JP2014044042A - Method for removing sulfur contents in pulverized coal combustion device and desulfurization agent - Google Patents

Method for removing sulfur contents in pulverized coal combustion device and desulfurization agent Download PDF

Info

Publication number
JP2014044042A
JP2014044042A JP2013068608A JP2013068608A JP2014044042A JP 2014044042 A JP2014044042 A JP 2014044042A JP 2013068608 A JP2013068608 A JP 2013068608A JP 2013068608 A JP2013068608 A JP 2013068608A JP 2014044042 A JP2014044042 A JP 2014044042A
Authority
JP
Japan
Prior art keywords
pulverized coal
coal combustion
furnace
desulfurization
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013068608A
Other languages
Japanese (ja)
Other versions
JP6224903B2 (en
Inventor
Shigeyoshi Ono
重好 小野
Akihiro Hoshino
明宏 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2013068608A priority Critical patent/JP6224903B2/en
Priority to KR1020130090071A priority patent/KR20140016840A/en
Publication of JP2014044042A publication Critical patent/JP2014044042A/en
Application granted granted Critical
Publication of JP6224903B2 publication Critical patent/JP6224903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desulfurization agent which provides a desulfurization agent utilization rate higher than that in a case of using lime stone as a desulfurization agent in a pulverized coal combustion furnace, and to provide a method for removing sulfur contents in a pulverized coal combustion furnace using the desulfurization agent.SOLUTION: A method for removing sulfur contents of gas generating in a pulverized coal combustion furnace in a pulverized coal combustion device, includes inputting a desulfurization agent containing a lime cake into the pulverized coal combustion furnace.

Description

本発明は、微粉炭燃焼装置における硫黄分の除去方法及び脱硫剤に関する。   The present invention relates to a sulfur removal method and a desulfurization agent in a pulverized coal combustion apparatus.

微粉炭燃焼炉に使用する燃料には硫黄分が含まれていることが多く、硫黄の燃焼によって生ずる亜硫酸ガス、硫酸ガス等の有害な硫黄酸化物(SO)を環境基準に適合する濃度まで除去して燃焼ガスを排出しなければならない。
従来、燃焼炉で使用されている脱硫方法には、大きく分けて次の2つの方法がある。
Fuels used in pulverized coal combustion furnaces often contain sulfur, and harmful sulfur oxides (SO x ) such as sulfurous acid gas and sulfuric acid gas generated by the combustion of sulfur to a concentration that meets environmental standards It must be removed and the combustion gas discharged.
Conventional desulfurization methods used in combustion furnaces are roughly divided into the following two methods.

(1)炉内脱硫法;炉内に脱硫剤を投入し、硫黄酸化物を吸収除去する方法。
通常、脱硫剤としては、石灰石やドロマイトが使用され、この方法は、主に流動層炉で使用されている。
(2)排煙脱硫法;炉後流の煙道の一部に脱硫剤と排ガスとの接触層(塔)を設け、硫黄酸化物と脱硫剤の中和反応によって排ガス中の硫黄酸化物を除去する方法。この方法では、硫黄酸化物と脱硫剤である石灰石が中和反応し石膏に変化するため、石膏が有効利用できる。
(1) In-furnace desulfurization method: A method in which a desulfurizing agent is introduced into the furnace and sulfur oxides are absorbed and removed.
Usually, limestone or dolomite is used as a desulfurizing agent, and this method is mainly used in a fluidized bed furnace.
(2) Flue gas desulfurization method: A contact layer (tower) of desulfurization agent and exhaust gas is provided in a part of the flue downstream of the furnace, and sulfur oxide in exhaust gas is removed by neutralization reaction of sulfur oxide and desulfurization agent. How to remove. In this method, sulfur oxide and limestone, which is a desulfurizing agent, are neutralized and changed to gypsum, so that gypsum can be used effectively.

上記炉内脱硫法においては、脱硫剤として使用されるカルシウムを主成分とする石灰石やドロマイトの利用率が低く、ミクロンオーダーの粒径の石灰石を微粉炭燃焼炉で使用する場合、石灰石の利用率は5〜10%程度であり、硫黄分1.2%の石炭使用時に脱硫率40%を達成するためには、燃料である石炭に対して10%以上の石灰石を吹き込む必要がある。この石灰石の利用率の低さは、ミクロンオーダーの石灰石では、その表面でのみ脱硫反応が起こり、粒子の内部までは反応に寄与しないため、多くのカルシウムが未利用のまま残ってしまうためである。   In the above in-furnace desulfurization method, the utilization rate of limestone and dolomite mainly composed of calcium used as a desulfurization agent is low, and when using limestone with a particle size of micron order in a pulverized coal combustion furnace, the utilization rate of limestone Is about 5 to 10%, and in order to achieve a desulfurization rate of 40% when using coal having a sulfur content of 1.2%, it is necessary to inject 10% or more of limestone into coal as fuel. This low utilization rate of limestone is because in micron order limestone, the desulfurization reaction occurs only on the surface and does not contribute to the reaction inside the particles, so a lot of calcium remains unused. .

このような問題を解決するため、より粒子径が細かく、また、利用可能な表面積の割合が多く、反応性にも優れた脱硫剤として、酸化カルシウム(CaO)や水酸化カルシウム(Ca(OH))等の微粒子を用いる方法が検討されてきた。
しかし、上記のような方法では、石灰石を脱炭酸させてCaOやCa(OH)を製造するのに多量のエネルギーを要し、経済性に劣る。
In order to solve such problems, calcium oxide (CaO) or calcium hydroxide (Ca (OH)) is used as a desulfurizing agent having a finer particle diameter, a larger proportion of available surface area, and excellent reactivity. A method using fine particles such as 2 ) has been studied.
However, in the above method, a large amount of energy is required to produce CaO and Ca (OH) 2 by decarboxylating limestone, which is inferior in economic efficiency.

特許文献1には、ライムケーキを焼成して生石灰を得、前記生石灰を水のみで、かつ生石灰と水とを所定の質量比で消化して得た消石灰を、排煙処理剤として用いる排煙処理方法が開示されている。   In Patent Document 1, lime cake is baked to obtain quick lime, and the lime is obtained by digesting quick lime with water only at a predetermined mass ratio as a flue gas treating agent. A processing method is disclosed.

特許文献2には、流動層炉に、最大粒子径が0.08mm以上である粒子径に調整したライムケーキを含む脱硫剤を投入することを特徴とする流動層装置における硫黄分の除去方法が開示されている。   Patent Document 2 discloses a method for removing a sulfur content in a fluidized bed apparatus, wherein a desulfurizing agent containing a lime cake adjusted to a particle size having a maximum particle size of 0.08 mm or more is introduced into a fluidized bed furnace. It is disclosed.

特開2007−000721号公報JP 2007-000721 A 特許4625265号公報Japanese Patent No. 4625265

本発明の目的は、微粉炭燃焼炉で、脱硫剤として石灰石を用いた場合と比較して、高い脱硫剤利用率を達成できる脱硫剤及びそれを用いた微粉炭燃焼炉における硫黄分の除去方法を提供することである。   An object of the present invention is to provide a desulfurizing agent capable of achieving a high desulfurizing agent utilization rate as compared with the case of using limestone as a desulfurizing agent in a pulverized coal combustion furnace, and a method for removing a sulfur content in a pulverized coal combustion furnace using the desulfurizing agent. Is to provide.

上記目的を達成するため、本発明者らは鋭意研究を行い、微粉炭燃焼炉において、ライムケーキを含む脱硫剤を炉内に投入することで、石炭、バイオマス等を燃料とする酸化反応(燃焼)により炉内で発生するガス中の硫黄分を効率良く除去でき、かつ、高い脱硫剤利用率が達成できることを見出し、本発明を完成させた。   In order to achieve the above object, the present inventors have conducted intensive research, and in a pulverized coal combustion furnace, by introducing a desulfurization agent containing lime cake into the furnace, an oxidation reaction (combustion) using coal, biomass, etc. as fuel ), The sulfur content in the gas generated in the furnace can be efficiently removed, and a high desulfurization agent utilization rate can be achieved, and the present invention has been completed.

本発明によれば、以下の微粉炭燃焼装置における硫黄分の除去方法及び微粉炭燃焼炉用脱硫剤が提供される。
1.微粉炭燃焼装置において、微粉炭燃焼炉内で発生するガス中の硫黄分を除去する方法であって、
ライムケーキを含む脱硫剤を、微粉炭燃焼炉内に投入することを特徴とする微粉炭燃焼装置における硫黄分の除去方法。
2.前記脱硫剤が、ライムケーキであることを特徴とする1に記載の微粉炭燃焼装置における硫黄分の除去方法。
3.燃料の硫黄分に対する前記脱硫剤のCa分が1〜8(モル比)であることを特徴とする1又は2に記載の微粉炭燃焼装置における硫黄分の除去方法。
4.前記脱硫剤を、微粉炭燃焼炉内の800〜1,200℃の温度領域の箇所に投入することを特徴とする1〜3のいずれかに記載の微粉炭燃焼装置における硫黄分の除去方法。
5.前記脱硫剤を、気流搬送で微粉炭燃焼炉内に直接投入することを特徴とする1〜4のいずれかに記載の微粉炭燃焼装置における硫黄分の除去方法。
6.ライムケーキを含む微粉炭燃焼炉用脱硫剤。
According to the present invention, a sulfur removal method and a desulfurization agent for a pulverized coal combustion furnace in the following pulverized coal combustion apparatus are provided.
1. In a pulverized coal combustion apparatus, a method for removing sulfur content in a gas generated in a pulverized coal combustion furnace,
A method for removing a sulfur content in a pulverized coal combustion apparatus, wherein a desulfurizing agent containing a lime cake is introduced into a pulverized coal combustion furnace.
2. 2. The method for removing sulfur in a pulverized coal combustion apparatus according to 1, wherein the desulfurizing agent is a lime cake.
3. The sulfur content removal method in the pulverized coal combustion apparatus according to 1 or 2, wherein the desulfurization agent has a Ca content of 1 to 8 (molar ratio) relative to a sulfur content of the fuel.
4). The method for removing a sulfur content in a pulverized coal combustion apparatus according to any one of 1 to 3, wherein the desulfurizing agent is introduced into a temperature range of 800 to 1,200 ° C. in the pulverized coal combustion furnace.
5. The method for removing a sulfur content in a pulverized coal combustion apparatus according to any one of claims 1 to 4, wherein the desulfurizing agent is directly fed into a pulverized coal combustion furnace by airflow conveyance.
6). Desulfurization agent for pulverized coal combustion furnace containing lime cake.

本発明によれば、微粉炭燃焼炉で、脱硫剤として石灰石を用いた場合と比較して、高い脱硫剤利用率を達成できる脱硫剤、及びそれを用いた微粉炭燃焼炉における硫黄分の除去方法が提供できる。   According to the present invention, in a pulverized coal combustion furnace, compared with the case where limestone is used as a desulfurization agent, a desulfurization agent capable of achieving a high desulfurization agent utilization rate, and removal of a sulfur content in a pulverized coal combustion furnace using the desulfurization agent A method can be provided.

一般的な微粉炭燃焼装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of a general pulverized coal combustion apparatus. 実施例及び比較例で用いた実験用微粉炭燃焼炉の模式図である。It is a schematic diagram of the experimental pulverized coal combustion furnace used by the Example and the comparative example. 実施例2及び比較例2の微粉炭燃焼実験におけるCa/S(モル比)に対する脱硫率を示すグラフである。It is a graph which shows the desulfurization rate with respect to Ca / S (molar ratio) in the pulverized coal combustion experiment of Example 2 and Comparative Example 2.

本発明の微粉炭燃焼装置における硫黄分の除去方法(以下、本発明の方法という)は、微粉炭燃焼装置において、微粉炭燃焼炉内で発生するガス中の硫黄分を除去する方法であって、ライムケーキを含む脱硫剤を、微粉炭燃焼炉内に投入することを特徴とする。   The method for removing sulfur content in the pulverized coal combustion apparatus of the present invention (hereinafter referred to as the method of the present invention) is a method for removing sulfur content in the gas generated in the pulverized coal combustion furnace in the pulverized coal combustion apparatus. The desulfurizing agent containing lime cake is put into a pulverized coal combustion furnace.

本発明は、微粉炭燃焼炉(微粉炭ボイラともいう)に投入する乾式脱硫剤としてライムケーキを使用する点に特徴がある。
また、特に硫黄分を多く含む石炭等を微粉炭燃焼炉で燃焼させる場合に、これに続く湿式排煙脱硫装置への負荷を軽減することができる。
The present invention is characterized in that a lime cake is used as a dry desulfurization agent to be put into a pulverized coal combustion furnace (also referred to as a pulverized coal boiler).
In particular, when coal containing a large amount of sulfur is burned in a pulverized coal combustion furnace, the subsequent load on the wet flue gas desulfurization apparatus can be reduced.

ライムケーキとは、砂糖の製造過程で、原料であるビートから溶出された糖液から、これに含まれる有機物や色素等の不純物を取り除く工程で排出される製糖工場副産物である。一般的に、この工程では、CaO又はCa(OH)の微粒子を糖液に混入し、さらにCOガスを混合して、不純物を該粒子に付着・沈殿させて、純度の高い糖液と沈殿物に分離する。この工程で排出された沈殿物を脱水したものがライムケーキである。即ち、ライムケーキは、微粒子状のCaCOと有機質を主成分とする混合物である。 Lime cake is a by-product of a sugar factory that is discharged in the process of removing impurities such as organic substances and pigments contained in sugar solution eluted from beet that is a raw material during the sugar production process. In general, in this step, CaO or Ca (OH) 2 fine particles are mixed into a sugar solution, and further, CO 2 gas is mixed to adhere and precipitate impurities on the particles, thereby obtaining a high-purity sugar solution and Separate into precipitates. Lime cake is obtained by dehydrating the precipitate discharged in this process. That is, the lime cake is a mixture mainly composed of fine particulate CaCO 3 and organic matter.

ライムケーキに含まれるビート由来の有機質は、沈殿物を脱水する際に、微粒子のCaCOを固着させるバインダーの役割を果たすため、脱水されたライムケーキは粘土状に固まっており、これを自然乾燥することで部分的に造粒される。ライムケーキの粒子径としては、有機質の割合と乾燥状態によるが、一般的に5〜50mmを最大粒径とし、本来のCaCOの最小粒子径である5〜50μm程度までのブロードな粒子径分布を持つ。また、ライムケーキは一次粒子径が小さく、比表面積が大きいため、Ca利用率が石灰石より高い。 The organic matter derived from the beet contained in the lime cake plays the role of a binder that fixes CaCO 3 in the fine particles when the precipitate is dehydrated. Therefore, the dehydrated lime cake is solidified in a clay shape and is naturally dried. It is partly granulated. The particle size of the lime cake depends on the organic ratio and the dry state, but generally has a maximum particle size of 5 to 50 mm, and a broad particle size distribution up to about 5 to 50 μm, which is the original minimum particle size of CaCO 3. have. Moreover, since a lime cake has a small primary particle diameter and a large specific surface area, the Ca utilization rate is higher than that of limestone.

特許文献1は、従来から用いられてきた石灰石の代わりに、ライムケーキを処理して得た消石灰を脱硫剤として用いるものであり、ライムケーキ自体を脱硫剤として用いてはいない。また、ライムケーキから消石灰を製造するための工程を要し、折角、製糖工場副産物を利用しても経済性はあまり向上しない。   Patent Document 1 uses slaked lime obtained by treating a lime cake as a desulfurizing agent instead of limestone that has been used conventionally, and does not use the lime cake itself as a desulfurizing agent. Moreover, the process for manufacturing slaked lime from a lime cake is required, and even if it uses a corner and a sugar factory by-product, economical efficiency does not improve so much.

特許文献2は本出願人の先行特許であるが、流動層燃焼により燃料及び/又は原料を燃焼させる流動層燃焼炉において、炉内で発生するガス中の硫黄分を除去する方法であって、ライムケーキを含む脱硫剤を炉内に投入することを特徴とする硫黄分の除去方法を開示しているが、微粉炭燃焼装置においてライムケーキを含む脱硫剤を用いることは開示していない。   Patent Document 2 is a prior patent of the present applicant, but in a fluidized bed combustion furnace in which fuel and / or raw materials are combusted by fluidized bed combustion, a method of removing sulfur content in the gas generated in the furnace, Although a sulfur removal method characterized by introducing a desulfurizing agent containing lime cake into the furnace is disclosed, the use of a desulfurizing agent containing lime cake in a pulverized coal combustion apparatus is not disclosed.

本発明における微粉炭燃焼装置も特許文献2の流動層燃焼装置も、石炭を利用した発電設備に用いられる。
流動層燃焼装置では、気流により浮遊・流動化している石灰石等の乾式脱硫剤の層に、粒状(10mm以下の粒径)の石炭を投入して燃焼させる。この方式は、流動層内の伝熱が良く、ボイラ(流動層燃焼炉)を小さくできるため、小〜中規模の自家発電設備に用いられている。また、循環させながら燃焼が行われるため、比較的低温で燃焼させることができる。流動層燃焼炉では、燃料である石炭と脱硫剤である石灰石を炉内で循環させながら時間をかけて燃焼反応が進むため、炉内の温度はほぼ均一となる。炉内では、時間と共により細かい粒子が炉の上部に集まってしまい、脱硫剤の粒子径が小さいと利用率が低下する。それ故、特許文献2の方法では、最大粒子径を0.08mm以上に調整した脱硫剤であるライムケーキを用いる。
Both the pulverized coal combustion apparatus in the present invention and the fluidized bed combustion apparatus of Patent Document 2 are used for power generation equipment using coal.
In a fluidized bed combustion apparatus, granular coal (particle size of 10 mm or less) is charged and burned into a layer of a dry desulfurization agent such as limestone that is suspended and fluidized by an air stream. This method has good heat transfer in the fluidized bed and can reduce the size of the boiler (fluidized bed combustion furnace), so it is used for small to medium-scale private power generation facilities. Moreover, since combustion is performed while circulating, it can be burned at a relatively low temperature. In a fluidized bed combustion furnace, the combustion reaction proceeds over time while circulating coal as fuel and limestone as a desulfurization agent in the furnace, so the temperature in the furnace becomes substantially uniform. In the furnace, finer particles gather at the upper part of the furnace with time, and the utilization rate decreases when the particle size of the desulfurizing agent is small. Therefore, in the method of Patent Document 2, a lime cake that is a desulfurizing agent having a maximum particle size adjusted to 0.08 mm or more is used.

一方、微粉炭燃焼装置では、バーナーにより微粉炭を空気と共に噴出して燃焼させる。この方式では一般的に、粒径の小さい石炭を用い、比較的高い温度で燃焼させるため、燃焼性が高い。この方式は大型化が可能であるため、大規模発電所で用いられている。尚、微粉炭燃焼炉は流動層燃焼炉と異なり、炉内で石炭と脱硫剤が循環しないため、炉内に温度分布が生じる。微粉炭燃焼炉では、ライムケーキの粒子径が小さい方が利用可能な表面積が大きくなり、カルシウムの利用率の向上が期待できる。   On the other hand, in the pulverized coal combustion apparatus, the pulverized coal is ejected together with air by a burner and burned. In this method, generally, coal having a small particle diameter is used and burned at a relatively high temperature, so that the combustibility is high. Since this method can be enlarged, it is used in large-scale power plants. In addition, unlike a fluidized bed combustion furnace, a pulverized coal combustion furnace does not circulate coal and a desulfurization agent, and temperature distribution arises in a furnace. In the pulverized coal combustion furnace, the smaller the lime cake particle size, the larger the usable surface area, and the improvement of the utilization rate of calcium can be expected.

図1に、一般的な微粉炭燃焼装置1の全体構成の模式図を示す。
微粉炭燃焼装置1は、燃料となる石炭を貯蔵する貯炭設備10、石炭粒が200メッシュ(75μm)以下の微粉炭となるように粉砕する粉砕設備20、微粉炭を空気と共に吹き込んで燃焼させる微粉炭燃焼炉(ボイラ)30、燃料の燃焼によって生じたNOやSOを燃焼ガス中から除去する排煙処理設備40、及び燃焼処理に伴って生成した灰を回収する灰処理設備50を備えている。
In FIG. 1, the schematic diagram of the whole structure of the general pulverized coal combustion apparatus 1 is shown.
The pulverized coal combustion apparatus 1 includes a coal storage facility 10 for storing coal as fuel, a pulverization facility 20 for pulverizing coal particles to become pulverized coal having a mesh size of 200 mesh (75 μm) or less, and pulverized coal that is burned by blowing pulverized coal with air. A charcoal combustion furnace (boiler) 30, a flue gas treatment facility 40 that removes NO x and SO x generated by the combustion of fuel from the combustion gas, and an ash treatment facility 50 that collects the ash generated during the combustion treatment are provided. ing.

次に、この微粉炭燃焼装置1の動作について説明する。
貯蔵設備10のサイロ11からホッパ12に供給された石炭を、粉砕機21で粉砕した後、給炭機22から搬送用一次空気と共にバーナー中央部から微粉炭燃焼炉30に導入された微粉炭は、微粉炭燃焼炉30内で燃焼する。このとき、燃料中の硫黄分は硫黄酸化物(SO)となる。一方、脱硫剤は脱硫剤ホッパ(図示せず)から微粉炭燃焼炉30に導入され、脱硫剤中のカルシウム分により微粉炭燃焼炉30内で硫黄酸化物(SO)が吸着除去される。
硫黄酸化物(SO)が脱硫剤に吸着して除去された後の排煙は、排煙処理設備40の脱硝装置41によって窒素酸化物(NO)が除去され、(湿式)脱硫装置42において、硫黄酸化物(SO)をさらに除去した後、煙突47から排気される。灰処理設備50で集塵された灰54や石膏55は廃棄又は有効利用される。
Next, the operation of the pulverized coal combustion apparatus 1 will be described.
After the coal supplied to the hopper 12 from the silo 11 of the storage facility 10 is pulverized by the pulverizer 21, the pulverized coal introduced into the pulverized coal combustion furnace 30 from the center of the burner together with the primary air for conveyance from the coal feeder 22 is It burns in the pulverized coal combustion furnace 30. At this time, the sulfur content in the fuel becomes sulfur oxide (SO x ). On the other hand, the desulfurization agent is introduced into the pulverized coal combustion furnace 30 from a desulfurization agent hopper (not shown), and sulfur oxide (SO x ) is adsorbed and removed in the pulverized coal combustion furnace 30 by the calcium content in the desulfurization agent.
The flue gas after the sulfur oxide (SO x ) has been adsorbed and removed by the desulfurizing agent is removed from the nitrogen oxide (NO x ) by the denitration device 41 of the flue gas treatment facility 40, and the (wet) desulfurization device 42. , The sulfur oxide (SO x ) is further removed and then exhausted from the chimney 47. The ash 54 and gypsum 55 collected by the ash treatment facility 50 are discarded or effectively used.

本発明の方法は、微粉炭燃焼炉(ボイラ)30における燃焼処理時に、ライムケーキを含む脱硫剤を用いることを特徴とする。   The method of the present invention is characterized in that a desulfurization agent containing a lime cake is used during the combustion treatment in the pulverized coal combustion furnace (boiler) 30.

本発明の方法では、ライムケーキを含む脱硫剤を用いる。この脱硫剤は、ライムケーキのみから構成されていてもよく、ライムケーキを一部に含んでもよい。
脱硫剤に含まれるライムケーキ以外の成分としては、例えば、石灰石、ドロマイト、酸化カルシウム、カルシウムを含有する生コンクリートスラッジ等が挙げられる。
脱硫剤に含まれるライムケーキの割合は特に制限されず、燃料や原料の種類等に応じて適宜調整することができる。
In the method of the present invention, a desulfurization agent containing a lime cake is used. This desulfurization agent may be comprised only from the lime cake, and may contain a lime cake in part.
Examples of the components other than the lime cake contained in the desulfurizing agent include limestone, dolomite, calcium oxide, and fresh concrete sludge containing calcium.
The ratio of the lime cake contained in the desulfurizing agent is not particularly limited, and can be appropriately adjusted according to the type of fuel or raw material.

本発明で用いるライムケーキは、砂糖の製造過程で得られたものを脱水後、さらに自然乾燥したものをふるいにより、又は、必要に応じて粉砕して粒子径の範囲を調整して用いることができる。   The lime cake used in the present invention can be used after dehydrating what was obtained in the sugar production process, further drying naturally, by sieving, or if necessary, pulverizing to adjust the particle size range it can.

本発明では、ライムケーキをそのまま脱硫剤として使用できるが、上述した他の成分と混ぜて脱硫剤として使用することができる。他の成分を混ぜるときは、他の成分の粒子経を調整し、カオリン、モンモリナイト等の粘土鉱物をバインダーとして混練、乾燥後、粒子径をふるいにより調整して製造する。   In the present invention, lime cake can be used as it is as a desulfurization agent, but it can be used as a desulfurization agent by mixing with other components described above. When other components are mixed, the particle size of the other components is adjusted, and after kneading and drying clay minerals such as kaolin and montmorillonite, the particle size is adjusted by sieving.

本発明では、ライムケーキの粒子径は特に制限されないが、ライムケーキの最大粒子径は、0.08mm未満であることが好ましく、0.075mm以下であることがより好ましい。   In the present invention, the particle size of the lime cake is not particularly limited, but the maximum particle size of the lime cake is preferably less than 0.08 mm, and more preferably 0.075 mm or less.

本発明の方法では、微粉炭燃焼炉内に、脱硫剤を、通常、燃料及び/又は原料中の硫黄分に対する脱硫剤のCa分が1〜8(Ca/Sモル比)になるように投入し、炉内で脱硫を行うことが好ましい。このモル比が1より低い場合は、十分な反応が得られない場合がある。一方、8より高い場合は、高い反応率が得られるものの、残渣の発生量が増加し、灰処理量が増えてしまう場合がある。従って、好ましくは1〜5(モル比)、より好ましくは1〜3(モル比)になるように投入することが好ましい。   In the method of the present invention, the desulfurizing agent is usually charged into the pulverized coal combustion furnace so that the Ca content of the desulfurizing agent with respect to the sulfur content in the fuel and / or raw material is 1 to 8 (Ca / S molar ratio). It is preferable to perform desulfurization in a furnace. When this molar ratio is lower than 1, sufficient reaction may not be obtained. On the other hand, when it is higher than 8, although a high reaction rate is obtained, the amount of residue generated increases and the amount of ash treatment may increase. Therefore, it is preferable to add so that it may become 1-5 (molar ratio), more preferably 1-3 (molar ratio).

本発明の方法において、ライムケーキを含む脱硫剤を、微粉炭燃焼炉内の800〜1,200℃の温度領域の箇所に投入することが好ましく、800〜1,100℃の温度領域の箇所に投入することがより好ましい。
高温で反応させた方が脱硫率は高くなるが、あまり高温でライムケーキを投入してしまうと、ライムケーキ粒子の表面が溶融し、ライムケーキ粒子内部のCaが利用されず、脱硫率が低下してしまうことを本発明者らは見出した。
In the method of the present invention, the desulfurizing agent containing the lime cake is preferably introduced into a temperature region of 800 to 1,200 ° C. in the pulverized coal combustion furnace, and in a temperature region of 800 to 1,100 ° C. More preferably, it is charged.
Although the desulfurization rate is higher when the reaction is performed at a high temperature, if the lime cake is charged at a very high temperature, the surface of the lime cake particles melts, and the Ca inside the lime cake particles is not used, resulting in a decrease in the desulfurization rate. The inventors have found that this is the case.

このような問題は、一般に1,000℃以下という比較的低温で、炉内を循環させながら時間をかけて反応を進める流動層燃焼炉では生じていなかった。流動層燃焼炉では、石炭と脱硫剤が炉内を循環するため、炉内の温度はほぼ均一となる。そのため、流動層燃焼炉のどの位置でライムケーキを含む脱硫剤を投入しても、また、燃料と脱硫剤とを混合して一緒に炉内に導入しても脱硫剤の表面が溶融するという問題は生じていなかった。   Such a problem has generally not occurred in a fluidized bed combustion furnace in which the reaction is carried out over time while circulating in the furnace at a relatively low temperature of 1,000 ° C. or less. In a fluidized bed combustion furnace, coal and desulfurization agent circulate in the furnace, so the temperature in the furnace becomes substantially uniform. Therefore, the surface of the desulfurizing agent is melted even if the desulfurizing agent containing the lime cake is introduced at any position in the fluidized bed combustion furnace, or the fuel and the desulfurizing agent are mixed and introduced into the furnace together. There was no problem.

微粉炭燃焼炉は、炉内温度が1,500℃近い高温となり、さらに流動層燃焼炉と違って短時間で反応が進み、炉内に温度分布が生じる。そのため、単純に流動層燃焼炉の場合と同様にライムケーキを含む脱硫剤を使用しても脱硫効率は顕著には向上しない。
そこで、ライムケーキを含む脱硫剤を微粉炭燃焼炉に投入するに当たり、炉内の800〜1,200℃の温度領域の箇所に投入することによって、ライムケーキを含む脱硫剤の溶融を抑制でき、高い脱硫率が得られることを本発明者らは見出した。
従って、特許文献2の流動層燃焼炉の場合のように、燃料とライムケーキを含む脱硫剤とを混合して微粉炭燃焼炉内に投入すると、脱硫剤が高温で溶融され易くなるため、微粉炭燃焼炉では、燃料と脱硫剤とを混合して投入することは好ましくない。
In the pulverized coal combustion furnace, the temperature in the furnace becomes a high temperature close to 1,500 ° C., and unlike the fluidized bed combustion furnace, the reaction proceeds in a short time and a temperature distribution is generated in the furnace. Therefore, the desulfurization efficiency is not significantly improved even if a desulfurization agent containing a lime cake is used simply as in the case of the fluidized bed combustion furnace.
Therefore, when charging a desulfurization agent containing lime cake into a pulverized coal combustion furnace, by introducing it into a temperature region of 800 to 1,200 ° C. in the furnace, melting of the desulfurization agent containing lime cake can be suppressed, The present inventors have found that a high desulfurization rate can be obtained.
Therefore, as in the fluidized bed combustion furnace of Patent Document 2, when the fuel and the desulfurization agent containing lime cake are mixed and put into the pulverized coal combustion furnace, the desulfurization agent is easily melted at a high temperature. In a charcoal combustion furnace, it is not preferable to mix and add fuel and a desulfurization agent.

ライムケーキを含む脱硫剤を投入する、炉内の上記温度範囲内の箇所は、炉内温度計測データを参照すること等によって決定することができる。   The location in the furnace where the desulfurizing agent containing lime cake is introduced can be determined by referring to the furnace temperature measurement data.

本発明の方法では、脱硫剤を、気流搬送で微粉炭燃焼炉内に直接投入することが好ましい。気流搬送で脱硫剤を投入することによって、脱硫剤が溶融する高温部を通過しないという利点が得られる。   In the method of the present invention, it is preferable that the desulfurizing agent is directly fed into the pulverized coal combustion furnace by airflow conveyance. By introducing the desulfurizing agent by air flow conveyance, there is an advantage that the desulfurizing agent does not pass through the high temperature part where the desulfurizing agent melts.

本発明の方法において燃焼又はガス化、熱分解、部分酸化される燃料種又は原料としては、亜硫酸ガス、硫酸ガスその他の硫黄酸化物(SOx)等を発生する硫黄分を含有するものが本発明の目的からみて有用であり、例えば、石炭、石油コークス、オイルサンド、バイオマス等の固体燃料、石炭に水あるいは油等を配合した疑似流体燃料、重油、灯油、アルコール混合物等の液体燃料、LPG、LNG、工場排ガス等の気体燃料、ゴミ、汚泥、プラスチック、スラッジ、タイヤ等の廃棄物、又はこれらから選ばれる少なくとも2種類の混合物が使用される。   In the method of the present invention, the fuel species or raw materials to be combusted or gasified, thermally decomposed, or partially oxidized include those containing a sulfur component that generates sulfurous acid gas, sulfuric acid gas, and other sulfur oxides (SOx). For example, solid fuel such as coal, petroleum coke, oil sand and biomass, pseudo fluid fuel obtained by blending water or oil into coal, liquid fuel such as heavy oil, kerosene, alcohol mixture, LPG, LNG, gaseous fuel such as factory exhaust gas, waste, sludge, plastic, sludge, tire and other waste, or at least two types of mixtures selected from these are used.

以下に、実施例を挙げて本発明をより具体的に説明するが、本発明は実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.

材料:
(1)脱硫剤
下記表1に示す性状を有する北海道産のライムケーキを乾燥後、最大粒子径が75μm以下となるように調製し、脱硫剤とした。
material:
(1) Desulfurizing agent Hokkaido lime cake having the properties shown in Table 1 below was dried and then prepared so as to have a maximum particle size of 75 μm or less.

(2)石炭(燃料)
実施例及び比較例で用いた石炭1及び石炭2の性状を下記表2に示す。
(2) Coal (fuel)
Properties of coal 1 and coal 2 used in Examples and Comparative Examples are shown in Table 2 below.

<微粉炭燃焼炉での燃焼実験>
実施例1
表2に示す性状を有する石炭1(微粉炭)を図2に示す実験用微粉炭燃焼炉2のシングルバーナー31より一次空気と共に炉内に吹き込んだ。ここに、上記(1)で調製したライムケーキのみからなる脱硫剤を、炉内の温度が約1200℃の位置にある脱硫剤投入口34から、石炭中の硫黄分に対するライムケーキ中のCa分が0及び1.3(Ca/S;モル比)となる条件で二次空気と共に炉内に投入した。
<Combustion experiment in pulverized coal combustion furnace>
Example 1
Coal 1 (pulverized coal) having the properties shown in Table 2 was blown into the furnace together with primary air from a single burner 31 of the experimental pulverized coal combustion furnace 2 shown in FIG. Here, the desulfurization agent consisting only of the lime cake prepared in the above (1) is added to the Ca content in the lime cake with respect to the sulfur content in the coal from the desulfurization agent inlet 34 at a temperature of about 1200 ° C. Was put into the furnace together with the secondary air under the conditions of 0 and 1.3 (Ca / S; molar ratio).

尚、炉内温度が約1200℃の位置は、熱電対35を用いて炉内の温度測定孔から温度を測定することによって決定した。   The position where the furnace temperature was about 1200 ° C. was determined by measuring the temperature from the temperature measurement hole in the furnace using the thermocouple 35.

燃焼出口43のSO濃度を分析し、以下の計算方法により脱硫率を求めた。結果を表3に示す。
脱硫率(%)=(a/b)×100
a=[脱硫剤投入なし(Ca/S=0)条件下のSOx排出濃度]−(SO排出濃度)
b=脱硫剤投入なし(Ca/S=0)条件下のSO排出濃度
Analyze the SO x concentration in the combustion outlet 43, it was determined desulfurization rate by the following calculation method. The results are shown in Table 3.
Desulfurization rate (%) = (a / b) × 100
a = [SOx emission concentration without desulfurization agent input (Ca / S = 0)] − (SO x emission concentration)
b = SO x emission concentration under the condition that no desulfurization agent is added (Ca / S = 0)

尚、上記試験の燃焼条件は、最高燃焼温度:1,420℃、燃焼圧力:100mmHO、燃料(微粉炭)投入速度:6kg/時間であった。 The combustion conditions in the above test were the maximum combustion temperature: 1,420 ° C., the combustion pressure: 100 mmH 2 O, and the fuel (pulverized coal) input rate: 6 kg / hour.

比較例1
最大粒子径を75μm以下に調製した石灰石(秩父産)を脱硫剤として用い、Ca/Sモル比を2.9とした以外は実施例1と同様にして燃焼実験を行い、燃焼出口43のSO濃度を分析し、以下の計算方法により脱硫率を求めた。結果を表3に示す。
Comparative Example 1
Combustion experiments were conducted in the same manner as in Example 1 except that limestone (produced by Chichibu) having a maximum particle size of 75 μm or less was used as a desulfurizing agent and the Ca / S molar ratio was set to 2.9. The x concentration was analyzed and the desulfurization rate was determined by the following calculation method. The results are shown in Table 3.

表3の結果から、ほぼ同じ脱硫率を得るためには、石灰石はライムケーキの2倍以上のCa/S(モル比)とすることが必要となることがわかる。即ち、微粉炭燃焼炉で用いる脱硫剤として、ライムケーキを用いると、従来の石灰石に比べて2倍以上の高い脱硫率が得られる。   From the results in Table 3, it can be seen that limestone needs to have a Ca / S (molar ratio) twice or more that of the lime cake in order to obtain substantially the same desulfurization rate. That is, when a lime cake is used as a desulfurization agent used in a pulverized coal combustion furnace, a high desulfurization rate that is twice or more that of conventional limestone can be obtained.

この高い脱硫率は、実施例で用いたライムケーキと比較例で用いた石灰石の最大粒子径は75μm以下と同じであるが、石灰石とライムケーキの両方の粒子の75μm以下における粒径分布を比較した際に、ライムケーキのほうが細かい粒子が多いことによると考えられる。硫黄分と脱硫剤との反応の大部分は脱硫剤表面上で起こるため、細かい粒子を多く含むライムケーキの方が、表面積が大きくなり、高い脱硫効率が得られると考えられる。   This high desulfurization rate is the same as the maximum particle size of the limestone used in the example and the limestone used in the comparative example is 75 μm or less, but the particle size distributions of both the limestone and limecake particles at 75 μm or less are compared. It is thought that the lime cake has more fine particles. Since most of the reaction between the sulfur content and the desulfurizing agent occurs on the surface of the desulfurizing agent, the surface area of the lime cake containing a lot of fine particles is considered to be high and high desulfurization efficiency can be obtained.

実施例2
表2に示す性状を有する石炭2(微粉炭)を図2に示す実験用微粉炭燃焼炉2のシングルバーナー31より一次空気と共に炉内に吹き込んだ。ここに、上記(1)で調製したライムケーキのみからなる脱硫剤を、炉内の温度が1110℃の位置に、石炭中の硫黄分に対するライムケーキ中のCa分が0.9及び2.9(Ca/S;モル比)となる条件で二次空気と共に炉内に投入した。実施例1と同様にして脱硫率を求めた。結果を表4及び図3に示す。
Example 2
Coal 2 (pulverized coal) having the properties shown in Table 2 was blown into the furnace together with primary air from the single burner 31 of the experimental pulverized coal combustion furnace 2 shown in FIG. Here, the desulfurization agent consisting only of the lime cake prepared in the above (1) is placed at a temperature of 1110 ° C. in the furnace, and the Ca content in the lime cake is 0.9 and 2.9 relative to the sulfur content in the coal. (Ca / S; molar ratio) was put into the furnace together with the secondary air. The desulfurization rate was determined in the same manner as in Example 1. The results are shown in Table 4 and FIG.

尚、上記試験の燃焼条件は、最高燃焼温度:1,420℃、燃焼圧力:100mmHO、燃料(微粉炭)投入速度:6kg/時間であった。 The combustion conditions in the above test were the maximum combustion temperature: 1,420 ° C., the combustion pressure: 100 mmH 2 O, and the fuel (pulverized coal) input rate: 6 kg / hour.

比較例2
脱硫剤を、比較例1と同じ石灰石(秩父産)に変更し、石炭2中の硫黄分に対する石灰石中のCa分を1.0及び2.5(Ca/S;モル比)とした以外は実施例2と同様にして燃焼実験を行い、脱硫率を求めた。結果を表4及び図3に示す。
Comparative Example 2
The desulfurizing agent was changed to the same limestone (produced in Chichibu) as in Comparative Example 1, except that the Ca content in the limestone relative to the sulfur content in the coal 2 was 1.0 and 2.5 (Ca / S; molar ratio). A combustion experiment was conducted in the same manner as in Example 2 to determine the desulfurization rate. The results are shown in Table 4 and FIG.

表4及び図3から、脱硫剤としてライムケーキを用いた実施例2では、石灰石を用いた比較例2に比べてCa/S(モル比)が小さいにもかかわらず、高い脱硫率が得られることがわかる。   From Table 4 and FIG. 3, in Example 2 using a lime cake as a desulfurizing agent, a high desulfurization rate is obtained even though the Ca / S (molar ratio) is small compared to Comparative Example 2 using limestone. I understand that.

実施例3
上記(1)で調製したライムケーキのみからなる脱硫剤を微粉炭燃焼炉内の1000℃の位置に吹き込んだ。脱硫剤の投入量は石炭2中の硫黄分に対する石灰石中のCa分を3.0(Ca/S;モル比)とした。試験条件、脱硫率の計算は実施例1と同様に行った。結果を表5に示す。
Example 3
The desulfurization agent consisting only of the lime cake prepared in the above (1) was blown into the pulverized coal combustion furnace at a position of 1000 ° C. The amount of desulfurizing agent used was 3.0 (Ca / S; molar ratio) of Ca in limestone with respect to sulfur in coal 2. The test conditions and the desulfurization rate were calculated in the same manner as in Example 1. The results are shown in Table 5.

比較例3
比較例1と同じ石灰石を、石炭2中の硫黄分に対する石灰石中のCa分を3.9(Ca/S;モル比)の割合で混合し、微粉炭燃焼試験炉で燃焼した。脱硫率の計算は、実施例1と同様に行った。結果を表5に示す。
Comparative Example 3
The same limestone as in Comparative Example 1 was mixed at a ratio of 3.9 (Ca / S; molar ratio) of Ca in limestone to sulfur in coal 2 and burned in a pulverized coal combustion test furnace. The desulfurization rate was calculated in the same manner as in Example 1. The results are shown in Table 5.

脱硫剤である石灰石と石炭とを混合して燃焼炉に投入した比較例3と比べても、実施例2及び3では、低いCa/S(モル比)で高い脱硫率が得られることがわかる。ライムケーキを脱硫剤として用いた場合、従来の石灰石を用いた場合と比較して、高い脱硫剤利用率を達成できることがわかる。   Compared with Comparative Example 3 in which limestone and coal, which are desulfurization agents, are mixed and put into a combustion furnace, Examples 2 and 3 show that a high desulfurization rate can be obtained with a low Ca / S (molar ratio). . It can be seen that when the lime cake is used as a desulfurizing agent, a higher utilization rate of the desulfurizing agent can be achieved as compared with the case where the conventional limestone is used.

本発明の微粉炭燃焼装置における硫黄分の除去方法は、石炭、重質油等の化石燃料、廃棄物、バイオマス等を焼却、ガス化、熱分解し、生成する排ガスを利用するエネルギー分野及び廃棄物処理分野において好適である。
本発明の微粉炭燃焼炉用脱硫剤及び微粉炭燃焼装置における硫黄分の除去方法は、大規模発電所等で特に有用である。
また、本発明によれば、製糖工場副産物であるライムケーキを有効に活用することができる。
The method for removing sulfur content in the pulverized coal combustion apparatus according to the present invention includes fossil fuels such as coal, heavy oil, waste, biomass, etc., incineration, gasification, thermal decomposition, and energy field using waste gas generated and disposal It is suitable in the field of material processing.
The desulfurization agent for pulverized coal combustion furnace and the method for removing sulfur in the pulverized coal combustion apparatus of the present invention are particularly useful in large-scale power plants and the like.
Moreover, according to this invention, the lime cake which is a by-product of a sugar factory can be utilized effectively.

1 微粉炭燃焼装置
2 実験用微粉炭燃焼炉(ボイラ)
10 貯炭設備
11 サイロ
12 ホッパ
20 粉砕設備
21 粉砕機
22 給炭機
23 微粉炭フィーダー
30 微粉炭燃焼炉(ボイラ)
31 シングルバーナー
32,33 予熱器
34 脱硫剤及び搬送空気導入口
35 熱電対挿入口
36 エアヒータ
37 押込み通風機
40 排煙処理設備
41 脱硝装置
42 (湿式)脱硫装置
43 燃焼出口
44 連続分析計
45 ガスガスヒータ
46 誘引通風機
47 煙突
50 灰処理設備
51 ボトム灰受け(ボトムアッシュ採取)
52 サイクロン(フライアッシュ採取)
53 電気集塵機
54 灰
55 石膏
60 排水処理
1 Pulverized coal combustion device 2 Experimental pulverized coal combustion furnace (boiler)
DESCRIPTION OF SYMBOLS 10 Coal storage equipment 11 Silo 12 Hopper 20 Crushing equipment 21 Crusher 22 Coal feeder 23 Pulverized coal feeder 30 Pulverized coal combustion furnace (boiler)
31 Single burner 32, 33 Preheater 34 Desulfurization agent and carrier air introduction port 35 Thermocouple insertion port 36 Air heater 37 Pushing ventilator 40 Smoke treatment equipment 41 Denitration device 42 (wet) desulfurization device 43 Combustion outlet 44 Continuous analyzer 45 Gas Gas heater 46 Induction fan 47 Chimney 50 Ash processing equipment 51 Bottom ash tray (bottom ash collection)
52 Cyclone (collecting fly ash)
53 Electric dust collector 54 Ash 55 Gypsum 60 Wastewater treatment

Claims (6)

微粉炭燃焼装置において、微粉炭燃焼炉内で発生するガス中の硫黄分を除去する方法であって、
ライムケーキを含む脱硫剤を、微粉炭燃焼炉内に投入することを特徴とする微粉炭燃焼装置における硫黄分の除去方法。
In a pulverized coal combustion apparatus, a method for removing sulfur content in a gas generated in a pulverized coal combustion furnace,
A method for removing a sulfur content in a pulverized coal combustion apparatus, wherein a desulfurizing agent containing a lime cake is introduced into a pulverized coal combustion furnace.
前記脱硫剤が、ライムケーキであることを特徴とする請求項1に記載の微粉炭燃焼装置における硫黄分の除去方法。   The said desulfurization agent is a lime cake, The removal method of the sulfur content in the pulverized coal combustion apparatus of Claim 1 characterized by the above-mentioned. 燃料の硫黄分に対する前記脱硫剤のCa分が1〜8(モル比)であることを特徴とする請求項1又は2に記載の微粉炭燃焼装置における硫黄分の除去方法。   The sulfur content in the pulverized coal combustion apparatus according to claim 1 or 2, wherein the desulfurizing agent has a Ca content of 1 to 8 (molar ratio) with respect to a sulfur content of fuel. 前記脱硫剤を、微粉炭燃焼炉内の800〜1,200℃の温度領域の箇所に投入することを特徴とする請求項1〜3のいずれかに記載の微粉炭燃焼装置における硫黄分の除去方法。   The removal of a sulfur content in a pulverized coal combustion apparatus according to any one of claims 1 to 3, wherein the desulfurizing agent is introduced into a temperature range of 800 to 1,200 ° C in a pulverized coal combustion furnace. Method. 前記脱硫剤を、気流搬送で微粉炭燃焼炉内に直接投入することを特徴とする請求項1〜4のいずれかに記載の微粉炭燃焼装置における硫黄分の除去方法。   The method for removing a sulfur content in a pulverized coal combustion apparatus according to any one of claims 1 to 4, wherein the desulfurizing agent is directly charged into a pulverized coal combustion furnace by airflow conveyance. ライムケーキを含む微粉炭燃焼炉用脱硫剤。   Desulfurization agent for pulverized coal combustion furnace containing lime cake.
JP2013068608A 2012-07-31 2013-03-28 Method for removing sulfur in pulverized coal combustion equipment Active JP6224903B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013068608A JP6224903B2 (en) 2012-07-31 2013-03-28 Method for removing sulfur in pulverized coal combustion equipment
KR1020130090071A KR20140016840A (en) 2012-07-31 2013-07-30 Method for removing sulphur component in pulverized coal combustion apparatus, and desulphurizing agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012170404 2012-07-31
JP2012170404 2012-07-31
JP2013068608A JP6224903B2 (en) 2012-07-31 2013-03-28 Method for removing sulfur in pulverized coal combustion equipment

Publications (2)

Publication Number Publication Date
JP2014044042A true JP2014044042A (en) 2014-03-13
JP6224903B2 JP6224903B2 (en) 2017-11-01

Family

ID=50395422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068608A Active JP6224903B2 (en) 2012-07-31 2013-03-28 Method for removing sulfur in pulverized coal combustion equipment

Country Status (1)

Country Link
JP (1) JP6224903B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181249A (en) * 2013-03-18 2014-09-29 Kumagai Gumi Co Ltd Coal combustion auxiliary composition, coal combustion auxiliary agent using the composition and coal combustion method using the coal combustion auxiliary agent
JP2015229821A (en) * 2014-06-03 2015-12-21 鹿島建設株式会社 Inorganic granular material
JP2018100588A (en) * 2018-01-18 2018-06-28 鹿島建設株式会社 Base isolation member
JP2021070570A (en) * 2019-10-31 2021-05-06 荏原環境プラント株式会社 Fuel supply system
CN114646067A (en) * 2022-03-28 2022-06-21 北京奥科瑞丰新能源股份有限公司 Desulfurization treatment process for combustion application of furfural residues

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861568A (en) * 1988-09-16 1989-08-29 Robinson Jr Melville W Process for removing sulfur dioxide from flue gases
JP2005098673A (en) * 2003-09-05 2005-04-14 Idemitsu Kosan Co Ltd Method of removing sulfur in fluid bed device and desulfurizing agent
JP2007000721A (en) * 2005-06-22 2007-01-11 Hokkaido Kyodo Sekkai Kk Flue gas treatment method and production method of flue gas treatment agent
JP2008138889A (en) * 2006-11-29 2008-06-19 Idemitsu Kosan Co Ltd Resource circulation system
JP2008138890A (en) * 2006-11-29 2008-06-19 Idemitsu Kosan Co Ltd Incineration system
JP2008239749A (en) * 2007-03-27 2008-10-09 Nippon Paper Industries Co Ltd Solid fuel and production method of solid fuel
JP2008281297A (en) * 2007-05-11 2008-11-20 Oji Paper Co Ltd Method of removing sulfur in fluid bed combustion equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861568A (en) * 1988-09-16 1989-08-29 Robinson Jr Melville W Process for removing sulfur dioxide from flue gases
JP2005098673A (en) * 2003-09-05 2005-04-14 Idemitsu Kosan Co Ltd Method of removing sulfur in fluid bed device and desulfurizing agent
JP2007000721A (en) * 2005-06-22 2007-01-11 Hokkaido Kyodo Sekkai Kk Flue gas treatment method and production method of flue gas treatment agent
JP2008138889A (en) * 2006-11-29 2008-06-19 Idemitsu Kosan Co Ltd Resource circulation system
JP2008138890A (en) * 2006-11-29 2008-06-19 Idemitsu Kosan Co Ltd Incineration system
JP2008239749A (en) * 2007-03-27 2008-10-09 Nippon Paper Industries Co Ltd Solid fuel and production method of solid fuel
JP2008281297A (en) * 2007-05-11 2008-11-20 Oji Paper Co Ltd Method of removing sulfur in fluid bed combustion equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181249A (en) * 2013-03-18 2014-09-29 Kumagai Gumi Co Ltd Coal combustion auxiliary composition, coal combustion auxiliary agent using the composition and coal combustion method using the coal combustion auxiliary agent
JP2015229821A (en) * 2014-06-03 2015-12-21 鹿島建設株式会社 Inorganic granular material
JP2018100588A (en) * 2018-01-18 2018-06-28 鹿島建設株式会社 Base isolation member
JP2021070570A (en) * 2019-10-31 2021-05-06 荏原環境プラント株式会社 Fuel supply system
JP7353133B2 (en) 2019-10-31 2023-09-29 荏原環境プラント株式会社 fuel supply system
CN114646067A (en) * 2022-03-28 2022-06-21 北京奥科瑞丰新能源股份有限公司 Desulfurization treatment process for combustion application of furfural residues

Also Published As

Publication number Publication date
JP6224903B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US8309052B2 (en) Carbon heat-treatment process
Cheng et al. Sulfur removal at high temperature during coal combustion in furnaces: a review
EP2891843B1 (en) Method for combusting waste with a mineral additive
JP6224903B2 (en) Method for removing sulfur in pulverized coal combustion equipment
US9828249B2 (en) Operational conditions and method for production of high quality activated carbon
Duan et al. Fly ash recirculation by bottom feeding on a circulating fluidized bed boiler co-burning coal sludge and coal
CN102363095A (en) Dry flue gas desulfurization process method and dry flue gas desulfurization system thereof
Yan et al. An experimental study on the feasibility of in-situ desulfurization performance in a CFB combustor co-burning red mud and coal
JP4625265B2 (en) Method for removing sulfur in fluidized bed apparatus and desulfurizing agent
JP3384435B2 (en) Fluidized bed furnace exhaust gas desulfurization method
CN102777921B (en) System and method for carrying out mercury removal and sulfur fixation on pulverized coal boiler by using white mud
JP2009275999A (en) Harmful trace element elution inhibitor and harmful trace element elution suppression method
CN202823159U (en) System for conducting mercury removal and sulfur fixation simultaneously on pulverized coal fired boiler with white clay
CA2748934C (en) Coal heat-treatment process and system
KR20140016840A (en) Method for removing sulphur component in pulverized coal combustion apparatus, and desulphurizing agent
JP2010008040A (en) Sulfur content eliminating method and desulfurizer for fluidized bed apparatus
US9109801B2 (en) Coal heat-treatment process and system
JP2008170107A (en) Oxide reducing method and oxide reducer for coal addition used in the same
TW470840B (en) A process for co-combustion integrating the production of cement and the incineration of municipal solid
KR20020063961A (en) Circulation Fluidized Bed Boiler System Mounted with Pelletizer for Anthracite
JP2004189875A (en) Method for treating sewage sludge cake
JP2008169338A (en) Method of reducing unburned coal
JP2007333345A (en) Clinker ash formation accelerating method and clinker ash formation accelerator
JPS5821162B2 (en) Fluid combustion method
JP2005114325A (en) Melting treatment method of waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171006

R150 Certificate of patent or registration of utility model

Ref document number: 6224903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150