JP2014181249A - Coal combustion auxiliary composition, coal combustion auxiliary agent using the composition and coal combustion method using the coal combustion auxiliary agent - Google Patents

Coal combustion auxiliary composition, coal combustion auxiliary agent using the composition and coal combustion method using the coal combustion auxiliary agent Download PDF

Info

Publication number
JP2014181249A
JP2014181249A JP2013054896A JP2013054896A JP2014181249A JP 2014181249 A JP2014181249 A JP 2014181249A JP 2013054896 A JP2013054896 A JP 2013054896A JP 2013054896 A JP2013054896 A JP 2013054896A JP 2014181249 A JP2014181249 A JP 2014181249A
Authority
JP
Japan
Prior art keywords
combustion
coal
mass
biomass
coal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054896A
Other languages
Japanese (ja)
Other versions
JP6118598B2 (en
Inventor
Satoshi Naito
敏 内藤
Toshihiko Maruyama
敏彦 丸山
Chuichi Mizoguchi
忠一 溝口
Katsunori Taniguchi
克典 谷口
Nozomi Sonoyama
希 園山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HYUUENSU KK
KUSHIRO COAL MINE CO Ltd
Hosokawa Micron Corp
Idemitsu Kosan Co Ltd
Kumagai Gumi Co Ltd
Original Assignee
HYUUENSU KK
KUSHIRO COAL MINE CO Ltd
Hosokawa Micron Corp
Idemitsu Kosan Co Ltd
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYUUENSU KK, KUSHIRO COAL MINE CO Ltd, Hosokawa Micron Corp, Idemitsu Kosan Co Ltd, Kumagai Gumi Co Ltd filed Critical HYUUENSU KK
Priority to JP2013054896A priority Critical patent/JP6118598B2/en
Publication of JP2014181249A publication Critical patent/JP2014181249A/en
Application granted granted Critical
Publication of JP6118598B2 publication Critical patent/JP6118598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coal combustion auxiliary composition which removes sulfur content efficiently from coal for combustion when mixed with the coal for combustion and burnt, reduces unburnt ingredients contained in the combustion ash, or fly ash, by improving the ignitability and combustibility of the coal for combustion and thereby secures efficient combustion of the coal for combustion.SOLUTION: A powder type coal combustion auxiliary agent composition to be added to coal for combustion contains calcium carbonate and biomass in a ratio of 10-25 pts.mass of biomass to 100 pts.mass of calcium carbonate and contains further coal for combustion promotion. The mass ratio of the combined amount of calcium carbonate and biomass to the amount of the coal for combustion promotion is (90:10) to (25:75).

Description

本発明は、炭酸カルシウムやバイオマス等を含む石炭燃焼助剤組成物と、この組成物を用いて成形した石炭燃焼助剤と、この石炭燃焼助剤を用いて燃焼用石炭を燃焼する方法に関するものである。   The present invention relates to a coal combustion aid composition containing calcium carbonate, biomass, and the like, a coal combustion aid formed using this composition, and a method for burning combustion coal using this coal combustion aid. It is.

従来、バイオマス粉又はバイオマス粉砕物からなるバイオマス原料に、消石灰の水溶液又は懸濁液を付着させ、この液の付着したバイオマス原料を80〜100℃に加熱し、更にこの加熱したバイオマス原料を80〜100℃の温度下でダブルロール式プレスにより100〜500MPaの圧力をかけてブリケット状又は板状に加熱・成型するバイオマス系成型燃料の製造方法が開示されている(例えば、特許文献1参照。)。   Conventionally, an aqueous solution or suspension of slaked lime is attached to a biomass material made of biomass powder or pulverized biomass, the biomass material to which this liquid is attached is heated to 80 to 100 ° C., and the heated biomass material is 80 to A method for producing a biomass-based molded fuel that is heated and molded into a briquette or plate shape by applying a pressure of 100 to 500 MPa with a double roll press at a temperature of 100 ° C. is disclosed (for example, see Patent Document 1). .

このように構成されたバイオマス系成型燃料の製造方法では、バイオマス粉等からなるバイオマス原料に消石灰の水溶液等を付着させることにより、バイオマス原料に可塑性を付与し、この液の付着したバイオマス原料を80〜100℃に加熱することにより、バイオマス原料に可塑性を更に付与し、この加熱したバイオマス原料にを80〜100℃の温度下でダブルロール式プレスにより100〜500MHzの圧力をかけてブリケット状等に加熱・成型することにより、蒸気の共存下で強い剪断力を繊維質のバイオマス原料に与えながら高い圧縮力で燃料が成型される。この結果、繊維質のバイオマス原料が互いに強く絡み合い、比較的密度の高い成型燃料を得ることができる。また石炭とバイオマスを同時に混焼すると、燃焼効率が上昇したり、或いは木質バイオマスに含まれる窒素分が石炭に含まれる窒素分より少ないため、排ガス中におけるNOxの濃度を低減できるようになっている。   In the manufacturing method of the biomass type | mold molded fuel comprised in this way, plasticity is provided to biomass raw material by attaching the aqueous solution of slaked lime etc. to the biomass raw material which consists of biomass powder etc., and the biomass raw material which this liquid adhered is 80 By heating to ~ 100 ° C, plasticity is further imparted to the biomass material, and the heated biomass material is subjected to a pressure of 100 to 500 MHz by a double roll press at a temperature of 80 to 100 ° C to form a briquette or the like. By heating and molding, the fuel is molded with a high compressive force while applying a strong shearing force to the fibrous biomass raw material in the presence of steam. As a result, fibrous biomass raw materials are strongly entangled with each other, and a molded fuel having a relatively high density can be obtained. When coal and biomass are co-fired at the same time, the combustion efficiency is increased, or the nitrogen content contained in the woody biomass is less than the nitrogen content contained in the coal, so that the concentration of NOx in the exhaust gas can be reduced.

特開2009−51985号公報(請求項1、段落[0010]、[0021]、図1)JP 2009-51985 (Claim 1, paragraphs [0010] and [0021], FIG. 1)

しかし、上記従来の特許文献1に示されたバイオマス系成型燃料の製造方法では、燃焼助剤としてみた消石灰は単なる脱硫目的で使用され、また燃焼助剤としてみたバイオマスは窒素分の少ないバイオマスの使用によるその分だけの脱硝目的で使用されており、微粉炭燃焼や循環流動層等の混合燃焼において、石炭の燃焼性の向上、大気汚染物質の発生の抑制、燃焼灰(フライアッシュ)の改質等の多面的な効果を得ることができない問題点があった。   However, in the method for producing a biomass-based molded fuel disclosed in Patent Document 1 above, slaked lime as a combustion aid is used for mere desulfurization purposes, and biomass as a combustion aid is the use of biomass with a low nitrogen content. Is used for the purpose of denitrification by that amount, and in mixed combustion such as pulverized coal combustion and circulating fluidized bed, improvement of coal combustibility, suppression of generation of air pollutants, reforming of combustion ash (fly ash) There is a problem that multi-faceted effects such as cannot be obtained.

本発明の第1の目的は、燃焼用石炭に混合して燃焼したときに燃焼用石炭から硫黄分を効率良く除去でき、また燃焼用石炭の着火性及び燃焼性の向上により燃焼灰(フライアッシュ)中に含まれる未燃成分を低減でき、これにより燃焼用石炭を効率良く燃焼できる、石炭燃焼助剤組成物及びその組成物を用いた石炭燃焼助剤並びにその石炭燃焼助剤を用いた石炭の燃焼方法を提供することにある。本発明の第2の目的は、燃焼用石炭の微粉炭燃焼時に揮発分に由来するNOx発生量を排出基準値以下に抑制できる、石炭燃焼助剤組成物及びその組成物を用いた石炭燃焼助剤並びにその石炭燃焼助剤を用いた石炭の燃焼方法を提供することにある。本発明の第3の目的は、燃焼用石炭中の微量の有害性金属成分を燃焼灰に固定化することにより、有害成分の大気中への放出を抑制できる、石炭燃焼助剤組成物及びその組成物を用いた石炭燃焼助剤並びにその石炭燃焼助剤を用いた石炭の燃焼方法を提供することにある。本発明の第4の目的は、ポゾラン反応性とともに、自硬性が付与され、その利用上、硬化体の強度的欠陥となる多孔質の粗粒子を含まない、良好な粒度構成の燃焼灰を得ることができる、石炭燃焼助剤組成物及びその組成物を用いた石炭燃焼助剤並びにその石炭燃焼助剤を用いた石炭の燃焼方法を提供することにある。   The first object of the present invention is to efficiently remove sulfur from combustion coal when it is mixed with combustion coal and combusted, and combustion ash (fly ash) is improved by improving the ignitability and combustibility of combustion coal. ) Coal combustion aid composition, coal combustion aid using the composition, and coal using the coal combustion aid, which can reduce unburned components contained therein and thereby efficiently burn coal for combustion It is in providing the combustion method of this. The second object of the present invention is to provide a coal combustion aid composition that can suppress the NOx generation amount derived from the volatile matter during combustion of pulverized coal to less than the emission standard value and coal combustion assistance using the composition. It is providing the coal combustion method using the agent and the coal combustion auxiliary agent. A third object of the present invention is a coal combustion auxiliary composition capable of suppressing release of harmful components into the atmosphere by immobilizing a trace amount of harmful metal components in combustion coal to combustion ash and its An object of the present invention is to provide a coal combustion auxiliary using the composition and a method for burning coal using the coal combustion auxiliary. The fourth object of the present invention is to obtain a combustion ash having a good particle size structure, which is self-hardening as well as pozzolanic reactivity, and does not contain porous coarse particles that become a strength defect of a cured product. An object of the present invention is to provide a coal combustion aid composition, a coal combustion aid using the composition, and a method for burning coal using the coal combustion aid.

本発明の第1の観点は、燃焼用石炭に添加するために用いられ、炭酸カルシウムとバイオマスとを含む粉末状の石炭燃焼助剤組成物であって、炭酸カルシウム100質量部に対してバイオマスを10〜25質量部含有することを特徴とする。   A first aspect of the present invention is a powdery coal combustion aid composition used for adding to combustion coal and containing calcium carbonate and biomass, wherein the biomass is added to 100 parts by mass of calcium carbonate. It contains 10 to 25 parts by mass.

本発明の第2の観点は、第1の観点に基づく発明であって、燃焼促進用石炭を更に含み、炭酸カルシウム及びバイオマスの合計量と燃焼促進用石炭の量とを質量比で(90:10)〜(25:75)の割合で含有することを特徴とする。   2nd viewpoint of this invention is invention based on 1st viewpoint, Comprising: The coal for combustion promotion is further included, The total amount of calcium carbonate and biomass, and the quantity of coal for combustion promotion are mass ratio (90: 10) to (25:75).

本発明の第3の観点は、第1又は第2の観点に記載の粉末状の石炭燃焼助剤組成物を平板状、ブリケット状又は顆粒状に成形してなる石炭燃焼助剤である。   A third aspect of the present invention is a coal combustion aid formed by molding the powdery coal combustion aid composition described in the first or second aspect into a flat plate shape, a briquette shape, or a granular shape.

本発明の第4の観点は、第1又は第2の観点に記載の粉末状の石炭燃焼助剤組成物を50〜400MPaの圧力で、厚さが15mm以下であって縦及び横又は直径がそれぞれ100mm以下である平板状に、又は体積30ミリリットル以下のブリケット状に形成されるか、或いはこれらの形成物を粒径20mm以下の顆粒状に解砕して形成された石炭燃焼助剤である。   According to a fourth aspect of the present invention, the powdery coal combustion auxiliary composition described in the first or second aspect is 50 to 400 MPa in pressure, 15 mm or less in thickness, and has a length, width, or diameter. It is a coal combustion aid formed into a flat plate shape of 100 mm or less, or a briquette shape with a volume of 30 ml or less, or by pulverizing these products into granules with a particle size of 20 mm or less. .

本発明の第5の観点は、粒径80mm以下の燃料用石炭90〜95質量%に対して第3又は第4の観点に記載の石炭燃焼助剤を10〜5質量%混合する工程と、この混合物を流動層燃焼炉に供給して燃焼させる工程とを含む石炭の燃焼方法である。   A fifth aspect of the present invention is a step of mixing 10 to 5% by mass of the coal combustion aid according to the third or fourth aspect with respect to 90 to 95% by mass of fuel coal having a particle size of 80 mm or less, And a step of supplying the mixture to a fluidized bed combustion furnace and burning the mixture.

本発明の第6の観点は、粒径80mm以下の燃焼用石炭90〜95質量%に対して第3又は第4の観点に記載の石炭燃焼助剤を10〜5質量%混合し粒径75μm以下のものを70〜80質量%含むように粉砕する工程と、この粉砕された混合物を微粉炭燃焼炉に供給して燃焼させる工程とを含む石炭の燃焼方法である。   The 6th viewpoint of this invention mixes 10-5 mass% of coal combustion adjuvants as described in the 3rd or 4th viewpoint with respect to 90-95 mass% of coal for combustion with a particle diameter of 80 mm or less, and particle diameter is 75 micrometers. It is a coal combustion method including a step of pulverizing so as to include 70 to 80% by mass of the following, and a step of supplying the pulverized mixture to a pulverized coal combustion furnace and burning it.

本発明の第1の観点の石炭燃焼助剤組成物では、炭酸カルシウム100質量部に対してバイオマスを10〜25質量部含有するので、この組成物を用いて石炭燃焼助剤を成形するときに組成物中のバイオマスがバインダとして作用し、通常の貯蔵やハンドリング等に耐え得る性状及び強度を与える。また上記組成物を用いて成形した石炭燃焼助剤を燃焼用石炭と混合して燃焼したときに、この石炭燃焼助剤中の炭酸カルシウムに由来する酸化カルシウムが燃焼用石炭中の硫黄分等の有害成分と反応しこの有害成分を固定化して、燃焼用石炭中の有害成分の大気中への放出を抑制できる。またバイオマスによる燃焼用石炭の着火性とともに、酸化カルシウムの触媒的作用による燃焼性を向上でき、これにより燃焼灰(フライアッシュ)中に含まれる未燃成分を低減できるので、燃焼用石炭を効率良く燃焼できる。   In the coal combustion auxiliary composition of the first aspect of the present invention, 10 to 25 parts by mass of biomass is contained with respect to 100 parts by mass of calcium carbonate. Therefore, when the coal combustion auxiliary is molded using this composition. Biomass in the composition acts as a binder and gives properties and strength that can withstand normal storage and handling. In addition, when the coal combustion aid molded using the above composition is mixed with combustion coal and combusted, calcium oxide derived from calcium carbonate in the coal combustion aid is sulfur content in the combustion coal, etc. It reacts with harmful components to immobilize these harmful components, and the release of harmful components in combustion coal into the atmosphere can be suppressed. In addition to the ignitability of combustion coal by biomass, it can improve the flammability due to the catalytic action of calcium oxide, thereby reducing the unburned components contained in the combustion ash (fly ash), so the combustion coal can be efficiently used Can burn.

本発明の第2の観点の石炭燃焼助剤組成物では、850〜860℃での流動層燃焼において、燃焼用石炭と混合して燃焼したときに、石炭燃焼助剤が細かく分裂するので、燃焼用石炭の着火性及び燃焼性を更に向上できるとともに、炭酸カルシウムに由来する酸化カルシウムが分散されることにより、この炭酸カルシウムが燃焼用石炭中の硫黄分等の有害成分と反応しこの有害成分を固定化して、燃焼用石炭中の有害成分の大気中への放出を抑制できる。また、1400〜1500℃での微粉炭燃焼においても同様に、バイオマスと炭酸カルシウムと燃焼促進用石炭とを含む石炭複合系の微粉状の燃焼助剤が分裂し均一に分散しながら、燃焼用微粉炭(燃焼用石炭)の分散化を助長し、その燃焼性を大きく改善するとともに、燃焼により生成された燃焼灰(フライアッシュ)の粒度構成において、微粒子(サブミクロン粒子)は減少し、また粗粒子は石炭粒の分裂によって細粒側に移行し、その集塵効果及び土木資材等の利用上の良好な粒度構成となる。   In the coal combustion aid composition according to the second aspect of the present invention, in the fluidized bed combustion at 850 to 860 ° C., the coal combustion aid is finely divided when mixed with combustion coal and burned. In addition to further improving the ignitability and combustibility of coal for combustion, the calcium carbonate derived from calcium carbonate is dispersed, so that this calcium carbonate reacts with harmful components such as sulfur in the combustion coal, and this harmful component is reduced. Immobilization can suppress the release of harmful components in combustion coal into the atmosphere. Similarly, in pulverized coal combustion at 1400 to 1500 ° C., the coal-composite pulverized combustion aid containing biomass, calcium carbonate, and combustion-promoting coal is divided and dispersed uniformly, This contributes to the dispersion of charcoal (combustion coal) and greatly improves its combustibility. In addition, the particle size composition of combustion ash (fly ash) generated by combustion reduces the fine particles (submicron particles) and increases the coarseness. The particles are transferred to the fine particles side by the coal particle splitting, and the dust collection effect and the structure of good particle size for utilization of civil engineering materials are obtained.

本発明の第3及び第4の観点の石炭燃焼助剤では、石炭燃焼助剤中のバイオマスがバインダとして作用し、通常の貯蔵やハンドリング等に耐え得る性状及び強度を与える。また上記石炭燃焼助剤を燃焼用石炭と混合して燃焼したときに、この石炭燃焼助剤中の炭酸カルシウムに由来する酸化カルシウムが燃焼用石炭中の硫黄分等の有害成分と反応しこの有害成分を固定化して、燃焼用石炭中の有害成分の大気中への放出を抑制できる。また炭酸カルシウムとバイオマスとを含む石炭燃焼助剤を用いると、バイオマスによる燃焼用石炭の着火性とともに、酸化カルシウムの触媒的作用による燃焼性を向上でき、これにより燃焼灰中に含まれる未燃成分を低減できるので、燃焼用石炭を効率良く燃焼できる。炭酸カルシウムとバイオマスと燃焼促進用石炭とを含む石炭燃焼助剤を用いると、流動層燃焼及び微粉炭燃焼のいずれにおいても、燃焼用石炭の着火性及び燃焼性を更に向上でき、これにより燃焼灰中に含まれる未燃成分を更に低減できるので、燃焼用石炭を更に効率良く燃焼できる。   In the coal combustion aids according to the third and fourth aspects of the present invention, the biomass in the coal combustion aid acts as a binder and gives properties and strength that can withstand normal storage and handling. In addition, when the coal combustion aid is mixed with combustion coal and burned, calcium oxide derived from calcium carbonate in the coal combustion aid reacts with harmful components such as sulfur in the combustion coal to cause this harmful effect. By immobilizing components, it is possible to suppress the release of harmful components in combustion coal into the atmosphere. In addition, the use of coal combustion aids containing calcium carbonate and biomass can improve the ignitability of combustion coal by biomass and the combustibility due to the catalytic action of calcium oxide, thereby unburned components contained in the combustion ash. Therefore, combustion coal can be burned efficiently. By using a coal combustion aid containing calcium carbonate, biomass and combustion promoting coal, the ignitability and combustibility of the combustion coal can be further improved in both fluidized bed combustion and pulverized coal combustion. Since unburned components contained therein can be further reduced, combustion coal can be burned more efficiently.

本発明の第5の観点の石炭の燃焼方法では、流動層燃焼において、炭酸カルシウムとバイオマスと燃焼促進用石炭とを含む石炭燃焼助剤を用いると、燃焼用石炭のみを燃焼させる場合に比べて、単位時間当たりの燃焼量が増大するとともに、造粒物の石炭燃焼助剤が瞬時に分裂して燃焼用石炭中に均一に分散することにより、燃焼用石炭の着火性及び燃焼性を大幅に向上できる。この結果、燃焼灰中の未燃成分を大幅に低減できるので、燃焼用石炭の使用量を低減できる。また上記燃焼性の向上により燃焼用石炭中の揮発分に由来するNOxの発生量は若干増大するけれども、NOxの発生量を排出基準値以下に抑制できるとともに、石炭燃焼助剤中の炭酸カルシウムに由来する酸化カルシウムが燃焼用石炭中の硫黄分を吸収してこの硫黄分と反応することにより燃焼用石炭中の硫黄分が大気中に殆ど放出しない。また燃焼用石炭中の有害成分を燃焼灰に固定化することにより、有害成分の大気中への放出を抑制できる。更に燃焼灰中の未燃成分が低減されるので、燃焼灰をセメント混和材として使用した場合、セメントの水和硬化特性を向上でき、またセメント等の配合を少なくすることができ、これにより土木資材として有効利用できる。   In the coal combustion method according to the fifth aspect of the present invention, in the fluidized bed combustion, when a coal combustion aid containing calcium carbonate, biomass, and combustion promoting coal is used, compared to the case of burning only the combustion coal. As the amount of combustion per unit time increases, the granulated coal combustion aid is instantly split and uniformly dispersed in the combustion coal, greatly increasing the ignitability and combustibility of the combustion coal. It can be improved. As a result, unburned components in the combustion ash can be greatly reduced, so that the amount of combustion coal used can be reduced. Although the amount of NOx derived from the volatile matter in the combustion coal slightly increases due to the improvement of the combustibility, the amount of NOx generated can be suppressed below the emission standard value, and the calcium carbonate in the coal combustion aid can be reduced. The derived calcium oxide absorbs the sulfur content in the combustion coal and reacts with this sulfur content, so that the sulfur content in the combustion coal is hardly released into the atmosphere. In addition, by fixing harmful components in combustion coal to combustion ash, it is possible to suppress the release of harmful components to the atmosphere. Furthermore, since the unburned components in the combustion ash are reduced, when the combustion ash is used as a cement admixture, the hydration and hardening characteristics of the cement can be improved and the blending of cement and the like can be reduced. It can be used effectively as a material.

本発明の第6の観点の石炭の燃焼方法では、炭酸カルシウムとバイオマスと燃焼促進用石炭とを含む石炭燃焼助剤を用いると、この3成分複合系の石炭燃焼助剤の燃焼促進作用により、燃焼灰中の未燃成分を低減できるとともに、特に微粉炭燃焼における燃焼用石炭からの未燃炭素質と関連する燃焼灰(フライアッシュ)の粗粒化及び多孔質化を抑制でき、燃焼灰粒子の強度を向上できる、即ち燃焼灰粒子に自硬性を付与できる。この燃焼灰粒子の強度の低下を防止することにより、土木資材として有効利用できる。また燃焼用石炭中の有害成分のうち揮発性有害成分は炭酸カルシウムの熱分解生成物であるカルシウム系物質と接触して反応することにより固定化され、非揮発性有害成分を高温溶融により燃焼灰に固定化して不溶出化するので、この燃焼炉内での固定化及び不溶出化により燃焼灰の性状を改善できる。この結果、燃焼灰を透水性地盤材料等の新たな土木資材として有効利用できる。また燃焼灰中の未燃成分を低減し、かつ燃焼助剤からのカルシウム成分が増大することにより、燃焼灰の化学組成が改善されるので、ポラゾン反応性を向上できる。このポラゾン反応性の向上と上記自硬性の付与により、セメントの5質量%程度の貧配合で十分なセメント強度を発現できる。ここで、ポゾラン反応とは、燃焼灰(フライアッシュ)をポルトランドセメントに混合して水を加えたときに、燃焼灰(フライアッシュ)に含まれる二酸化ケイ素がセメントの水和反応によって生じた水酸化カルシウムと反応し、緻密で耐久性に優れたケイ酸カルシウムの水和物が発生する反応をいう。更に微粉炭燃焼では、石炭燃焼助剤が瞬時に分裂して石炭燃焼助剤が均一に分散することにより、近傍の雲状の燃焼用微粉炭(燃焼用石炭)の分裂及び燃焼を助長でき、燃焼用微粉炭(燃焼用石炭)の着火性及び燃焼性を大幅に向上できる。また燃焼灰粒子の粒度構成が改善する、即ち燃焼灰粒子の粒径が略均一になるので、微粒子(サブミクロン粒子)の減少により、燃焼灰を効率良く電気的に捕集できるとともに、燃焼灰中の多孔質の粗粒子が減少し、例えば粒径40μm以下の微粒子を分級にて回収することにより、燃焼灰の利用に当たって歩留まりを大幅に向上できる。この結果、燃焼灰をセメント混合材やコンクリート混和材等の土木材料として有効利用できる。   In the method for burning coal according to the sixth aspect of the present invention, when a coal combustion aid containing calcium carbonate, biomass, and coal for combustion promotion is used, the combustion promoting action of this three-component composite coal combustion aid, In addition to reducing the unburned components in the combustion ash, it is possible to suppress the coarsening and porosity of the combustion ash (fly ash) related to the unburned carbon from the combustion coal, especially in pulverized coal combustion. Strength can be improved, that is, self-hardening can be imparted to the combustion ash particles. By preventing a decrease in the strength of the combustion ash particles, it can be effectively used as a civil engineering material. In addition, among toxic components in combustion coal, volatile toxic components are fixed by contacting and reacting with calcium-based substances, which are pyrolysis products of calcium carbonate, and non-volatile toxic components are burnt ash by high temperature melting. Therefore, the property of combustion ash can be improved by immobilization and non-elution in the combustion furnace. As a result, the combustion ash can be effectively used as a new civil engineering material such as a water-permeable ground material. Further, the chemical composition of the combustion ash is improved by reducing the unburned components in the combustion ash and increasing the calcium component from the combustion aid, so that the polazone reactivity can be improved. Due to the improvement of the polyazone reactivity and the provision of the above-mentioned self-hardening property, a sufficient cement strength can be expressed with poor blending of about 5% by mass of cement. Here, the pozzolanic reaction is the hydroxylation produced by mixing the combustion ash (fly ash) with Portland cement and adding water to the silicon dioxide contained in the combustion ash (fly ash). A reaction that reacts with calcium to form a dense and durable hydrated calcium silicate. Furthermore, in the pulverized coal combustion, the coal combustion aid is instantaneously divided and the coal combustion aid is uniformly dispersed, thereby promoting the division and combustion of the nearby cloudy pulverized coal for combustion (combustion coal), The ignitability and combustibility of pulverized coal for combustion (combustion coal) can be greatly improved. In addition, the particle size composition of the combustion ash particles is improved, that is, the particle size of the combustion ash particles is substantially uniform, so that the combustion ash can be efficiently and electrically collected by reducing the fine particles (submicron particles), and the combustion ash The porous coarse particles in the inside are reduced, and for example, by collecting fine particles having a particle size of 40 μm or less by classification, the yield can be greatly improved in using the combustion ash. As a result, the combustion ash can be effectively used as a civil engineering material such as cement admixture or concrete admixture.

本発明第1実施形態の炭酸カルシウムとバイオマスを含み湿式法で製造した石炭燃焼助剤組成物を用いて石炭燃焼助剤を成形した後にこの石炭燃焼助剤を用いて燃焼用石炭を燃焼するフローチャート図である。The flowchart which burns coal for combustion using this coal combustion auxiliary agent, after shape | molding coal combustion auxiliary agent using the coal combustion auxiliary agent composition which contains calcium carbonate and biomass of 1st Embodiment of this invention, and was manufactured with the wet method. FIG. 炭酸カルシウムとバイオマスを含み乾式法で製造した石炭燃焼助剤組成物を用いて石炭燃焼助剤を成形した後にこの石炭燃焼助剤を用いて燃焼用石炭を燃焼するフローチャート図である。It is a flowchart figure which burns coal for combustion using this coal combustion assistant, after shape | molding a coal combustion assistant using the coal combustion assistant composition which contains calcium carbonate and biomass and was manufactured with the dry process. 本発明第2実施形態の炭酸カルシウムとバイオマスと燃焼促進用石炭を含み湿式法で製造した石炭燃焼助剤組成物を用いて石炭燃焼助剤を成形した後にこの石炭燃焼助剤を用いて燃焼用石炭を燃焼するフローチャート図である。The coal combustion aid is molded using the coal combustion aid composition containing the calcium carbonate, biomass and combustion promoting coal of the second embodiment of the present invention and manufactured by a wet method, and then the coal combustion aid is used for combustion. It is a flowchart figure which burns coal. 炭酸カルシウムとバイオマスと燃焼促進用石炭を含み乾式法で製造した石炭燃焼助剤組成物を用いて石炭燃焼助剤を成形した後にこの石炭燃焼助剤を用いて燃焼用石炭を燃焼するフローチャート図である。In the flowchart figure which burns coal for combustion using this coal combustion auxiliary agent after shape | molding coal combustion auxiliary agent using the coal combustion auxiliary agent composition which contains calcium carbonate, biomass, and combustion promotion coal, and was manufactured by the dry method is there. 実施例6〜8及び比較例2の石炭燃焼助剤を燃焼用石炭に混合して燃焼したときの流動層燃焼炉の高さに対する炉内温度の変化を示す図である。It is a figure which shows the change of the furnace temperature with respect to the height of a fluidized-bed combustion furnace when the coal combustion adjuvant of Examples 6-8 and the comparative example 2 is mixed with combustion coal, and combusted. 実施例9及び10と比較例3の石炭燃焼助剤を燃焼用石炭に混合して燃焼したときの未燃率に対するNOx発生量の変化を示す図である。It is a figure which shows the change of NOx generation amount with respect to an unburned rate when the coal combustion auxiliary | assistance of Example 9 and 10 and the comparative example 3 is mixed with combustion coal, and it burns. 実施例11〜16と比較例4〜6の燃焼灰等のタブレットの破壊強度試験を行っている状態を示す要部斜視図である。It is a principal part perspective view which shows the state which is performing the destructive strength test of tablets, such as combustion ash of Examples 11-16 and Comparative Examples 4-6. 実施例11〜16と比較例4〜6の燃焼灰等のタブレットの破壊強度を示す図である。It is a figure which shows the breaking strength of tablets, such as combustion ash of Examples 11-16 and Comparative Examples 4-6. 比較例3の石炭燃料助剤を燃焼用石炭に添加し粉砕して燃焼させたときに発生した燃焼灰(フライアッシュ)の粒度分布(頻度及び累積率)を示す図である。It is a figure which shows the particle size distribution (frequency and accumulation rate) of the combustion ash (fly ash) which generate | occur | produced when the coal fuel adjuvant of the comparative example 3 was added to the coal for combustion, and it grind | pulverized and combusted. 実施例9の石炭燃料助剤を燃焼用石炭に添加し粉砕して燃焼させたときに発生した燃焼灰の粒径分布(頻度及び累積率)を示す図である。It is a figure which shows the particle size distribution (frequency and accumulation rate) of the combustion ash which generate | occur | produced when the coal fuel adjuvant of Example 9 was added to the coal for combustion, and it grind | pulverized and combusted.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

<第1の実施の形態>
本発明の粉末状の石炭燃焼助剤組成物は、炭酸カルシウムとバイオマスとを含む。この石炭燃焼助剤組成物は、炭酸カルシウム100質量部に対してバイオマスを乾物ベースで10〜25質量部含有する。ここで、炭酸カルシウム100質量部に対するバイオマスの含有割合を10〜25質量部の範囲内に限定したのは次の理由に基づく。バイオマスが10質量%未満であると、バイオマスの量が少な過ぎてバイオマスがバインダとして作用せず、この組成物を用いて成形した石炭燃焼助剤の通常の貯蔵やハンドリング等に耐え得る性状及び強度を与えることができず、また石炭燃焼助剤としての着火性及び燃焼性を向上できないからである。またバイオマスが25質量%を越えると、バイオマスの含有割合を多くしたにも拘らず、組成物を成形した石炭燃焼助剤の性状や強度が殆ど向上せず、また石炭燃焼助剤としての着火性及び燃焼性も殆ど向上しないからである。更に乾物ベースとは、バイオマスを105℃の温度に1時間保持して乾燥させることにより、バイオマスの水分率が約0%になった状態をいう。
<First Embodiment>
The powdery coal combustion auxiliary composition of the present invention contains calcium carbonate and biomass. This coal combustion auxiliary composition contains 10 to 25 parts by mass of biomass on a dry matter basis with respect to 100 parts by mass of calcium carbonate. Here, the reason why the biomass content relative to 100 parts by mass of calcium carbonate is limited to the range of 10 to 25 parts by mass is based on the following reason. If the biomass is less than 10% by mass, the amount of biomass is too small and the biomass does not act as a binder, and properties and strength that can withstand normal storage, handling, etc. of coal combustion aids molded using this composition This is because the ignitability and combustibility as a coal combustion aid cannot be improved. On the other hand, if the biomass exceeds 25% by mass, the properties and strength of the coal combustion aid formed from the composition are hardly improved in spite of an increase in the content of biomass, and the ignitability as a coal combustion aid. This is because the flammability is hardly improved. Further, the dry matter base refers to a state in which the moisture content of the biomass is about 0% by holding the biomass at a temperature of 105 ° C. for 1 hour and drying it.

上記炭酸カルシウムとしては、石灰石、含可燃分炭酸カルシウム等が挙げられる。石灰石は、石灰岩を粒径150μm以下、好ましくは75μm以下に微粉砕した重質炭酸カルシウムや、生石灰を炭酸化した合成炭酸カルシウム等が用いられる。また含可燃分炭酸カルシウムは、製糖工場における製糖工程で排出される製糖排出物(ライムケーキ)や、ホタテやカキ等の殻を乾燥して粒径150μm以下、好ましくは10μm以下に粉砕した粉砕物等が用いられる。上記製糖排出物(ライムケーキ)には、炭酸カルシウムの他に有機物が含まれ、ホタテやカキ等の粉砕物には、炭酸カルシウムの他に有機質可燃成分が含まれる。上記有機物や有機質可燃成分は本発明のバイオマス、又はその一部として機能する。一方、上記バイオマスとしては、古紙、木質廃材、農業廃棄物、農産加工の副産物、農産加工の排出物等が挙げられる。古紙は、新聞紙、雑誌、段ボール等を水中で解砕した後に乾燥して用いられる。また木質廃材は、おが屑、製材加工廃材(端材)又は建築古材(木造家屋の廃材)等を乾燥し粉砕したものが用いられる。農業廃棄物、農産加工の副産物、農産加工の排出物は、稲わら、もみ殻、ビートパルプ、バガス等を乾燥して粉砕したものが用いられる。   Examples of the calcium carbonate include limestone and combustible calcium carbonate. As the limestone, heavy calcium carbonate obtained by pulverizing limestone to a particle size of 150 μm or less, preferably 75 μm or less, or synthetic calcium carbonate obtained by carbonated quick lime is used. In addition, combustible calcium carbonate is a sugar product (lime cake) discharged in a sugar manufacturing process at a sugar factory, or a pulverized product obtained by drying shells such as scallops and oysters to a particle size of 150 μm or less, preferably 10 μm or less. Etc. are used. The sugar effluent (lime cake) contains organic substances in addition to calcium carbonate, and pulverized products such as scallops and oysters contain organic combustible components in addition to calcium carbonate. The organic matter and the organic combustible component function as the biomass of the present invention or a part thereof. On the other hand, examples of the biomass include waste paper, wood waste, agricultural waste, agricultural processing by-products, agricultural processing emissions, and the like. Waste paper is used after being crushed in newspaper, magazines, cardboard and the like and then dried. Further, the wood waste material is obtained by drying and pulverizing sawdust, sawmill processing waste material (end material), old building material (wood house waste material) or the like. Agricultural waste, by-products of agricultural processing, and agricultural processing discharges are obtained by drying and pulverizing rice straw, rice husk, beet pulp, bagasse and the like.

上記粉末状の石炭燃焼助剤組成物を平板状、ブリケット状又は顆粒状に成形して石炭燃焼助剤が作製される。具体的には、粉末状の石炭燃焼助剤組成物を50〜400MPa、好ましくは200〜300MPaの圧力で成形することにより、厚さが15mm以下、好ましくは10mm以下であって縦及び横又は直径がそれぞれ100mm以下、好ましくは約50mmである平板状(正方形板状又は円板状)の石炭燃焼助剤、又は体積30ミリリットル以下、好ましくは10〜20ミリリットルのブリケット状の石炭燃焼助剤が作製される。また上記平板状又はブリケット状の石炭燃焼助剤の形成物を粒径20mm以下、好ましくは10〜1mmに解砕して、顆粒状の石炭燃焼助剤が作製される。   The powdery coal combustion aid composition is formed into a flat plate shape, briquette shape or granule shape to produce a coal combustion aid. Specifically, by molding the powdery coal combustion aid composition at a pressure of 50 to 400 MPa, preferably 200 to 300 MPa, the thickness is 15 mm or less, preferably 10 mm or less, and the length and width or diameter. Are each made of a plate-like (square plate or disk) coal combustion aid having a size of 100 mm or less, preferably about 50 mm, or a briquette coal combustion aid having a volume of 30 ml or less, preferably 10 to 20 ml. Is done. Further, the above-mentioned flat or briquette coal combustion aid is pulverized to a particle size of 20 mm or less, preferably 10 to 1 mm to produce a granular coal combustion aid.

ここで、粉末状の石炭燃焼助剤組成物の成形圧力を50〜400MPの範囲内に限定したのは、50MPa未満では硬い成形物が得られず、400MPaを越えると成形物が必要以上に硬くなってしまうからである。また、平板状の石炭燃焼助剤の厚さを15mm以下に限定したのは、15mmを越えると硬い成形物が得られないからである。片板状の石炭燃焼助剤の縦及び横又は直径を100mm以下に限定したのは、100mmを越えると成形物のハンドリング性が低下してしまうからである。またブリケット状の石炭燃焼助剤の体積を30ミリリットル以下に限定したのは、30ミリリットルを越えると成形物のハンドリング性が低下してしまうからである。更に顆粒状の石炭燃焼助剤の粒径を20mm以下に限定したのは、20mmを越えると硬い成形物が得られないからである。   Here, the molding pressure of the powdery coal combustion aid composition is limited to the range of 50 to 400 MP because a hard molded product cannot be obtained if it is less than 50 MPa, and the molded product is harder than necessary if it exceeds 400 MPa. Because it becomes. Moreover, the reason why the thickness of the flat coal combustion aid is limited to 15 mm or less is that when it exceeds 15 mm, a hard molded product cannot be obtained. The reason why the length, width, or diameter of the plate-like coal combustion aid is limited to 100 mm or less is that if it exceeds 100 mm, the handleability of the molded product is lowered. Further, the reason why the volume of the briquette coal combustion aid is limited to 30 ml or less is that when it exceeds 30 ml, the handleability of the molded product is lowered. The reason why the particle size of the granular coal combustion aid is limited to 20 mm or less is that if it exceeds 20 mm, a hard molded product cannot be obtained.

このように構成された石炭燃焼助剤では、この石炭燃焼助剤中のバイオマスがバインダとして作用し、通常の貯蔵やハンドリング等に耐え得る性状及び強度を与える。   In the coal combustion aid configured as described above, the biomass in the coal combustion aid acts as a binder and gives properties and strength that can withstand normal storage and handling.

次に、上記粉末状の石炭燃焼助剤組成物を用いて平板状又はブリケット状の石炭燃焼助剤を製造する具体的な方法を図1及び図2に基づいて説明する。石炭燃焼助剤の製造方法には、湿式法と乾式法とがある。   Next, a specific method for producing a flat or briquette coal combustion aid using the powdered coal combustion aid composition will be described with reference to FIGS. There are a wet method and a dry method as a method for producing a coal combustion aid.

[1−1] 湿式法による石炭燃焼助剤の製造方法(図1)
先ず、石灰石等の炭酸カルシウムと、古紙等のバイオマスとを所定の割合になるように秤量し、これらを水中で粒径が150μm以下、好ましくは75μm以下となるように解砕し粉砕した後、均一に混合してスラリーを調製する。次にこのスラリーを圧搾して水分が30〜40%となるように脱水した後に、この脱水物を水分率5〜10%に乾燥して高圧成形するか、又はこの乾燥物を70〜80℃に加熱した状態で高圧成形して、平板状又はブリケット状の石炭燃焼助剤を製造する。上記高圧成形は、圧縮力を主体とした剪断力のもとでバイオマスがバインダとして作用するため、バイオマス以外のバインダを添加しないバインダレスによるロール式の高圧成形である。ここで、スラリー中の混合物の粒径が150μm以下になるように解砕し粉砕したのは、150μmを越えると高圧成形物の強度及び炭酸カルシウムによる反応性が低下してしまうからである。なお、製糖排出物(ライムケーキ)を用いる場合、この製糖排出物の水分率が約30%であり、製糖排出物に含まれるバイオマスが乾物ベースで10〜13質量%であるので、炭酸カルシウム及びバイオマスの両者を含む複合原料として、上記湿式法による処理を行い、平板状又はブリケット状の石炭燃焼助剤を製造する。また、顆粒状の石炭燃焼助剤は、上記平板状又はブリケット状の石炭燃焼助剤を解砕して製造される。
[1-1] Method for producing coal combustion auxiliary by wet method (FIG. 1)
First, calcium carbonate such as limestone and biomass such as waste paper are weighed so as to have a predetermined ratio, and these are crushed and pulverized in water so that the particle size is 150 μm or less, preferably 75 μm or less, Mix uniformly to prepare a slurry. Next, the slurry is squeezed and dehydrated so that the water content becomes 30 to 40%, and then the dehydrated product is dried to a moisture content of 5 to 10% and subjected to high pressure molding, or the dried product is 70 to 80 ° C. In the state heated to high pressure, a flat or briquette coal combustion aid is produced. The high-pressure molding is a roll-type high-pressure molding by binderless without adding any binder other than biomass because biomass acts as a binder under a shearing force mainly composed of compressive force. Here, the reason why the particle size of the mixture in the slurry was pulverized and pulverized so as to be 150 μm or less is that when the particle diameter exceeds 150 μm, the strength of the high-pressure molded product and the reactivity due to calcium carbonate decrease. In addition, when using the sugar production effluent (lime cake), the water content of the sugar production effluent is about 30%, and the biomass contained in the sugar production effluent is 10 to 13% by mass on a dry matter basis. As a composite material containing both biomasses, the above wet process is performed to produce a flat or briquette coal combustion aid. The granular coal combustion aid is produced by crushing the flat or briquette coal combustion aid.

[1−2] 乾式法による石炭燃焼助剤の製造方法(図2)
先ず、石灰石等の炭酸カルシウムを粒径150μm以下、好ましくは74μm以下に粉砕する。次に、自然乾燥により水分が15%程度である木質廃材や農業廃棄物等の植物繊維質のバイオマスを粒径2.0mm以下、好ましくは1.0mm以下に粉砕する。ここで、木質廃材としては、おが屑、製材加工廃材(端材)、建築古材(木造家屋の廃材)等が挙げられ、農業廃棄物としては、稲わら、もみ殻等が挙げられる。更に、上記粉砕した炭酸カルシウム及びバイオマスを混合した後に、この混合物を室温で又は70〜80℃に加熱した状態で高圧成形して、平板状又はブリケット状の石炭燃焼助剤を製造する。上記高圧成形は、圧縮力を主体とした剪断力のもとでバイオマスがバインダとして作用するため、バイオマス以外のバインダを添加しないバインダレスによるロール式の高圧成形である。ここで、炭酸カルシウムの粒径が150μm以下になるように粉砕したのは、150μmを越えると炭酸カルシウムに由来する酸化カルシウムの表面積の減少によって燃焼用石炭中の揮発性有害成分の吸着性やこの揮発性有害成分との反応性が低下してしまうからである。なお、顆粒状の石炭燃焼助剤は、上記平板状又はブリケット状の石炭燃焼助剤を解砕して製造される。
[1-2] Method for producing coal combustion aid by dry method (Figure 2)
First, calcium carbonate such as limestone is pulverized to a particle size of 150 μm or less, preferably 74 μm or less. Next, plant fiber biomass such as wood waste and agricultural waste whose moisture is about 15% by natural drying is pulverized to a particle size of 2.0 mm or less, preferably 1.0 mm or less. Here, examples of the wood waste include sawdust, sawmill processing waste (endwood), old building materials (wood house waste), and agricultural wastes include rice straw and rice husks. Furthermore, after mixing the said grind | pulverized calcium carbonate and biomass, this mixture is high-pressure-molded in the state heated to 70-80 degreeC at room temperature, or a flat or briquette coal combustion auxiliary agent is manufactured. The high-pressure molding is a roll-type high-pressure molding by binderless without adding any binder other than biomass because biomass acts as a binder under a shearing force mainly composed of compressive force. Here, when the particle size of the calcium carbonate is reduced to 150 μm or less, if the particle size exceeds 150 μm, the surface area of the calcium oxide derived from the calcium carbonate is reduced, so that the adsorptivity of volatile harmful components in the coal for combustion is increased. This is because the reactivity with volatile harmful components decreases. The granular coal combustion aid is produced by crushing the flat or briquette coal combustion aid.

上記[1−1]及び[1−2]の方法で製造された石炭燃焼助剤を用いて燃焼用石炭を燃焼させる方法を図1及び図2に基づいて説明する。燃焼用石炭の燃焼方法には、流層層燃焼法と微粉炭燃焼法がある。   A method for burning combustion coal using the coal combustion aid produced by the methods [1-1] and [1-2] will be described with reference to FIGS. 1 and 2. Combustion methods of combustion coal include a fluidized bed combustion method and a pulverized coal combustion method.

[1−3] 流動層燃焼法による石炭の燃焼方法
先ず、粒径80mm以下、好ましくは0.5〜10.0mmの燃焼用石炭90〜95質量%と、上記[1−1]及び[1−2]の方法で製造された石炭燃焼助剤10〜5質量%とを混合する。次に、この混合物を流動層燃焼炉に供給して燃焼させる。ここで、石炭燃焼助剤の混合割合を10〜5質量%の範囲内に限定したのは、10質量%を越えるとその割合を増した程の燃焼(混焼)による効果が少なく、またユーザの費用面での負担が増大するという経済性の面での問題があり、5質量%未満では石炭燃焼助剤の持つ多面的効果を発揮するという特性を生かせないからである。なお、燃焼用石炭としては、発電や蒸気の発生等のための大型、中型又は小型のボイラ燃焼炉で使用される海外又は国内で産出される一般炭(工業分析による燃料比(固定炭素/揮発分):0.8〜2.5)が挙げられる。例えば、オーストラリアで産出されるニューランズ炭(NL炭)や、北海道の釧路で産出される釧路コールマイン炭(KCM炭)などが挙げられる。
[1-3] Coal Combustion Method Using Fluidized Bed Combustion Method First, 90 to 95% by mass of combustion coal having a particle size of 80 mm or less, preferably 0.5 to 10.0 mm, and the above [1-1] and [1] -2] is mixed with 10-5% by mass of coal combustion aid produced by the method of [-2]. Next, this mixture is supplied to a fluidized bed combustion furnace and burned. Here, the mixing ratio of the coal combustion aid is limited to the range of 10 to 5% by mass, and if the ratio exceeds 10% by mass, the effect of combustion (mixed combustion) is small as the ratio is increased. This is because there is a problem in terms of economy that the burden on the cost is increased, and if it is less than 5% by mass, the characteristic that the coal combustion auxiliary agent exhibits the multifaceted effect cannot be utilized. Combustion coal includes steam coal (fuel ratio (fixed carbon / volatility by industrial analysis) used in large or medium-sized or small boiler combustion furnaces used in power generation, steam generation, etc. Min): 0.8 to 2.5). For example, Newlands coal (NL coal) produced in Australia, Kushiro Colemine coal (KCM coal) produced in Kushiro, Hokkaido, etc. are mentioned.

[1−4] 微粉炭燃焼法による石炭の燃焼方法
先ず、粒径80mm以下、好ましくは30mm以下の燃焼用石炭90〜95質量%と、上記[1−1]及び[1−2]の方法で製造された石炭燃焼助剤10〜5質量%とを混合した後に、この混合物を通常の微粉炭燃焼で使用される石炭の粒径になるように粉砕する、即ち上記混合物を、粒径75μm以下のものを70〜80質量%含みかつ粒径250μm以下のものを全量含むように粉砕する。次にこの粉砕された混合物を微粉炭燃焼炉に供給して燃焼させる。
[1-4] Coal Combustion Method by Pulverized Coal Combustion Method First, 90 to 95% by mass of combustion coal having a particle size of 80 mm or less, preferably 30 mm or less, and the methods of [1-1] and [1-2] above. Is mixed with 10 to 5% by mass of the coal combustion aid produced in step 1, and then the mixture is pulverized to the particle size of coal used in ordinary pulverized coal combustion, that is, the mixture has a particle size of 75 μm. It grind | pulverizes so that the following may be included including 70-80 mass% and a particle size of 250 micrometers or less. Next, this pulverized mixture is supplied to a pulverized coal combustion furnace and burned.

上記[1−3]及び[1−4]の方法で石炭を燃焼させると、石炭燃焼助剤中の炭酸カルシウムが燃焼用石炭中の硫黄分等の有害成分と反応しこの有害成分を固定化して、燃焼用石炭中の有害成分の大気中への放出を抑制できる。またバイオマスにより燃焼用石炭の着火性及び燃焼性を向上できるので、燃焼灰(フライアッシュ)中に含まれる未燃成分を低減できる。この結果、燃焼用石炭を効率良く燃焼できる。   When coal is burned by the above methods [1-3] and [1-4], calcium carbonate in the coal combustion aid reacts with harmful components such as sulfur in the combustion coal to immobilize this harmful component. Thus, it is possible to suppress the release of harmful components in combustion coal into the atmosphere. Moreover, since the ignitability and combustibility of combustion coal can be improved by biomass, unburned components contained in the combustion ash (fly ash) can be reduced. As a result, the combustion coal can be burned efficiently.

<第2の実施の形態>
図3及び図4は本発明の第2の実施の形態を示す。この実施の形態では、石炭燃焼助剤組成物が、炭酸カルシウム及びバイオマスに加えて、燃焼促進用石炭を更に含む。ここで、燃焼促進用石炭としては、第1の実施の形態の燃焼用石炭と同様に、発電や蒸気の発生等のための大型、中型又は小型のボイラ燃焼炉で使用される海外又は国内で産出される一般炭(工業分析による燃料比(固定炭素/揮発分):0.8〜2.5)が挙げられる。例えば、オーストラリアで産出されるニューランズ炭(NL炭)や、北海道の釧路で産出される釧路コールマイン炭(KCM炭)などが挙げられる。但し、燃焼促進用石炭は、燃焼用石炭と同一の炭種を用いてもよく、或いは別の炭種を用いてもよい。また炭酸カルシウム及びバイオマスの合計量と燃焼促進用石炭の量とを質量比で(90:10)〜(25:75)の割合、好ましくは(60:40)〜(40:60)の割合でで含有する。ここで、炭酸カルシウム及びバイオマスの合計量と燃焼促進用石炭の量との混合割合を質量比で(90:10)〜(25:75)の範囲内に限定したのは、以下の理由による。本発明の石炭燃焼助剤は、炭酸カルシウム、バイオマス及び燃焼促進用石炭を適切な組成比で複合系混合物とすることにより、その多面的な効果を呈することから、燃焼促進用石炭の量が10質量%未満では、燃焼促進用として配合した石炭による燃焼特性上の複合効果が大きく損なわれ、また燃焼促進用石炭を燃焼用石炭と混合して微粉砕したときに選択的に微粉砕されてしまい、燃焼促進用石炭を燃焼用石炭に均一に分散するように粉砕できないという大きな難点がある。また、燃焼促進用石炭の量が75質量%を越えると、バインダとして作用している微粒状の炭酸化カルシウム及びバイオマスの減量によって、十分に強度のある石炭燃焼助剤の成形物を得られないという問題点がある。なお、上記混合割合は、バイオマスの水分率が0%である乾物ベースで測定した値である。
<Second Embodiment>
3 and 4 show a second embodiment of the present invention. In this embodiment, the coal combustion aid composition further includes combustion promoting coal in addition to calcium carbonate and biomass. Here, as the combustion promoting coal, as in the combustion coal of the first embodiment, it is used overseas or domestically used in large, medium or small boiler combustion furnaces for power generation, steam generation, etc. General coal produced (fuel ratio by industrial analysis (fixed carbon / volatile content): 0.8 to 2.5). For example, Newlands coal (NL coal) produced in Australia, Kushiro Colemine coal (KCM coal) produced in Kushiro, Hokkaido, etc. are mentioned. However, the combustion promoting coal may use the same coal type as the combustion coal, or may use a different coal type. Further, the total amount of calcium carbonate and biomass and the amount of coal for promoting combustion are mass ratios of (90:10) to (25:75), preferably (60:40) to (40:60). Contains. Here, the reason why the mixing ratio of the total amount of calcium carbonate and biomass and the amount of coal for combustion promotion is limited to the range of (90:10) to (25:75) by mass ratio is as follows. The coal combustion aid of the present invention exhibits a multifaceted effect by making calcium carbonate, biomass, and combustion promoting coal into a composite system mixture at an appropriate composition ratio. Therefore, the amount of combustion promoting coal is 10 If it is less than mass%, the combined effect on the combustion characteristics of coal blended for combustion promotion is greatly impaired, and when the combustion promotion coal is mixed with the combustion coal and pulverized, it is selectively pulverized. However, there is a great difficulty that the combustion promoting coal cannot be pulverized so as to be uniformly dispersed in the combustion coal. Also, if the amount of coal for promoting combustion exceeds 75% by mass, a sufficiently strong coal combustion aid molded product cannot be obtained due to the reduction of fine particulate calcium carbonate and biomass acting as a binder. There is a problem. In addition, the said mixing rate is the value measured on the dry matter base whose moisture content of biomass is 0%.

上記粉末状の石炭燃焼助剤組成物を平板状、ブリケット状又は顆粒状に成形して石炭燃焼助剤が作製される。具体的には、粉末状の石炭燃焼助剤組成物を50〜400MPa、好ましくは200〜300MPaの圧力で成形することにより、厚さが15mm以下、好ましくは10mm以下であって縦及び横又は直径がそれぞれ100mm以下、好ましくは約50mmである平板状(正方形板状又は円板状)の石炭燃焼助剤、又は体積30ミリリットル以下、好ましくは10〜20ミリリットルのブリケット状の石炭燃焼助剤が作製される。また上記平板状又はブリケット状の石炭燃焼助剤の形成物を粒径20mm以下、好ましくは10〜1mmに解砕して、顆粒状の石炭燃焼助剤が作製される。なお、粉末状の石炭燃焼助剤組成物の成形圧力を50〜400MPの範囲内に限定した理由、平板状の石炭燃焼助剤の厚さを15mm以下に限定した理由、片板状の石炭燃焼助剤の縦及び横又は直径を100mm以下に限定した理由、ブリケット状の石炭燃焼助剤の体積を30ミリリットル以下に限定した理由、顆粒状の石炭燃焼助剤の粒径を20mm以下に限定した理由は、第1の実施の形態に記載した理由とそれぞれ同一である。   The powdery coal combustion aid composition is formed into a flat plate shape, briquette shape or granule shape to produce a coal combustion aid. Specifically, by molding the powdery coal combustion aid composition at a pressure of 50 to 400 MPa, preferably 200 to 300 MPa, the thickness is 15 mm or less, preferably 10 mm or less, and the length and width or diameter. Are each made of a plate-like (square plate or disk) coal combustion aid having a size of 100 mm or less, preferably about 50 mm, or a briquette coal combustion aid having a volume of 30 ml or less, preferably 10 to 20 ml. Is done. Further, the above-mentioned flat or briquette coal combustion aid is pulverized to a particle size of 20 mm or less, preferably 10 to 1 mm to produce a granular coal combustion aid. The reason why the molding pressure of the powdery coal combustion aid composition is limited to the range of 50 to 400 MP, the reason that the thickness of the flat coal combustion aid composition is limited to 15 mm or less, and the single plate-like coal combustion Reasons for limiting the vertical and horizontal or diameter of the auxiliary agent to 100 mm or less, the reason for limiting the volume of briquette coal combustion auxiliary to 30 milliliters or less, and the particle size of granular coal combustion auxiliary to 20 mm or less The reason is the same as the reason described in the first embodiment.

このように構成された石炭燃焼助剤では、この石炭燃焼助剤中のバイオマスがバインダとして作用し、通常の貯蔵やハンドリング等に耐え得る性状及び強度を与える。   In the coal combustion aid configured as described above, the biomass in the coal combustion aid acts as a binder and gives properties and strength that can withstand normal storage and handling.

次に、上記粉末状の石炭燃焼助剤組成物を用いて平板状又はブリケット状の石炭燃焼助剤を製造する具体的な方法を図3及び図4に基づいて説明する。石炭燃焼助剤の製造方法には、湿式法と乾式法とがある。   Next, a specific method for producing a plate-like or briquette-like coal combustion aid using the powdery coal combustion aid composition will be described with reference to FIGS. There are a wet method and a dry method as a method for producing a coal combustion aid.

[2−1] 湿式法による石炭燃焼助剤の製造方法(図3)
先ず、石灰石等の炭酸カルシウムと、古紙等のバイオマスとを所定の割合になるように秤量し、これらを水中で粒径が150μm以下、好ましくは75μm以下となるように解砕し粉砕した後、均一に混合してスラリーを調製する。次にこのスラリーを圧搾して水分が30〜40%となるように脱水する。更にこの脱水物の水分率が5〜10%になるように乾燥した後に、粒径が3.0〜5.0mm以下になるように粉砕した粉砕物に、粒径が2.0mmになるように粉砕した燃焼促進用石炭を上記所定の割合で混合し、この混合物をそのまま高圧成形するか、又は70〜80℃に加熱した状態で高圧成形して、平板状又はブリケット状の石炭燃焼助剤を製造する。上記高圧成形は、圧縮力を主体とした剪断力のもとでバイオマスがバインダとして作用するため、バイオマス以外のバインダを添加しないバインダレスによるロール式の高圧成形である。なお、製糖排出物(ライムケーキ)を用いる場合、この製糖排出物の水分率が約30%であり、製糖排出物に含まれるバイオマスが乾物ベースで10〜13質量%であるので、炭酸カルシウム及びバイオマスの両者を含む複合原料とし、その乾燥物に燃焼促進用石炭を加えて混合し、平板状又はブリケット状の石炭燃焼助剤を製造する。また、顆粒状の石炭燃焼助剤は、上記平板状又はブリケット状の石炭燃焼助剤を解砕して製造される。
[2-1] Method for producing coal combustion auxiliary by wet method (Fig. 3)
First, calcium carbonate such as limestone and biomass such as waste paper are weighed so as to have a predetermined ratio, and these are crushed and pulverized in water so that the particle size is 150 μm or less, preferably 75 μm or less, Mix uniformly to prepare a slurry. Next, this slurry is squeezed and dehydrated so that the water content becomes 30 to 40%. Furthermore, after drying so that the moisture content of the dehydrated product is 5 to 10%, the pulverized product is pulverized so that the particle size becomes 3.0 to 5.0 mm or less so that the particle size becomes 2.0 mm. The combustion-promoting coal pulverized into the above-mentioned ratio is mixed, and the mixture is subjected to high-pressure molding as it is, or high-pressure molding in a state of being heated to 70 to 80 ° C. to obtain a flat or briquette coal combustion aid. Manufacturing. The high-pressure molding is a roll-type high-pressure molding by binderless without adding any binder other than biomass because biomass acts as a binder under a shearing force mainly composed of compressive force. In addition, when using the sugar production effluent (lime cake), the water content of the sugar production effluent is about 30%, and the biomass contained in the sugar production effluent is 10 to 13% by mass on a dry matter basis. A composite raw material containing both biomass is used, and combustion-promoting coal is added to the dried product and mixed to produce a flat or briquette coal combustion aid. The granular coal combustion aid is produced by crushing the flat or briquette coal combustion aid.

[2−2] 乾式法による石炭燃焼助剤の製造方法(図4)
先ず、石灰石等の炭酸カルシウムを、粒径が150μm以下、好ましくは75μm以下になるように粉砕する。次に、自然乾燥により水分が15%程度である木質廃材や農業廃棄物等の植物繊維質のバイオマスを粒径2.0mm以下、好ましくは1.0mm以下に粉砕する。ここで、木質廃材としては、おが屑、製材加工廃材(端材)、建築古材(木造家屋の廃材)等が挙げられ、農業廃棄物としては、稲わら、もみ殻等が挙げられる。更に、上記粉砕した炭酸カルシウムとバイオマスとを混合して得られたの混合物に、粒径が1.0mm以下になるように粉砕した燃焼促進用石炭を混合した後に、この混合物を70〜80℃に加熱した状態で高圧成形して、平板状又はブリケット状の石炭燃焼助剤を製造する。上記高圧成形は、圧縮力を主体とした剪断力のもとでバイオマスがバインダとして作用するため、バイオマス以外のバインダを添加しないバインダレスによるロール式の高圧成形である。なお、顆粒状の石炭燃焼助剤は、上記平板状又はブリケット状の石炭燃焼助剤を解砕して製造される。
[2-2] Coal combustion aid manufacturing method by dry method (Figure 4)
First, calcium carbonate such as limestone is pulverized so that the particle size is 150 μm or less, preferably 75 μm or less. Next, plant fiber biomass such as wood waste and agricultural waste whose moisture is about 15% by natural drying is pulverized to a particle size of 2.0 mm or less, preferably 1.0 mm or less. Here, examples of the wood waste include sawdust, sawmill processing waste (endwood), old building materials (wood house waste), and agricultural wastes include rice straw and rice husks. Furthermore, after mixing the combustion-promoting coal pulverized so that the particle size is 1.0 mm or less into the mixture obtained by mixing the pulverized calcium carbonate and biomass, the mixture is heated to 70 to 80 ° C. In the state heated to high pressure, a flat or briquette coal combustion aid is produced. The high-pressure molding is a roll-type high-pressure molding by binderless without adding any binder other than biomass because biomass acts as a binder under a shearing force mainly composed of compressive force. The granular coal combustion aid is produced by crushing the flat or briquette coal combustion aid.

上記[2−1]及び[2−2]の方法で製造された石炭燃焼助剤を用いて燃焼用石炭を燃焼させる方法を図3及び図4に基づいて説明する。燃焼用石炭の燃焼方法には、流層層燃焼法と微粉炭燃焼法がある。   A method for burning combustion coal using the coal combustion aid produced by the methods [2-1] and [2-2] will be described with reference to FIGS. 3 and 4. Combustion methods of combustion coal include a fluidized bed combustion method and a pulverized coal combustion method.

[2−3] 流動層燃焼法による石炭の燃焼方法
先ず、粒径80mm以下、好ましくは0.5〜10mmの燃焼用石炭と90〜95質量%と、上記[2−1]及び[2−2]の方法で製造された石炭燃焼助剤10〜5質量%とを混合する。次に、この混合物を流動層燃焼炉に供給して燃焼させる。ここで、石炭燃焼助剤の混合割合を10〜5質量%の範囲内に限定した理由は、第1の実施の形態の理由と同一である。なお、燃焼用石炭は、第1の実施の形態の燃焼用石炭と同一である。
[2-3] Coal Combustion Method by Fluidized Bed Combustion Method First, coal for combustion having a particle size of 80 mm or less, preferably 0.5 to 10 mm, 90 to 95% by mass, the above [2-1] and [2- 2) 10 to 5% by mass of coal combustion aid produced by the method of [2]. Next, this mixture is supplied to a fluidized bed combustion furnace and burned. Here, the reason why the mixing ratio of the coal combustion aid is limited to the range of 10 to 5% by mass is the same as the reason for the first embodiment. The combustion coal is the same as the combustion coal of the first embodiment.

上記[2−3]に記載した方法で石炭を燃焼させると、燃焼用石炭のみを燃焼させる場合に比べて、単位時間当たりの燃焼量が増大するとともに、石炭燃焼助剤が瞬時に分裂して石炭燃焼助剤が均一に分散することにより、燃焼用石炭の着火性及び燃焼性を大幅に向上できる。この結果、燃焼灰中の未燃成分を大幅に低減できるので、燃焼用石炭の使用量を低減できる。また上記燃焼性の向上により燃焼用石炭中の揮発分に由来するNOxの発生量は若干増大するけれども、NOxの発生量を排出基準値以下に抑制できるとともに、石炭燃焼助剤中の炭酸カルシウムに由来する酸化カルシウムと燃焼用石炭中の硫黄分との反応により燃焼用石炭中の硫黄分が大気中に殆ど放出しない。また燃焼用石炭中の有害成分を燃焼灰に固定化することにより、有害成分の大気中への放出を抑制できる。更に燃焼灰中の未燃成分が低減されるので、燃焼灰をセメント混和材として使用した場合、セメントの水和硬化特性を向上でき、またセメント等の配合を少なくすることができ、これにより土木資材として有効利用できる。   When coal is burned by the method described in [2-3] above, the amount of combustion per unit time is increased and the coal combustion aid is instantaneously split compared to the case of burning only coal for combustion. By uniformly dispersing the coal combustion aid, the ignitability and combustibility of the combustion coal can be greatly improved. As a result, unburned components in the combustion ash can be greatly reduced, so that the amount of combustion coal used can be reduced. Although the amount of NOx derived from the volatile matter in the combustion coal slightly increases due to the improvement of the combustibility, the amount of NOx generated can be suppressed below the emission standard value, and the calcium carbonate in the coal combustion aid can be reduced. The sulfur content in the combustion coal is hardly released into the atmosphere due to the reaction between the calcium oxide derived from the sulfur content in the combustion coal. In addition, by fixing harmful components in combustion coal to combustion ash, it is possible to suppress the release of harmful components to the atmosphere. Furthermore, since the unburned components in the combustion ash are reduced, when the combustion ash is used as a cement admixture, the hydration and hardening characteristics of the cement can be improved and the blending of cement and the like can be reduced. It can be used effectively as a material.

[2−4] 微粉炭燃焼法による石炭の燃焼方法
先ず、粒径80mm以下、好ましくは30mm以下の燃焼用石炭90〜95質量%と、上記[1−1]及び[1−2]の方法で製造された石炭燃焼助剤10〜5質量%とを混合した後に、この混合物を通常の微粉炭燃焼で使用される石炭の粒径になるように粉砕する、即ち上記混合物を、粒径75μm以下のものを70〜80質量%含みかつ粒径250μm以下のものを全量含むように粉砕する。次にこの粉砕された混合物を微粉炭燃焼炉に供給して燃焼させる。
[2-4] Coal Combustion Method by Pulverized Coal Combustion Method First, 90 to 95% by mass of coal for combustion having a particle size of 80 mm or less, preferably 30 mm or less, and the methods of [1-1] and [1-2] above. Is mixed with 10 to 5% by mass of the coal combustion aid produced in step 1, and then the mixture is pulverized to the particle size of coal used in ordinary pulverized coal combustion, that is, the mixture has a particle size of 75 μm. It grind | pulverizes so that the following may be included including 70-80 mass% and a particle size of 250 micrometers or less. Next, this pulverized mixture is supplied to a pulverized coal combustion furnace and burned.

上記[2−4]に記載した方法で石炭を燃焼させると、この石炭燃焼助剤の燃焼促進作用により、燃焼灰中の未燃成分を低減できるとともに、燃焼用石炭中の未燃炭素質と関連する燃焼灰の粗粒化及び燃焼灰の多孔質化を抑制でき、燃焼灰粒子の品質及び強度を向上できる、即ち燃焼灰粒子に自硬性を付与できる。この燃焼灰粒子の品質及び強度の低下を防止することにより、土木資材として有効利用できる。また燃焼用石炭中の有害成分のうち揮発性有害成分を炭酸カルシウムに由来する酸化カルシウムにより燃焼灰中に固定化してその溶出を抑制し、また微粉炭燃焼では非揮発性有害成分を高温溶融により燃焼灰に固定化して不溶出化するので、燃焼灰の性状を改善できる。この結果、燃焼灰を透水性地盤材料等の新たな土木資材として有効利用できる。また燃焼灰中の未燃成分を低減し、かつ燃焼灰の化学組成を改善することにより、ポラゾン反応性を向上できる。このポラゾン反応性の向上と上記自硬性の付与により、セメントの5質量%程度の貧配合で十分なセメント強度を発現できる。また石炭燃焼助剤中の燃焼促進用石炭が瞬時に分裂して石炭燃焼助剤が均一に分散することにより、近傍の雲状の微粉炭の燃焼を助長でき、燃焼用石炭の着火性及び燃焼性を大幅に向上できる。更に燃焼灰を有効利用する上での粒度構成が改善されることによって、微粒子状(サブミクロンオーダ)の燃焼灰を効率良く捕集できるとともに、燃焼灰の分級処理において、例えば40μm以下の燃焼灰の歩留まりも大幅に向上できる。この結果、燃焼灰をセメント混合材やコンクリート混和材等の土木材料として有効利用できる。   When coal is burned by the method described in [2-4] above, the combustion promoting action of this coal combustion aid can reduce the unburned components in the combustion ash, and it is related to the unburned carbon in the combustion coal. It is possible to suppress the coarsening of the combustion ash and the combustion ash from becoming porous, and to improve the quality and strength of the combustion ash particles, that is, to impart self-hardness to the combustion ash particles. By preventing deterioration of the quality and strength of the combustion ash particles, it can be effectively used as a civil engineering material. In addition, among toxic components in combustion coal, volatile toxic components are fixed in combustion ash by calcium oxide derived from calcium carbonate, and their elution is suppressed, and in pulverized coal combustion, non-volatile toxic components are melted at high temperature. Since it is immobilized on combustion ash and made non-eluting, the properties of combustion ash can be improved. As a result, the combustion ash can be effectively used as a new civil engineering material such as a water-permeable ground material. In addition, by reducing the unburned components in the combustion ash and improving the chemical composition of the combustion ash, the polazone reactivity can be improved. Due to the improvement of the polyazone reactivity and the provision of the above-mentioned self-hardening property, a sufficient cement strength can be expressed with poor blending of about 5% by mass of cement. Also, the combustion-promoting coal in the coal-burning aid is instantaneously split and the coal-burning aid is uniformly dispersed, which can promote the combustion of nearby cloudy pulverized coal, and the ignitability and combustion of the combustion coal Can greatly improve performance. Furthermore, by improving the particle size composition for effective use of combustion ash, fine particles (submicron order) combustion ash can be collected efficiently, and in the combustion ash classification process, for example, combustion ash of 40 μm or less The yield can be greatly improved. As a result, the combustion ash can be effectively used as a civil engineering material such as cement admixture or concrete admixture.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、炭酸カルシウムとして石灰石を粒径が75μm以下になるように粉砕し、植物繊維質のビートファイバ(バイオマス)を粒径が1.0mm以下になるように粉砕し、燃焼促進用石炭を粒径が1.0mm以下になるように粉砕した。ここで、ビートファイバの水分率は4%であった。次に質量比で上記炭酸カルシウム80質量%と、ビートファイバを20質量%とを混合し、この混合物50質量%と燃焼促進用石炭50質量%とを混合した。更にこの混合物を室温で養生した後、80℃に加熱した状態で240MPaの圧力で高圧成形し、平板状の石炭燃焼助剤を作製した。この石炭燃焼助剤は直径24.7mm、厚さ3.0mm、及び質量3gの円板状であった。次にこの石炭燃焼助剤を粒径1.0mm以下に粉砕して調整したものと、粒径1.0mm以下の燃焼用石炭とを質量比で10:90の割合で混合した後に、粒径が75μm以下になるように粉砕した。この粉末を実施例1とした。なお、上記燃焼促進用石炭及び燃焼用石炭はニューランズ炭(NL炭)であり、その組成等を表1に示す。
<Example 1>
First, limestone as calcium carbonate is pulverized to a particle size of 75 μm or less, plant fiber beet fiber (biomass) is pulverized to a particle size of 1.0 mm or less, and combustion promoting coal is sized. Was pulverized so as to be 1.0 mm or less. Here, the moisture content of the beet fiber was 4%. Next, 80% by mass of the calcium carbonate and 20% by mass of the beet fiber were mixed in a mass ratio, and 50% by mass of the mixture and 50% by mass of combustion promoting coal were mixed. Furthermore, after curing this mixture at room temperature, it was molded under high pressure at a pressure of 240 MPa while being heated to 80 ° C. to produce a flat coal combustion aid. The coal combustion aid was disk-shaped with a diameter of 24.7 mm, a thickness of 3.0 mm, and a mass of 3 g. Next, this coal combustion aid was pulverized to a particle size of 1.0 mm or less and combustion coal having a particle size of 1.0 mm or less was mixed at a mass ratio of 10:90, and then the particle size was changed. Was pulverized so as to be 75 μm or less. This powder was referred to as Example 1. The combustion promoting coal and the combustion coal are Newlands coal (NL coal), and the composition thereof is shown in Table 1.

<実施例2>
バイオマスとして水分率が約16%である古紙を用い、この古紙を粒径が2.0mm以下になるように水中で解砕し粉砕したこと以外は、実施例1と同様にして粉末を調製した。この粉末を実施例2とした。
<Example 2>
A powder was prepared in the same manner as in Example 1 except that waste paper having a moisture content of about 16% was used as biomass, and this waste paper was crushed and crushed in water so that the particle size was 2.0 mm or less. . This powder was determined as Example 2.

<実施例3>
バイオマスとして水分率が約9%である木質(木質廃材の乾燥物)を用い、この木質を粒径が1.0mm以下になるように粉砕したこと以外は、実施例1と同様にして粉末を調製した。この粉末を実施例3とした。
<Example 3>
A powder was obtained in the same manner as in Example 1 except that wood (dry wood waste) having a moisture content of about 9% was used as biomass, and the wood was pulverized to a particle size of 1.0 mm or less. Prepared. This powder was determined as Example 3.

<実施例4>
炭酸カルシウムとバイオマスを含む水分率約6%のライムケーキを用い、このライムケーキを粒径が1.0mm以下になるように解砕したこと以外は、実施例1と同様にして粉末を調製した。この粉末を実施例4とした。なお、上記ライムケーキは、乾物ベースで炭酸カルシウムを88.3質量%と、バイオマスを11.7質量%を含む混合物であった。
<Example 4>
A powder was prepared in the same manner as in Example 1 except that a lime cake containing calcium carbonate and biomass and having a water content of about 6% was crushed so that the particle size was 1.0 mm or less. . This powder was determined as Example 4. The lime cake was a dry matter-based mixture containing 88.3 mass% calcium carbonate and 11.7 mass% biomass.

<実施例5>
燃焼促進用石炭として釧路コールマン炭(KCM炭)を用いたこと以外は、実施例4と同様にして粉末を調製した。この粉末を実施例5とした。なお、上記釧路コールマン炭(KCM炭)の組成等を表1に示す。
<Example 5>
A powder was prepared in the same manner as in Example 4 except that Kushiro Coleman coal (KCM coal) was used as the combustion promoting coal. This powder was determined as Example 5. The composition of the Kushiro Coleman charcoal (KCM charcoal) is shown in Table 1.

<比較例1>
ニューランズ炭(NL炭)からなる燃料用石炭を粒径が75μm以下になるように粉砕した。この粉末を比較例1とした。
<Comparative Example 1>
Fuel coal made of Newlands coal (NL coal) was pulverized so as to have a particle size of 75 μm or less. This powder was referred to as Comparative Example 1.

<比較試験1及び評価>
実施例1〜5及び比較例1の粉末の燃焼試験を行った。具体的には、粉末を0.5gを入れた流動層中に空気を流量300ミリリットル/分で流し、粉末が流動している状態で加熱して着火温度を測定した。このとき流動層内部で発火する温度を着火温度とした。その結果を表2に示す。なお、表2には、着火温度とともに、燃焼用石炭と石炭燃焼助剤との混合割合と、燃焼促進用石炭と炭酸カルシウムとバイオマスとの混合割合と、バイオマスの炭酸カルシウムに対する質量比も示した。
<Comparative test 1 and evaluation>
The combustion test of the powders of Examples 1 to 5 and Comparative Example 1 was performed. Specifically, air was flowed at a flow rate of 300 ml / min into a fluidized bed containing 0.5 g of powder, and the ignition temperature was measured by heating while the powder was flowing. At this time, the temperature that ignites inside the fluidized bed was defined as the ignition temperature. The results are shown in Table 2. Table 2 shows the mixing ratio of combustion coal and coal combustion aid, the mixing ratio of combustion promoting coal, calcium carbonate and biomass, and the mass ratio of biomass to calcium carbonate, along with the ignition temperature. .

Figure 2014181249
Figure 2014181249

Figure 2014181249
Figure 2014181249

表2から明らかなように、比較例1では着火温度が229.8℃と高かったのに対し、実施例1〜5では着火温度が198.8〜213.4℃と低くなった。実施例1〜5では、粉末が着火するまでの温度では炭酸カルシウム(熱分解温度:800℃前後)が関与しない温度領域であることから、バイオマスを配合したことにより着火性が改善したものと考えられる。また実施例1〜3では、石炭燃焼助剤中のバイオマスの含有割合が1.0質量%と少量で着火温度の低下という効果が得られ、実施例4及び5では、ライムケーキ中のバイオマスが0.55質量%と更に少量で着火温度の低下という効果が得られた。   As is clear from Table 2, the ignition temperature in Comparative Example 1 was as high as 229.8 ° C., whereas in Examples 1 to 5, the ignition temperature was as low as 198.8 to 213.4 ° C. In Examples 1-5, since it is a temperature range in which calcium carbonate (thermal decomposition temperature: around 800 ° C.) is not involved at the temperature until the powder ignites, it is considered that the ignitability is improved by blending biomass. It is done. Moreover, in Examples 1-3, the effect of the fall of ignition temperature is acquired by the content rate of the biomass in coal combustion auxiliary | assistance with a small quantity as 1.0 mass%, and in Examples 4 and 5, the biomass in a lime cake is obtained. The effect of lowering the ignition temperature was obtained with a further small amount of 0.55% by mass.

<実施例6>
先ず、乾物ベースで炭酸カルシウムを88.3質量%と、バイオマスを11.7質量%を含み、かつ水分率が31%であるライムケーキを用意し、このライムケーキを水分が5%になるように乾燥した後に、粒径が1.0mm以下になるように解砕した。次にこの解砕物を室温で、高圧ロールプレス機を用い200MPaの圧力でバインダレス高圧成形し、縦及び横がそれぞれ約100mmであり厚さが約7mmである石炭燃焼助剤を連続的に成形した後に、直径1〜5mmに粉砕して、顆粒状のライムケーキ単味による石炭燃焼助剤(LCB)を作製した。更にニューランズ炭からなる燃焼用石炭95質量%と、上記石炭燃焼助剤5質量%とを混合した。この石炭混合物(NL炭+LCB)を実施例6とした。
<Example 6>
First, prepare a lime cake containing 88.3% by mass of calcium carbonate and 11.7% by mass of biomass on a dry matter basis and having a moisture content of 31%, so that the lime cake has a moisture content of 5%. And dried to a particle size of 1.0 mm or less. Next, this crushed material is formed into a binderless high-pressure molding at room temperature using a high-pressure roll press machine at a pressure of 200 MPa, and a coal combustion aid having a length and width of about 100 mm and a thickness of about 7 mm is continuously formed. After that, the mixture was pulverized to a diameter of 1 to 5 mm to prepare a coal combustion auxiliary (LCB) with a granular lime cake. Further, 95% by mass of combustion coal made of Newlands coal and 5% by mass of the coal combustion aid were mixed. This coal mixture (NL charcoal + LCB) was determined as Example 6.

<実施例7>
実施例6と同様に乾燥し解砕して得られたライムケーキ50質量%と、粒度1.0mm以下に粉砕したニューランズ炭からなる燃焼促進用石炭50質量%とを混合した。この混合物を室温で、高圧ロールプレス機を用い200MPaの圧力でバインダレス高圧成形し、縦及び横がそれぞれ約100mmであり厚さが約7mmである薄層平板状の石炭燃焼助剤を連続的に成形した後に、直径1〜5mmに粉砕して、顆粒状の石炭燃焼助剤(NL系CCI)を作製した。更に粒径0.25〜5mmのニューランズ炭からなる燃焼用石炭90質量%と、上記石炭燃焼助剤10質量%とを混合した。この石炭混合物(NL炭+NL系CCI)を実施例7とした。
<Example 7>
50% by mass of lime cake obtained by drying and pulverizing in the same manner as in Example 6 and 50% by mass of coal for combustion promotion consisting of Newlands coal pulverized to a particle size of 1.0 mm or less were mixed. This mixture was subjected to binderless high-pressure molding at room temperature using a high-pressure roll press at a pressure of 200 MPa, and a thin-layer flat coal combustion aid having a length and width of about 100 mm and a thickness of about 7 mm was continuously added. After being molded into a granulated coal combustion aid (NL CCI), it was pulverized to a diameter of 1 to 5 mm. Furthermore, 90% by mass of coal for combustion made of Newlands coal having a particle size of 0.25 to 5 mm and 10% by mass of the coal combustion aid were mixed. This coal mixture (NL charcoal + NL CCI) was taken as Example 7.

<実施例8>
燃焼促進用石炭として釧路コールマン炭を用いたこと以外は、実施例7と同様にして直径1〜5mmの石炭燃焼助剤(KCM系CCI)を作製し、粒径0.25〜5mmのニューランズ炭からなる燃焼用石炭90質量%と、上記石炭燃焼助剤10質量%とを混合した。この石炭混合物(NL炭+KCM系CCI)を実施例8とした。
<Example 8>
A coal combustion aid (KCM CCI) having a diameter of 1 to 5 mm was produced in the same manner as in Example 7 except that Kushiro Coleman coal was used as the combustion promoting coal, and Newlands having a particle size of 0.25 to 5 mm. 90% by mass of combustion coal made of charcoal and 10% by mass of the coal combustion aid were mixed. This coal mixture (NL charcoal + KCM CCI) was taken as Example 8.

<比較例2>
ニューランズ炭からなる燃焼用石炭に石炭燃焼助剤を添加せず、燃焼用石炭を粒径0.25〜5mmに粉砕した。この燃焼用石炭(NL炭)を比較例2とした。
<Comparative example 2>
The combustion coal was pulverized to a particle size of 0.25 to 5 mm without adding a coal combustion aid to the combustion coal made of Newlands coal. This combustion coal (NL coal) was designated as Comparative Example 2.

<比較試験2及び評価>
実施例6〜8の石炭混合物と比較例2の燃焼用石炭を、循環式の流動層燃焼炉を用いてそれぞれ燃焼試験を行った。この循環式の流動層燃焼炉は、内径が100mmであって高さが5.1mである2つの円筒状の塔を鉛直方向に延びて設け、これらの塔の上部及び下部を連通接続して構成される。そして流動層燃焼炉内の温度を850〜60℃に保持し、燃焼炉から排出される排ガスの酸素濃度を4.0%に維持しながら、実施例6〜8の石炭混合物と比較例2の燃焼用石炭をこの流動層燃焼炉に3〜5kg/時間の速度で供給して燃焼させた。その結果を図5に示す。また表3に、実施例6〜8の石炭混合物と比較例2の燃焼用石炭の平均供給速度を示す。更に表4に、実施例6〜8の石炭混合物の供給速度を、比較例2の燃焼用石炭の供給速度を1.0としたときの比で示す。
<Comparative test 2 and evaluation>
Combustion tests were performed on the coal mixtures of Examples 6 to 8 and the combustion coal of Comparative Example 2 using a circulating fluidized bed combustion furnace. In this circulating fluidized bed combustion furnace, two cylindrical towers having an inner diameter of 100 mm and a height of 5.1 m are provided extending vertically, and the upper and lower parts of these towers are connected in communication. Composed. And while maintaining the temperature in a fluidized-bed combustion furnace at 850-60 degreeC and maintaining the oxygen concentration of the waste gas discharged | emitted from a combustion furnace at 4.0%, the coal mixture of Examples 6-8 and the comparative example 2 Combustion coal was supplied to the fluidized bed combustion furnace at a rate of 3 to 5 kg / hour and burned. The result is shown in FIG. Table 3 shows the average feed rates of the coal mixtures of Examples 6 to 8 and the combustion coal of Comparative Example 2. Furthermore, in Table 4, the supply rate of the coal mixture of Examples 6-8 is shown by the ratio when the supply rate of the combustion coal of Comparative Example 2 is 1.0.

Figure 2014181249
Figure 2014181249

Figure 2014181249
Figure 2014181249

図5から明らかなように、実施例6〜7では、比較例2より燃焼炉内の温度の急激な降下からの回復が早く、しかも燃焼炉内全体で高い燃焼温度を維持できることが分かった。また、表3から明らかなように、比較例2では平均供給速度(単位時間当たりの平均供給量)が3.41kg/時間と少なかったのに対し、実施例6〜8では、平均供給速度(単位時間当たりの平均供給量)が3.49〜4.20kg/時間と多くなった。一方、表4から明らかなように、供給速度(kg/時間)は、実施例8では供給速度が比較例2の1.16倍に増大し、実施例6及び7では供給速度が比較例2の0.97倍及び0.98倍にそれぞれ減少した。但し、実施例6及び7ではLCB及びNL系CCIを5質量%及び10質量%をそれぞれ添加しているため、実質的には、供給速度が比較例2より増大している。   As is apparent from FIG. 5, in Examples 6 to 7, it was found that recovery from a rapid drop in the temperature in the combustion furnace was faster than that in Comparative Example 2, and that a high combustion temperature could be maintained throughout the combustion furnace. Further, as apparent from Table 3, in Comparative Example 2, the average supply rate (average supply amount per unit time) was as small as 3.41 kg / hour, while in Examples 6 to 8, the average supply rate ( The average supply amount per unit time) increased to 3.49 to 4.20 kg / hour. On the other hand, as is apparent from Table 4, the supply rate (kg / hour) of the supply rate in Example 8 increased 1.16 times that of Comparative Example 2, and the supply rate in Examples 6 and 7 was Comparative Example 2. Decreased to 0.97 times and 0.98 times, respectively. However, in Examples 6 and 7, 5% by mass and 10% by mass of LCB and NL-based CCI are added, respectively, so that the supply rate is substantially higher than that of Comparative Example 2.

<比較試験3及び評価>
実施例6〜8の石炭混合物と比較例2の燃焼用石炭を、循環式の流動層燃焼炉を用いて燃焼試験を行い、このとき発生する燃焼灰(フライアッシュ)に含まれる未燃分の量を測定した。そしてこれらの石炭混合物中の灰分の含有割合(乾物ベース)から燃焼効率を計算で求めた。その結果を表5に示す。また、表6に、実施例6〜8の石炭混合物と比較例2の燃焼用石炭を燃焼させたときに発生するSO2濃度とNOx濃度と、SO2濃度から算出した脱硫率を示す。
<Comparative test 3 and evaluation>
The combustion mixture of Examples 6 to 8 and the combustion coal of Comparative Example 2 were subjected to a combustion test using a circulating fluidized bed combustion furnace, and unburned content contained in the combustion ash (fly ash) generated at this time The amount was measured. And combustion efficiency was calculated | required from the content rate (dry matter base) of the ash content in these coal mixtures. The results are shown in Table 5. Table 6 shows the desulfurization rate calculated from the SO 2 concentration and NOx concentration generated when the coal mixtures of Examples 6 to 8 and the combustion coal of Comparative Example 2 are burned, and the SO 2 concentration.

Figure 2014181249
Figure 2014181249

Figure 2014181249
Figure 2014181249

表5から明らかなように、比較例2では未燃分が14.3質量%と多かったのに対し、実施例6〜8では未燃分が4.9〜8.7質量%と少なくなった。また、表5から明らかなように、比較例2では燃焼効率が96.8%と低かったのに対し、実施例6〜8では燃焼効率が97.7〜98.8質量%と高くなった。一方、表6から明らかなように、比較例2ではSO2濃度が130ppmと多かったのに対し、実施例6〜8ではSO2濃度が1〜12ppmと極めて少なくなった。これにより実施例6〜8では脱硫率が91〜99%と極めて高く、特に燃焼促進用石炭を含有する炭酸カルシウム及びバイオマスの複合系石炭燃焼助剤による効果が大きいことが分かった。また、表6から明らかなように、比較例2ではNOx濃度が120ppmであったのに対し、実施例6〜8では単位時間当たりの石炭燃焼量の増大によって石炭揮発分に由来するNOx濃度が150〜250ppmと多くなるけれども、実施例6〜8のNOx濃度は排出基準値以下(250ppm以下)であった。 As is clear from Table 5, in Comparative Example 2, the unburned content was as high as 14.3% by mass, whereas in Examples 6 to 8, the unburned content was reduced to 4.9 to 8.7% by mass. It was. As is clear from Table 5, the combustion efficiency in Comparative Example 2 was as low as 96.8%, whereas in Examples 6 to 8, the combustion efficiency was as high as 97.7 to 98.8% by mass. . On the other hand, as apparent from Table 6, in Comparative Example 2, the SO 2 concentration was as high as 130 ppm, while in Examples 6 to 8, the SO 2 concentration was extremely low as 1 to 12 ppm. Thereby, in Examples 6-8, the desulfurization rate was very high with 91-99%, and it turned out that the effect by the composite coal combustion auxiliary of calcium carbonate and biomass containing especially coal for combustion promotion is large. Further, as apparent from Table 6, the NOx concentration in Comparative Example 2 was 120 ppm, whereas in Examples 6 to 8, the NOx concentration derived from coal volatiles was increased due to an increase in the amount of coal combustion per unit time. Although increased to 150 to 250 ppm, the NOx concentrations in Examples 6 to 8 were below the emission standard value (250 ppm or less).

<比較試験4及び評価>
実施例6〜8の石炭混合物と比較例2の燃焼用石炭を、比較試験3と同様に、循環式の流動層燃焼炉を用いて燃焼試験を行い、このとき発生した燃焼灰(フライアッシュ)に含まれる有害成分(ヒ素、ホウ素、セレン及びフッ素)の量をそれぞれ測定した。その結果を表7に示す。なお、表7には、サイクロンで分離された微小な粒子状のサイクロン灰(S灰)中の有害成分と、バグフィルタに捕集された極微小な粒子状のバグフィルタ灰(B灰)中の有害成分とをそれぞれ分けて記載した。また、上記サイクロン灰(S灰)とバグフィルタ灰(B灰)との発生割合は質量比で1:1であった。
<Comparative test 4 and evaluation>
The combustion mixture of Examples 6-8 and the combustion coal of Comparative Example 2 were subjected to a combustion test using a circulating fluidized bed combustion furnace as in Comparative Test 3, and combustion ash (fly ash) generated at this time The amount of harmful components (arsenic, boron, selenium and fluorine) contained in each was measured. The results are shown in Table 7. Table 7 shows the harmful components in the fine particulate cyclone ash (S ash) separated by the cyclone and the extremely fine particulate bag filter ash (B ash) collected in the bag filter. The harmful components were separately listed. Moreover, the generation ratio of the cyclone ash (S ash) and the bag filter ash (B ash) was 1: 1 by mass ratio.

Figure 2014181249
Figure 2014181249

表7から明らかなように、比較例2ではサイクロン灰(S灰)中のフッ素が1.0mg/リットルと多かったのに対し、実施例6〜8ではサイクロン灰(S灰)中のフッ素が0.3〜0.8mg/リットルと少なくなった。また、比較例2ではバグフィルタ灰(B灰)中のフッ素が23.7mg/リットルと多かったのに対し、実施例6〜8ではバグフィルタ灰(B灰)中のフッ素がが1.2〜4.4mg/リットルと少なくなった。更に、ヒ素、ホウ素及びセレンについては、実施例6〜8及び比較例2とも土壌環境基準を大きく下回り、ヒ素、ホウ素及びセレンの溶出を抑制する効果が大きいことが分かった。   As is clear from Table 7, in Comparative Example 2, the fluorine in the cyclone ash (S ash) was as high as 1.0 mg / liter, whereas in Examples 6 to 8, the fluorine in the cyclone ash (S ash) was It decreased to 0.3 to 0.8 mg / liter. In Comparative Example 2, the amount of fluorine in the bag filter ash (B ash) was 23.7 mg / liter, whereas in Examples 6 to 8, the fluorine in the bag filter ash (B ash) was 1.2. It decreased to ˜4.4 mg / liter. Furthermore, about arsenic, boron, and selenium, it was found that Examples 6 to 8 and Comparative Example 2 were much lower than the soil environment standard, and the effect of suppressing elution of arsenic, boron, and selenium was great.

<実施例9>
実施例7の粒径1〜5mmの顆粒状の石炭燃焼助剤(NL系CCI)を燃焼用石炭(NL炭)に、質量比で10:100の割合となるように加えて混合微粉砕した。この混合微粉砕物を実施例9とした。なお、この混合微粉砕物の粒度分布は、粒径75μm以下のものが80%存在し、最大粒径が150μmであり、質量中位径DP50が約40μmになるように調製した。
<Example 9>
The granular coal combustion aid (NL CCI) having a particle diameter of 1 to 5 mm in Example 7 was added to the combustion coal (NL coal) so as to have a mass ratio of 10: 100 and mixed and pulverized. . This mixed finely pulverized product was designated as Example 9. The particle size distribution of the mixed finely pulverized product was prepared so that 80% of the particles having a particle size of 75 μm or less existed, the maximum particle size was 150 μm, and the mass median diameter D P 50 was about 40 μm.

<実施例10>
実施例8の粒径1〜5mmの顆粒状の石炭燃焼助剤(KCM系CCI)を燃焼用石炭(NL炭)に、質量比で10:100の割合となるように加えて混合微粉砕した。この混合微粉砕物を実施例10とした。なお、この混合微粉砕物の粒度分布は、粒径75μm以下のものが80%存在し、最大粒径が150μmであり、質量中位径DP50が約40μmになるように調製した。
<Example 10>
The granular coal combustion aid (KCM CCI) having a particle diameter of 1 to 5 mm in Example 8 was added to the combustion coal (NL coal) so as to have a mass ratio of 10: 100 and mixed and pulverized. . This mixed finely pulverized product was designated as Example 10. The particle size distribution of the mixed finely pulverized product was prepared so that 80% of the particles having a particle size of 75 μm or less existed, the maximum particle size was 150 μm, and the mass median diameter D P 50 was about 40 μm.

<比較例3>
比較例2の粒径0.25〜5mmの燃焼用石炭を微粉砕した。この微粉砕石炭を比較例3とした。なお、この微粉砕石炭の粒度分布は、粒径75μm以下のものが80%存在し、最大粒径が150μmであり、質量中位径DP50が約40μmになるように調製した。
<Comparative Example 3>
The combustion coal of Comparative Example 2 having a particle size of 0.25 to 5 mm was pulverized. This finely pulverized coal was used as Comparative Example 3. The particle size distribution of the finely pulverized coal was prepared such that 80% of the particles having a particle size of 75 μm or less existed, the maximum particle size was 150 μm, and the mass median diameter D P 50 was about 40 μm.

<比較試験5及び評価>
実施例9及び10の混合微粉砕物と比較例3の微粉砕石炭を、微粉炭燃焼炉を用いて燃焼試験を行った。この微粉炭燃焼炉は、内径が300mmであって高さが2.8mであり、実機ボイラの燃焼を模擬した乱流炉(混合微粉砕物又は微粉砕石炭の供給速度:6〜7kg/時間)である。また、温度1450℃に維持された炉内に混合微粉砕物又は微粉砕石炭を供給し、二段燃焼空気の吹き込み位置や空気量を変えて、前段燃焼空気比が0.9となり、二段燃焼空気比が0.35となり、全体の燃焼空気比が1.25となり、更に排ガス中の酸素濃度が4.2%となるような運転条件下で燃焼試験を行った。そして上記運転条件下で得られた燃焼灰中の未燃成分の含有割合を測定して未燃率を算出するとともに、NOxの発生量を測定した。上記未燃率とNOxの発生量の関係を図6に示す。なお、NOxの発生量はO2−6%換算で行った。
<Comparative test 5 and evaluation>
Combustion tests were performed on the mixed finely pulverized products of Examples 9 and 10 and the finely pulverized coal of Comparative Example 3 using a pulverized coal combustion furnace. This pulverized coal combustion furnace has an inner diameter of 300 mm and a height of 2.8 m, and is a turbulent flow furnace simulating the combustion of an actual boiler (feed rate of mixed pulverized product or pulverized coal: 6 to 7 kg / hour) ). Also, the mixed finely pulverized product or finely pulverized coal is supplied into a furnace maintained at a temperature of 1450 ° C., and the front stage combustion air ratio becomes 0.9 by changing the blowing position and the amount of air of the second stage combustion air. A combustion test was performed under operating conditions such that the combustion air ratio was 0.35, the overall combustion air ratio was 1.25, and the oxygen concentration in the exhaust gas was 4.2%. And while measuring the content rate of the unburned component in the combustion ash obtained on the said operating condition, the unburned rate was computed, and the generation amount of NOx was measured. The relationship between the unburned rate and the amount of NOx generated is shown in FIG. Incidentally, the amount of NOx was carried out in O 2 -6% conversion.

図6から明らかなように、比較例3では未燃率に対してNOxの発生量が多かったのに対し、実施例9及び10では未燃率に対してNOxの発生量が少なくなり、石炭の燃え切り性(未燃率)を低下させずに、NOxの排出量を低く抑えた燃焼が可能になった。   As apparent from FIG. 6, in Comparative Example 3, the amount of NOx generated relative to the unburned rate was large, whereas in Examples 9 and 10, the amount of NOx generated relative to the unburned rate decreased. Combustion with reduced NOx emissions can be achieved without reducing the burn-off (unburned rate).

<比較試験6及び評価>
実施例9及び10の混合微粉砕物と比較例3の微粉砕石炭を、比較試験5と同様に、微粉炭燃焼炉を用いて燃焼試験を行い、このとき発生した燃焼灰(フライアッシュ)に含まれる有害成分(六価クロム、ヒ素、セレン、ホウ素及びフッ素)の水中溶出量をそれぞれ土壌環境基準測定方法により測定した。その結果を表8に示す。
<Comparative test 6 and evaluation>
The mixed finely pulverized product of Examples 9 and 10 and the finely pulverized coal of Comparative Example 3 were subjected to a combustion test using a pulverized coal combustion furnace in the same manner as Comparative Test 5, and the combustion ash (fly ash) generated at this time was used. The amount of contained harmful components (hexavalent chromium, arsenic, selenium, boron and fluorine) in water was measured by the soil environment standard measurement method. The results are shown in Table 8.

Figure 2014181249
Figure 2014181249

表8から明らかなように、六価クロム、ヒ素、セレン及びホウ素については、実施例9、実施例10及び比較例3とも土壌環境基準を下回り、六価クロム、ヒ素、セレン及びホウ素の溶出を抑制する効果があることが分かった。特に、六価クロム及びホウ素については、実施例9及び10とも土壌環境基準を大きく下回り、六価クロム及びホウ素の溶出を抑制する効果が大きいことが分かった。また、フッ素に関しては、いずれも土壌環境基準の上限値0.8mg/リットルを越えているけれども、比較例3では5.9mg/リットルと多かったのに対し、実施例9及び10ではそれぞれ3.5mg/リットル及び5.0mg/リットルと少なくなった。   As is apparent from Table 8, for hexavalent chromium, arsenic, selenium and boron, both Example 9, Example 10 and Comparative Example 3 were below the soil environmental standards, and elution of hexavalent chromium, arsenic, selenium and boron was observed. It was found that there is an inhibitory effect. In particular, for hexavalent chromium and boron, both Examples 9 and 10 were significantly below the soil environmental standards, and it was found that the effect of suppressing elution of hexavalent chromium and boron was great. Moreover, regarding fluorine, although both exceeded the upper limit of 0.8 mg / liter of soil environmental standards, it was as high as 5.9 mg / liter in Comparative Example 3, whereas in Examples 9 and 10, it was 3. It decreased to 5 mg / liter and 5.0 mg / liter.

<比較試験7及び評価>
実施例9及び10の混合微粉砕物と比較例3の微粉砕石炭とに含まれるフッ素の含有量について蛍光X線による分析を行った。また、実施例9及び10の混合微粉砕物と比較例3の微粉砕石炭を、比較試験5と同様に、微粉炭燃焼炉を用いて燃焼試験を行い、実施例9、実施例10及び比較例3の燃焼灰中のフッ素の含有量について蛍光X線による分析を行った。
<Comparative test 7 and evaluation>
The content of fluorine contained in the mixed finely pulverized products of Examples 9 and 10 and the finely pulverized coal of Comparative Example 3 was analyzed by fluorescent X-ray. Further, the mixed finely pulverized product of Examples 9 and 10 and the finely pulverized coal of Comparative Example 3 were subjected to a combustion test using a pulverized coal combustion furnace in the same manner as in Comparative Test 5, and Example 9, Example 10 and Comparative Example were compared. The content of fluorine in the combustion ash of Example 3 was analyzed by fluorescent X-ray.

上記蛍光X線による分析を行った結果、比較例3の燃焼灰ではその検出限界からフッ素を検出できなかったのに対し、実施例9及び10の燃焼灰では原炭(燃焼用石炭)に含まれるフッ素の含有量に近い値を確認できた。従って、比較例3では、原炭(燃焼用石炭)中のフッ素の含有量は溶出成分として検出できる程度の量が燃焼灰に付着し、その大部分が大気に放出されたものと考えられる。これに対し、実施例9及び10では、フッ素の一部は溶出するけれども、フッ素の大部分は燃焼時に石炭燃焼助剤中の炭酸カルシウムに由来する酸化カルシウムと接触し反応することによって燃焼灰中に固定されたものと考えられる。   As a result of the X-ray fluorescence analysis, the combustion ash of Comparative Example 3 could not detect fluorine due to its detection limit, whereas the combustion ash of Examples 9 and 10 was included in raw coal (combustion coal). A value close to the fluorine content was confirmed. Therefore, in Comparative Example 3, it is considered that the fluorine content in the raw coal (combustion coal) was attached to the combustion ash in such an amount that it could be detected as an elution component, and most of it was released to the atmosphere. On the other hand, in Examples 9 and 10, although a part of fluorine is eluted, most of the fluorine comes into contact with and reacts with calcium oxide derived from calcium carbonate in the coal combustion aid during combustion. It is thought that it was fixed to.

<実施例11>
実施例9の混合微粉砕物を微粉炭燃焼炉による燃焼で生成された燃焼灰(FA)80質量%に、水20質量%を加えて混合し、この混合物を0.1MPaの低圧で円板状のタブレット(質量:3g)を成形した。このタブレットを実施例11とした。
<Example 11>
The mixed finely pulverized product of Example 9 was mixed by adding 20% by mass of water to 80% by mass of combustion ash (FA) produced by combustion in a pulverized coal combustion furnace, and this mixture was disc at a low pressure of 0.1 MPa. Shaped tablets (mass: 3 g). This tablet was referred to as Example 11.

<実施例12>
実施例9の混合微粉砕物を実施例10の粉砕混合物に代えたこと以外は、実施例11と同様にしてタブレットを成形した。このタブレットを実施例12とした。
<Example 12>
A tablet was formed in the same manner as in Example 11 except that the finely mixed powder in Example 9 was replaced with the finely ground mixture in Example 10. This tablet was referred to as Example 12.

<実施例13>
実施例9の混合微粉砕物を微粉炭燃焼炉による燃焼で生成された燃焼灰(FA)78質量%に、水20質量%とセメント2質量%を加えて混合し、この混合物を0.1MPaの低圧で円板状のタブレット(質量:3g)を成形した。このタブレットを実施例13とした。
<Example 13>
20% by mass of water and 2% by mass of cement were added to and mixed with 78% by mass of combustion ash (FA) produced by combustion in a pulverized coal combustion furnace, and the mixture was mixed with 0.1 MPa. A disk-shaped tablet (mass: 3 g) was molded at a low pressure of 5 mm. This tablet was referred to as Example 13.

<実施例14>
実施例9の混合微粉砕物を実施例10の粉砕混合物に代えたこと以外は、実施例13と同様にしてタブレットを成形した。このタブレットを実施例14とした。
<Example 14>
A tablet was formed in the same manner as in Example 13, except that the finely mixed product of Example 9 was replaced with the finely mixed product of Example 10. This tablet was referred to as Example 14.

<実施例15>
実施例9の混合微粉砕物を微粉炭燃焼炉による燃焼で生成された燃焼灰(FA)78質量%に、水20質量%とCaO2質量%を加えて混合し、この混合物を0.1MPaの低圧で円板状のタブレット(質量:3g)を成形した。このタブレットを実施例15とした。
<Example 15>
20% by mass of water and 2% by mass of CaO were added to and mixed with 78% by mass of combustion ash (FA) produced by combustion in a pulverized coal combustion furnace with the mixed finely pulverized product of Example 9, and this mixture was mixed with 0.1 MPa. A disk-shaped tablet (mass: 3 g) was molded at low pressure. This tablet was referred to as Example 15.

<実施例16>
実施例9の混合微粉砕物を実施例10の混合微粉砕物に代えたこと以外は、実施例15と同様にしてタブレットを成形した。このタブレットを実施例16とした。
<Example 16>
A tablet was formed in the same manner as in Example 15 except that the mixed finely pulverized product of Example 9 was replaced with the mixed pulverized product of Example 10. This tablet was referred to as Example 16.

<比較例4>
実施例9の混合微粉砕物を比較例3の微粉砕石炭に代えたこと以外は、実施例11と同様にしてタブレットを成形した。このタブレットを比較例4とした。
<Comparative example 4>
A tablet was formed in the same manner as in Example 11 except that the mixed finely pulverized product of Example 9 was replaced with the finely pulverized coal of Comparative Example 3. This tablet was referred to as Comparative Example 4.

<比較例5>
実施例9の混合微粉砕物を比較例3の微粉砕石炭に代えたこと以外は、実施例13と同様にしてタブレットを成形した。このタブレットを比較例5とした。
<Comparative Example 5>
A tablet was formed in the same manner as in Example 13, except that the mixed finely pulverized product of Example 9 was replaced with the finely pulverized coal of Comparative Example 3. This tablet was referred to as Comparative Example 5.

<比較例6>
実施例9の混合微粉砕物を比較例3の微粉砕石炭に代えたこと以外は、実施例15と同様にしてタブレットを成形した。このタブレットを比較例6とした。
<Comparative Example 6>
A tablet was molded in the same manner as in Example 15 except that the mixed finely pulverized product of Example 9 was replaced with the finely pulverized coal of Comparative Example 3. This tablet was designated as Comparative Example 6.

<比較試験8及び評価>
実施例11〜16及び比較例4〜6のタブレットの強度を圧壊試験機により測定した。この圧壊試験機は、図7に示すように、上下動可能なシリンダ11の下端に球状圧子12を取付けて構成される。この球状圧子12をタブレット13に押込んで、タブレット13にひび割れが生じたときの荷重をタブレット13の強度とした。その結果を図8に示す。
<Comparative test 8 and evaluation>
The strength of the tablets of Examples 11 to 16 and Comparative Examples 4 to 6 was measured with a crushing tester. As shown in FIG. 7, this crushing tester is configured by attaching a spherical indenter 12 to the lower end of a cylinder 11 that can move up and down. The spherical indenter 12 was pushed into the tablet 13 and the load when the tablet 13 was cracked was defined as the strength of the tablet 13. The result is shown in FIG.

図8から明らかなように、比較例4ではタブレットの強度が0.33kgと低く、自硬性を示さなかったのに対し、実施例11及び12ではタブレットの強度が1.21kg及び0.70kgと高くなって、自硬性を呈した。また、比較例5ではタブレットの強度がセメントの配合によっても0.42kgと低かったのに対し、実施例13及び14ではタブレットの強度が1.68kg及び1.40kgと高くなった。更に、比較例6ではタブレットの強度がCaOの配合によっても約0.83kgと低かったのに対し、実施例15及び16ではタブレットの強度が1.23kg及び1.30kgと高くなった。以上の結果から明らかなように、実施例11〜16の混合微粉砕物の燃焼により得られた燃焼灰では自硬性の付与とともに、セメント又はCaOの貧配合(僅かな配合)で、水和硬化性反応による強度が発現した。   As is clear from FIG. 8, in Comparative Example 4, the tablet strength was as low as 0.33 kg and did not show self-hardening, whereas in Examples 11 and 12, the tablet strength was 1.21 kg and 0.70 kg. It became high and exhibited self-hardness. In Comparative Example 5, the strength of the tablet was as low as 0.42 kg depending on the blending of cement, whereas in Examples 13 and 14, the strength of the tablet was as high as 1.68 kg and 1.40 kg. Furthermore, in Comparative Example 6, the tablet strength was as low as about 0.83 kg even when CaO was added, whereas in Examples 15 and 16, the tablet strength was as high as 1.23 kg and 1.30 kg. As is clear from the above results, the combustion ash obtained by burning the mixed finely pulverized products of Examples 11 to 16 is self-hardening and is hydrated and hardened with poor blending of cement or CaO (slight blending). Intensity due to sexual reaction was developed.

<比較試験9及び評価>
実施例9の混合微粉砕物と比較例3の微粉砕石炭を、微粉炭燃焼炉を用いてそれぞれ燃焼試験を行い、燃焼灰の粒度分布をそれぞれ調べた。その比較例3の微粉砕石炭の燃焼、即ちニューランズ炭(NL炭)のみの燃焼によって得られた燃焼灰の粒度分布を図9に示し、実施例9の混合微粉砕物の燃焼、即ちニューランズ炭(NL炭)と石炭燃焼助剤(NL系CCI)との混合微粉砕物の燃焼によって得られた燃焼灰の粒度分布を図10に示す。
<Comparative test 9 and evaluation>
Combustion tests were performed on the mixed finely pulverized product of Example 9 and the finely pulverized coal of Comparative Example 3 using a pulverized coal combustion furnace, and the particle size distribution of the combustion ash was examined. FIG. 9 shows the particle size distribution of the combustion ash obtained by combustion of the finely pulverized coal of Comparative Example 3, that is, the combustion of only Newlands coal (NL coal). FIG. 10 shows the particle size distribution of combustion ash obtained by combustion of a mixed finely pulverized product of Lands coal (NL coal) and coal combustion aid (NL CCI).

図9から明らかなように、比較例3では、未燃分が7.0%(乾物ベース)であり、平均粒径を約17μmとして、その粒度分布が0.3〜100.5μmと広い範囲に分布したのに対し、図10から明らかなように、実施例9では、未燃分が4.2%(乾物ベース)に減少するとともに、平均粒径を約11μmとして、その粒度分布が0.6〜37.0μmと狭い範囲に分布した。このことから、燃焼灰の微粒子(サブミクロン粒子)の減少は集塵効果の向上に結び付き、粒径の粗粒側から細流側への大きな移行は燃焼灰を有効利用するために燃焼灰の粒度構成を改善できることが分かった。   As is clear from FIG. 9, in Comparative Example 3, the unburned content is 7.0% (based on dry matter), the average particle size is about 17 μm, and the particle size distribution is as wide as 0.3 to 100.5 μm. As is apparent from FIG. 10, in Example 9, the unburned content decreased to 4.2% (dry matter basis), the average particle size was about 11 μm, and the particle size distribution was 0. It was distributed in a narrow range of .6 to 37.0 μm. From this, the reduction of fine particles (submicron particles) of combustion ash leads to an improvement in the dust collection effect, and a large shift of the particle size from the coarse particle side to the trickle side means that the particle size of the combustion ash is effective for effective use of the combustion ash It was found that the configuration could be improved.

Claims (6)

燃焼用石炭に添加するために用いられ、炭酸カルシウムとバイオマスとを含む粉末状の石炭燃焼助剤組成物であって、
前記炭酸カルシウム100質量部に対して前記バイオマスを10〜25質量部含有する
ことを特徴とする石炭燃焼助剤組成物。
A powdery coal combustion aid composition used to add to combustion coal and containing calcium carbonate and biomass,
10-25 mass parts of said biomass is contained with respect to 100 mass parts of said calcium carbonate. The coal combustion adjuvant composition characterized by the above-mentioned.
燃焼促進用石炭を更に含み、前記炭酸カルシウム及び前記バイオマスの合計量と前記燃焼促進用石炭の量とを質量比で(90:10)〜(25:75)の割合で含有する請求項1記載の石炭燃焼助剤組成物。   The coal for combustion promotion is further included, and the total amount of the calcium carbonate and the biomass and the amount of the coal for combustion promotion are contained in a mass ratio of (90:10) to (25:75). Coal combustion aid composition. 請求項1又は2に記載の粉末状の石炭燃焼助剤組成物を平板状、ブリケット状又は顆粒状に成形してなる石炭燃焼助剤。   A coal combustion aid formed by molding the powdery coal combustion aid composition according to claim 1 or 2 into a flat plate shape, a briquette shape or a granule shape. 請求項1又は2に記載の粉末状の石炭燃焼助剤組成物を50〜400MPaの圧力で、厚さが15mm以下であって縦及び横又は直径が100mm以下である平板状に、又は30ミリリットル以下のブリケット状に形成されるか、或いはこれらの形成物を粒径20mm以下の顆粒状に解砕して形成された石炭燃焼助剤。   The powdery coal combustion auxiliary composition according to claim 1 or 2 in a plate shape having a thickness of 15 mm or less and a length, width, or diameter of 100 mm or less at a pressure of 50 to 400 MPa, or 30 ml. A coal combustion aid formed into the following briquettes or formed by pulverizing these formations into granules having a particle size of 20 mm or less. 粒径80mm以下の燃料用石炭90〜95質量%に対して請求項3又は4記載の石炭燃焼助剤を10〜5質量%混合する工程と、
前記混合物を流動層燃焼炉に供給して燃焼させる工程と
を含む石炭の燃焼方法。
A step of mixing 10 to 5% by mass of the coal combustion aid according to claim 3 or 4 with respect to 90 to 95% by mass of fuel coal having a particle size of 80 mm or less;
Supplying the mixture to a fluidized bed combustion furnace and combusting the mixture.
粒径80mm以下の燃焼用石炭90〜95質量%に対して請求項3又は4記載の石炭燃焼助剤を10〜5質量%混合し粒径75μm以下のものを70〜80質量%含むように粉砕する工程と、
前記粉砕された混合物を微粉炭燃焼炉に供給して燃焼させる工程と
を含む石炭の燃焼方法。
The coal combustion aid according to claim 3 or 4 is mixed with 90 to 95% by mass of combustion coal having a particle size of 80 mm or less so as to contain 70 to 80% by mass of particles having a particle size of 75 μm or less. Crushing step;
Supplying the pulverized mixture to a pulverized coal combustion furnace and burning the mixture.
JP2013054896A 2013-03-18 2013-03-18 Coal combustion aid composition, coal combustion aid using the composition, and method for burning coal using the coal combustion aid Active JP6118598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054896A JP6118598B2 (en) 2013-03-18 2013-03-18 Coal combustion aid composition, coal combustion aid using the composition, and method for burning coal using the coal combustion aid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054896A JP6118598B2 (en) 2013-03-18 2013-03-18 Coal combustion aid composition, coal combustion aid using the composition, and method for burning coal using the coal combustion aid

Publications (2)

Publication Number Publication Date
JP2014181249A true JP2014181249A (en) 2014-09-29
JP6118598B2 JP6118598B2 (en) 2017-04-19

Family

ID=51700286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054896A Active JP6118598B2 (en) 2013-03-18 2013-03-18 Coal combustion aid composition, coal combustion aid using the composition, and method for burning coal using the coal combustion aid

Country Status (1)

Country Link
JP (1) JP6118598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145706A (en) * 2015-01-30 2016-08-12 新日鐵住金株式会社 Pulverized coal firing boiler facility
CN108913261A (en) * 2018-07-06 2018-11-30 合肥市晶谷农业科技开发有限公司 A kind of crops biomass fuel of high heating value

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098673A (en) * 2003-09-05 2005-04-14 Idemitsu Kosan Co Ltd Method of removing sulfur in fluid bed device and desulfurizing agent
JP2011016041A (en) * 2009-07-07 2011-01-27 Kumagai Gumi Co Ltd Treatment method for recycling of lime cake
JP2014044042A (en) * 2012-07-31 2014-03-13 Idemitsu Kosan Co Ltd Method for removing sulfur contents in pulverized coal combustion device and desulfurization agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098673A (en) * 2003-09-05 2005-04-14 Idemitsu Kosan Co Ltd Method of removing sulfur in fluid bed device and desulfurizing agent
JP2011016041A (en) * 2009-07-07 2011-01-27 Kumagai Gumi Co Ltd Treatment method for recycling of lime cake
JP2014044042A (en) * 2012-07-31 2014-03-13 Idemitsu Kosan Co Ltd Method for removing sulfur contents in pulverized coal combustion device and desulfurization agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145706A (en) * 2015-01-30 2016-08-12 新日鐵住金株式会社 Pulverized coal firing boiler facility
CN108913261A (en) * 2018-07-06 2018-11-30 合肥市晶谷农业科技开发有限公司 A kind of crops biomass fuel of high heating value

Also Published As

Publication number Publication date
JP6118598B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
Gonzalez-Kunz et al. Plant biomass ashes in cement-based building materials. Feasibility as eco-efficient structural mortars and grouts
CN104479784B (en) A kind of environment-friendly type adds the processing method of charcoal biomass fuel
Yang et al. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor
Saptoadi The best biobriquette dimension and its particle size
CN105087906B (en) A kind of Ore Sintering Process NOXThe method of emission reduction
JP5941183B1 (en) Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid
CN101508928A (en) Method for producing coal with garbage
JP6118598B2 (en) Coal combustion aid composition, coal combustion aid using the composition, and method for burning coal using the coal combustion aid
CN101899350B (en) Preparation method of biomass solid-molded composite fuel and biomass solid-molded composite fuel
CN102787000A (en) Coal firing boiler smoke gas dry process desulfurizing agent with calorific value
WO2007089046A1 (en) Coal/biomass composite fuel
JP2007262283A (en) Waste-containing fuel, and its preparing method and using method
CN105950250A (en) Environment-friendly and inflammable fuel rod and manufacturing process thereof
CN108329970A (en) A kind of environment-friendly biomass fuel and preparation method
Kłosek-Wawrzyn et al. Influence of pregranulation and low-pressure compaction on the properties of ceramic materials incorporating clay and spent coffee grounds
Goel et al. Paper mill sludge (PMS) and degraded municipal solid waste (DMSW) blended fired bricks–a review
Pedersen et al. The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete
JP4000466B2 (en) How to use waste oil treatment agent after absorbing waste oil
CN113430027B (en) Biomass fuel
KR100232406B1 (en) Use of alkaline earth metal hydroxides as a binder additive for refuse derived fuel
PL212868B1 (en) Coal-and-biomass briquettes and method of their manufacturing
KR20180096188A (en) Method for fuel pellet using waste and, fuel pellet made by this same
JP6692877B2 (en) Molded fuel, manufacturing method thereof, and calcination method of limestone
RU83503U1 (en) FUEL BRIQUETTE
JP2008137820A (en) Method for production of artificial aggregate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6118598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250