JP2014173478A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2014173478A
JP2014173478A JP2013046088A JP2013046088A JP2014173478A JP 2014173478 A JP2014173478 A JP 2014173478A JP 2013046088 A JP2013046088 A JP 2013046088A JP 2013046088 A JP2013046088 A JP 2013046088A JP 2014173478 A JP2014173478 A JP 2014173478A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
swirl
passage
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013046088A
Other languages
Japanese (ja)
Other versions
JP5978154B2 (en
Inventor
Yoshio Okamoto
良雄 岡本
Kazuki Yoshimura
一樹 吉村
Noriyuki Maekawa
典幸 前川
Nobuaki Kobayashi
信章 小林
Eiji Ishii
英二 石井
Takahiro Saito
貴博 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013046088A priority Critical patent/JP5978154B2/en
Priority to US14/198,860 priority patent/US9541048B2/en
Priority to CN201410081990.6A priority patent/CN104033305B/en
Publication of JP2014173478A publication Critical patent/JP2014173478A/en
Application granted granted Critical
Publication of JP5978154B2 publication Critical patent/JP5978154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/184Discharge orifices having non circular sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • F02M61/163Means being injection-valves with helically or spirally shaped grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection valve that improves uniformity in a circumferential direction of a swirl flow.SOLUTION: A fuel injection valve includes: a swirl chamber 22a that has an inner peripheral wall formed so that curvature can be gradually increased toward a downstream side from an upstream side; a passage 21a for swirl, which has an inflow area in a valve stem direction and which introduces fuel into the swirl chamber 22a; and a fuel injection hole 23a that is opened in the swirl chamber 22a. The passage 21a for swirl is provided in an inclined manner on the side of the fuel injection hole 23a positioned on the downstream side of the swirl chamber 22a.

Description

本発明は、内燃機関で使用される燃料噴射弁に係り、旋回燃料を噴射して微粒化性能を向上させ得る燃料噴射弁に関する。   The present invention relates to a fuel injection valve used in an internal combustion engine, and relates to a fuel injection valve capable of improving atomization performance by injecting swirling fuel.

複数個の燃料噴射孔から噴射される燃料の微粒化を、旋回流れを利用して促進する従来技術として、特許文献1に記載された燃料噴射弁が知られている。   As a conventional technique for promoting atomization of fuel injected from a plurality of fuel injection holes using a swirl flow, a fuel injection valve described in Patent Document 1 is known.

この燃料噴射弁では、弁体と協働する弁座の下流端が前端面に開口する弁座部材と、この弁座部材の前端面に接合されるインジェクタプレートとの間に、前記弁座の下流端に連通する横方向通路と、この横方向通路の下流端が接線方向に開口するスワール室とを形成し、このスワール室でスワールを付与された燃料を噴射させる燃料噴射孔を前記インジェクタプレートに穿設し、前記燃料噴射孔を前記スワール室の中心から前記横方向通路の上流端側に所定距離オフセットして配置する。   In this fuel injection valve, between the valve seat member whose downstream end of the valve seat cooperating with the valve body opens at the front end surface and the injector plate joined to the front end surface of the valve seat member, The injector plate has a lateral passage communicating with the downstream end and a swirl chamber whose downstream end is opened in a tangential direction, and the fuel injection hole for injecting the swirled fuel in the swirl chamber The fuel injection hole is disposed with a predetermined distance offset from the center of the swirl chamber to the upstream end side of the lateral passage.

この様な構成により、各々の燃料噴射孔からの燃料の微粒化を効果的に促進させることができる。   With such a configuration, atomization of fuel from each fuel injection hole can be effectively promoted.

特許文献2に記載された燃料噴射弁は、不動の弁座を有する弁座体と、該弁座体と共働しかつ弁長手方向軸線に沿って軸方向に可能な弁閉鎖体と、弁座の下流に配置された孔付円板とが設けられており、該孔付円板が少なくとも1つの流入領域と少なくとも1つの流出開口とを有しており、少なくとも1つの流入領域を有する上側の機能平面が横断面で見て、少なくとも1つの流出開口を有する下側の機能平面とは異なった開口ジオメトリを備えている形式のものにおいて、弁座体が孔付円板の少なくとも1つの流入領域を部分的に直接的に下端面で覆っていて、少なくとも2つの流出開口が弁座体によって覆われている。   A fuel injection valve described in Patent Document 2 includes a valve seat body having a stationary valve seat, a valve closing body that cooperates with the valve seat body and is axially possible along a valve longitudinal axis, A perforated disc disposed downstream of the seat, the perforated disc having at least one inflow region and at least one outflow opening, the upper side having at least one inflow region In which the functional seat has a different opening geometry from the lower functional plane with at least one outflow opening as viewed in cross section, the valve seat body being at least one inflow of the perforated disc The region is partly directly covered by the lower end surface, and at least two outflow openings are covered by the valve seat.

この様な構成により、燃料の霧化を改善する為の流れにおいてS字偏流が実現されていて、高い霧化品質を備えた噴霧形状を形成している。   With such a configuration, an S-shaped drift is realized in the flow for improving the atomization of the fuel, and a spray shape having high atomization quality is formed.

特開2003−336562号JP 2003-336562 A 特表2000−508739号Special table 2000-508739

旋回の周方向においてスワール強さが略対称(周方向の均一性が高い)となる旋回燃料を燃料噴射孔より噴射させるためには、燃料噴射孔の出口部において旋回流れを略対称(周方向の均一性が高い)とするために、スワール室(旋回室)形状や横方向通路(旋回用通路)を含めた流路形状の工夫が必要になる。特に、燃料流路の総容積は噴射特性の精度に影響(容積が大きくなると精度が悪化)するため、流路の容積を極力小さくして旋回室の周方向の流れの均一性を高める必要がある。   In order to inject the swirl fuel whose swirl strength is substantially symmetrical (highly uniform in the circumferential direction) in the circumferential direction of the swirl from the fuel injection hole, the swirl flow is substantially symmetrical (circumferential direction at the outlet of the fuel injection hole). Therefore, it is necessary to devise a flow path shape including a swirl chamber (swirl chamber) shape and a lateral passage (swirl passage). In particular, since the total volume of the fuel flow path affects the accuracy of the injection characteristics (accuracy decreases as the volume increases), it is necessary to reduce the volume of the flow path as much as possible to improve the uniformity of the flow in the circumferential direction of the swirl chamber. is there.

特許文献1や特許文献2に記載された従来技術では、弁軸方向より流入した燃料は、それぞれ直角方向に延びる横方向通路を介して旋回室に至る。このような流路構成では、燃料は横方向通路の入口部で急激に流れ方向が変化するため流路断面内に偏った流れを誘起する。このような偏った流れが十分整流されないまま旋回室に至ると、燃料噴射孔側への急峻な流れ込みが発生して、旋回流の略対称(周方向の均一性が高い)が損なわれる可能性がある。   In the prior art described in Patent Document 1 and Patent Document 2, the fuel that has flowed in from the valve shaft direction reaches the swirl chamber via a lateral passage that extends in a perpendicular direction. In such a flow path configuration, the flow of fuel suddenly changes at the inlet of the lateral passage, and therefore induces a biased flow in the cross section of the flow path. If such a biased flow reaches the swirl chamber without being sufficiently rectified, there is a possibility that a steep flow into the fuel injection hole will occur and the general symmetry (high circumferential uniformity) of the swirl flow may be impaired. There is.

本発明は係る事情に鑑みてなされたものであり、旋回流の周方向における均一性を高めた燃料噴射弁を提供することを目的とする。   This invention is made | formed in view of the situation which concerns, and it aims at providing the fuel injection valve which improved the uniformity in the circumferential direction of a swirl flow.

上記目的を達成するために、本発明の燃料噴射弁は、摺動可能に設けられた弁体と、閉弁時に前記弁体が座る弁座面が形成されるとともに、燃料の流れに対して下流側に開口部を有するノズル体と、ノズル体の前記開口部と連通し、燃料の流れに対して下流側に設けられた旋回用通路と、旋回用通路よりも燃料の流れに対して下流側に形成され、円筒状の内側面を有し、内部で燃料を旋回させて旋回力を付与する旋回室と、旋回室の底部に円筒状に形成され外部に燃料を噴射する燃料噴射孔と、を備えた燃料噴射弁において、 旋回用通路を燃料噴射孔側に傾斜させて設けた。   In order to achieve the above object, a fuel injection valve according to the present invention has a valve body slidably provided, a valve seat surface on which the valve body sits when the valve is closed, and a fuel flow. A nozzle body having an opening on the downstream side, a turning passage communicating with the opening of the nozzle body, provided downstream on the fuel flow, and downstream of the fuel flow than the turning passage A swirl chamber that is formed on the side and has a cylindrical inner surface and that swirls fuel inside to impart a swirling force; a fuel injection hole that is formed in a cylindrical shape at the bottom of the swirl chamber and injects fuel to the outside; In the fuel injection valve having the above, the turning passage is inclined toward the fuel injection hole.

燃料の旋回流の周方向における対称性が向上し、燃料の薄膜化が促進され、微粒化の良い噴霧となる。   Symmetry in the circumferential direction of the swirling flow of fuel is improved, fuel thinning is promoted, and atomization with good atomization is achieved.

本発明の実施例の一つに係る燃料噴射弁の全体構成を弁軸心に沿う断面で示した縦断面図である。It is the longitudinal cross-sectional view which showed the whole structure of the fuel injection valve which concerns on one of the Example of this invention with the cross section along a valve shaft center. 本発明の実施例の一つに係る燃料噴射弁におけるノズル体近傍を示す縦断面図である。It is a longitudinal cross-sectional view which shows the nozzle body vicinity in the fuel injection valve which concerns on one of the Examples of this invention. 本発明の実施例の一つに係る燃料噴射弁におけるノズル体の下端部に位置するオリフィスプレートの平面図である。It is a top view of the orifice plate located in the lower end part of the nozzle body in the fuel injection valve which concerns on one of the Examples of this invention. 本発明の実施例の一つに係る燃料噴射弁における旋回用通路の傾斜構造を示す為の部分的な拡大平面図である。It is a partial enlarged plan view for showing the inclined structure of the turning passage in the fuel injection valve according to one of the embodiments of the present invention. 図4のB−D方向の断面図である。It is sectional drawing of the BD direction of FIG. 図4のC方向の断面図である。It is sectional drawing of the C direction of FIG. 従来のオリフィスプレートにおける旋回用通路及び旋回室内の流れを説明する為の部分的な拡大平面図である。It is a partial expanded plan view for demonstrating the flow for the turning in the conventional orifice plate, and the flow in a turning chamber. 図7のF方向の断面図である。It is sectional drawing of the F direction of FIG. 図7のE方向の断面図である。It is sectional drawing of the E direction of FIG. 図7のG方向の断面図である。It is sectional drawing of the G direction of FIG. 図7のG方向の断面図である。It is sectional drawing of the G direction of FIG. 本発明の実施例の一つに係る燃料噴射弁における旋回用通路の底面部に設けた突起部を示す為の部分的な拡大平面図である。It is a partial enlarged plan view for showing the projection part provided in the bottom face part of the passage for rotation in the fuel injection valve concerning one of the examples of the present invention. 図12のB方向の断面図である。It is sectional drawing of the B direction of FIG. オリフィスプレートにおける旋回用通路及び旋回室内の流れを説明する為の部分的な拡大平面図である。It is a partial enlarged plan view for demonstrating the flow for a turning in the orifice plate, and the flow in a turning chamber. 図14のG方向の断面図である。It is sectional drawing of the G direction of FIG.

本発明の一実施例について、図1乃至図6を用いて以下説明する。図1は、本発明の実施例の一つに係る燃料噴射弁1の全体構成を弁軸心に沿う断面で示した縦断面図である。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a longitudinal sectional view showing the overall configuration of a fuel injection valve 1 according to one of the embodiments of the present invention in a section along the valve axis.

図1において、燃料噴射弁1は、ステンレス製の薄肉パイプ13にノズル体2、弁体6を収容し、この弁体6を外側に配置した電磁コイル11で往復動作(開閉動作)させる構造である。以下、構造の詳細について説明する。   In FIG. 1, a fuel injection valve 1 has a structure in which a nozzle body 2 and a valve body 6 are accommodated in a thin stainless steel pipe 13 and the valve body 6 is reciprocated (open / closed) by an electromagnetic coil 11 disposed outside. is there. Details of the structure will be described below.

電磁コイル11を取り囲む磁性体のヨーク10と、電磁コイル11の中心に位置し、一端がヨーク10と磁気的に接触したコア7と、所定量リフトする弁体6と、この弁体6に接する弁座面3と、弁体6と弁座面3の隙間を通って流れる燃料の通過を許す燃料噴射室4、および燃料噴射室4の下流に複数個の燃料噴射孔23a、23b、23c、23d(図2乃至図4参照)を有するオリフィスプレート20を備えている。   A magnetic yoke 10 surrounding the electromagnetic coil 11, a core 7 positioned at the center of the electromagnetic coil 11 and having one end magnetically in contact with the yoke 10, a valve body 6 that lifts a predetermined amount, and a contact with the valve body 6. A fuel injection chamber 4 that allows passage of fuel flowing through the clearance between the valve seat surface 3, the valve body 6 and the valve seat surface 3, and a plurality of fuel injection holes 23 a, 23 b, 23 c, downstream of the fuel injection chamber 4, An orifice plate 20 having 23d (see FIGS. 2 to 4) is provided.

また、コア7の中心には、弁体6を弁座面3に押圧する弾性部材としてのスプリング8が備えてある。このスプリング8の弾性力はスプリングアジャスタ9の弁座面3方向への押し込み量によって調整される。   A spring 8 is provided at the center of the core 7 as an elastic member that presses the valve body 6 against the valve seat surface 3. The elastic force of the spring 8 is adjusted by the pushing amount of the spring adjuster 9 in the direction of the valve seat surface 3.

コイル11に通電されていない状態では、弁体6と弁座面3とが密着している。この状態では燃料通路が閉じられているため、燃料は燃料噴射弁1内部に留まり、複数個設けられている各々燃料噴射孔23a、23b、23c、23dからの燃料噴射は行われない。   When the coil 11 is not energized, the valve body 6 and the valve seat surface 3 are in close contact with each other. In this state, since the fuel passage is closed, the fuel stays inside the fuel injection valve 1 and fuel injection from each of the plurality of fuel injection holes 23a, 23b, 23c, and 23d is not performed.

一方、コイル11への通電があると、電磁力によって弁体6が対面するコア7の下端面に接触するまで移動する。   On the other hand, when the coil 11 is energized, it moves until it contacts the lower end surface of the core 7 facing the valve element 6 by electromagnetic force.

この開弁状態では弁体6と弁座面3の間に隙間ができるため、燃料通路が開かれて各々燃料噴射孔23a、23b、23c、23dから燃料が噴射される。   In this opened state, a gap is formed between the valve body 6 and the valve seat surface 3, so that the fuel passage is opened and fuel is injected from the fuel injection holes 23a, 23b, 23c, and 23d.

なお、燃料噴射弁1には入口部にフィルター14を有する燃料通路12が設けられており、この燃料通路12はコア7の中央部を貫通する貫通孔部分を含み、図示しない燃料ポンプにより加圧された燃料を燃料噴射弁1の内部を通して各々燃料噴射孔23a、23b、23c、23dへと導く通路である。また、燃料噴射弁1の外側部分は樹脂モールド15によって被覆され電気絶縁されている。   The fuel injection valve 1 is provided with a fuel passage 12 having a filter 14 at the inlet. The fuel passage 12 includes a through-hole portion that penetrates the center of the core 7 and is pressurized by a fuel pump (not shown). This is a passage that guides the fuel to the fuel injection holes 23a, 23b, 23c, and 23d through the inside of the fuel injection valve 1. The outer portion of the fuel injection valve 1 is covered with a resin mold 15 and electrically insulated.

燃料噴射弁1の動作は、上述したように、コイル11への通電(噴射パルス)に伴って、弁体6の位置を開弁状態と閉弁状態に切り替えることで、燃料の供給量を制御している。燃料供給量の制御にあたっては特に、閉弁状態では燃料漏れがない弁体設計が施されている。   As described above, the operation of the fuel injection valve 1 controls the amount of fuel supplied by switching the position of the valve body 6 between the valve open state and the valve closed state in accordance with energization (injection pulse) to the coil 11. doing. In controlling the fuel supply amount, a valve body design that does not leak fuel when the valve is closed is employed.

この種の燃料噴射弁では、弁体6に真円度が高く鏡面仕上げが施されているボール(JIS規格品の玉軸受用鋼球)を用いておりシート性の向上に有益である。一方、ボールが密着する弁座面3の弁座角は、研磨性が良好で真円度を高精度にできる最適な角度80゜から100゜であり、上述したボールとのシート性を極めて高く維持できるものである。なお、弁座面3を有するノズル体2は、焼入れによって硬度が高められており、また、脱磁処理により無用な磁気が除去されている。このような弁体6の構成により、燃料漏れの無い噴射量制御を可能としている。以って、コストパホーマンスに優れた弁体構造としている。   In this type of fuel injection valve, a ball (JIS ball ball bearing steel ball) having a high roundness and a mirror finish is used for the valve body 6, which is beneficial for improving the sheet performance. On the other hand, the valve seat angle of the valve seat surface 3 with which the ball is in close contact is an optimum angle of 80 ° to 100 ° with good grindability and high roundness, and the sheet property with the above-mentioned ball is extremely high. It can be maintained. In addition, the hardness of the nozzle body 2 having the valve seat surface 3 is increased by quenching, and unnecessary magnetism is removed by demagnetization treatment. Such a configuration of the valve body 6 enables the injection amount control without fuel leakage. Therefore, it is set as the valve body structure excellent in cost performance.

図2は、本発明の実施例の一つに係る燃料噴射弁1におけるノズル体2の近傍を示す縦断面図である。図2に示すように、オリフィスプレート20はその上面20aがノズル体2の下面2aに接触しており、この接触部分の外周をレーザ溶接してノズル体2に固定されている。なお、オリフィスプレート20の断面は図3のA方向断面を示している。   FIG. 2 is a longitudinal sectional view showing the vicinity of the nozzle body 2 in the fuel injection valve 1 according to one embodiment of the present invention. As shown in FIG. 2, the orifice plate 20 has an upper surface 20 a that is in contact with the lower surface 2 a of the nozzle body 2, and the outer periphery of this contact portion is laser-welded and fixed to the nozzle body 2. The cross section of the orifice plate 20 is a cross section in the A direction of FIG.

また、本実施例において上下方向は図1を基準としており、燃料噴射弁1の弁軸心方向において燃料通路12側を上側、各々燃料噴射孔23a、23b、23c、23d側を下側とする。   In this embodiment, the vertical direction is based on FIG. 1, and the fuel passage 12 side is the upper side and the fuel injection holes 23a, 23b, 23c, and 23d are the lower side in the valve axial direction of the fuel injection valve 1, respectively. .

ノズル体2の下端部には、弁座面3のシート部3aの径φSより小径の燃料導入孔5が設けられている。弁座面3は円錐形状をしており、その下流端中央部に燃料導入孔5が形成されている。   A fuel introduction hole 5 having a diameter smaller than the diameter φS of the seat portion 3 a of the valve seat surface 3 is provided at the lower end portion of the nozzle body 2. The valve seat surface 3 has a conical shape, and a fuel introduction hole 5 is formed at the center of the downstream end thereof.

弁座面3の中心線と燃料導入孔5の中心線とは弁軸芯Yに一致するように、弁座面3と燃料導入孔5とが形成されている。燃料導入孔5によって、ノズル体2の下端面2aとオリフィスプレート20の上面20aとの接触面に、燃料通路に連通する流入開口20bが各々下流に位置する燃料通路に対応して形成される。   The valve seat surface 3 and the fuel introduction hole 5 are formed so that the center line of the valve seat surface 3 and the center line of the fuel introduction hole 5 coincide with the valve shaft core Y. Due to the fuel introduction hole 5, an inflow opening 20 b communicating with the fuel passage is formed on the contact surface between the lower end surface 2 a of the nozzle body 2 and the upper surface 20 a of the orifice plate 20 corresponding to the fuel passage located downstream.

次に、オリフィスプレート20の構成について、図3を用いて説明する。図3は、本発明に係る燃料噴射弁1におけるノズル体2の下端部に位置するオリフィスプレート20の平面図である。   Next, the configuration of the orifice plate 20 will be described with reference to FIG. FIG. 3 is a plan view of the orifice plate 20 located at the lower end of the nozzle body 2 in the fuel injection valve 1 according to the present invention.

オリフィスプレート20の中心から所望離間した位置から周方向に等間隔(90度の間隔)に配置され、径方向外周側に向けて放射状に延びる4個の旋回用通路21a、21b、21c、21dが形成されている。これらの旋回用通路21a、21b、21c、21dはオリフィスプレート20の上面20a側に設けられた凹形状の燃料通路をなしている。   Four swirl passages 21a, 21b, 21c, and 21d that are arranged at equal intervals (intervals of 90 degrees) in the circumferential direction from a position spaced apart from the center of the orifice plate 20 and extend radially toward the outer circumferential side in the radial direction are provided. Is formed. These turning passages 21 a, 21 b, 21 c, and 21 d form a concave fuel passage provided on the upper surface 20 a side of the orifice plate 20.

旋回用通路21aの下流端は旋回室22aに連通するよう接続され、旋回用通路21bの下流端は旋回室22bに連通するよう接続され、旋回用通路21cの下流端は旋回室22cに連通するよう接続され、旋回用通路21dの下流端は旋回室22dに連通するよう接続されている。   The downstream end of the turning passage 21a is connected to communicate with the turning chamber 22a, the downstream end of the turning passage 21b is connected to communicate with the turning chamber 22b, and the downstream end of the turning passage 21c is connected to the turning chamber 22c. The downstream end of the turning passage 21d is connected to communicate with the turning chamber 22d.

旋回用通路21a、21b、21c、21dは旋回室22a、22b、22c、22dにそれぞれ燃料を供給する燃料通路であり、この意味において旋回用通路21a、21b、21c、21dを旋回燃料供給通路21a、21b、21c、21dと呼んでもよい。   The turning passages 21a, 21b, 21c, and 21d are fuel passages that supply fuel to the turning chambers 22a, 22b, 22c, and 22d, respectively. In this sense, the turning passages 21a, 21b, 21c, and 21d are turned into the turning fuel supply passage 21a. , 21b, 21c, 21d.

旋回室22a、22b、22c、22dの壁面は、上流側から下流側に向かって曲率が次第に大きくなるように(曲率半径が次第に小さくなるように)形成されている。このとき、曲率は連続的に大きくしてもよいし、所定の範囲で曲率が一定になるようにしながら上流側から下流側に向かって段階的に次第に大きくなるようにしてもよい。   The wall surfaces of the swirl chambers 22a, 22b, 22c, and 22d are formed so that the curvature gradually increases from the upstream side toward the downstream side (so that the radius of curvature gradually decreases). At this time, the curvature may be continuously increased, or may be gradually increased from the upstream side toward the downstream side while keeping the curvature constant within a predetermined range.

上流側から下流側に向かって曲率が連続的に大きくなる曲線の代表例として、インボリュート曲線(形状)又はらせん曲線(形状)や遠心送風機の設計手法に基づく曲線がある。本実施例では、らせん曲線について説明しているが、上流側から下流側に向かって曲率が次第に大きくなるとして上記のような曲線を採用しても同様に説明することができる。   Typical examples of the curve in which the curvature continuously increases from the upstream side toward the downstream side include an involute curve (shape) or a spiral curve (shape) and a curve based on the design method of the centrifugal fan. In the present embodiment, the spiral curve is described, but the description can be similarly made even if the above curve is adopted assuming that the curvature gradually increases from the upstream side toward the downstream side.

次に、図4乃至図6を用いて、本発明の実施例の一つに係る旋回用通路21aと旋回室22aの形成方法及び燃料噴射孔23aとの関係について説明する。   Next, the relationship between the turning passage 21a and the forming method of the turning chamber 22a and the fuel injection hole 23a according to one embodiment of the present invention will be described with reference to FIGS.

図4は、傾斜構造の旋回用通路21aと旋回室22a及び燃料噴射孔23aとの関係を示す拡大平面図である。図5は、図4のB方向断面図であり、旋回用通路21aの流れの様子を説明する為の図である。図6は、図4のC方向断面図であり、旋回用通路21a及び旋回室22aの流れの様子を説明する為の図である。1つの旋回用通路21aは、旋回室22aの接線方向に所望の角度θを有して連通開口しており、また、旋回室22aの渦中心部には、燃料噴射孔23aが開口している。   FIG. 4 is an enlarged plan view showing the relationship between the swirling passage 21a having the inclined structure, the swirling chamber 22a, and the fuel injection hole 23a. FIG. 5 is a cross-sectional view in the B direction of FIG. 4 and is a view for explaining the flow of the turning passage 21a. FIG. 6 is a cross-sectional view in the C direction of FIG. 4 and is a view for explaining the flow of the turning passage 21a and the turning chamber 22a. One swirl passage 21a has a desired angle θ in the tangential direction of the swirl chamber 22a, and is open for communication. A fuel injection hole 23a is opened at the center of the swirl chamber 22a. .

前述したが、本実施例では、旋回室22aの内周壁は弁軸心線に垂直な平面(断面)上でらせん曲線を描くように形成されており、該らせん曲線よりなる旋回室22aを形成する上で、特徴的な構成について以下簡単に記述する。   As described above, in this embodiment, the inner peripheral wall of the swirl chamber 22a is formed so as to draw a spiral curve on a plane (cross section) perpendicular to the valve shaft center line, and the swirl chamber 22a composed of the spiral curve is formed. In doing so, the characteristic configuration is briefly described below.

旋回室22aの内壁面の延長線(接線)と旋回用通路21aの一方の側壁面21asの延長線が旋回室22a側において交差しないように設計されている。そしてこの旋回室22aの内壁面の終端と旋回用通路21aの側壁面21asとの間には厚み形成部24aが設けられている。この厚み形成部24aは加工上必要な厚み部位である。   The extension line (tangent) of the inner wall surface of the swirl chamber 22a and the extension line of one side wall surface 21as of the swirl passage 21a are designed not to intersect on the swirl chamber 22a side. A thickness forming portion 24a is provided between the end of the inner wall surface of the swirl chamber 22a and the side wall surface 21as of the swirl passage 21a. The thickness forming portion 24a is a thickness portion necessary for processing.

らせん曲線の起点(本実施例では終点と言える)は燃料噴射孔23aの中心と一致している。ここに、らせん壁面に沿う流れの渦中心は燃料噴射孔23aの中心と一致していることになる。
更に図4を用いて説明すると旋回室22aの内周壁は、等差螺旋の式(1)、(2)により設計されている。等差螺旋を描く時の基準円Xの中心oと旋回室22aを形成する時の中心oと燃料噴射孔23aの中心oは位置している。
(式1)
R=T/2×(1−a×θ)
(式2)
a=Wk/(T/2)/(2π)
ここでRは、旋回室22aを形成する時の中心oと旋回室の内周壁までの距離、Tは等差螺旋を描く時の基準円Xの直径、Wkは旋回室22aの終点Eと旋回室22aの始点Sの距離である。
The starting point of the helical curve (which can be said to be the end point in this embodiment) coincides with the center of the fuel injection hole 23a. Here, the vortex center of the flow along the spiral wall surface coincides with the center of the fuel injection hole 23a.
Further, referring to FIG. 4, the inner peripheral wall of the swirl chamber 22a is designed by the equal differential spiral equations (1) and (2). The center o of the reference circle X when drawing the equal helix, the center o when forming the swirl chamber 22a, and the center o of the fuel injection hole 23a are located.
(Formula 1)
R = T / 2 × (1-a × θ)
(Formula 2)
a = Wk / (T / 2) / (2π)
Here, R is the distance from the center o when the swirl chamber 22a is formed to the inner peripheral wall of the swirl chamber, T is the diameter of the reference circle X when drawing the equidistant spiral, and Wk is swirled with the end point E of the swirl chamber 22a. This is the distance of the starting point S of the chamber 22a.

旋回用通路21aは燃料の通過を許す為の矩形断面を有しており、図示しないが、燃料噴射孔23aの直径や旋回室22aの大きさの基準である基準円直径について、あらかじめ実験的に求めておいた諸データの中から要求仕様に近い値を選択する。すなわち、燃料噴射弁に要求される流量や噴霧角に応じて選択される。   The swirling passage 21a has a rectangular cross section for allowing the passage of fuel. Although not shown, the reference circular diameter, which is a reference for the diameter of the fuel injection hole 23a and the size of the swirling chamber 22a, is experimentally determined in advance. Select a value close to the required specification from the various data obtained. That is, it is selected according to the flow rate and spray angle required for the fuel injection valve.

以下、本実施例に係る傾斜構造の構成及びその作用について説明する。
先に、図7乃至図9を用いて、旋回用通路21aの傾斜が無い状態での通路内の流れを、発明者らが行った解析結果を基にその特徴部分を模式化して説明する。
Hereinafter, the configuration and operation of the inclined structure according to the present embodiment will be described.
First, the flow in the passage without the inclination of the turning passage 21a will be schematically described with reference to FIGS. 7 to 9 based on the analysis result of the inventors.

図7は、オリフィスプレート20における旋回用通路21a及び旋回室22aの流れを説明する為の部分的な拡大図である。図8は、図7のF方向の断面図であり、旋回用通路21aの長さ方向における流れの特徴部分を説明する為の図である。図9は、図7のE方向の断面図であり、旋回用通路21a及び旋回室22aの高さ方向における流れの特徴部分を説明する為の図である。   FIG. 7 is a partially enlarged view for explaining the flow of the turning passage 21a and the turning chamber 22a in the orifice plate 20. As shown in FIG. FIG. 8 is a cross-sectional view in the F direction of FIG. 7 and is a view for explaining a characteristic portion of the flow in the length direction of the turning passage 21a. FIG. 9 is a cross-sectional view in the direction E of FIG. 7, and is a view for explaining the characteristic portion of the flow in the height direction of the turning passage 21a and the turning chamber 22a.

旋回用通路21aの幅方向の流れには、旋回室22aの入口側において燃料が燃料噴射孔23aに流れやすく、21at側に比べて速度の大きい流れ31bが旋回用通路21aの側壁21as側に形成される。一方、側壁21as側に比べて速度の小さい流れ31cが側壁21at側に形成される。   In the flow in the width direction of the turning passage 21a, the fuel easily flows into the fuel injection hole 23a on the inlet side of the turning chamber 22a, and a flow 31b having a higher speed than the 21at side is formed on the side wall 21as side of the turning passage 21a. Is done. On the other hand, a flow 31c having a lower speed than the side wall 21as side is formed on the side wall 21at side.

これらの流れ31b、31cは、弁軸方向の流れ31aが流入開口20bより流入したのち、旋回用通路21aの底面21abに衝突して直角方向に曲げられるために発生する。なお、流入開口20bは燃料導入孔5の開口部とオリフィスプレート20との間に形成される略半円状の開口である。   These flows 31b and 31c are generated because the flow 31a in the valve axis direction flows from the inflow opening 20b and then collides with the bottom surface 21ab of the turning passage 21a and is bent in a right angle direction. The inflow opening 20 b is a substantially semicircular opening formed between the opening of the fuel introduction hole 5 and the orifice plate 20.

図8に示すように、旋回用通路21aの底面21abに衝突した流れ31aは、長手方向に進む間に速度を減じた流れ31eとなるが、旋回室22aの高さ方向へ向かう流れが弱く十分な旋回効果が得られない。また、旋回用通路21aの下側に向かう流れ31fは、流れ31eに誘起されたもので、結果として死水域31iを形成する。また、旋回室22aの入口部の流れは、図9に示すように、旋回用通路21aの底面21abに沿って流れ31g、旋回室22aの厚み部位24a側に流入する。このため、燃料噴射孔23a側の流れ31d(図7参照)と強く干渉する。この干渉影響により、燃料噴射孔23aの入口部には、速度の大きく偏った流れ31hが形成され、流れの対称性(均一な旋回流れ)を阻害している。そのため図10に示すように、燃料噴射孔23aからの噴霧が非対称となる。   As shown in FIG. 8, the flow 31a colliding with the bottom surface 21ab of the turning passage 21a becomes a flow 31e with reduced speed while proceeding in the longitudinal direction, but the flow toward the height direction of the turning chamber 22a is weak enough. The turning effect cannot be obtained. In addition, the flow 31f directed to the lower side of the turning passage 21a is induced by the flow 31e, and as a result, forms a dead water area 31i. As shown in FIG. 9, the flow at the inlet of the swirl chamber 22a flows along the bottom surface 21ab of the swirl passage 21a and flows into the thickness portion 24a side of the swirl chamber 22a. For this reason, it strongly interferes with the flow 31d (see FIG. 7) on the fuel injection hole 23a side. Due to the influence of the interference, a flow 31h with a large velocity is formed at the inlet of the fuel injection hole 23a, thereby inhibiting flow symmetry (uniform swirl flow). Therefore, as shown in FIG. 10, the spray from the fuel injection hole 23a is asymmetric.

本発明の実施例の一つに係る旋回用通路21aの傾斜構造は、この様な急峻な流れを抑制すると共に、旋回室22aの入口部の流れをその高さ方向において整流する。 戻って、図4乃至図6を用いて旋回用通路21aの傾斜構造及びこれに伴う流れについて説明する。   The inclined structure of the turning passage 21a according to one embodiment of the present invention suppresses such a steep flow and rectifies the flow at the inlet of the turning chamber 22a in the height direction. Referring back to FIG. 4 to FIG. 6, the inclined structure of the turning passage 21a and the flow associated therewith will be described.

旋回用通路21aは、旋回室22aの入口部に対して所望の角度θだけ燃料噴射孔23a側へ傾斜している。言い換えると、旋回用通路21aの中心線D−Dは、燃料噴射孔23aの中心を通る線分C−Cに直行する線分B−Bに対してθだけ傾斜している。この傾斜角θは10゜〜30゜が好ましい。弁軸方向より流入する流れ30aは、旋回用通路21aの底面21abに衝突したのち、旋回室22aの入口近傍の内周壁面に向かう流れ30b、30cを形成する。ん燃料の流れ30bの方が燃料噴射孔23aに近いため30cに比べ流速が速くなる。流速の大きい流れ30bは、旋回室22aを旋回(周回)した流れ30dとの干渉が避けられるため、十分な旋回が付与される。また、図5に示すように、流れ30eは旋回室22aの入口側に向かう際に、高さ方向に整流されるため従来の様な広範囲な図8の死水域31iは消滅する。一方、図6に示すように、旋回室22aの高さにおいては流速が回復しており、旋回室22a内で十分な旋回が付与されて燃料噴射孔23aに至る。以って、燃料噴射孔23aの出口部において旋回流れの対称性を向上することができる。
図12に示すように、突起部25aは旋回用通路21aの幅W方向において全領域に設けられている。また、長手方向における長さbは旋回用通路21aの長さLの1/3以下としている。
The turning passage 21a is inclined toward the fuel injection hole 23a by a desired angle θ with respect to the inlet portion of the turning chamber 22a. In other words, the center line DD of the turning passage 21a is inclined by θ with respect to the line segment BB perpendicular to the line segment CC passing through the center of the fuel injection hole 23a. The inclination angle θ is preferably 10 ° to 30 °. The flow 30a flowing in from the valve shaft direction collides with the bottom surface 21ab of the turning passage 21a, and then forms flows 30b and 30c toward the inner peripheral wall surface in the vicinity of the inlet of the turning chamber 22a. Since the fuel flow 30b is closer to the fuel injection hole 23a, the flow velocity is faster than 30c. Since the flow 30b having a high flow velocity can avoid interference with the flow 30d swirled (circulated) in the swirl chamber 22a, sufficient swirl is imparted. Further, as shown in FIG. 5, the flow 30e is rectified in the height direction when it goes to the entrance side of the swirl chamber 22a, so the wide dead water area 31i of FIG. On the other hand, as shown in FIG. 6, the flow velocity is restored at the height of the swirl chamber 22a, and sufficient swirl is imparted in the swirl chamber 22a to reach the fuel injection hole 23a. Therefore, the symmetry of the swirl flow can be improved at the outlet of the fuel injection hole 23a.
As shown in FIG. 12, the protrusion 25a is provided in the entire region in the width W direction of the turning passage 21a. Further, the length b in the longitudinal direction is set to 1/3 or less of the length L of the turning passage 21a.

一方、図13に示すように、旋回用通路21aの高さH方向において、突起部25aの高さhは1/6以下としている。また、突起部25aは旋回用通路21aの下流側(旋回室22aの入口側)に位置するように形成されている。
この様な構成により、流入開口20aより流入した燃料は、図14、図15に示すように旋回用通路21aの底面21abから旋回室22aの上面方向に向かって流れ旋回室22aの高さ方向に整流(41a、41b)されるため、旋回室22a内で十分な旋回が付与されて燃料噴射孔23aに至る。以って、燃料噴射孔23aの出口部において旋回流れを対称にすることができる。そのため図11に示すように、燃料噴射孔23aからの噴霧の対称性が向上する。
On the other hand, as shown in FIG. 13, in the height H direction of the turning passage 21a, the height h of the protrusion 25a is set to 1/6 or less. Further, the protrusion 25a is formed so as to be located on the downstream side of the turning passage 21a (the inlet side of the turning chamber 22a).
With this configuration, the fuel flowing in from the inflow opening 20a flows from the bottom surface 21ab of the swirl passage 21a toward the upper surface of the swirl chamber 22a as shown in FIGS. 14 and 15, and in the height direction of the swirl chamber 22a. Since the current is rectified (41a, 41b), sufficient swirl is imparted in the swirl chamber 22a to reach the fuel injection hole 23a. Accordingly, the swirl flow can be made symmetric at the outlet of the fuel injection hole 23a. Therefore, as shown in FIG. 11, the symmetry of the spray from the fuel injection hole 23a is improved.

なお、ノズル体2とオリフィスプレート20とは、図示していないが、治具等を用いて両者の位置決めが簡単且つ容易に実施されように構成されており、組み合わせ時の寸法精度が高められている。また、オリフィスプレート20は量産性に有利なプレス成形(塑性加工)により製作される。なお、この方法以外に、放電加工や電鋳法、エッチング加工など比較的応力の加わらない加工精度の高い方法が考えられる。この様な構成ではコスト低減効果は勿論であるが、加工性の向上によって寸法バラツキが抑えられるので、噴霧形状や噴射量のロバスト性が格段に向上する。   Although the nozzle body 2 and the orifice plate 20 are not shown in the drawing, they are configured so that the positioning of both is simple and easy using a jig or the like, and the dimensional accuracy at the time of combination is improved. Yes. Further, the orifice plate 20 is manufactured by press molding (plastic processing) advantageous for mass productivity. In addition to this method, a method with high processing accuracy that is relatively free of stress such as electric discharge machining, electroforming, and etching may be considered. In such a configuration, not only the cost reduction effect is achieved, but also the dimensional variation is suppressed by improving the workability, so that the robustness of the spray shape and the injection amount is remarkably improved.

以上説明したように、本発明の実施形態にかかる燃料噴射弁は、旋回用通路を旋回室に対して傾斜させことにより、旋回した燃料と旋回通路からの燃料との干渉影響が抑えられることによって、旋回用通路の断面内(幅方向、高さ方向)においてその流れが整流される。特に、旋回室の入口部において高さ方向に十分な速度分布が維持されて旋回室に供給されるため、らせん曲線より成る旋回室の内壁面に誘導され十分な旋回が付与される。また、この旋回流れの渦中心に配置される燃料噴射孔の入口部では均一な旋回流れが形成され、燃料の薄膜化を促進することになる。
更に厚み形成部を設けたため、旋回用通路の燃料流れと旋回室内の燃料流れの衝突が緩和され、更に均一な旋回流れが形成され、燃料の薄膜化を促進することになる。
As described above, the fuel injection valve according to the embodiment of the present invention can suppress the influence of interference between the swirled fuel and the fuel from the swirl passage by inclining the swirl passage with respect to the swirl chamber. The flow is rectified in the cross section (width direction, height direction) of the turning passage. In particular, since a sufficient velocity distribution is maintained in the height direction at the entrance of the swirl chamber and the swirl chamber is supplied to the swirl chamber, the swirl chamber is guided to the inner wall surface of the swirl chamber and has a sufficient swirl. In addition, a uniform swirl flow is formed at the inlet portion of the fuel injection hole arranged at the vortex center of the swirl flow, and the thinning of the fuel is promoted.
Furthermore, since the thickness forming portion is provided, the collision between the fuel flow in the swirl passage and the fuel flow in the swirl chamber is alleviated, and a more uniform swirl flow is formed, facilitating fuel thinning.

このように均一に薄膜化した燃料噴霧は、周囲空気とのエネルギー交換が活発に行われるので、噴射直後に分裂が促進されて微粒化の良い噴霧となる。   The fuel spray that has been uniformly thinned in this way actively exchanges energy with the surrounding air, so that the splitting is promoted immediately after the injection and the atomization is good.

1 燃料噴射弁
2 ノズル体
3 弁座面
4 燃料噴射室
5 燃料導入孔
10 ヨーク
11 コイル
20 オリフィスプレート
21a、21b、21c、21d 旋回用通路
22a、22b、22c、22d 旋回室
23a、23b、23c、23d 燃料噴射孔
24a、24b、24c、24d 厚み形成部
25a 突起部
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 2 Nozzle body 3 Valve seat surface 4 Fuel injection chamber 5 Fuel introduction hole 10 Yoke 11 Coil 20 Orifice plate 21a, 21b, 21c, 21d Turning passage 22a, 22b, 22c, 22d Swirling chamber 23a, 23b, 23c , 23d Fuel injection holes 24a, 24b, 24c, 24d Thickness forming portion 25a Protruding portion

Claims (3)

摺動可能に設けられた弁体と、閉弁時に前記弁体が座る弁座面が形成されるとともに、燃料の流れに対して下流側に開口部を有するノズル体と、前記ノズル体の前記開口部と連通し、燃料の流れに対して下流側に設けられた旋回用通路と、前記旋回用通路よりも燃料の流れに対して下流側に形成され、円筒状の内側面を有し、内部で燃料を旋回させて旋回力を付与する旋回室と、前記旋回室の底部に円筒状に形成され外部に燃料を噴射する燃料噴射孔と、を備えた燃料噴射弁において、
前記旋回用通路を前記燃料噴射孔側に傾斜させて設けたことを特徴とする燃料噴射弁。
A valve body provided in a slidable manner, a valve seat surface on which the valve body sits when the valve is closed, a nozzle body having an opening on the downstream side with respect to the flow of fuel, and the nozzle body A swirl passage that communicates with the opening and is provided on the downstream side with respect to the fuel flow; and is formed on the downstream side with respect to the fuel flow with respect to the swirl passage, and has a cylindrical inner surface; In a fuel injection valve comprising: a swirling chamber that swirls fuel inside to apply a swirling force; and a fuel injection hole that is formed in a cylindrical shape at the bottom of the swirling chamber and injects fuel to the outside.
A fuel injection valve characterized in that the turning passage is inclined toward the fuel injection hole.
請求項1に記載の燃料噴射弁において、
前記旋回室と前記旋回用通路の間には厚み形成部を設けたことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 1, wherein
A fuel injection valve, wherein a thickness forming portion is provided between the swirl chamber and the swirl passage.
請求項1に記載の燃料噴射弁において、
前記旋回用通路に突起部を設けたことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 1, wherein
A fuel injection valve characterized in that a protrusion is provided in the turning passage.
JP2013046088A 2013-03-08 2013-03-08 Fuel injection valve Active JP5978154B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013046088A JP5978154B2 (en) 2013-03-08 2013-03-08 Fuel injection valve
US14/198,860 US9541048B2 (en) 2013-03-08 2014-03-06 Fuel injection valve
CN201410081990.6A CN104033305B (en) 2013-03-08 2014-03-07 Fuelinjection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046088A JP5978154B2 (en) 2013-03-08 2013-03-08 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2014173478A true JP2014173478A (en) 2014-09-22
JP5978154B2 JP5978154B2 (en) 2016-08-24

Family

ID=51464240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046088A Active JP5978154B2 (en) 2013-03-08 2013-03-08 Fuel injection valve

Country Status (3)

Country Link
US (1) US9541048B2 (en)
JP (1) JP5978154B2 (en)
CN (1) CN104033305B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060945A1 (en) * 2015-10-05 2017-04-13 三菱電機株式会社 Fuel injection valve
WO2020148821A1 (en) * 2019-01-16 2020-07-23 三菱電機株式会社 Fuel injection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106948909A (en) * 2016-12-15 2017-07-14 中国第汽车股份有限公司 A kind of porous extruding swirl injection valve
JP7049133B2 (en) * 2018-02-23 2022-04-06 日立Astemo株式会社 Fuel injection valve
CN109763927A (en) * 2019-01-29 2019-05-17 浙江吉利控股集团有限公司 A kind of fuel injector and engine
CN109751162A (en) * 2019-01-29 2019-05-14 浙江吉利控股集团有限公司 A kind of methanol fuel injector structure and engine
CN110185566A (en) * 2019-06-20 2019-08-30 江苏巴腾科技有限公司 A kind of spiral-flow type jet orifice plate and nozzle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309236A (en) * 2006-05-19 2007-11-29 Toyota Motor Corp Fuel injection nozzle
JP2012158995A (en) * 2011-01-31 2012-08-23 Hitachi Automotive Systems Ltd Fuel injection valve

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637103A1 (en) * 1996-09-12 1998-03-19 Bosch Gmbh Robert Valve, in particular fuel injector
DE19703200A1 (en) 1997-01-30 1998-08-06 Bosch Gmbh Robert Fuel injector
DE19815800A1 (en) * 1998-04-08 1999-10-14 Bosch Gmbh Robert Fuel injector
DE19815775A1 (en) * 1998-04-08 1999-10-14 Bosch Gmbh Robert Swirl disk and fuel injector with swirl disk
US6783085B2 (en) * 2002-01-31 2004-08-31 Visteon Global Technologies, Inc. Fuel injector swirl nozzle assembly
US6854670B2 (en) 2002-05-17 2005-02-15 Keihin Corporation Fuel injection valve
JP3715253B2 (en) 2002-05-17 2005-11-09 株式会社ケーヒン Fuel injection valve
US6739309B2 (en) * 2002-06-04 2004-05-25 Nissan Motor Co., Ltd. Direct fuel injection internal combustion engine
JP2004324596A (en) * 2003-04-28 2004-11-18 Hitachi Ltd Fuel injection valve and internal combustion engine mounted with the same
US7434564B2 (en) * 2004-08-19 2008-10-14 Avl List Gmbh Internal combustion engine
JP2009197682A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Fuel injection valve
EP2169312A1 (en) * 2008-09-25 2010-03-31 Siemens Aktiengesellschaft Stepped swirler for dynamic control
EP2239501B1 (en) * 2009-04-06 2012-01-04 Siemens Aktiengesellschaft Swirler, combustion chamber, and gas turbine with improved swirl
JP4808801B2 (en) * 2009-05-18 2011-11-02 三菱電機株式会社 Fuel injection valve
JP5253480B2 (en) * 2010-11-01 2013-07-31 日立オートモティブシステムズ株式会社 Fuel injection valve
JP5492123B2 (en) * 2011-03-17 2014-05-14 日立オートモティブシステムズ株式会社 Fuel injection valve
JP5875443B2 (en) * 2012-03-30 2016-03-02 日立オートモティブシステムズ株式会社 Fuel injection valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309236A (en) * 2006-05-19 2007-11-29 Toyota Motor Corp Fuel injection nozzle
JP2012158995A (en) * 2011-01-31 2012-08-23 Hitachi Automotive Systems Ltd Fuel injection valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060945A1 (en) * 2015-10-05 2017-04-13 三菱電機株式会社 Fuel injection valve
JPWO2017060945A1 (en) * 2015-10-05 2018-01-25 三菱電機株式会社 Fuel injection valve and injection hole plate
WO2020148821A1 (en) * 2019-01-16 2020-07-23 三菱電機株式会社 Fuel injection device
JPWO2020148821A1 (en) * 2019-01-16 2021-10-14 三菱電機株式会社 Fuel injection device
JP7031020B2 (en) 2019-01-16 2022-03-07 三菱電機株式会社 Fuel injection device

Also Published As

Publication number Publication date
CN104033305A (en) 2014-09-10
US20140251263A1 (en) 2014-09-11
JP5978154B2 (en) 2016-08-24
US9541048B2 (en) 2017-01-10
CN104033305B (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5978154B2 (en) Fuel injection valve
JP5537512B2 (en) Fuel injection valve
JP2014173479A (en) Fuel injection valve
JP5452515B2 (en) Fuel injection valve
JP5961383B2 (en) Fuel injection valve
JP5930903B2 (en) Fuel injection valve
JP5277264B2 (en) Fuel injection valve
JP5875443B2 (en) Fuel injection valve
JP2014173477A (en) Fuel injection valve
JP5887291B2 (en) Fuel injection valve
WO2014175112A1 (en) Fuel injection valve
JP5875442B2 (en) Fuel injection valve
JP6523984B2 (en) Fuel injection valve
JP2007182807A (en) Fuel injection valve
JP2014025365A (en) Fuel injection valve
JP6239317B2 (en) Fuel injection valve
JP6141350B2 (en) Fuel injection valve
JP6501500B2 (en) Fuel injection valve
JP5909479B2 (en) Fuel injection valve
JP2018013051A (en) Fuel injection valve
JP2010216414A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5978154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350