding tube 103 of the container 102 for storing the liquid via the joint 104, respectively.

処理前の容器100は、注出口に流量制御コック105を備え、また、上下位置を調整可能になっている。処理後の容器102は、下端部位から被処理液が流入し、上端部位の注出口に達すると、ビーカー等へ処理後の被処理液が排出される。この流動機構は、照射室12内の流通管60,70,80,90において下から上へ被処理液を流す仕組みで、容器100の高さ及び流量制御コック105を調整することにより、被処理液の流れを制御する。処理前の容器100中の液面高さまで、処理後の被処理液を容器102内に溜めることができる。   The container 100 before processing is provided with a flow control cock 105 at the spout, and the vertical position can be adjusted. In the treated container 102, the liquid to be processed flows from the lower end part, and when the liquid reaches the spout at the upper end part, the processed liquid is discharged into a beaker or the like. This flow mechanism is a mechanism for flowing the liquid to be processed from the bottom to the top in the flow pipes 60, 70, 80, 90 in the irradiation chamber 12, and by adjusting the height of the container 100 and the flow rate control cock 105, Control the flow of liquid. The liquid to be processed after processing can be stored in the container 102 up to the liquid level in the container 100 before processing.

処理後の容器102とつながる送液チューブ103は、T字管継手106を経由してジョイント104と接続されている。T字管継手106は、ジョイント104へ連結される1つの流入口と2つの流出口とを備え、2つの流出口の一方が送液チューブ103に連結される。T字管継手106の他方の流出口は、熱電対等による温度計測器107が固定されて塞がれている。温度計測器107は、マイクロ波処理後の被処理液温度を計測し、図1の制御器40へ提供する。   The liquid supply tube 103 connected to the treated container 102 is connected to the joint 104 via the T-shaped pipe joint 106. The T-shaped pipe joint 106 includes one inlet and two outlets connected to the joint 104, and one of the two outlets is connected to the liquid feeding tube 103. The other outlet of the T-shaped pipe joint 106 is closed with a temperature measuring device 107 fixed by a thermocouple or the like. The temperature measuring device 107 measures the temperature of the liquid to be processed after the microwave treatment and provides it to the controller 40 in FIG.

10 空胴共振器
12,12’ 照射室
19 円筒部材
19a フランジ
60,70,80,90 流通管
61 蓋部材
61a 膨出部
62 挿通部材
63,73,81 障害手段
64,74,82 フィルタ体
71 内側流路
72 外側流路
C 中心軸
C’ 軸線
DESCRIPTION OF SYMBOLS 10 Cavity resonator 12,12 'Irradiation chamber 19 Cylindrical member 19a Flange 60,70,80,90 Flow pipe 61 Lid member 61a Expansion part 62 Insertion member 63,73,81 Obstruction means 64,74,82 Filter body 71 Inner channel 72 Outer channel C Center axis C ′ Axis

Claims (4)

四角柱状空胴又は円柱状空胴とした照射室を有するシングルモードの空胴共振器と、
前記照射室内に生じる電界方向に対し軸線を沿わせて前記照射室に設置される流通管と、
前記流通管を通して流す被処理液とは異なる誘電率を有し、前記流通管内に収容されて前記被処理液の流れを乱す障害手段と、
を含んで構成されるマイクロ波装置。
A single-mode cavity resonator having an irradiation chamber that is a square columnar cavity or a cylindrical cavity;
A flow pipe installed in the irradiation chamber along the axis with respect to the direction of the electric field generated in the irradiation chamber;
Disturbing means that has a different dielectric constant from the liquid to be treated flowing through the flow pipe, is contained in the flow pipe and disturbs the flow of the liquid to be treated,
A microwave device comprising:
前記流通管が交換可能である、請求項1記載のマイクロ波装置。   The microwave device according to claim 1, wherein the flow pipe is replaceable. 四角柱状空胴又は円柱状空胴とした照射室を有するシングルモードの空胴共振器を含んで構成されるマイクロ波装置で使用可能な流通管であって、
当該流通管を通して流す被処理液とは異なる誘電率を有すると共に前記被処理液の流れを乱す障害手段を収容してあり、
前記照射室内に生じる電界方向に対し軸線を沿わせて前記照射室に設置される流通管。
A flow tube that can be used in a microwave device including a single-mode cavity resonator having an irradiation chamber that is a rectangular columnar cavity or a cylindrical cavity,
It has a different dielectric constant from the liquid to be treated flowing through the flow pipe and contains an obstacle means for disturbing the flow of the liquid to be treated.
A flow pipe installed in the irradiation chamber along an axis with respect to a direction of an electric field generated in the irradiation chamber.
内側流路と該内側流路を囲繞する外側流路とを有する二重管構造とされ、その外側流路に前記障害手段を収容してある、請求項3記載の流通管。   The flow pipe according to claim 3, wherein the flow path has a double pipe structure including an inner flow path and an outer flow path surrounding the inner flow path, and the obstacle means is accommodated in the outer flow path.
JP2011172926A 2010-09-30 2011-08-08 Microwave device and its distribution pipe Active JP5914804B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011172926A JP5914804B2 (en) 2011-08-08 2011-08-08 Microwave device and its distribution pipe
CN201110303418.6A CN102573161B (en) 2010-09-30 2011-09-29 Microwave device and runner pipe thereof
PCT/JP2011/072443 WO2012043753A1 (en) 2010-09-30 2011-09-29 Microwave device and flow tube thereof
US13/876,584 US10091841B2 (en) 2010-09-30 2011-09-29 Microwave device and flow tube used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011172926A JP5914804B2 (en) 2011-08-08 2011-08-08 Microwave device and its distribution pipe

Publications (2)

Publication Number Publication Date
JP2013037882A true JP2013037882A (en) 2013-02-21
JP5914804B2 JP5914804B2 (en) 2016-05-11

Family

ID=47887321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011172926A Active JP5914804B2 (en) 2010-09-30 2011-08-08 Microwave device and its distribution pipe

Country Status (1)

Country Link
JP (1) JP5914804B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182930A (en) * 2013-03-19 2014-09-29 Saida Fds Inc Circulation tube and microwave device having the same
JP2020080298A (en) * 2018-11-12 2020-05-28 国立研究開発法人産業技術総合研究所 Microwave processing apparatus, microwave processing method, and chemical reaction method
CN112973597A (en) * 2019-12-17 2021-06-18 江苏麦克威微波技术有限公司 Microwave device and system for treating liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322582A (en) * 2004-05-11 2005-11-17 Idx Corp Microwave heating device
JP2008247667A (en) * 2007-03-30 2008-10-16 Toyota Central R&D Labs Inc Reformer
JP2009080997A (en) * 2007-09-25 2009-04-16 Idx Corp Microwave device
JP2010131590A (en) * 2008-10-30 2010-06-17 Shinshu Univ Chemical reaction apparatus and stirring mechanism
JP2010207735A (en) * 2009-03-10 2010-09-24 National Institute Of Advanced Industrial Science & Technology Microwave continuous irradiation method and apparatus to fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322582A (en) * 2004-05-11 2005-11-17 Idx Corp Microwave heating device
JP2008247667A (en) * 2007-03-30 2008-10-16 Toyota Central R&D Labs Inc Reformer
JP2009080997A (en) * 2007-09-25 2009-04-16 Idx Corp Microwave device
JP2010131590A (en) * 2008-10-30 2010-06-17 Shinshu Univ Chemical reaction apparatus and stirring mechanism
JP2010207735A (en) * 2009-03-10 2010-09-24 National Institute Of Advanced Industrial Science & Technology Microwave continuous irradiation method and apparatus to fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182930A (en) * 2013-03-19 2014-09-29 Saida Fds Inc Circulation tube and microwave device having the same
JP2020080298A (en) * 2018-11-12 2020-05-28 国立研究開発法人産業技術総合研究所 Microwave processing apparatus, microwave processing method, and chemical reaction method
JP7268854B2 (en) 2018-11-12 2023-05-08 国立研究開発法人産業技術総合研究所 Microwave processing device, microwave processing method and chemical reaction method
CN112973597A (en) * 2019-12-17 2021-06-18 江苏麦克威微波技术有限公司 Microwave device and system for treating liquid

Also Published As

Publication number Publication date
JP5914804B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2012043753A1 (en) Microwave device and flow tube thereof
JP5681847B2 (en) Microwave equipment
JP4759668B2 (en) Microwave heating device
KR101541642B1 (en) Plasma processing apparatus
JP5914804B2 (en) Microwave device and its distribution pipe
KR100363820B1 (en) Plasma processor
JP2009105054A (en) Microwave heating device, microwave heating system, and method of using microwave heating device or microwave heating system
WO2006070881A1 (en) Micro wave chemical reaction device
JP2019087410A (en) Microwave heating device and chemical reaction method
JP6182767B2 (en) Microwave device with flow tube
WO2019133985A1 (en) Molecular atomic clock with wave propagating rotational spectroscopy cell
JP2016100130A (en) Microwave device and circulation pipe thereof
EP3720248A1 (en) Microwave treatment device, microwave treatment method, and chemical reaction method
JP2006181533A (en) Microwave chemical reaction apparatus
KR101361648B1 (en) Waterload for absorbing high power microwave
JP5891481B2 (en) Microwave equipment
WO2015053234A1 (en) Device for producing ferromagnetic material microparticles
JP2016112508A (en) Transpiration device, and flow channel organizer applied for transpiration device
JP2016053341A (en) Exhaust emission control device
KR20180003026A (en) A rectangular microwave guide waterload with a button on short plate for broadband enhancement
JP5636876B2 (en) Plasma generator
CN112087834A (en) Microwave device and method for suppressing the escape of microwaves outside the microwave cavity of a microwave device
US20230129737A1 (en) Electromagnetic Method and Apparatus
JP7368846B2 (en) Microwave processing device and microwave processing method
RU2382529C1 (en) Device for electromagnetic processing of loose dielectric materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5914804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150