JP2014181799A - Shock absorber device and its manufacturing method - Google Patents

Shock absorber device and its manufacturing method Download PDF

Info

Publication number
JP2014181799A
JP2014181799A JP2013058184A JP2013058184A JP2014181799A JP 2014181799 A JP2014181799 A JP 2014181799A JP 2013058184 A JP2013058184 A JP 2013058184A JP 2013058184 A JP2013058184 A JP 2013058184A JP 2014181799 A JP2014181799 A JP 2014181799A
Authority
JP
Japan
Prior art keywords
axial direction
cylindrical
outer peripheral
members
inner members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013058184A
Other languages
Japanese (ja)
Other versions
JP5892966B2 (en
Inventor
Masaki Sekioka
将希 関岡
Hideaki Sakai
秀彰 酒井
Yasuhiro Yoshimura
康宏 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Iron Works Co Ltd
Original Assignee
Toyoda Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Iron Works Co Ltd filed Critical Toyoda Iron Works Co Ltd
Priority to JP2013058184A priority Critical patent/JP5892966B2/en
Publication of JP2014181799A publication Critical patent/JP2014181799A/en
Application granted granted Critical
Publication of JP5892966B2 publication Critical patent/JP5892966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a shock absorber device having a plurality of cylinders integrally connected and overlapped while being axially connected to each other to assure a sufficient rigidity through the connection and to adjust their connecting strength in an easy manner.SOLUTION: Each of resin outer members 18 is arranged to be fused to outer peripheral surfaces of a plurality of inner members (cylinder) 12 and a plurality of inner members 12 are integrally connected through the outer members 18. Due to this fact, relative loads of the plurality of inner members 12 in lateral displacement direction can be appropriately accepted by the outer members 18 and an entire rigidity of a crush box 10. In addition, a wall thickness of the outer member and a contact area between it and the outer peripheral surface of the inner member 12 are changed to enable a connecting strength in a lateral displacing direction, i.e. a load to cause a plurality of inner members 12 to be displaced to each other (lateral displacement) to be easily adjusted, so that a degree of freedom in setting a characteristic of shock absorption is increased.

Description

本発明は衝撃吸収装置に係り、特に、複数の樹脂製の筒体が軸方向に連なるように重ね合わされて一体的に連結されている衝撃吸収装置の改良に関するものである。   The present invention relates to an impact absorbing device, and more particularly to an improvement of an impact absorbing device in which a plurality of resin cylinders are overlapped and connected integrally in an axial direction.

筒形状の側壁を有する複数の樹脂製の筒体が、その筒形状の軸方向に連なるように重ね合わされて一体的に連結され、軸方向から加えられた衝撃をその筒体の変形によって吸収する衝撃吸収装置が、例えば車両用バンパの取付部等に用いられている。特許文献1に記載の装置はその一例で、複数の筒体の端面にテーパ状の傾斜面が設けられ、その傾斜面に沿って各筒体が拡径変形或いは縮径変形させられることによって衝撃を吸収するものであり、複数の筒体の端面が互いに当接するように重ね合わされるとともに、それ等を一体的に連結する手段として、当接部を接着剤等により接着することが提案されている。   A plurality of resin cylinders having a cylindrical side wall are overlapped and integrally connected so as to be continuous in the axial direction of the cylindrical shape, and the impact applied from the axial direction is absorbed by deformation of the cylindrical body. An impact absorbing device is used in, for example, a mounting portion of a vehicle bumper. The apparatus described in Patent Document 1 is an example, and a tapered inclined surface is provided on the end faces of a plurality of cylinders, and each cylinder is deformed by expanding or contracting along the inclined surfaces. It is proposed that the end faces of a plurality of cylinders are stacked so that they abut each other, and that the abutting portions are bonded with an adhesive or the like as means for integrally connecting them. Yes.

国際公開第2006/025559号公報International Publication No. 2006/0255559

しかしながら、複数の筒体の当接部を接着剤等によって接着する場合、軸方向と交差する横ずれ方向の連結強度は当接部の接触面積に依存するため限界があり、衝撃吸収装置全体としての剛性が十分に得られない場合があるとともに、その連結強度の調整が困難で衝撃吸収性能が制約される可能性があった。   However, when bonding the abutting portions of a plurality of cylinders with an adhesive or the like, there is a limit because the connection strength in the lateral displacement direction intersecting the axial direction depends on the contact area of the abutting portion, and the shock absorbing device as a whole In some cases, sufficient rigidity cannot be obtained, and it is difficult to adjust the connection strength, which may limit the shock absorption performance.

本発明は以上の事情を背景として為されたもので、その目的とするところは、複数の筒体が軸方向に連なるように重ね合わされて一体的に連結されている衝撃吸収装置において、連結により十分な剛性を確保できるとともに、連結強度を容易に調整できるようにすることにある。   The present invention has been made against the background of the above circumstances. The object of the present invention is to provide a shock absorber in which a plurality of cylinders are overlapped so as to be continuous in the axial direction and connected integrally. It is to ensure sufficient rigidity and to easily adjust the connection strength.

かかる目的を達成するために、第1発明は、筒形状の側壁を有する複数の樹脂製の筒体が、その筒形状の軸方向に連なるように重ね合わされて一体的に連結され、その軸方向から加えられた衝撃をその筒体の変形によって吸収する衝撃吸収装置であって、その衝撃吸収装置の軸方向に連続して設けられ、前記複数の筒体の軸方向に沿う面にそれぞれ融着される樹脂製の連結部材を有し、その連結部材を介してその複数の筒体が互いに一体的に連結されていることを特徴とする。   In order to achieve such an object, according to the first aspect of the present invention, a plurality of resin cylinders having a cylindrical side wall are overlapped and integrally connected so as to be continuous in the axial direction of the cylindrical shape. An impact absorbing device that absorbs the impact applied from the cylinder by deformation of the cylindrical body, and is continuously provided in the axial direction of the impact absorbing apparatus, and is fused to the surfaces along the axial direction of the plurality of cylindrical bodies. The plurality of cylinders are integrally connected to each other through the connecting member.

第2発明は、第1発明の衝撃吸収装置において、前記連結部材は、前記複数の筒体の外周側に設けられてその複数の筒体の外周面にそれぞれ融着される筒状のアウター部材であることを特徴とする。   According to a second aspect of the present invention, in the shock absorber of the first aspect, the connecting member is provided on the outer peripheral side of the plurality of cylindrical bodies, and is a cylindrical outer member that is fused to the outer peripheral surface of the plurality of cylindrical bodies. It is characterized by being.

第3発明は、第1発明または第2発明の衝撃吸収装置において、(a) 前記複数の筒体の軸方向の境界部分には隙間が設けられており、(b) 前記連結部材は、その一部が前記隙間に侵入してその隙間を形成している面にも融着されていることを特徴とする。   According to a third aspect of the present invention, in the impact absorbing device of the first or second aspect, (a) a gap is provided in an axial boundary portion of the plurality of cylindrical bodies, and (b) the connecting member is It is characterized in that a part of the gap penetrates into the gap and is also fused to the surface forming the gap.

第4発明は、第1発明〜第3発明の何れかの衝撃吸収装置において、前記複数の筒体の少なくとも一つは繊維強化樹脂にて構成されているとともに、前記衝撃が入力される側の筒体は、その入力される側と反対側の筒体に比べて繊維含有量が少ないことを特徴とする。   According to a fourth aspect of the present invention, in the impact absorbing device according to any one of the first to third aspects, at least one of the plurality of cylindrical bodies is made of fiber reinforced resin, and the impact is input to the side. The cylindrical body is characterized in that it has a lower fiber content than the cylindrical body on the side opposite to the input side.

第5発明は、第1発明〜第4発明の何れかの衝撃吸収装置において、前記複数の筒体の外周面には、それぞれ軸方向に沿って溝が設けられており、その溝内に樹脂材料が充填されて前記連結部材が成形されていることを特徴とする。   According to a fifth aspect of the present invention, in the impact absorbing device according to any one of the first to fourth aspects, grooves are provided along the axial direction on the outer peripheral surfaces of the plurality of cylinders, and resin is provided in the grooves. The connecting member is formed by filling a material.

第6発明は、(a) 筒形状の側壁を有する複数の樹脂製のインナー部材が、その筒形状の軸方向に連なるように重ね合わされているとともに、(b) その複数のインナー部材の外周側に軸方向に連続して設けられ、その複数のインナー部材の外周面を被覆するとともにその複数のインナー部材の外周面にそれぞれ融着される樹脂製筒状のアウター部材を有し、(c) そのアウター部材を介して前記複数のインナー部材が互いに一体的に連結され、軸方向から加えられた衝撃をそのインナー部材の変形によって吸収する衝撃吸収装置の製造方法であって、(d) 前記複数のインナー部材を軸方向に連なるように重ね合わせて第1成形型に配置するセット工程と、(e) そのインナー部材の外径よりも大きな内径寸法の成形面を有する第2成形型と前記第1成形型とを相対的に接近させて型締めし、その成形面とそのインナー部材の外周面との間に前記アウター部材に対応する筒状のキャビティーを形成する型締め工程と、(f) 前記アウター部材の樹脂材料を、前記インナー部材の溶融温度よりも高い温度で溶融させて前記キャビティー内に射出し、そのアウター部材を成形すると同時にそのインナー部材の外周面に融着させる射出工程と、を有することを特徴とする。   According to a sixth aspect of the present invention, (a) a plurality of resin inner members having cylindrical side walls are superposed so as to be continuous in the axial direction of the cylindrical shape, and (b) the outer peripheral side of the plurality of inner members A cylindrical outer member made of resin that is continuously provided in the axial direction, covers the outer peripheral surface of the plurality of inner members and is fused to the outer peripheral surface of the plurality of inner members, and (c) A method of manufacturing an impact absorbing device in which the plurality of inner members are integrally connected to each other via the outer member and absorbs an impact applied from the axial direction by deformation of the inner member, and (d) the plurality A setting step in which the inner members of the inner member are overlapped so as to be continuous in the axial direction and arranged in the first molding die, (e) a second molding die having a molding surface having an inner diameter larger than the outer diameter of the inner member, and the first molding die 1 mold A mold clamping step of clamping the mold relatively close to each other and forming a cylindrical cavity corresponding to the outer member between the molding surface and the outer peripheral surface of the inner member; and (f) the outer member An injection step of melting the resin material at a temperature higher than the melting temperature of the inner member and injecting the resin material into the cavity, molding the outer member, and simultaneously fusing the outer member to the outer peripheral surface of the inner member. It is characterized by that.

第1発明〜第5発明の衝撃吸収装置においては、樹脂製の連結部材が複数の筒体の軸方向に沿う面にそれぞれ融着されるように設けられ、その連結部材を介して複数の筒体が互いに一体的に連結されているため、筒体相互の横ずれ方向の荷重を連結部材によって適切に受け止めることができ、衝撃吸収装置全体の剛性を適切に確保することができる。また、筒体の軸方向に沿う面との接触面積や連結部材の肉厚を変更することにより、横ずれ方向の連結強度すなわち複数の筒体が相互に相対変位(横ずれ)させられる荷重を容易に調整することができるため、衝撃吸収特性の設定の自由度が高くなる。   In the impact absorbing device of the first to fifth inventions, the resin-made connecting members are provided so as to be fused to the surfaces along the axial direction of the plurality of cylinders, and the plurality of cylinders are interposed via the connecting members. Since the bodies are integrally connected to each other, the load in the lateral displacement direction between the cylinders can be appropriately received by the connecting member, and the rigidity of the entire shock absorbing device can be appropriately ensured. Also, by changing the contact area with the surface along the axial direction of the cylinder and the thickness of the connecting member, the connection strength in the lateral displacement direction, that is, the load that causes the multiple cylinders to be displaced relative to each other (lateral displacement) can be easily achieved. Since it can be adjusted, the degree of freedom in setting the shock absorption characteristics is increased.

第2発明は、上記連結部材として、複数の筒体の外周面にそれぞれ融着されるようにその複数の筒体の外周側に筒状のアウター部材が設けられる場合で、例えば第6発明の製造方法等により衝撃吸収装置を高い生産性で安価に製造できる。   2nd invention is a case where a cylindrical outer member is provided in the outer peripheral side of the some cylinder so that it may fuse | fuse to the outer peripheral surface of a some cylinder as said connection member, for example of 6th invention The shock absorbing device can be manufactured with high productivity and low cost by a manufacturing method or the like.

第3発明では、複数の筒体の軸方向の境界部分に隙間が設けられるとともに、連結部材がその隙間に侵入して融着されているため、融着による接合面積が大きくなって連結強度が一層向上する。   In the third invention, a gap is provided in the axial boundary portion of the plurality of cylindrical bodies, and the connecting member enters the gap and is fused, so that the joining area by the fusion is increased and the coupling strength is increased. Further improve.

第4発明では、複数の筒体の少なくとも一つが繊維強化樹脂にて構成されているとともに、衝撃が入力される側の筒体は、その入力される側と反対側の筒体に比べて繊維含有量が少なくされ、低強度とされているため、その入力側から適切に変形が進行させられるようになり、所定の衝撃吸収性能が安定して得られる。   In the fourth invention, at least one of the plurality of cylinders is made of fiber reinforced resin, and the cylinder on the side to which the impact is input has a fiber as compared with the cylinder on the opposite side to the input side. Since the content is reduced and the strength is low, the deformation can be appropriately advanced from the input side, and a predetermined shock absorbing performance can be stably obtained.

第5発明では、複数の筒体の外周面にそれぞれ軸方向に沿って溝が設けられ、その溝内に樹脂材料が充填されて連結部材が成形されているため、その溝幅や溝深さ、溝形状等によって容易に連結強度を調整できる。   In the fifth invention, grooves are provided along the axial direction on the outer peripheral surfaces of the plurality of cylinders, and the connecting material is formed by filling the grooves with a resin material. The connection strength can be easily adjusted by the groove shape or the like.

第6発明は、前記筒体としてインナー部材を有し、その外周側に樹脂製筒状のアウター部材が前記連結部材として設けられ、各インナー部材の外周面に融着されることにより一体的に連結している衝撃吸収装置、すなわち実質的に第2発明の衝撃吸収装置の製造方法に関するものであり、第2発明と同様の作用効果が得られる。また、この製造方法では、複数のインナー部材を軸方向に連なるように重ね合わせて第1成形型に配置した後、その第1成形型と第2成形型とを相対的に接近させて型締めすることによりインナー部材の外周側に筒状のキャビティーを形成し、そのキャビティー内にアウター部材の溶融樹脂材料を射出することにより、そのアウター部材を成形すると同時にインナー部材の外周面に融着させるため、衝撃吸収装置を高い生産性で安価に製造できる。   According to a sixth aspect of the present invention, the cylindrical member includes an inner member, and a resin-cylindrical outer member is provided on the outer peripheral side as the connecting member, and is fused to the outer peripheral surface of each inner member. The present invention relates to the connected shock absorbing device, that is, the manufacturing method of the shock absorbing device of the second invention, and the same effects as the second invention can be obtained. Further, in this manufacturing method, after a plurality of inner members are overlapped in the axial direction and arranged in the first mold, the first mold and the second mold are brought relatively close to each other to clamp the mold. By forming a cylindrical cavity on the outer peripheral side of the inner member and injecting the molten resin material of the outer member into the cavity, the outer member is molded and simultaneously fused to the outer peripheral surface of the inner member Therefore, the impact absorbing device can be manufactured with high productivity and at low cost.

本発明の一実施例である車両用のクラッシュボックスを示す正面図である。It is a front view which shows the crash box for vehicles which is one Example of this invention. 図1のクラッシュボックスの縦断面図で、図1におけるII−II矢視部分の断面図である。It is a longitudinal cross-sectional view of the crush box of FIG. 1, and is sectional drawing of the II-II arrow part in FIG. 図1のクラッシュボックスの複数のインナー部材の境界部分の断面図で、図2における III部の拡大断面図である。It is sectional drawing of the boundary part of the several inner member of the crush box of FIG. 1, and is an expanded sectional view of the III section in FIG. 図1のクラッシュボックスの横断面図で、図1におけるIV−IV矢視部分の断面図である。It is a cross-sectional view of the crush box of FIG. 1, and is a cross-sectional view taken along the line IV-IV in FIG. 図1のクラッシュボックスのフランジ部分の断面図で、図1におけるV−V矢視部分の断面図である。It is sectional drawing of the flange part of the crush box of FIG. 1, and is sectional drawing of the VV arrow part in FIG. 図1のクラッシュボックスを構成している一つのインナー部材を単独で示す正面図である。It is a front view which shows independently one inner member which comprises the crash box of FIG. 図6のインナー部材の横断面図で、図6における VII−VII 矢視部分の断面図である。It is a cross-sectional view of the inner member of FIG. 6, and is a cross-sectional view taken along the line VII-VII in FIG. 図6のインナー部材の縦断面図で、図7におけるVIII−VIII矢視部分の断面図である。It is a longitudinal cross-sectional view of the inner member of FIG. 6, and is a cross-sectional view taken along the line VIII-VIII in FIG. 図6のインナー部材の斜視図である。It is a perspective view of the inner member of FIG. 本発明の他の実施例を説明する図で、図3に対応する断面図である。It is a figure explaining the other Example of this invention, and is sectional drawing corresponding to FIG. 本発明の更に別の実施例を説明する図で、図3に対応する断面図である。It is a figure explaining another Example of this invention, and is sectional drawing corresponding to FIG. 本発明の更に別の実施例を説明する図で、図3に対応する断面図である。It is a figure explaining another Example of this invention, and is sectional drawing corresponding to FIG. 本発明の更に別の実施例を説明する図で、図3に対応する断面図である。It is a figure explaining another Example of this invention, and is sectional drawing corresponding to FIG. 本発明の更に別の実施例を説明する図で、図2に対応する縦断面図である。It is a figure explaining another Example of this invention, and is a longitudinal cross-sectional view corresponding to FIG. 図14の実施例の複数のインナー部材の境界部分の断面図で、図14におけるXV部の拡大断面図である。It is sectional drawing of the boundary part of the some inner member of the Example of FIG. 14, It is an expanded sectional view of the XV part in FIG. 本発明の更に別の実施例を説明する図で、図2に対応する縦断面図である。It is a figure explaining another Example of this invention, and is a longitudinal cross-sectional view corresponding to FIG. 図16の実施例の複数の筒体の境界部分の断面図で、図16におけるXVII部の拡大断面図である。It is sectional drawing of the boundary part of the some cylinder of the Example of FIG. 16, and is an expanded sectional view of the XVII part in FIG. 図16の実施例における一つの筒体を単独で示す斜視図である。It is a perspective view which shows independently the one cylinder in the Example of FIG. 本発明の更に別の実施例を説明する図で、図3に対応する断面図である。It is a figure explaining another Example of this invention, and is sectional drawing corresponding to FIG. 図19の実施例における一つのインナー部材を単独で示す斜視図である。FIG. 20 is a perspective view independently showing one inner member in the embodiment of FIG. 19. 本発明の更に別の実施例を説明する図で、車両用のクラッシュボックスの斜視図である。It is a figure explaining another Example of this invention, and is a perspective view of the crash box for vehicles. 図21の実施例の縦断面図で、図21におけるXXII−XXII矢視部分の断面図である。It is a longitudinal cross-sectional view of the Example of FIG. 21, It is sectional drawing of the XXII-XXII arrow part in FIG. 図21の実施例における一つのインナー部材を単独で示す正面図である。It is a front view which shows independently one inner member in the Example of FIG. 図23のインナー部材を上方から見た平面図である。It is the top view which looked at the inner member of Drawing 23 from the upper part. 図23のインナー部材の斜視図である。It is a perspective view of the inner member of FIG. 図1のクラッシュボックスを製造する際の製造方法の一例を説明する工程図である。It is process drawing explaining an example of the manufacturing method at the time of manufacturing the crush box of FIG. 図10の実施例のクラッシュボックスを製造する際の製造方法の一例を説明する工程図である。It is process drawing explaining an example of the manufacturing method at the time of manufacturing the crash box of the Example of FIG.

本発明の衝撃吸収装置は、車両の本体とバンパーとの間に配設されるクラッシュボックスに好適に適用されるが、他の車両用その他の衝撃吸収装置にも適用され得る。複数の筒体の数は、少なくとも2つ以上用いられるが、2〜5程度が適当である。筒体の形状は、円筒形状が適当であるが、断面四角形や断面八角形等の多角形の角筒形状であっても良い。多角形の角部を丸めることもできるし、軸方向の先端側程断面が小さくなるテーパ形状とすることもできるなど、種々の態様が可能である。筒体の内部は完全な空間であっても良いが、必要に応じて平板状の補強リブや、多数の円筒或いは角筒を連続して接続した補強リブ等を設けることもできる。筒体の内部全体をハニカム等の補強リブ構造とすることもできる。   The impact absorbing device of the present invention is preferably applied to a crash box disposed between a vehicle body and a bumper, but can also be applied to other impact absorbing devices for other vehicles. The number of the plurality of cylinders is at least 2 or more, but about 2 to 5 is appropriate. A cylindrical shape is appropriate as the shape of the cylindrical body, but it may be a polygonal rectangular tube shape such as a quadrangular section or an octagonal section. Various aspects are possible, such as the corners of the polygon can be rounded, or a tapered shape with a smaller cross section on the tip side in the axial direction. The inside of the cylindrical body may be a complete space, but a flat reinforcing rib, a reinforcing rib in which a large number of cylinders or square cylinders are continuously connected, and the like may be provided as necessary. The entire inside of the cylindrical body may be a reinforcing rib structure such as a honeycomb.

複数の筒体は、軸方向に連なるように重ね合わされる際に、互いに略同心に位置決めされるように、軸方向の端部に互いに嵌合される嵌合部を設けることができるが、軸方向の端面を単に突き合わせるだけでも良い。また、軸心まわりに複数の係止爪を設けて、他方の部材に係止されることにより、軸方向の離脱が制限されるようにすることもできる。   When the plurality of cylinders are stacked so as to be continuous in the axial direction, fitting portions that are fitted to each other can be provided at end portions in the axial direction so that they are positioned substantially concentrically with each other. The end faces in the direction may simply be abutted. Further, by providing a plurality of locking claws around the shaft center and being locked to the other member, the axial detachment can be restricted.

複数の筒体は、軸方向から圧縮荷重が加えられることによりそれぞれ変形させられて衝撃エネルギーを吸収するが、その変形態様は、軸方向に座屈して蛇腹状に圧縮変形する圧壊の他、前記特許文献1に記載のように外周側への拡径変形、内周側への縮径変形など、種々の態様が可能である。複数の筒体の樹脂材料としては、例えばポリプロピレンやポリアミド等が好適に用いられ、強化繊維としてはガラス繊維、炭素繊維、アラミド繊維等が好適に用いられる。強化繊維は必要に応じて含有させれば良く、その含有量は、第4発明のように衝撃が入力される先端側の筒体程少なくすることが望ましい。最先端の筒体の強化繊維の含有量を0とし、他の筒体には所定量の強化繊維を含有させるようにしても良い。連結部材の樹脂材料は、筒体に融着させる上で筒体と同一の樹脂材料を用いることが望ましく、ポリプロピレンやポリアミド等が好適に用いられるが、接着性の他の熱可塑性エラストマー等を用いることもできる。   The plurality of cylinders are each deformed by applying a compressive load from the axial direction and absorb impact energy, but the deformation mode is not only crushing in the axial direction and compressing and deforming in a bellows shape, As described in Patent Document 1, various modes such as a diameter expansion deformation toward the outer peripheral side and a diameter reduction deformation toward the inner peripheral side are possible. For example, polypropylene or polyamide is preferably used as the resin material for the plurality of cylinders, and glass fiber, carbon fiber, aramid fiber, or the like is preferably used as the reinforcing fiber. The reinforcing fiber may be contained as necessary, and the content thereof is preferably as small as the cylindrical body on the tip side to which an impact is inputted as in the fourth invention. The content of reinforcing fibers in the most advanced cylindrical body may be 0, and a predetermined amount of reinforcing fibers may be included in other cylindrical bodies. The resin material of the connecting member is preferably the same resin material as the cylinder for fusing to the cylinder, and polypropylene, polyamide, etc. are preferably used, but other thermoplastic elastomers or the like are used. You can also

第2発明や第6発明の製造方法では、連結部材として筒状のアウター部材が設けられるが、他の発明の実施に際しては、筒体の内周側に筒状の連結部材を設けて、その筒体の内周面に融着されるようにすることもできる。また、複数の筒体の側壁にそれぞれ軸方向に縦通する貫通穴を設け、その貫通穴内に溶融樹脂を流し込んで連結部材を成形するとともに、貫通穴の内周面に融着させて複数の筒体を一体的に連結することもできるなど、種々の態様が可能である。貫通穴を軸心まわりに複数形成し、その複数の貫通穴にそれぞれ連結部材を設けることが望ましい。これ等の連結部材についても、第6発明の製造方法と同様に、射出成形によって成形すると同時に複数の筒体に融着させることができる。   In the manufacturing method of the second invention or the sixth invention, a cylindrical outer member is provided as a connecting member. However, when implementing another invention, a cylindrical connecting member is provided on the inner peripheral side of the cylindrical body, It can also be made to be fused to the inner peripheral surface of the cylinder. Also, through-holes vertically passing in the axial direction are provided in the side walls of the plurality of cylindrical bodies, and a connecting member is formed by pouring molten resin into the through-holes, and a plurality of fusion holes are fused to the inner peripheral surface of the through-holes. Various modes are possible, such as the cylindrical bodies can be connected together. It is desirable to form a plurality of through holes around the axial center and provide a connecting member for each of the plurality of through holes. These connecting members can also be fused to a plurality of cylindrical bodies at the same time as injection molding as in the manufacturing method of the sixth invention.

複数のインナー部材が軸方向に連なるように重ね合わされて配置される第1成形型には、その第1成形型の所定位置にインナー部材が配置されるように、位置決めピンや位置決め溝等の位置決め部を設けておくことが望ましい。   The first molding die in which a plurality of inner members are arranged so as to be continuous in the axial direction has positioning pins, positioning grooves and the like so that the inner member is arranged at a predetermined position of the first molding die. It is desirable to provide a part.

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明が適用された車両用のクラッシュボックス10を示す正面図である。図2は、そのクラッシュボックス10の縦断面図で、図1におけるII−II矢視部分の断面図である。また、図3は図2における III部の拡大断面図で、図4は図1におけるIV−IV矢視部分の断面図、図5は図1におけるV−V矢視部分の断面図である。これ等の図から明らかなように、クラッシュボックス10は、軸方向に連なるように重ね合わされた3つの円筒形状のインナー部材12−1、12−2、12−3(特に区別しない場合は単にインナー部材12という)と、それ等のインナー部材12−1、12−2、12−3の外周側に設けられた円筒形状のアウター部材18とを一体的に備えており、アウター部材18の基端部(図1、図2における下端部)には、中心線Sと略直角に外周側へ延び出す平板状のフランジ20が一体に設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view showing a crash box 10 for a vehicle to which the present invention is applied. FIG. 2 is a longitudinal sectional view of the crash box 10 and is a sectional view taken along the line II-II in FIG. 3 is an enlarged sectional view of a portion III in FIG. 2, FIG. 4 is a sectional view taken along the line IV-IV in FIG. 1, and FIG. 5 is a sectional view taken along the line VV in FIG. As can be seen from these drawings, the crash box 10 has three cylindrical inner members 12-1, 12-2, 12-3 that are overlapped so as to be continuous in the axial direction. Member 12) and a cylindrical outer member 18 provided on the outer peripheral side of the inner members 12-1, 12-2, 12-3, and the base end of the outer member 18. A flat plate-like flange 20 that extends to the outer peripheral side substantially at a right angle to the center line S is provided integrally with the portion (the lower end portion in FIGS. 1 and 2).

このクラッシュボックス10は、アウター部材18のフランジ20側が図示しない取付プレートを介して車体に一体的に固設される一方、先端部(図1、図2における上端部)側には図示しない取付プレートを介してバンパーが装着され、そのバンパーを介して軸方向から加えられる衝撃がインナー部材12等の変形によって吸収される。本実施例では、軸方向から圧縮荷重が加えられることにより、クラッシュボックス10の先端部側から蛇腹状に圧縮変形(圧壊)させられ、この変形で衝撃エネルギーが吸収されて、車体に加わる衝撃が緩和される。フランジ20には、図5に示されるように複数の挿通穴22が設けられ、車体に固定するための取付ボルト等が挿通させられるようになっている。クラッシュボックス10は衝撃吸収装置に相当し、3つのインナー部材12は筒体に相当し、アウター部材18は連結部材に相当する。   In the crash box 10, the flange 20 side of the outer member 18 is integrally fixed to the vehicle body via a mounting plate (not shown), while a mounting plate (not shown) is provided on the tip (upper end in FIGS. 1 and 2) side. A bumper is mounted via the bumper, and an impact applied from the axial direction via the bumper is absorbed by deformation of the inner member 12 and the like. In this embodiment, when a compressive load is applied from the axial direction, the crush box 10 is compressed and deformed (collapsed) in a bellows shape from the tip side, and the impact energy is absorbed by this deformation and an impact applied to the vehicle body is applied. Alleviated. As shown in FIG. 5, the flange 20 is provided with a plurality of insertion holes 22 through which mounting bolts and the like for fixing to the vehicle body are inserted. The crash box 10 corresponds to an impact absorbing device, the three inner members 12 correspond to cylinders, and the outer member 18 corresponds to a connecting member.

上記3つのインナー部材12は同一形状で、図6〜図9に示されるように、それぞれ円筒形状の側壁30と、その側壁30の内部に中心線Sを中心として放射状に設けられた複数の補強リブ32とを有し、ポリプロピレン等の樹脂材料にて一体に構成されている。図6はインナー部材12を単独で示す正面図で、図7は図6における VII−VII 矢視部分の断面図、図8は図7におけるVIII−VIII矢視部分の断面図、図9はインナー部材12の斜視図である。これ等の図から明らかなように、側壁30は先端側程僅かに小径となるテーパ形状を成しているが、前記図3から明らかなように、側壁30の小径端30aの外径は大径端30bの内径よりも大きく、中心線Sに対して略直角なそれ等の端面が互いに当接させられて、軸方向に連なるように重ね合わされている。   The three inner members 12 have the same shape, and as shown in FIGS. 6 to 9, each has a cylindrical side wall 30 and a plurality of reinforcements radially provided around the center line S inside the side wall 30. The ribs 32 are formed integrally with a resin material such as polypropylene. 6 is a front view showing the inner member 12 alone, FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 6, FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 3 is a perspective view of a member 12. FIG. As is clear from these figures, the side wall 30 has a tapered shape with a slightly smaller diameter toward the tip side, but as is clear from FIG. 3, the outer diameter of the small diameter end 30a of the side wall 30 is large. These end surfaces, which are larger than the inner diameter of the radial end 30b and are substantially perpendicular to the center line S, are brought into contact with each other and overlapped in the axial direction.

補強リブ32は、断面六角形の筒体を互いに平行に密着するように一列に並べて一体に接合した形状を成すもので、インナー部材12の軸方向の全長と同じ長さを有して放射状に6枚設けられており、円筒形状の側壁30の内壁面に一体に接合されている。これ等の補強リブ32の中心、すなわち中心線Sと一致する部分には、断面円形の位置決め穴34が貫通して設けられており、製造時に位置決めピン208(図26参照)が挿通させられることにより、3つのインナー部材12が同心に位置決めされる。3つのインナー部材12は、例えば中心線Sまわりにおいて補強リブ32が互いに一致するように重ね合わされるが、中心線Sまわりの位相を特に限定することなく重ね合わせることもできる。また、図22に示されるように中心線Sまわりの位相を例えば30°ずつずらすなどして、隣接するインナー部材12の補強リブ32が重ならないようにすることもできる。   The reinforcing ribs 32 have a shape in which hexagonal cross-section cylinders are aligned in a row so as to be in close contact with each other and joined together, and have the same length as the axial length of the inner member 12 and are radially formed. Six pieces are provided, and are integrally joined to the inner wall surface of the cylindrical side wall 30. A centering hole of these reinforcing ribs 32, that is, a portion coinciding with the center line S is provided with a positioning hole 34 having a circular cross section, and a positioning pin 208 (see FIG. 26) is inserted during manufacture. Thus, the three inner members 12 are positioned concentrically. For example, the three inner members 12 are overlapped so that the reinforcing ribs 32 coincide with each other around the center line S. However, the phases around the center line S can be overlapped without any particular limitation. Further, as shown in FIG. 22, the phase around the center line S may be shifted by, for example, 30 degrees so that the reinforcing ribs 32 of the adjacent inner members 12 do not overlap.

上記インナー部材12は、それぞれ樹脂材料に炭素繊維等の強化繊維が含有されて強度が高められている。この強化繊維の含有量は同じであっても良いが、本実施例ではバンパーから衝撃荷重が加えられた場合に先端側から圧縮変形が進行するように、バンパーに近い先端側に位置するインナー部材12−1側程強化繊維の含有量が少なくされている。具体的には、最も先端側のインナー部材12−1の強化繊維の含有量が約15wt%で、中間位置のインナー部材12−2の強化繊維の含有量が約30wt%、基端側のインナー部材12−3の強化繊維の含有量が約50wt%とされている。この含有量は、強化繊維の種類等に応じて適宜定められる。   The inner member 12 is reinforced with a resin material containing reinforcing fibers such as carbon fibers. The content of this reinforcing fiber may be the same, but in this embodiment, the inner member located on the tip side close to the bumper so that compression deformation proceeds from the tip side when an impact load is applied from the bumper. The content of the reinforcing fiber is reduced toward the 12-1 side. Specifically, the content of the reinforcing fibers in the innermost member 12-1 at the most distal end is about 15 wt%, the content of the reinforcing fibers in the inner member 12-2 at the intermediate position is about 30 wt%, and the inner end on the proximal end side The reinforcing fiber content of the member 12-3 is about 50 wt%. This content is appropriately determined according to the type of reinforcing fiber and the like.

一方、前記アウター部材18は、クラッシュボックス10の軸方向の全長に亘って連続して設けられているとともに、3つのインナー部材12の軸方向に沿う面すなわちそれ等の外周面にそれぞれ密着させられて一体的に融着されており、この融着により3つのインナー部材12がアウター部材18を介して所定の連結強度で一体的に連結されている。アウター部材18は、インナー部材12と同じ樹脂材料(強化繊維は含まず)にて構成されており、その溶融樹脂材料がインナー部材12の外周側に射出されることにより、成形と同時にインナー部材12の各外周面に一体的に融着される。上記連結強度は、アウター部材18の肉厚やインナー部材12との接触面積によって調整することが可能で、この連結強度に応じて各インナー部材12の相互の横ずれが制限される。   On the other hand, the outer member 18 is provided continuously over the entire length of the crash box 10 in the axial direction, and is brought into close contact with the surfaces along the axial direction of the three inner members 12, that is, the outer peripheral surfaces thereof. The three inner members 12 are integrally connected to each other with a predetermined connection strength via the outer member 18 by this fusion. The outer member 18 is made of the same resin material (not including reinforcing fibers) as the inner member 12, and the molten resin material is injected to the outer peripheral side of the inner member 12, thereby simultaneously forming the inner member 12. Are integrally fused to each outer peripheral surface. The connection strength can be adjusted by the thickness of the outer member 18 and the contact area with the inner member 12, and the lateral displacement of the inner members 12 is limited according to the connection strength.

図26は、上記クラッシュボックス10の製造方法の一例を説明する工程図である。製造装置200は、固定型202および可動型204を有する射出成形装置で、固定型202には前記フランジ20を成形するための浅い凹所206が設けられているとともに、中心部分には位置決めピン208が垂直に立設されている。位置決めピン208は、クラッシュボックス10の軸方向寸法と略同じ長さ寸法を有し、前記インナー部材12−1、12−2、12−3の各位置決め穴34内を挿通させられることにより、それ等を互いに同心に位置決めする。可動型204は、固定型202に対して接近離間させられるように上下駆動されるとともに、インナー部材12の外径よりも大きく前記アウター部材18の外径と略等しい内径寸法の成形面210を有する円形穴が設けられている。また、その円形穴の開口端部には、前記凹所206と共に前記フランジ20を成形するための浅い凹所212が形成されている。固定型202は第1成形型に相当し、可動型204は第2成形型に相当する。   FIG. 26 is a process diagram illustrating an example of a method for manufacturing the crash box 10. The manufacturing apparatus 200 is an injection molding apparatus having a fixed mold 202 and a movable mold 204. The fixed mold 202 is provided with a shallow recess 206 for molding the flange 20, and a positioning pin 208 at the center. Is standing vertically. The positioning pin 208 has a length dimension substantially the same as the axial dimension of the crash box 10 and is inserted through the positioning holes 34 of the inner members 12-1, 12-2, 12-3. Etc. are positioned concentrically with each other. The movable mold 204 is vertically driven so as to be moved closer to and away from the fixed mold 202 and has a molding surface 210 having an inner diameter larger than the outer diameter of the inner member 12 and substantially equal to the outer diameter of the outer member 18. A circular hole is provided. A shallow recess 212 for forming the flange 20 is formed together with the recess 206 at the opening end of the circular hole. The fixed mold 202 corresponds to a first mold, and the movable mold 204 corresponds to a second mold.

図26の(a) は、可動型204が上方へ駆動されて型開きされた状態であり、その状態で(b) に示すように予め成形されたインナー部材12−3、12−2、12−1をその順番で各位置決め穴34内に位置決めピン208が挿通させられるように、固定型202上に重ね合わせて配置する。この時、必要に応じて各インナー部材12の中心線Sまわりの位相合わせを行う。図26の(b) は、補強リブ32の位置が互いに一致するように位相合わせが行われた場合である。その後、(c) に示すように可動型204を下降させ、固定型202に接近させて型締めする。これにより、可動型204の成形面210とインナー部材12の外周面との間に、アウター部材18に対応する円筒形状のキャビティー214が形成される。そして、(d) に示すようにアウター部材18の樹脂材料を、インナー部材12の溶融温度よりも高い温度で溶融させてキャビティー214内に射出することにより、アウター部材18が成形されると同時に複数のインナー部材12の各外周面に一体的に融着される。これにより目的とするクラッシュボックス10が得られ、アウター部材18が冷却硬化した後に可動型204を上昇させて取り出せば良い。   FIG. 26A shows a state in which the movable mold 204 is driven upward and the mold is opened. In this state, the inner members 12-3, 12-2, and 12 formed in advance as shown in FIG. -1 are arranged on the fixed mold 202 so that the positioning pins 208 can be inserted into the positioning holes 34 in that order. At this time, phase alignment around the center line S of each inner member 12 is performed as necessary. FIG. 26B shows a case where the phase alignment is performed so that the positions of the reinforcing ribs 32 coincide with each other. Thereafter, the movable mold 204 is lowered as shown in (c), is brought close to the fixed mold 202, and is clamped. Thereby, a cylindrical cavity 214 corresponding to the outer member 18 is formed between the molding surface 210 of the movable mold 204 and the outer peripheral surface of the inner member 12. Then, as shown in (d), the resin material of the outer member 18 is melted at a temperature higher than the melting temperature of the inner member 12 and injected into the cavity 214, thereby simultaneously forming the outer member 18. The plurality of inner members 12 are integrally fused to each outer peripheral surface. Thus, the target crash box 10 is obtained, and after the outer member 18 is cooled and hardened, the movable mold 204 is raised and taken out.

このように本実施例のクラッシュボックス10は、樹脂製のアウター部材18が複数のインナー部材12の外周面にそれぞれ融着されるように設けられ、そのアウター部材18を介して複数のインナー部材12が互いに一体的に連結されている。このため、複数のインナー部材12の相互の横ずれ方向の荷重をアウター部材18によって適切に受け止めることができ、クラッシュボックス10全体の剛性を適切に確保することができる。   As described above, the crash box 10 according to the present embodiment is provided so that the resin outer member 18 is fused to the outer peripheral surfaces of the plurality of inner members 12, and the plurality of inner members 12 are interposed via the outer members 18. Are integrally connected to each other. For this reason, it is possible to appropriately receive the loads in the lateral displacement directions of the plurality of inner members 12 by the outer member 18, and it is possible to appropriately ensure the rigidity of the crash box 10 as a whole.

また、アウター部材18の肉厚やインナー部材12の外周面との接触面積を変更することにより、横ずれ方向の連結強度すなわち複数のインナー部材12が相互に相対変位(横ずれ)させられる荷重を容易に調整できるため、衝撃吸収特性の設定の自由度が高くなる。蛇腹状に圧縮変形させて衝撃エネルギーを吸収する本実施例のクラッシュボックス10の場合、複数のインナー部材12が相互に相対変位(横ずれ)することは必ずしも必要なく、比較的高い連結強度で連結すれば良い。   Further, by changing the wall thickness of the outer member 18 and the contact area with the outer peripheral surface of the inner member 12, it is possible to easily increase the connection strength in the lateral displacement direction, that is, the load that causes the plurality of inner members 12 to be displaced relative to each other (lateral displacement). Since it can be adjusted, the degree of freedom in setting the shock absorption characteristics is increased. In the case of the crash box 10 of this embodiment that compresses and deforms in a bellows shape and absorbs impact energy, it is not always necessary that the plurality of inner members 12 be displaced relative to each other, and they are connected with a relatively high connection strength. It ’s fine.

また、複数のインナー部材12は何れも繊維強化樹脂にて構成されているとともに、衝撃が入力される先端側のインナー部材12−1程強化繊維の含有量が少なくされて低強度とされているため、その入力側から適切に圧縮変形(圧壊)が進行させられるようになり、所定の衝撃吸収性能が安定して得られる。   Each of the plurality of inner members 12 is made of a fiber reinforced resin, and the strength of the reinforcing fibers is reduced as much as the inner member 12-1 on the tip side to which an impact is input, so that the strength is low. Therefore, compression deformation (crushing) can be appropriately advanced from the input side, and a predetermined shock absorbing performance can be stably obtained.

また、本実施例では、複数のインナー部材12の外周面にそれぞれ融着されるように、その複数のインナー部材12の外周側に筒状のアウター部材18が設けられるため、図26に示す製造方法に従ってクラッシュボックス10を高い生産性で安価に製造できる。   Further, in the present embodiment, since the cylindrical outer member 18 is provided on the outer peripheral side of the plurality of inner members 12 so as to be fused to the outer peripheral surfaces of the plurality of inner members 12, the manufacturing shown in FIG. According to the method, the crash box 10 can be manufactured with high productivity and low cost.

次に、本発明の他の実施例を説明する。なお、以下の実施例において前記実施例と実質的に共通する部分には同一の符号を付して詳しい説明を省略する。   Next, another embodiment of the present invention will be described. In the following embodiments, parts that are substantially the same as those in the above embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図10は前記図3に対応する断面図で、図27の(d) に示すクラッシュボックス40に関するものである。このクラッシュボックス40は、何れも円筒形状の側壁44のみから成る3つのインナー部材42−1、42−2、42−3(特に区別しない場合は単にインナー部材42という)と、それ等の外周面に密着して融着させられた円筒形状のアウター部材48とから構成されている。3つのインナー部材42の側壁44の小径端44aの外周側には円環状の嵌合段差50が設けられているとともに、大径端44bの内周側には円環形状の嵌合段差52が設けられており、それ等の小径端44aと大径端44bとが互いに嵌合されることにより、3つのインナー部材42が相互に略同心に位置決めされる。また、嵌合段差50の軸方向長さは嵌合段差52の軸方向長さよりも大きく、その嵌合段差50によって大径端44bとの間に軸方向に離間する隙間54が形成される。したがって、前記実施例と同様にアウター部材48が射出成形される際に、一部がその隙間54内に侵入して固化することにより、大径端44bの端面や嵌合段差50の端面等に融着され、融着による接合面積が大きくなる。これにより、小径端44aおよび大径端44bの嵌合と相まって、複数のインナー部材42の相互の横ずれに対する連結強度が一層向上する。   FIG. 10 is a cross-sectional view corresponding to FIG. 3 and relates to the crash box 40 shown in FIG. The crush box 40 includes three inner members 42-1, 42-2, and 42-3 (which are simply referred to as an inner member 42 unless otherwise specified), and the outer peripheral surfaces thereof. It is comprised from the cylindrical outer member 48 closely_contact | adhered to and fused. An annular fitting step 50 is provided on the outer peripheral side of the small-diameter end 44a of the side walls 44 of the three inner members 42, and an annular fitting step 52 is provided on the inner peripheral side of the large-diameter end 44b. The three inner members 42 are positioned substantially concentrically with each other by fitting the small-diameter end 44a and the large-diameter end 44b to each other. Further, the axial length of the fitting step 50 is larger than the axial length of the fitting step 52, and the fitting step 50 forms a gap 54 that is spaced apart from the large diameter end 44 b in the axial direction. Accordingly, when the outer member 48 is injection-molded as in the above-described embodiment, a part of the outer member 48 enters the gap 54 and solidifies, so that the outer surface of the large-diameter end 44b, the end surface of the fitting step 50, etc. As a result of the fusion, the bonding area is increased. Thereby, coupled with the fitting of the small-diameter end 44a and the large-diameter end 44b, the connection strength against the lateral displacement of the plurality of inner members 42 is further improved.

一方、上記インナー部材42は補強リブ32を備えていないため、前記位置決め穴34を設けることができず、前記位置決めピン208による位置決めが不能である。このため、図27に示す製造装置220のように、大径端44bが嵌合される円環形状の位置決め溝222を前記固定型202に設け、その位置決め溝222によって固定型202に対するインナー部材42の位置決めを行う。図27は、前記図26に対応する製造工程図で、この例ではアウター部材48のフランジ56を成形するために、可動型204側だけに凹所224が設けられている。また、(c) の型閉じ工程では、3つのインナー部材42の外周側にアウター部材48に対応する円筒形状のキャビティー226が形成され、(d) に示すようにそのキャビティー226内に溶融樹脂が射出されることにより、アウター部材48が成形されると同時に複数のインナー部材42の各外周面に融着させられ、これにより目的とするクラッシュボックス40が得られる。したがって、本実施例においても、前記実施例と同様にクラッシュボックス40を高い生産性で安価に製造できる。   On the other hand, since the inner member 42 does not include the reinforcing rib 32, the positioning hole 34 cannot be provided, and positioning by the positioning pin 208 is impossible. Therefore, as in the manufacturing apparatus 220 shown in FIG. 27, an annular positioning groove 222 into which the large-diameter end 44 b is fitted is provided in the fixed mold 202, and the inner member 42 with respect to the fixed mold 202 is formed by the positioning groove 222. Perform positioning. FIG. 27 is a manufacturing process diagram corresponding to FIG. 26. In this example, in order to mold the flange 56 of the outer member 48, a recess 224 is provided only on the movable mold 204 side. In the mold closing step (c), a cylindrical cavity 226 corresponding to the outer member 48 is formed on the outer peripheral side of the three inner members 42, and melted in the cavity 226 as shown in (d). By injecting the resin, the outer member 48 is molded and simultaneously fused to the outer peripheral surfaces of the plurality of inner members 42, whereby the target crash box 40 is obtained. Therefore, also in the present embodiment, the crash box 40 can be manufactured with high productivity and at low cost as in the above-described embodiment.

図11は前記図3に対応する断面図、すなわち軸方向に連なるように重ね合わされた同一形状の3つのインナー部材60の中の基端側の2つのインナー部材60−2、60−3(特に区別しない場合は単にインナー部材60という)の境界部分を示す断面図である。これ等のインナー部材60は、図10の実施例のインナー部材42と同様に円筒形状の側壁62だけで構成されており、その外周側に円筒形状のアウター部材64が一体的に融着されている。インナー部材60の側壁62の小径端62aの外周側には円環状の嵌合段差66が設けられている一方、大径端62bの内周側には円環形状の嵌合段差68が設けられており、それ等の小径端62aと大径端62bとが互いに嵌合されることにより、複数のインナー部材60が相互に略同心に位置決めされる。大径端62b側には更に、嵌合段差68よりも大径の円環状の段差70が設けられ、小径端62aの外周面との間に径方向に離間する隙間72が形成されるようになっている。したがって、前記実施例と同様にアウター部材64が射出成形される際に、一部がその隙間72内に侵入して固化することにより、融着による接合面積が大きくなる。これにより、小径端62aおよび大径端62bの嵌合と相まって、複数のインナー部材60の相互の横ずれに対する連結強度が一層向上する。   FIG. 11 is a cross-sectional view corresponding to FIG. 3, that is, two inner members 60-2 and 60-3 on the base end side among the three inner members 60 of the same shape overlapped in the axial direction (in particular, It is sectional drawing which shows the boundary part of only the inner member 60 when not distinguishing. These inner members 60 are constituted by only cylindrical side walls 62 as in the case of the inner member 42 in the embodiment of FIG. 10, and a cylindrical outer member 64 is integrally fused to the outer peripheral side thereof. Yes. An annular fitting step 66 is provided on the outer peripheral side of the small diameter end 62a of the side wall 62 of the inner member 60, while an annular fitting step 68 is provided on the inner peripheral side of the large diameter end 62b. The small-diameter end 62a and the large-diameter end 62b are fitted to each other, whereby the plurality of inner members 60 are positioned substantially concentrically with each other. An annular step 70 having a larger diameter than the fitting step 68 is further provided on the large-diameter end 62b side, and a gap 72 that is radially separated from the outer peripheral surface of the small-diameter end 62a is formed. It has become. Therefore, when the outer member 64 is injection-molded as in the above-described embodiment, a part of the outer member 64 penetrates into the gap 72 and solidifies, thereby increasing the bonding area by fusion. Thereby, coupled with the fitting of the small-diameter end 62a and the large-diameter end 62b, the connection strength against the lateral displacement of the plurality of inner members 60 is further improved.

図12は前記図3に対応する断面図、すなわち軸方向に連なるように重ね合わされた同一形状の3つのインナー部材80の中の基端側の2つのインナー部材80−2、80−3(特に区別しない場合は単にインナー部材80という)の境界部分を示す断面図である。これ等のインナー部材80は、図10の実施例のインナー部材42と同様に円筒形状の側壁82だけで構成されており、その外周側に円筒形状のアウター部材84が一体的に融着されている。インナー部材80の側壁82の小径端82aおよび大径端82bの端面には、それぞれ環状溝86、88が設けられており、大径端82bの内周側に形成される円環形状の嵌合突起90が小径端82aの環状溝86内に嵌合されることにより、複数のインナー部材80が相互に略同心に位置決めされる。また、小径端82aの外周側に形成される円環形状の環状突起92は、大径端82bの環状溝88よりも全体に小さく、その環状溝88と環状突起92との間には軸方向および径方向に離間する逆V字型乃至は逆U字型の隙間94が形成される。したがって、前記各実施例と同様にアウター部材84が射出成形される際に、一部がその隙間94内に侵入して固化することにより、融着による接合面積が大きくなり、嵌合突起90と環状溝86との嵌合と相まって、複数のインナー部材80の相互の横ずれに対する連結強度が一層向上する。   12 is a cross-sectional view corresponding to FIG. 3, that is, two inner members 80-2 and 80-3 on the proximal end side among the three inner members 80 having the same shape overlapped so as to be continuous in the axial direction (in particular, It is sectional drawing which shows the boundary part of only the inner member 80 when not distinguishing. These inner members 80 are composed of only a cylindrical side wall 82 as in the case of the inner member 42 in the embodiment of FIG. 10, and a cylindrical outer member 84 is integrally fused to the outer peripheral side thereof. Yes. Annular grooves 86 and 88 are provided on the end surfaces of the small-diameter end 82a and the large-diameter end 82b of the side wall 82 of the inner member 80, respectively, and an annular fitting formed on the inner peripheral side of the large-diameter end 82b. By fitting the projection 90 into the annular groove 86 of the small diameter end 82a, the plurality of inner members 80 are positioned substantially concentrically with each other. Further, the annular annular protrusion 92 formed on the outer peripheral side of the small diameter end 82a is smaller than the annular groove 88 of the large diameter end 82b as a whole, and an axial direction is provided between the annular groove 88 and the annular protrusion 92. In addition, an inverted V-shaped or inverted U-shaped gap 94 that is separated in the radial direction is formed. Therefore, when the outer member 84 is injection-molded as in the above-described embodiments, a part of the outer member 84 enters into the gap 94 and solidifies, so that the bonding area by fusion increases, and the fitting protrusion 90 and Coupled with the fitting with the annular groove 86, the connection strength against the lateral displacement of the plurality of inner members 80 is further improved.

図13は前記図3に対応する断面図、すなわち軸方向に連なるように重ね合わされた同一形状の3つのインナー部材100の中の基端側の2つのインナー部材100−2、100−3(特に区別しない場合は単にインナー部材100という)の境界部分を示す断面図である。これ等のインナー部材100は、図10の実施例のインナー部材42と同様に円筒形状の側壁102だけで構成されており、その外周側に円筒形状のアウター部材104が一体的に融着されている。インナー部材100の側壁102の小径端102a側の外周面には環状溝106が設けられている一方、大径端102bの内周部には断面逆V字型乃至は逆U字型のばね部108が設けられており、そのばね部108の先端である内周端縁には、環状溝106に嵌め入れられる係止爪110が設けられている。この場合には、ばね部108が弾性変形させられて係止爪110が環状溝106に嵌め入れられ、その端縁に係止されることにより、複数のインナー部材100が相互に略同心に位置決めされるとともに、軸方向の抜け出しが制限される。また、その係止爪110の近傍に形成される隙間112にアウター部材104の一部が侵入して固化することにより、ばね部108の変形が抑制されて係止爪110の係止状態がより確実に維持されるとともに、融着による接合面積の増大により、係止爪110による位置決めと相まって、複数のインナー部材100の相互の横ずれに対する連結強度が一層向上する。   FIG. 13 is a cross-sectional view corresponding to FIG. 3, that is, two inner members 100-2 and 100-3 on the base end side among the three inner members 100 of the same shape stacked so as to be continuous in the axial direction (in particular, It is sectional drawing which shows the boundary part of only the inner member 100 when not distinguishing. These inner members 100 are constituted by only cylindrical side walls 102 as in the case of the inner member 42 in the embodiment of FIG. 10, and a cylindrical outer member 104 is integrally fused to the outer peripheral side thereof. Yes. An annular groove 106 is provided on the outer peripheral surface of the side wall 102 of the inner member 100 on the side of the small diameter end 102a, while the inner peripheral portion of the large diameter end 102b has a reverse V-shaped or reverse U-shaped spring portion. 108 is provided, and an engaging claw 110 to be fitted into the annular groove 106 is provided at an inner peripheral end edge which is a tip of the spring portion 108. In this case, the spring portion 108 is elastically deformed so that the locking claw 110 is fitted in the annular groove 106 and locked to the edge thereof, thereby positioning the plurality of inner members 100 substantially concentrically with each other. At the same time, the axial displacement is limited. Further, when a part of the outer member 104 enters and solidifies into the gap 112 formed in the vicinity of the locking claw 110, the deformation of the spring portion 108 is suppressed, and the locking claw 110 is more locked. In addition to being reliably maintained, an increase in bonding area due to fusion, coupled with positioning by the locking claws 110, further improves the connection strength of the plurality of inner members 100 against lateral displacement.

図14は前記図2に対応する断面図、すなわちクラッシュボックス120の縦断面図である。このクラッシュボックス120は、軸方向に連なるように重ね合わされた3つの円筒形状のインナー部材122−1、122−2、122−3(特に区別しない場合は単にインナー部材122という)と、それ等のインナー部材122−1、122−2、122−3の外周側に一体的に融着された円筒形状のアウター部材124とから構成されている。3つのインナー部材122は同一のテーパ形状を成しているとともに、軸方向において交互に逆向きに重ね合わされており、中間のインナー部材122−2は小径端側が基端側とされている。この場合、小径端同士、大径端同士が突き合わされることになるが、XV部を拡大して示す図15から明らかなように、各インナー部材122の小径端および大径端にはそれぞれ断面V字型の環状溝126、128が設けられているとともに、それ等の環状溝126、128の外周側の溝壁130、132は内周側の溝壁よりも小さく、軸方向に突き合わされた状態で軸方向に離間する隙間134が形成される。したがって、前記各実施例と同様にアウター部材124が射出成形される際に、そのアウター部材124の一部がその隙間134から環状溝126、128内に侵入して固化することにより、融着による接合面積が大きくなるとともにアウター部材124がそれ等の環状溝126、128に係止され、複数のインナー部材122の相互の横ずれに対する連結強度が一層向上する。   FIG. 14 is a cross-sectional view corresponding to FIG. 2, that is, a vertical cross-sectional view of the crush box 120. The crush box 120 includes three cylindrical inner members 122-1, 122-2, and 122-3 (which are simply referred to as an inner member 122 unless otherwise distinguished) that are overlapped in an axial direction. It is comprised from the cylindrical outer member 124 integrally melt | fused by the outer peripheral side of the inner members 122-1, 122-2, and 122-3. The three inner members 122 have the same taper shape and are alternately stacked in the opposite directions in the axial direction, and the intermediate inner member 122-2 has a small diameter end side as a base end side. In this case, the small-diameter ends and the large-diameter ends are brought into contact with each other, but as is clear from FIG. V-shaped annular grooves 126 and 128 are provided, and the outer circumferential groove walls 130 and 132 of these annular grooves 126 and 128 are smaller than the inner circumferential groove wall and are abutted in the axial direction. In this state, a gap 134 that is separated in the axial direction is formed. Therefore, when the outer member 124 is injection-molded as in the above embodiments, a part of the outer member 124 enters the annular grooves 126 and 128 from the gap 134 and solidifies, thereby being fused. As the joining area increases, the outer member 124 is locked in the annular grooves 126 and 128, and the connection strength against the lateral displacement of the plurality of inner members 122 is further improved.

図16は前記図2に対応する断面図、すなわちクラッシュボックス140の縦断面図であり、このクラッシュボックス140は、軸方向に連なるように重ね合わされた3つの円筒形状の筒体142−1、142−2、142−3(特に区別しない場合は単に筒体142という)を備えている。図17は、図16におけるXVII部の拡大断面図で、図18は、一つの筒体142を単独で示す斜視図である。筒体142−1、142−2、142−3は、全体として一定のテーパ角度で径寸法が連続的に変化する滑らかなテーパ形状を成すように、先端側の筒体142−1程小径とされている。また、各筒体142の側壁には、軸方向に貫通する貫通穴144が中心線Sまわりに等角度間隔で複数(実施例では4本)設けられているとともに、それ等の貫通穴144が中心線Sまわりにおいて互いに一致するように軸方向に重ね合わされている。そして、その3つの筒体142に設けられた貫通穴144を縦通するように所定の溶融樹脂が充填されて固化されることにより、それ等の貫通穴144の内壁面に一体的に融着された連結部材146が構成されている。すなわち、本実施例では4本の棒状の連結部材146によって、3つの筒体142が所定の連結強度で連結されているのであり、その連結部材146の数や肉厚、幅寸法、すなわち貫通穴144の数や幅寸法、長さ寸法によって、その連結強度を容易に調整できる。   FIG. 16 is a cross-sectional view corresponding to FIG. 2, that is, a vertical cross-sectional view of the crush box 140. The crush box 140 has three cylindrical cylinders 142-1, 142 that are stacked so as to be continuous in the axial direction. -2 and 142-3 (if not particularly distinguished, simply referred to as a cylinder 142). 17 is an enlarged cross-sectional view of a portion XVII in FIG. 16, and FIG. 18 is a perspective view showing one cylindrical body 142 alone. The cylinders 142-1, 142-2, and 142-3 have a diameter as small as that of the cylinder 142-1 on the distal end side so as to form a smooth taper shape in which the diameter continuously changes at a constant taper angle as a whole. Has been. Further, a plurality of through holes 144 (four in the embodiment) are provided at equal angular intervals around the center line S in the side wall of each cylindrical body 142, and these through holes 144 are provided. They are overlapped in the axial direction so as to coincide with each other around the center line S. Then, a predetermined molten resin is filled and solidified so as to pass through the through-holes 144 provided in the three cylinders 142, so that they are integrally fused to the inner wall surfaces of those through-holes 144. The connecting member 146 is configured. That is, in this embodiment, the three cylindrical bodies 142 are connected with the predetermined connection strength by the four rod-like connection members 146, and the number, thickness, and width dimensions of the connection members 146, that is, through holes The connection strength can be easily adjusted by the number of 144, the width dimension, and the length dimension.

上記筒体142の小径端の内周部には、円環形状の嵌合突起148が軸方向に突き出すように突設されている一方、大径端の内周部には、その嵌合突起148と嵌合される円環形状の嵌合段差150が設けられており、それ等が互いに嵌合されることにより、複数の筒体142が相互に略同心に位置決めされる。   An annular fitting protrusion 148 protrudes from the inner periphery of the small diameter end of the cylindrical body 142 so as to protrude in the axial direction, while the fitting protrusion 148 protrudes from the inner periphery of the large diameter end. An annular fitting step 150 to be fitted to 148 is provided, and the plurality of cylindrical bodies 142 are positioned substantially concentrically with each other by being fitted to each other.

図19は前記図3に対応する断面図、すなわち軸方向に連なるように重ね合わされた同一形状の3つのインナー部材160の中の基端側の2つのインナー部材160−2、160−3(特に区別しない場合は単にインナー部材160という)の境界部分を示す断面図で、図20は一つのインナー部材160を単独で示す斜視図である。インナー部材160は、円筒形状の側壁162を主体として構成されており、その外周側に円筒形状のアウター部材164が一体的に融着されている。インナー部材160の側壁162の小径端162aの近傍には、径方向に貫通する貫通穴166が中心線Sまわりに等角度間隔で複数(実施例では4つ)設けられている一方、大径端162bには、それ等の貫通穴166に対応して複数の係止爪168が軸方向へ突き出すように設けられている。したがって、その複数の係止爪168が弾性変形させられてそれぞれ貫通穴166に嵌め入れられ、その貫通穴166の端部に係止されることにより、複数のインナー部材160が相互に略同心に位置決めされるとともに、軸方向の抜け出しが制限される。また、その係止爪168の近傍に形成される隙間170にアウター部材164の一部が侵入し、固化して一体的に融着されることにより、係止爪168の変形が抑制されて係止爪168の係止状態がより確実に維持されるとともに、融着による接合面積の増大により、係止爪168による位置決めと相まって、複数のインナー部材160の相互の横ずれに対する連結強度が一層向上する。   FIG. 19 is a cross-sectional view corresponding to FIG. 3, that is, two inner members 160-2 and 160-3 on the base end side among three inner members 160 having the same shape overlapped in an axial direction (in particular, FIG. 20 is a perspective view showing one inner member 160 by itself. The inner member 160 is mainly composed of a cylindrical side wall 162, and a cylindrical outer member 164 is integrally fused to the outer peripheral side thereof. In the vicinity of the small-diameter end 162a of the side wall 162 of the inner member 160, a plurality of (four in the embodiment) through-holes 166 penetrating in the radial direction are provided at equal angular intervals around the center line S. A plurality of locking claws 168 are provided on the 162b so as to protrude in the axial direction corresponding to the through holes 166 thereof. Therefore, the plurality of locking claws 168 are elastically deformed and fitted into the through holes 166, respectively, and locked to the end portions of the through holes 166, so that the plurality of inner members 160 are substantially concentric with each other. As well as being positioned, axial withdrawal is limited. Further, a part of the outer member 164 enters the gap 170 formed in the vicinity of the locking claw 168, solidifies, and is integrally fused, so that the deformation of the locking claw 168 is suppressed. The locking state of the pawl 168 is more reliably maintained, and due to the increase in the bonding area due to fusion, the coupling strength against mutual lateral displacement of the plurality of inner members 160 is further improved in combination with the positioning by the locking pawl 168. .

図21は、本発明の一実施例であるクラッシュボックス180の斜視図で、図22は縦断面図、すなわち図21におけるXXII−XXII矢視部分の断面図である。このクラッシュボックス180は、軸方向に連なるように重ね合わされた3つの円筒形状のインナー部材182−1、182−2、182−3(特に区別しない場合は単にインナー部材182という)と、それ等のインナー部材182−1、182−2、182−3の外周側に一体的に融着された円筒形状のアウター部材184と、先端を覆蓋するように接着剤等により一体的に固着された円板状の蓋部材186とから構成されており、アウター部材184は円板形状のフランジ188を一体に備えている。図23は、一つのインナー部材182を単独で示す正面図で、図24は平面図、図25は斜視図であり、このインナー部材182は、前記図6〜図9のインナー部材12と同様に複数の補強リブ32を放射状に備えている。インナー部材182の円筒形状の側壁190の小径端部には嵌合突起192が設けられており、大径端部の内側に嵌合されることにより、複数のインナー部材182が相互に同心に位置決めされる。   21 is a perspective view of a crash box 180 according to an embodiment of the present invention, and FIG. 22 is a longitudinal sectional view, that is, a sectional view taken along the line XXII-XXII in FIG. The crush box 180 includes three cylindrical inner members 182-1, 182-2, 182-2 (which are simply referred to as an inner member 182 unless otherwise specified), which are overlapped so as to be continuous in the axial direction, A cylindrical outer member 184 that is integrally fused to the outer peripheral side of the inner members 182-1, 182-2, and 182-3, and a disc that is integrally fixed by an adhesive or the like so as to cover the tip. The outer member 184 is integrally provided with a disk-shaped flange 188. FIG. 23 is a front view showing one inner member 182 alone, FIG. 24 is a plan view, and FIG. 25 is a perspective view. This inner member 182 is similar to the inner member 12 in FIGS. A plurality of reinforcing ribs 32 are provided radially. A fitting projection 192 is provided at the small-diameter end of the cylindrical side wall 190 of the inner member 182, and the inner members 182 are positioned concentrically with each other by being fitted inside the large-diameter end. Is done.

上記側壁190の外周面には、軸方向に延びる縦溝194が中心線Sまわりにおいて等角度間隔で複数、具体的には補強リブ32と略同じ位置に6本、設けられているとともに、複数のインナー部材182は中心線Sまわりにおいて縦溝194の位置が30°ずつずれるように重ね合わされている。また、前記嵌合突起192の突出寸法は、大径端部との嵌合長さよりも長く、複数のインナー部材182が軸方向に連なるように重ね合わされた状態で、その嵌合突起192の外周側に環状溝196が形成される。したがって、複数のインナー部材182が軸方向に重ね合わされた状態において、その外周面には複数の縦溝194と複数の環状溝196とが交差するように接続され、図21に示すように全体として矩形の網目模様の溝が形成される。そして、それ等の溝194、196内にアウター部材184を構成する溶融樹脂が充填されて固化されることにより、複数のインナー部材182の外周面に部分的に融着された網目模様状のアウター部材184が一体的に設けられる。本実施例では、この網目模様状のアウター部材184によって、3つのインナー部材182が所定の連結強度で連結されているのであり、縦溝194の数や深さ、幅寸法、或いは環状溝196の深さや幅寸法により、その連結強度を容易に調整できる。   On the outer peripheral surface of the side wall 190, a plurality of longitudinal grooves 194 extending in the axial direction are provided at equal angular intervals around the center line S, specifically, six at substantially the same position as the reinforcing ribs 32. The inner member 182 is overlapped so that the position of the longitudinal groove 194 around the center line S is shifted by 30 °. Further, the protrusion dimension of the fitting protrusion 192 is longer than the fitting length with the large-diameter end, and the outer periphery of the fitting protrusion 192 is overlaid so that the plurality of inner members 182 are continuous in the axial direction. An annular groove 196 is formed on the side. Therefore, in a state where the plurality of inner members 182 are overlapped in the axial direction, a plurality of longitudinal grooves 194 and a plurality of annular grooves 196 are connected to the outer peripheral surface so as to intersect with each other, as shown in FIG. A rectangular mesh groove is formed. Then, a molten resin constituting the outer member 184 is filled in the grooves 194 and 196 and solidified to be solidified, so that a mesh-patterned outer part partially fused to the outer peripheral surface of the plurality of inner members 182 is obtained. A member 184 is provided integrally. In this embodiment, the three inner members 182 are connected with a predetermined connection strength by the mesh-shaped outer member 184, and the number, depth, width dimension of the longitudinal grooves 194, or the annular grooves 196 The connection strength can be easily adjusted by the depth and width.

なお、前記インナー部材42、60、80、100、122、160や筒体142にも、必要に応じて補強リブ32等を設けて補強することができる。逆にインナー部材12、182の補強リブ32を省略し、円筒形状の側壁30、190だけで構成することもできるし、平板形状等の他の補強リブを設けることも可能である。   The inner members 42, 60, 80, 100, 122, 160 and the cylindrical body 142 can be reinforced by providing reinforcing ribs 32 or the like as necessary. Conversely, the reinforcing ribs 32 of the inner members 12 and 182 can be omitted, and the inner side members 12 and 182 can be configured by only the cylindrical side walls 30 and 190, or other reinforcing ribs such as a flat plate shape can be provided.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, these are one embodiment to the last, and this invention is implemented in the aspect which added the various change and improvement based on the knowledge of those skilled in the art. be able to.

10、40、120、140、180:クラッシュボックス(衝撃吸収装置) 12、12−1、12−2、12−3、42−1、42−2、42−3、60−2、60−3、80−2、80−3、100−2、100−3、122−1、122−2、122−3、160、160−2、160−3、182、182−1、182−2、182−3:インナー部材(筒体) 18、48、64、84、104、124、164、184:アウター部材(連結部材) 54、72、94、112、134、170:隙間 142、142−1、142−2、142−3:筒体 146:連結部材 194:縦溝(溝) 202:固定型(第1成形型) 204:可動型(第2成形型) 210:成形面 214、226:キャビティー   10, 40, 120, 140, 180: Crash box (shock absorber) 12, 12-1, 12-2, 12-3, 42-1, 42-2, 42-3, 60-2, 60-3 80-2, 80-3, 100-2, 100-3, 122-1, 122-2, 122-3, 160, 160-2, 160-3, 182, 182-1, 182-2, 182 -3: Inner member (tubular body) 18, 48, 64, 84, 104, 124, 164, 184: Outer member (connecting member) 54, 72, 94, 112, 134, 170: Clearance 142, 142-1, 142-2, 142-3: cylinder 146: connecting member 194: longitudinal groove (groove) 202: fixed mold (first molding mold) 204: movable mold (second molding mold) 210: molding surface 214 and 226: mold tea

Claims (6)

筒形状の側壁を有する複数の樹脂製の筒体が、該筒形状の軸方向に連なるように重ね合わされて一体的に連結され、該軸方向から加えられた衝撃を該筒体の変形によって吸収する衝撃吸収装置であって、
該衝撃吸収装置の軸方向に連続して設けられ、前記複数の筒体の軸方向に沿う面にそれぞれ融着される樹脂製の連結部材を有し、該連結部材を介して該複数の筒体が互いに一体的に連結されている
ことを特徴とする衝撃吸収装置。
A plurality of resin cylinders having a cylindrical side wall are stacked and connected integrally so as to be continuous in the axial direction of the cylindrical shape, and the impact applied from the axial direction is absorbed by deformation of the cylindrical body. A shock absorbing device that
A resin-made connecting member that is provided continuously in the axial direction of the shock absorbing device and that is fused to a surface along the axial direction of the plurality of cylinders, and the plurality of cylinders via the connecting members An impact absorbing device characterized in that the bodies are integrally connected to each other.
前記連結部材は、前記複数の筒体の外周側に設けられて該複数の筒体の外周面にそれぞれ融着される筒状のアウター部材である
ことを特徴とする請求項1に記載の衝撃吸収装置。
2. The impact according to claim 1, wherein the connecting member is a cylindrical outer member that is provided on an outer peripheral side of the plurality of cylindrical bodies and is fused to an outer peripheral surface of the plurality of cylindrical bodies. Absorber.
前記複数の筒体の軸方向の境界部分には隙間が設けられており、
前記連結部材は、その一部が前記隙間に侵入して該隙間を形成している面にも融着されている
ことを特徴とする請求項1または2に記載の衝撃吸収装置。
A gap is provided in an axial boundary portion of the plurality of cylindrical bodies,
The impact absorbing device according to claim 1 or 2, wherein a part of the connecting member is also fused to a surface of which a part of the connecting member enters the gap to form the gap.
前記複数の筒体の少なくとも一つは繊維強化樹脂にて構成されているとともに、前記衝撃が入力される側の筒体は、該入力される側と反対側の筒体に比べて繊維含有量が少ない
ことを特徴とする請求項1〜3の何れか1項に記載の衝撃吸収装置。
At least one of the plurality of cylinders is made of fiber reinforced resin, and the cylinder on the side to which the impact is input has a fiber content as compared to the cylinder on the side opposite to the input side. The impact absorbing device according to any one of claims 1 to 3, wherein the impact absorbing device is small.
前記複数の筒体の外周面には、それぞれ軸方向に沿って溝が設けられており、該溝内に樹脂材料が充填されて前記連結部材が成形されている
ことを特徴とする請求項1〜4の何れか1項に記載の衝撃吸収装置。
The outer peripheral surface of the plurality of cylinders is provided with a groove along the axial direction, respectively, and the connecting member is formed by filling the groove with a resin material. The impact absorbing device according to any one of -4.
筒形状の側壁を有する複数の樹脂製のインナー部材が、該筒形状の軸方向に連なるように重ね合わされているとともに、
該複数のインナー部材の外周側に軸方向に連続して設けられ、該複数のインナー部材の外周面を被覆するとともに該複数のインナー部材の外周面にそれぞれ融着される樹脂製筒状のアウター部材を有し、
該アウター部材を介して前記複数のインナー部材が互いに一体的に連結され、軸方向から加えられた衝撃を該インナー部材の変形によって吸収する衝撃吸収装置の製造方法であって、
前記複数のインナー部材を軸方向に連なるように重ね合わせて第1成形型に配置するセット工程と、
該インナー部材の外径よりも大きな内径寸法の成形面を有する第2成形型と前記第1成形型とを相対的に接近させて型締めし、該成形面と該インナー部材の外周面との間に前記アウター部材に対応する筒状のキャビティーを形成する型締め工程と、
前記アウター部材の樹脂材料を、前記インナー部材の溶融温度よりも高い温度で溶融させて前記キャビティー内に射出し、該アウター部材を成形すると同時に該インナー部材の外周面に融着させる射出工程と、
を有することを特徴とする衝撃吸収装置の製造方法。
A plurality of resin inner members having a cylindrical side wall are superimposed so as to be continuous in the axial direction of the cylindrical shape,
A resin cylindrical outer member that is continuously provided in the axial direction on the outer peripheral side of the plurality of inner members, covers the outer peripheral surface of the plurality of inner members, and is fused to the outer peripheral surface of the plurality of inner members. Having a member,
The plurality of inner members are integrally connected to each other via the outer member, and a method of manufacturing an impact absorbing device that absorbs an impact applied from the axial direction by deformation of the inner member,
A setting step of superposing the plurality of inner members so as to be continuous in the axial direction and disposing them in the first mold;
The second molding die having a molding surface having an inner diameter larger than the outer diameter of the inner member is clamped with the first molding die relatively close to each other, and the molding surface and the outer circumferential surface of the inner member are A mold clamping step for forming a cylindrical cavity corresponding to the outer member in between,
An injection process in which the resin material of the outer member is melted at a temperature higher than the melting temperature of the inner member and injected into the cavity, and the outer member is molded and simultaneously fused to the outer peripheral surface of the inner member; ,
A method of manufacturing an impact absorbing device, comprising:
JP2013058184A 2013-03-21 2013-03-21 Shock absorber Expired - Fee Related JP5892966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013058184A JP5892966B2 (en) 2013-03-21 2013-03-21 Shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013058184A JP5892966B2 (en) 2013-03-21 2013-03-21 Shock absorber

Publications (2)

Publication Number Publication Date
JP2014181799A true JP2014181799A (en) 2014-09-29
JP5892966B2 JP5892966B2 (en) 2016-03-23

Family

ID=51700703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013058184A Expired - Fee Related JP5892966B2 (en) 2013-03-21 2013-03-21 Shock absorber

Country Status (1)

Country Link
JP (1) JP5892966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047839A (en) * 2015-09-04 2017-03-09 富士重工業株式会社 Energy absorption structure
JP2017047840A (en) * 2015-09-04 2017-03-09 富士重工業株式会社 Energy absorption structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123323A (en) * 1992-10-09 1994-05-06 Toyota Autom Loom Works Ltd Energy absorbing member
JPH1113807A (en) * 1997-06-27 1999-01-22 Nippon Petrochem Co Ltd Shock energy absorbing member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123323A (en) * 1992-10-09 1994-05-06 Toyota Autom Loom Works Ltd Energy absorbing member
JPH1113807A (en) * 1997-06-27 1999-01-22 Nippon Petrochem Co Ltd Shock energy absorbing member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047839A (en) * 2015-09-04 2017-03-09 富士重工業株式会社 Energy absorption structure
JP2017047840A (en) * 2015-09-04 2017-03-09 富士重工業株式会社 Energy absorption structure

Also Published As

Publication number Publication date
JP5892966B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
ES2893276T3 (en) Wheel composed of assembled spoke elements
JP6381450B2 (en) Mounting structure for internal parts of automobile fuel tank
JP2008304054A (en) Manufacturing method of fastening structure with fixing dome arranged on thin-walled component
CN110906163B (en) Liner constituting member, high-pressure tank, and method for manufacturing high-pressure tank
JP2014181799A (en) Shock absorber device and its manufacturing method
KR101966471B1 (en) Frictional weld joint for an article comprising a thermoplastic material
JP2018114794A (en) Support pillar component of vehicle fuel tank
CN105365515B (en) The lid and its manufacturing method of vehicle air spring
JP6796713B2 (en) Automotive liquid container with reinforcing and reinforcing elements for automotive liquid container
US11472126B2 (en) Attachment part for connecting to a structural part
JP6859290B2 (en) How to make a fuel tank
KR101566878B1 (en) Fused Structure of Door Trim With A Dual Supporting Structure
JP2020006804A (en) Vehicular wheel
CA2477532C (en) Manufacturing apparatus of resin boot for constant-velocity universal joint and method of manufacturing resin boot for constant-velocity universal joint, and resin boot for constant-velocity universal joint
JP2018127123A (en) Support post component for vehicle fuel tank
JP2019072906A (en) Bonding method and structure of resin members
CN107735581A (en) Method and component composition structure for connecting elements
JP6395253B2 (en) Mounting structure for internal parts of automobile fuel tank
JP5950331B2 (en) Column member connection structure and assembly method thereof
JP6379993B2 (en) Resin welded structure and manufacturing method thereof
US20070209757A1 (en) Method for attaching tubes using an adhesive
JP6254131B2 (en) Energy absorber
JP6879027B2 (en) Welding method of thermoplastic resin
JP2016121783A (en) Method of connecting resin member
JP3637791B2 (en) Method for producing hollow resin container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160223

R150 Certificate of patent or registration of utility model

Ref document number: 5892966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees