JP2014182024A - 超音波測定器 - Google Patents

超音波測定器 Download PDF

Info

Publication number
JP2014182024A
JP2014182024A JP2013057089A JP2013057089A JP2014182024A JP 2014182024 A JP2014182024 A JP 2014182024A JP 2013057089 A JP2013057089 A JP 2013057089A JP 2013057089 A JP2013057089 A JP 2013057089A JP 2014182024 A JP2014182024 A JP 2014182024A
Authority
JP
Japan
Prior art keywords
fluid
flow velocity
pipe
flow rate
velocity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013057089A
Other languages
English (en)
Inventor
Satoshi Fukuhara
聡 福原
Kazutoshi Okamoto
和年 岡本
Kitaru Ito
来 伊藤
Fumiya Kogi
史也 古儀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2013057089A priority Critical patent/JP2014182024A/ja
Publication of JP2014182024A publication Critical patent/JP2014182024A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】配管の内壁に付着物が生じていても高い測定精度を実現することができる超音波測定器を提供する。
【解決手段】超音波測定器1は、配管TBを流れる流体Xに対して送信した超音波信号Uの反射信号Rを受信するトランスデューサ13と、トランスデューサ13からの受信信号を用いて配管TBの径方向における流体Xの流速分布を求める流速分布演算部23と、流速分布演算部23で求められた流体Xの流速分布を示す流速分布データに基づいて配管TBに対する付着物の有無を判定するとともに、その判定結果に応じて流速分布データを用いて付着物の厚みを求める付着物判定処理部24とを備える。
【選択図】図1

Description

本発明は、超音波を用いて流体の流速、流量等の測定を行う超音波測定器に関する。
配管内を流れる流体の流速、流量等を測定する測定器の1つとして、超音波を用いた超音波測定器が知られている。この超音波測定器は、配管に対する穴あけ等の加工をすることなしに、超音波の送受信を行うトランスデューサを配管の外表面に取り付けるだけで測定を行うことができるという利点がある。この超音波測定器の代表的なものに透過法(伝播時間差法)を用いるもの、或いは反射法を用いるものがある。
透過法を用いる超音波測定器は、配管内を流れる流体に対して斜め方向に超音波信号を送受信し、流体の流れに沿う向きに超音波信号を送受信した場合の伝播時間と、流体の流れに逆らう向きに超音波信号を送受信した場合の伝播時間との差を求めることで、配管内を流れる流体の流速等を測定するものである。これに対し、反射法を用いる超音波測定器は、配管内を流れる流体に対して斜め方向に超音波信号を送信し、流体に含まれる気泡や微小粒子(パーティクル)からの反射信号を受信して配管内を流れる流体の流速等を測定するものである。
ここで、上記の反射法を用いる超音波測定器は、測定原理に着目するとドップラー法を用いるものと反射相関法を用いるものに分類される。ドップラー法を用いるものは、流体に含まれる気泡等の速さに応じて生ずる受信信号の周波数偏移量(ドップラシフト量)に基づいて流体の流速等を測定する。これに対し、反射相関法を用いるものは、流体に対する超音波信号の送受信を複数回行って得られる複数の受信信号の相関から流速等を測定する。
以下の特許文献1には、透過法による測定と反射相関法による測定との双方が可能な従来の超音波測定器が開示されている。具体的に、以下の特許文献1には、透過法によって流量を測定する場合に、反射相関法及び透過法によってそれぞれ測定された平均流速から流量補正係数を求め、透過法によって測定された平均流速と流量補正係数とを元に正確な流量を算出する超音波測定器が開示されている。
特開2005−181268号公報 特開2010−181326号公報
ところで、上述した透過法を用いる超音波測定器は、流体の流速(平均流速)を測定した後で、測定した流速に流路の断面積(配管の内径に基づいた流路の断面積)を乗算することによって流量を測定している。また、上述した反射法を用いる超音波測定器は、配管の径方向における流速分布を測定した後で、測定した流速分布を配管の径方向に沿って積分する(配管の内径の分だけ積分する)ことによって流量を測定している。
このため、配管の内壁に付着物が生じている場合には、流量を求めるために用いている配管の内径と流体が流れる実際の流路の断面積とが異なるため、測定される流量に誤差が生じてしまうという問題がある。ここで、上記の付着物は、例えば配管に流れる流体が重油等の粘性の大きな流体である場合、或いは泥等の不純物が多く含まれる流体が配管に流れている場合に生じ得る。近年においては、超音波測定器の測定精度の向上が要求されており、配管の内壁に付着物が生じている状況下においても、高い測定精度を実現する必要がある。
本発明は上記事情に鑑みてなされたものであり、配管の内壁に付着物が生じていても高い測定精度を実現することができる超音波測定器を提供することを目的とする。
上記課題を解決するために、本発明の超音波測定器は、配管(TB)を流れる流体(X)に対して送信した超音波信号(U)の反射信号(R)を受信する受信部(13)と、該受信部からの受信信号(S3)を用いて前記配管の径方向における前記流体の流速分布を求める流速分布算出部(23)とを備える超音波測定器(1)において、前記流速分布算出部で求められた前記流体の流速分布を示す流速分布データに基づいて前記配管に対する付着物(AM)の有無を判定するとともに、該判定結果に応じて前記流速分布データを用いて前記付着物の厚みを求める付着物判定処理部(24)を備えることを特徴としている。
この発明によると、流速分布算出部で求められた流体の流速分布を示す流速分布データに基づいて配管に対する付着物の有無が判定されるとともに、この判定結果に応じて流速分布データを用いて付着物の厚みが求められる。
また、本発明の超音波測定器は、前記付着物判定処理部が、前記流体の流路径を、前記付着物の厚みの分だけ減じたものに変更することを特徴としている。
また、本発明の超音波測定器は、前記流速分布データと、前記付着物判定処理部で変更された前記流体の流路径とを用いて前記流体の流量を算出する流量算出部(25)を備えることを特徴としている。
また、本発明の超音波測定器は、前記付着物判定処理部が、前記流体に対する前記超音波信号の送信が連続して行われた場合に得られる少なくとも2つの連続する前記流速分布データを用いて前記配管に対する付着物の有無を判定することを特徴としている。
また、本発明の超音波測定器は、前記付着物判定処理部が、前記少なくとも2つの連続する前記流速分布データの同じ部分で予め規定された閾値を超えるデータが得られていない場合に、前記付着物があると判定し、当該部分に含まれるデータ数から前記付着物の厚みを求めることを特徴としている。
また、本発明の超音波測定器は、前記付着物判定処理部で求められた前記付着物の厚みを示す情報を出力する出力部(26)を備えることを特徴としている。
本発明によれば、流速分布算出部で求められた流体の流速分布を示す流速分布データに基づいて配管に対する付着物の有無を判定するとともに、この判定結果に応じて流速分布データを用いて付着物の厚みを求めるようにしているため、配管の内壁に付着物が生じていても高い測定精度を実現することができるという効果がある。
本発明の一実施形態による超音波測定器の要部構成を示すブロック図である。 配管の内壁に対する付着物の有無による流速分布の変化を説明するための図である。 本発明の一実施形態による超音波測定器が備える信号処理装置で行われる処理を示すフローチャートである。 本発明の一実施形態による超音波測定器で得られる流速分布の一例を示す図である。 配管の付着物の厚みと流量の測定誤差との関係を示す図である。
以下、図面を参照して本発明の一実施形態による超音波測定器について詳細に説明する。図1は、本発明の一実施形態による超音波測定器の要部構成を示すブロック図である。図1に示す通り、本実施形態の超音波測定器1は、制御部11、送信回路12、トランスデューサ13(受信部)、アンプ14、A/D(アナログ/ディジタル)変換器15、及び信号処理装置16を備えており、超音波信号Uを用いて配管TB内を流れる流体Xの流速、流量等を測定する。
尚、本実施形態の超音波測定器1は、反射相関法を用いて流体Xの流速、流量等を測定するものである。つまり、配管TB内を流れる流体Xに対して斜め方向に超音波信号Uを複数回に亘って送信するとともに、流体Xに含まれる気泡Bや微小粒子(パーティクル)からの反射信号Rを複数回に亘って受信し、受信信号S3に対する相関処理を行って配管TB内を流れる流体Xの流速、流量等を測定するものである。
制御部11は、送信回路12及びA/D変換器15に対してトリガ信号Trを出力して、流体Xに対する超音波信号Uの送信制御及びアンプ14から出力される受信信号のサンプリング制御を行う。送信回路12は、制御部11から出力されるトリガ信号Trに基づいて、流体Xに送信すべき超音波信号Uを発生させるための駆動信号S1を出力する。ここで、駆動信号S1は、所定の時間間隔(例えば、数百μsec程度)をもったパルス状(バースト状)の信号である。
トランスデューサ13は、流体Xが流れる配管TBの外表面に取り付けられており、送信回路12から出力される駆動信号S1に基づいて配管TB内を流れる流体Xに対して超音波信号Uを送信するとともに、流体Xから得られる超音波信号Uの反射信号Rを受信して受信信号S2を出力する。尚、トランスデューサ13は、配管TBに対する穴あけ等の加工をすることなく取り付けが可能である。
ここで、トランスデューサ13は、配管TB内を流れる流体Xに対して斜め方向に超音波信号Uを送信する。具体的には、図1に示す通り、配管TB内を流れる流体Xの流れ方向に直交してトランスデューサ13を通る配管TBの径方向に対して角度θをもって超音波信号Uを送信する。これにより、トランスデューサ13からの超音波信号Uは、図1中の経路PTに沿って流体X内を進むことになる。
アンプ14は、トランスデューサ13から出力される受信信号S2を所定の増幅率で増幅する。A/D変換器15は、制御部11から出力されるトリガ信号Trに基づいてサンプリング処理を行い、アンプ14から出力される受信信号(アナログ信号)を受信信号S3(ディジタル信号)に変換する。尚、トリガ信号TrによってA/D変換器15のサンプリング制御が行われることで、トランスデューサ13から超音波信号Uが送信された直後に発生するノイズ等の除去が可能である。
信号処理装置16は、メモリ21、相関処理部22、流速分布演算部23(流速分布算出部)、付着物判定処理部24、流量演算部25(流量算出部)、及び出力部26を備えており、A/D変換器15から出力される受信信号S3を用いて流体Xの流速、流量等を測定し、その測定結果を出力する。尚、本実施形態では、信号処理装置16が、流体Xの流速及び流量を測定して出力するものとして説明するが、流体Xの流速のみを測定して出力しても良い。また、流体Xの流速及び流量の双方を測定せずに、配管TBの内壁に生じている付着物の厚みを測定して出力するようにしても良い。
メモリ21は、A/D変換器15から出力される受信信号S3を記憶する。尚、超音波信号Uは数十〜数百回程度に亘って繰り返し送信されるため、メモリ21には超音波信号Uが送信される度にA/D変換器15から出力される受信信号S3が順次記憶される。相関処理部22は、メモリ21に記憶された受信信号を順次読み出して相関処理を行う。具体的に、相関処理部22は、所定の時間間隔(例えば、数百μsec)をもって行われた流体Xに対する複数回の超音波信号Uの送信によって得られる複数の受信信号をメモリ21から読み出す。そして読み出した受信信号を時間位置に応じて複数の区分に分割し、区分毎の相関処理を行う。尚、相関処理部22で行われる相関処理の詳細については後述する。
流速分布演算部23は、相関処理部22で行われる相関処理の処理結果を用いて、配管TBの径方向における流体Xの流速分布を測定する。具体的には、相関が最大となる時間間隔を上記の区分毎に求め、各々の時間間隔から区分毎の流体Xの流速を求める。かかる処理によって、流体Xの流速分布を示す流速分布データが得られる。付着物判定処理部24は、流速分布演算部23で得られた流速分布データに基づいて、配管TBの内壁に対する付着物の有無を判定する。また、付着物判定処理部24は、配管TBに対する付着物が有ると判定した場合には、流速分布演算部23で得られた流速分布データを用いて付着物の厚みを求める。
また、付着物判定処理部24は、配管TBに対する付着物が有ると判定した場合には、流体Xの流路径を、付着物の厚みの分だけ減じたものに変更する。つまり、配管TBの内壁に付着物が生じていない場合には流体Xの流路径は配管TBの径に等しいと考えることができるが、配管TBの内壁に付着物が生じている場合には付着物の分だけ流体Xの流路が狭くなると考えることができるため、流体Xの流路径を付着物の厚みの分だけ減じたものに変更することとしている。
ここで、付着物判定処理部24は、流体Xに対する超音波信号Uの送信が連続して行われた場合に得られる少なくとも2つの連続する流速分布データを用いて配管TBに対する付着物の有無を判定する。具体的には、上記の連続する流速分布データの同じ部分で予め規定された閾値を超えるデータが得られていない場合に、配管TBの内壁に付着物が生じていると判定する。また、付着物判定処理部24は、配管TBの内壁に付着物が生じていると判定した場合には、その部分に含まれるデータ数(換言すると、前述した区分の数)から付着物の厚みを求める。
流量演算部25は、流速分布演算部23で得られた流速分布データと、配管TBの内径(付着物判定処理部24によって流路径が変更された場合には、変更後の流路径)とを用いて流体Xの流量を測定する。具体的には、流速分布演算部23で得られた流速分布データを、配管TBの径方向に沿って配管TBの内径の分だけ(付着物判定処理部24によって流路径が変更された場合には、変更後の流路径の分だけ)積分することによって流量を測定する。
出力部26は、流速分布演算部23で求められた流体Xの流速分布、流量演算部25で求められた流体Xの流量、或いは付着物判定処理部24で求められた配管TBの内壁に生じている付着物の厚み等を示す情報を出力する。この出力部26は、これらの情報を、液晶表示装置等の表示装置に表示可能な形式で出力しても良く、有線通信又は無線通信で外部に送信可能な形式で出力しても良い。
ここで、付着物の有無による流速分布の変化について簡単に説明する。図2は、配管の内壁に対する付着物の有無による流速分布の変化を説明するための図である。図2に示す通り、トランスデューサ13が取り付けられている配管TBの内径は「D」であるとする。配管TBの内壁に付着物が生じていない場合には、図2(a)に示す通り、流体Xの流路径は、配管TBの内径「D」と等しいと考えることができ、流体Xの流速分布は、図2(b)中に点線で示す流速分布f2となる。
これに対し、配管TBの内壁に付着物AMが生じている場合には、流体Xの流路径は、配管TBの内径「D」よりも狭くなる。図2(b)に示す例では、流体Xの流路径は、付着物AMの平均的な厚みt1,t2の和の分だけ狭くなっている。このような場合における流体Xの流速分布は、図2(b)中に実線で示す流速分布f1となる。この流速分布f1を参照すると、付着物AMが生じている部分の流速はほぼゼロであり、配管TBの中央部における流速は、付着物AMが生じていない配管TBに単位時間当りの流量が同じである流体Xが流れた場合の流速よりも高くなる。本実実施形態の超音波測定器1は、このような流速分布f1が得られる場合であっても、流量等を正確に測定することが可能なものである。
次に、上記構成における超音波測定器1の動作について説明する。図3は、本発明の一実施形態による超音波測定器が備える信号処理装置で行われる処理を示すフローチャートである。尚、図3に示すフローチャートは、制御部11の制御によって超音波測定器1の動作が開始され、A/D変換器15から出力される受信信号S3が信号処理装置16のメモリ21に複数記憶された後に開始される。
超音波測定器1の動作が開始されると、まず第1回目の超音波信号を送信して受信信号S3をメモリ21に記憶する動作(第1回目測定動作)が行われる。具体的には、まず制御部11から第1回目のトリガ信号Trが出力されて送信回路12及びA/D変換器15に入力される。このトリガ信号Trが送信回路12に入力されると、トリガ信号Trに基づいた駆動信号S1が生成されてトランスデューサ13に出力される。この駆動信号S1が入力されるとトランスデューサ13が駆動され、トランスデューサ13から送信された超音波信号Uが配管TB内を流れる流体Xに入射する。
流体Xに入射した超音波信号U1は、図1に示す経路PTに沿って流体Xを伝播する。ここで、経路PT上に気泡Bが存在すると、超音波信号U1の一部が気泡Bによって反射されて反射信号Rが生ずる。この反射信号Rは、経路PTを逆向きに辿ってトランスデューサ13で受信される。このように、トランスデューサ13から出力される受信信号S2には、気泡Bに起因する反射信号Rを受信して得られる信号が含まれることになる。
また、上記のトリガ信号TrがA/D変換器15に入力されると、A/D変換器15でサンプリングが開始される。このため、トランスデューサ13から出力される受信信号S2(気泡Bに起因する反射信号Rを受信して得られる信号が含まれる信号)がA/D変換器15に入力されるとサンプリングされて受信信号S3に変換され、変換された受信信号S3が信号処理装置16のメモリ21に順次記憶される。超音波信号U1が配管TB内を流れる流体Xに入射してから、経路PTを往復するのに要する時間が経過すると以上の第1回目測定動作が終了する。
次に、第1回目の超音波信号が送信された時刻から所定の時間間隔(例えば、数百μsec)が経過すると、制御部11から第2回目のトリガ信号Trが出力されて、第2回目の超音波信号を送信して受信信号S3をメモリ21に記憶する動作(第2回目測定動作)が行われる。尚、第2回目測定動作は、第1回目測定動作と同様に行われるため、詳細な説明は省略する。以降、同様に、第3回目測定動作、第4回目測定動作、…が順次行われ、A/D変換器15から出力される受信信号S3が信号処理装置16のメモリ21に順次記憶される。
以上の動作によってメモリ21に受信信号S3が複数記憶された後に、図3に示すフローチャートの処理が開始される。処理が開始されると、まずメモリ21に記憶された受信信号を相関処理部22に読み出す処理が行われる(ステップS11)。具体的には、上述した第1回目測定動作、第2回目測定動作、第3回目測定動作、…の各々で得られた受信信号を順次メモリ21から相関処理部22に読み出す処理が行われる。
次に、相関処理部22において、読み出した各々の受信信号を複数の区分に分割する処理(ステップS12)が行われるとともに、分割した受信信号の相関処理(区分毎の相関処理)が実施される(ステップS13)。具体的には、上述した第1回目測定動作で得られた受信信号と第2回目測定動作で得られた受信信号との相関処理、上述した第2回目測定動作で得られた受信信号と第3回目測定動作で得られた受信信号との相関処理、…第i回目測定動作(iは1以上の整数)で得られた受信信号と第(i+1)回目測定動作で得られた受信信号との相関処理、…が順次行われる。
続いて、区分毎に得られた相関値が予め規定された基準相関値よりも大であるか否かが相関処理部22で判断される(ステップS14)。ここで、基準相関値以下の相関値が得られた区分については、その相関値の算出に用いたデータ(ステップS12で分割された受信信号)を破棄する処理が相関処理部22で行われる(ステップS15)。これに対し、基準相関値よりも大きな相関値が得られた区分については、データの破棄は行われない(ステップS15の処理が省略される)。このような処理を行うのは、相関値の小さなデータを予め排除することによって、高い精度で流速を測定するためである。
以上の処理が終了すると、相関処理部22の相関処理の結果を用いて流体Xの流速分布を求める処理が流速分布演算部23で行われる(ステップS16)。具体的には、第i回目測定動作で得られた受信信号と第(i+1)回目測定動作で得られた受信信号との相関処理の結果を用いて、区分毎に相関が最大となる時間間隔が求められ、各々の時間間隔から区分毎の流体Xの流速が求められる。尚、ステップS15の処理によってデータが欠損している区分がある場合には、その区分のデータを補間した上で区分毎の流体Xの流速が求められる。これにより、配管TBの径方向における流体Xの流速分布を示す流速分布データが得られる。
次いで、流速分布演算部23で得られた流速分布データに基づいて、配管TBの内壁に対する付着物AMの有無が付着物判定処理部24で判定される(ステップS17)。具体的には、流速分布演算部23で連続して得られた複数の流速分布データについて、流速がほぼゼロとなる部分が有るか否か(流速が予め規定された閾値以下となる部分有るか否か)が判定される。
図4は、本発明の一実施形態による超音波測定器で得られる流速分布の一例を示す図である。尚、図4においては、横軸に配管TBの径方向の位置をとり、縦軸に流速をとっている。ここで、横軸の原点(位置「0」)は配管TBの中心軸の位置を示しており、横軸の位置「r0」は配管TBの内壁の位置を示している。
図4(a)に示す通り、配管TMの内壁に付着物AMが生じていない場合(流体Xの流路径が配管TBの内径と等しいと考えることができる場合)には、流体Xの流速分布は、配管TBの内壁の近傍でも流速がある程度の大きさを有するものとなる。これに対し、配管TMの内壁に付着物AMが生じている場合には、流体Xの流速分布は、配管TBの内壁の近傍では流速がほぼゼロとなる。このため、付着物判定処理部24は、図4(b)に示す通り、連続して流速がほぼゼロとなる部分(符号Rを付した部分)が有るか否かを判定する。
付着物AMが無いと付着物判定処理部24で判定された場合(ステップS17の判定結果が「NO」の場合)には、流量演算部25において、流速分布演算部23で得られた流速分布データと、配管TBの内径とを用いて流体Xの流量が測定される(ステップS18)。つまり、図4(a)に示す通り、流体Xの流路径が配管TBの内径と等しいと考えることができるため、流速分布演算部23で得られた流速分布データと、配管TBの内径とを用いて流体Xの流量が測定される。
これに対し、付着物AMが有ると付着物判定処理部24で判定された場合(ステップS17の判定結果が「YES」の場合)には、付着物の厚みを算出する処理(ステップS19)、及び流路径を変更する処理(付着物の厚みの分だけ流体Xの流路径を減ずる処理)が付着物判定処理部24で行われる(ステップS20)。具体的には、図4(b)において符号Rを付した連続して流速がほぼゼロとなる部分の幅(厚み)を求め、配管TBの内径からその幅(厚み)を減ずる処理が行われる。そして、流量演算部25において、流速分布演算部23で得られた流速分布データと、ステップS20で変更された流体Xの流路径とを用いて流体Xの流量が測定される(ステップS18)。
次に、付着物AMに起因する流量の測定誤差について検討する。以下では、配管TBの内径が100[mm]であり、流体Xの流速が1[m/sec]程度であり、流体Xのレイノルズ数が1×10である場合を想定する。また、配管TBの中心軸における流速をV0とし、レイノルズ数をReとし、配管TBの内半径をr0とし、配管TBの中心軸からの距離をrとする。
まず、配管TBの内壁に付着物AMが生じていない場合について検討する。十分に発達した乱流における対数則による流速分布Vf(r)は、以下の(1)式で表される。
Figure 2014182024
この流速分布Vf(r)から求められる反射相関法での流量Vrは、以下の(2)式で表される。
Figure 2014182024
このときの平均流速VfAVは、以下の(3)式で表される。
Figure 2014182024
この平均流速VfAVに配管TBの断面積を掛けたものが透過法の流量として測定されることから、透過法での流量Vtは、以下の(4)式で表される。
Figure 2014182024
反射相関法で得られる流量と透過法で得られる流量との流量補正係数Krは、以下の(5)式で表される。
Figure 2014182024
前述した想定の下では、流量補正係数Krは約0.952となる。
次に、配管TBの内壁に付着物AMが生じている場合について検討する。付着物AMの厚みをatとすると、十分に発達した乱流における対数則による流速分布Va(r)は、以下の(6)式で表される。
Figure 2014182024
この流速分布Va(r)から求められる反射相関法での流量Varは、以下の(7)式で表される。
Figure 2014182024
このときの平均流速VaAVは、以下の(8)式で表される。
Figure 2014182024
この平均流速VaAVに配管TBの断面積を掛けたものが透過法の流量として測定されることから、透過法での流量Vatは、以下の(9)式で表される。
Figure 2014182024
反射相関法で得られる流量と透過法で得られる流量との流量補正係数Karは、以下の(10)式で表される。
Figure 2014182024
付着物AMがあるときの流量の測定誤差Eaは、上記(10)式で表される付着物AMが生じている場合の流量補正係数Karと、前述した(5)式で表される付着物AMが生じていない場合の流量補正係数Krとを比べれば良く、以下の(11)式で表される。
Figure 2014182024
ここで、付着物AMの厚みatが配管TBの内半径r0の10%である場合の流量の測定誤差Eaを試算すると約−19.003%となる。図5は、配管の付着物の厚みと流量の測定誤差との関係を示す図である。図5を参照すると、配管TBの内半径に対する付着物AMの厚みの割合が増加するのに比例して、流量の測定誤差が増大するのが分かる。本実施形態の超音波測定器1は、付着物AMの厚みに応じて流体Xの流路径を変更した上で流体Xの流量を測定しているため、このような測定誤差を効果的に低減することが可能である。
以上説明した通り、本実施形態では、流体Xの流速分布を示す流速分布データに基づいて配管TBに対する付着物AMの有無を判定し、付着物AMが有ると判定した場合には、流速分布データを用いて付着物AMの厚みを求めるようにしている。そして、流体Xの流路径を、付着物AMの厚みの分だけ減じたものに変更した上で、流体Xの流量を求めるようにしている。このため、配管TBの内壁に付着物AMが生じていても、流体Xの流量を高い精度で測定することができる。
以上、本発明の一実施形態による超音波測定器1について説明したが、本発明は上述した実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態では、配管TBの内壁に生じた付着物AMの厚みを求めることが可能であるため、例えば付着物AMの厚みがある既定値以上になった場合には、アラームを発生させるようにしても良い。
また、上記実施形態では、反射相関法を用いて流体の流速、流量等を求める超音波測定器を例に挙げて説明したが、本発明は、配管TBの径方向における流体Xの流速分布を求めることができる超音波測定器に適用可能である。例えば、ドップラー法を用いて流体の流速、流量等を求める超音波測定器にも適用可能である。
1 超音波測定器
13 トランスデューサ
23 流速分布演算部
24 付着物判定処理部
25 流量演算部
26 出力部
AM 付着物
R 反射信号
S3 受信信号
TB 配管
U 超音波信号
X 流体

Claims (6)

  1. 配管を流れる流体に対して送信した超音波信号の反射信号を受信する受信部と、該受信部からの受信信号を用いて前記配管の径方向における前記流体の流速分布を求める流速分布算出部とを備える超音波測定器において、
    前記流速分布算出部で求められた前記流体の流速分布を示す流速分布データに基づいて前記配管に対する付着物の有無を判定するとともに、該判定結果に応じて前記流速分布データを用いて前記付着物の厚みを求める付着物判定処理部を備えることを特徴とする超音波測定器。
  2. 前記付着物判定処理部は、前記流体の流路径を、前記付着物の厚みの分だけ減じたものに変更することを特徴とする請求項1記載の超音波測定器。
  3. 前記流速分布データと、前記付着物判定処理部で変更された前記流体の流路径とを用いて前記流体の流量を算出する流量算出部を備えることを特徴とする請求項2記載の超音波測定器。
  4. 前記付着物判定処理部は、前記流体に対する前記超音波信号の送信が連続して行われた場合に得られる少なくとも2つの連続する前記流速分布データを用いて前記配管に対する付着物の有無を判定することを特徴とする請求項1から請求項3の何れか一項に記載の超音波測定器。
  5. 前記付着物判定処理部は、前記少なくとも2つの連続する前記流速分布データの同じ部分で予め規定された閾値を超えるデータが得られていない場合に、前記付着物があると判定し、当該部分に含まれるデータ数から前記付着物の厚みを求めることを特徴とする請求項4記載の超音波測定器。
  6. 前記付着物判定処理部で求められた前記付着物の厚みを示す情報を出力する出力部を備えることを特徴とする請求項1から請求項5の何れか一項に記載の超音波測定器。
JP2013057089A 2013-03-19 2013-03-19 超音波測定器 Pending JP2014182024A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057089A JP2014182024A (ja) 2013-03-19 2013-03-19 超音波測定器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057089A JP2014182024A (ja) 2013-03-19 2013-03-19 超音波測定器

Publications (1)

Publication Number Publication Date
JP2014182024A true JP2014182024A (ja) 2014-09-29

Family

ID=51700872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057089A Pending JP2014182024A (ja) 2013-03-19 2013-03-19 超音波測定器

Country Status (1)

Country Link
JP (1) JP2014182024A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013784A (ja) * 2013-07-08 2015-01-22 大陽日酸株式会社 セレン化水素混合ガス供給装置
WO2016157425A1 (ja) * 2015-03-31 2016-10-06 三菱重工コンプレッサ株式会社 回転機械の検査方法、回転機械
CN109211339A (zh) * 2017-07-08 2019-01-15 代傲表计有限公司 用于操作流量计的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013784A (ja) * 2013-07-08 2015-01-22 大陽日酸株式会社 セレン化水素混合ガス供給装置
WO2016157425A1 (ja) * 2015-03-31 2016-10-06 三菱重工コンプレッサ株式会社 回転機械の検査方法、回転機械
JPWO2016157425A1 (ja) * 2015-03-31 2018-01-18 三菱重工コンプレッサ株式会社 回転機械の検査方法、回転機械
CN109211339A (zh) * 2017-07-08 2019-01-15 代傲表计有限公司 用于操作流量计的方法
EP3428583A3 (de) * 2017-07-08 2019-04-24 Diehl Metering GmbH Verfahren zum betrieb eines fluidzählers, und fluidzähler

Similar Documents

Publication Publication Date Title
JP6682500B2 (ja) 信号伝搬時間差式流量計
JP4800543B2 (ja) 多相液体/気体混合物の流量及び濃度を同時に測定する方法及び装置
JP5222858B2 (ja) 超音波流量計システム
JP2019502119A (ja) 改良型ビーム整形音響信号伝搬時間差式流量計
EP3102922B1 (en) Method and apparatus for determining kinematic viscosity through the transmission and reception of ultrasonic energy
EP2202494B1 (en) Ultrasonic meter
US20160069718A1 (en) Method for Verifying the Reliability of Ascertained Measurement Data From an Ultrasonic Flow Measurement According to the Transit-Time Difference Method and Ultrasonic Flow Meter
CN102866261B (zh) 检测超声波在测流速中飞行时间的方法
JPS5824816A (ja) ドツプラ−型超音波流量計
JP5408411B2 (ja) 超音波測定器
JP2013185973A (ja) 超音波測定器
JP4535065B2 (ja) ドップラー式超音波流量計
JP2014182024A (ja) 超音波測定器
JP2007051913A (ja) 超音波流量計の補正方法
KR101764870B1 (ko) 초음파 유량계의 신호처리시스템
JP2014178232A (ja) 超音波流量計dft相互相関法を用いた検波方式
JP2006184258A (ja) 超音波濃度演算方法及び装置
Mahadeva et al. Studies of the accuracy of clamp-on transit time ultrasonic flowmeters
CN101398320B (zh) 超声波流量计
JP2002116069A (ja) 流量測定装置および流量測定方法
RU2791667C1 (ru) Способ ультразвукового измерения параметров газовоздушных гомогенных потоков
JP3732570B2 (ja) 超音波流量計
CN111337092B (zh) 选取参考信号的方法、计算方法及相位差式超声波流量计
RU66030U1 (ru) Устройство измерения расхода, плотности и вязкости нефтепродуктов
RU2313068C2 (ru) Способ измерения расхода газа в трубопроводах и устройство для его осуществления