WO2014175112A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2014175112A1
WO2014175112A1 PCT/JP2014/060671 JP2014060671W WO2014175112A1 WO 2014175112 A1 WO2014175112 A1 WO 2014175112A1 JP 2014060671 W JP2014060671 W JP 2014060671W WO 2014175112 A1 WO2014175112 A1 WO 2014175112A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel injection
orifice plate
nozzle body
injection valve
Prior art date
Application number
PCT/JP2014/060671
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 吉村
岡本 良雄
石井 英二
前川 典幸
貴博 齋藤
敦士 中井
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to IN1033DEN2015 priority Critical patent/IN2015DN01033A/en
Priority to CN201480002181.XA priority patent/CN104603444A/en
Publication of WO2014175112A1 publication Critical patent/WO2014175112A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices

Definitions

  • the present invention relates to a fuel injection valve used in an internal combustion engine, and relates to a fuel injection valve capable of improving atomization performance by injecting swirling fuel.
  • Patent Document 1 A fuel injection valve described in Patent Document 1 is known as a prior art that promotes atomization of fuel injected from a plurality of fuel injection holes using a swirl flow.
  • valve seat body nozzle body having an immobile valve seat, a valve closing body, and a holed disk (orifice plate) disposed downstream of the valve seat body.
  • the perforated disc has at least one inflow region and at least one outflow opening.
  • each functional plane has a different opening geometry, the lower end surface of the valve seat body covers at least one inflow region of the perforated disc, and at least two outflow openings are covered by the valve seat body.
  • the fuel flows into the swirl chamber where the fuel is twisted (swirled) with a non-uniform velocity portion, resulting in a swirl flow having a non-uniform velocity distribution in the swirl chamber, which adversely affects the atomization of the fuel.
  • a fuel injection valve includes a swirl chamber having an inner peripheral wall formed so that a curvature gradually increases from an upstream side to a downstream side in an orifice plate, and a fuel in the swirl chamber.
  • a fuel passage is formed by the turning passage of the orifice plate and the opening of the nozzle body in contact with the upper surface of the orifice plate.
  • the flow path structure for allowing the fuel to flow from the upper part of the side surface of the turning passage onto the periphery of the opening (fuel introduction hole) provided on the lower surface of the nozzle body in contact with the upper surface of the orifice plate Is provided.
  • the flow structure provided at the edge of the fuel introduction hole allows the fuel to flow into the upper part of the turning passage, thereby reducing the uneven speed distribution of the turning passage and improving the turning force. It is possible to improve the atomization of the fuel.
  • FIG. 5 is a BB cross-sectional view of the turning passage of FIG. 4. It is a figure for demonstrating the detail of the nozzle body shape which provided the orifice plate and the flow-path structure which concerns on one Example of this invention.
  • FIG. 1 is a longitudinal sectional view showing the overall configuration of a fuel injection valve 1 according to the present invention.
  • a fuel injection valve 1 has a structure in which a nozzle body 2 and a valve body 6 are accommodated in a thin stainless steel pipe 13 and the valve body 6 is reciprocated (open / closed) by an electromagnetic coil 11 disposed outside. is there. Details of the structure will be described below.
  • a fuel injection chamber 4 (see FIG. 2) that allows passage of fuel flowing through the valve seat surface 3, a gap between the valve body 6 and the valve seat surface 3, and a plurality of fuel injection holes downstream of the fuel injection chamber 4
  • an orifice plate 20 having 23a, 23b, 23c, and 23d (see FIG. 3).
  • four fuel injection holes are described as an example, but the number of holes is not limited to four.
  • a spring 8 as an elastic member for pressing the valve body 6 against the valve seat surface 3 is provided at the center of the core 7.
  • the elastic force of the spring 8 is adjusted by the pushing amount of the spring adjuster 9 in the direction of the valve seat surface 3.
  • the fuel injection valve 1 is provided with a fuel passage 12 having a filter 14 at the inlet.
  • the fuel passage 12 includes a through-hole portion that penetrates the center of the core 7 and is pressurized by a fuel pump (not shown). This is a passage that guides the fuel to the fuel injection holes 23a, 23b, 23c, and 23d through the inside of the fuel injection valve 1.
  • the outer portion of the fuel injection valve 1 is covered with a resin mold 15 and electrically insulated.
  • the operation of the fuel injection valve 1 controls the amount of fuel supplied by switching the position of the valve body 6 between the valve open state and the valve closed state in accordance with energization (injection pulse) to the coil 11. is doing.
  • valve body design is designed so that there is no fuel leakage, especially when the valve is closed.
  • This type of fuel injection valve uses a ball (steel ball for ball bearing of JIS standard product) having a high roundness and a mirror finish on the valve body 6, which is beneficial for improving the sheet property.
  • valve seat angle of the valve seat surface 3 with which the ball is in close contact is an optimum angle of 80 ° to 100 ° with good grindability and high roundness, and the sheet property with the above-mentioned ball is extremely high. It can be maintained.
  • the nozzle body 2 having the valve seat surface 3 has increased hardness by quenching, and unnecessary magnetism has been removed by demagnetization treatment.
  • valve body 6 Such a configuration of the valve body 6 enables injection amount control without fuel leakage. Therefore, the valve body structure is excellent in cost performance.
  • FIG. 2 is a longitudinal sectional view showing the vicinity of the nozzle body 2 in the fuel injection valve 1 according to the present invention.
  • the upper surface 20 a of the orifice plate 20 is in contact with the lower surface 2 a of the nozzle body 2, and the outer periphery of this contact portion is fixed to the nozzle body 2 by laser welding.
  • the vertical direction is based on FIG. 1, and the fuel passage 12 side is the upper side in the valve axial direction of the fuel injection valve 1, and the fuel injection holes 23a, 23b, 23c, 23d ( The side is referred to as the lower side.
  • a fuel introduction hole 5 having a diameter smaller than the diameter ⁇ S of the seat portion 3 a of the valve seat surface 3 is provided at the lower end portion of the nozzle body 2.
  • the valve seat surface 3 has a conical shape, and a fuel introduction hole 5 is formed at the center of the downstream end thereof.
  • the valve seat surface 3 and the fuel introduction hole 5 are formed so that the center line o of the valve seat surface 3 and the center line o of the fuel introduction hole 5 coincide with the valve axis o.
  • the fuel introduction hole 5 and the turning passage 21a provided in the orifice plate 20 constitute a fuel flow path to the turning chamber 22a and the fuel injection hole 23a.
  • FIG. 3 is a plan view of the orifice plate 20 located at the lower end of the nozzle body 2 in the fuel injection valve 1 according to the present invention.
  • the orifice plate 20 is provided with four turning passages 21a, 21b, 21c, 21d at intervals of 90 °.
  • the downstream ends of the turning passages 21a, 21b, 21c, and 21d are connected to communicate with the turning chambers 22a, 22b, 22c, and 22d, respectively.
  • the turning passages 21a, 21b, 21c, and 21d are fuel passages that supply fuel to the turning chambers 22a, 22b, 22c, and 22d, respectively. In this sense, the turning passages 21a, 21b, 21c, and 21d are turned into the turning fuel supply passage 21a. , 21b, 21c, 21d.
  • the wall surfaces of the swirl chambers 22a, 22b, 22c, and 22d are formed so that the curvature gradually increases from the upstream side toward the downstream side (so that the radius of curvature gradually decreases).
  • the connecting portions of the turning passages 21a, 21b, 21c, and 21d and the turning chambers 22a, 22b, 22c, and 22d form thickness forming portions 25a, 25b, 25c, and 25d in consideration of the collision of the fuel flow.
  • fuel injection holes 23a, 23b, 23c, and 23d are opened at the centers of the swirl chambers 22a, 22b, 22c, and 22d, respectively.
  • nozzle body 2 and the orifice plate 20 are not shown in the drawing, they are configured to be easily and easily positioned using a jig or the like, and the dimensional accuracy at the time of combination is enhanced.
  • the orifice plate 20 is manufactured by cutting or press forming (plastic processing).
  • a method with high processing accuracy that is relatively free of stress such as electric discharge machining, electroforming, and etching may be considered.
  • FIG. 4 is an enlarged cross-sectional view of the orifice plate 20 and the conventional nozzle body 2 '.
  • the figure includes a valve body 6, a nozzle body 2 ′, an orifice plate 20, and a fuel flow F.
  • FIG. 5 is a BB cross section of FIG.
  • the fuel F flows into the fuel injection chamber 4 from the gap between the valve body 6 and the nozzle body 2 ′, and enters the orifice plate which is the connection between the opening of the nozzle body 2 ′ and the turning passage 21a.
  • the flow is directed from the upper side of the orifice plate inflow portion 2b 'toward the bottom surface of the turning passage 21a, and the pressure is increased in the vicinity of the bottom surface. Therefore, the flow velocity in the vicinity of the upper surface 51 is lower than that of the lower surface of the turning passage 21a, and the cross section of the turning passage 21a has a non-uniform velocity distribution. Since the flow with the non-uniform velocity distribution flows into the swirl chamber 22a as it is, the swirl flow has a non-uniform velocity distribution within the swirl chamber 22a, and as a result, the swirl force is reduced.
  • FIG. 6 is an enlarged cross-sectional view for explaining the relationship between the orifice plate 20 and the flow path structure 31 provided at the edge of the fuel introduction hole 5 serving as the opening of the nozzle body 2 according to the present invention.
  • the figure includes a valve body 6, a nozzle body 2, an orifice plate 20, and a fuel flow F.
  • FIG. 7 is a B′-B ′ cross section of FIG. 6 and includes a flow path structure 31 and a fuel flow F.
  • FIG. 8 is a cross-sectional view taken along the line CC of FIG. 6 and is composed of a flow path structure 31 and an orifice plate 20 viewed from the fuel introduction hole 5 which is an opening of the nozzle body 2.
  • a flow path structure 31 is provided along the edge of the fuel introduction hole 5 so that fuel flows from the upper part of the side surface of the turning passage 21a. As a result, as shown in FIG. 7, the flow path structure 31 becomes a flow path communicating with the turning passage 21a.
  • the fuel flow generated by the present invention will be described.
  • the fuel F flows from the fuel injection chamber 4 to the fuel inflow portion 2 b to the orifice plate, but as shown in FIGS. 7 and 8, the upper side surface of the turning passage 21 a is passed through the flow path structure 31.
  • the fuel F flows into the turning passage 21 a along the fuel introduction hole 5. Therefore, as shown in FIG. 6, the low-speed portion near the upper surface 51 of the turning passage 21a, which has occurred in the conventional structure (FIG. 4), is alleviated, and the non-uniform velocity distribution can be improved as a whole section. Further, as indicated by an arrow F in FIGS. 7 and 8, it can be seen that the side surface fuel flow F flows from the upper side surface of the turning passage 21a by the flow path structure 31.
  • the flow path structure 31 described above is processing for the nozzle body 2, it can be applied regardless of the shape of the flow path processed in the orifice plate 20.
  • the shape of the swirling passage, swirl chamber, and fuel injection hole differs depending on the target flow rate, spray angle, and particle size, but the structure of the present invention has the effect of equalizing the velocity distribution in the swirling passage regardless of these shapes. Can be obtained.
  • the effect of improving the nonuniform velocity distribution in the turning passage is obtained. Obtainable.
  • the method described in this embodiment can be achieved by providing a recess in the orifice plate instead of the nozzle body.
  • the recess provided in the orifice plate, the turning passage, and the nozzle body opening high processing accuracy is achieved.
  • high precision positioning and assembly is required.
  • deformation of the orifice plate when welding the orifice plate and the nozzle body affects the shape of the recess, resulting in processing variations. Therefore, the structure in which the nozzle body (the edge of the fuel introduction hole) is provided with a flow path communicating with the turning passage is the easiest, and mass production at low cost is possible.
  • FIG. 10 shows a CC cross section of FIG. Except for the flow path structures 32a, 32b, 32c, and 32d provided at the edge of the fuel introduction hole 5 serving as the opening of the nozzle body 2, the description is omitted because it is the same as the first embodiment.
  • FIG. 10 shows the flow path structures 32a, 32b, 32c, 32d and the orifice plate 20 as seen from the fuel introduction hole 5 as in FIG.
  • the figure shows the orifice plate 20, the turning passage 21 a provided in the orifice plate 20, the turning chamber 22 a, the fuel injection hole 23 a, the fuel introduction hole 5, and the flow path structures 32 a, 32 b, 32 c provided in the fuel introduction hole 5. , 32d.
  • the flow path structures 32a, 32b, 32c, and 32d in FIG. 10 are provided corresponding to the respective turning passages 21a, 21b, 21c, and 21d.
  • a flow path structure 32a is provided for the turning passage 21a.
  • the flow path structure 32 a is provided longer along the edge of the fuel introduction hole 5 than the lateral width of the turning passage 21 a in order to induce a flow along the fuel introduction hole 5.
  • 11 and 12 are enlarged views of the flow path structures 33 and 34 provided at the edge of the fuel introduction hole 5 serving as the opening of the nozzle body 2.
  • Other than the channel structures 33 and 34 are the same as those in the first embodiment, and thus description thereof is omitted.
  • FIG. 11 includes a valve body 6, a nozzle body 2 having a flow path structure 33, and an orifice plate 20.
  • the flow path structure 33 shown in FIG. 11 has a cross-sectional shape that has a trapezoidal cross section.
  • the fuel can flow into the upper region of the turning passage 21a from the entire cross section of the flow path structure 33 at a high speed. From the above, it is possible to further uniform the speed distribution of the turning passage 21a.
  • FIG. 12 includes a valve body 6, a nozzle body 2 having a flow path structure 34, and an orifice plate 20.
  • the flow channel structure 34 has a shape in which the cross-section is substantially a quarter of a circle.
  • the flow path structure 34 sandwiched between the nozzle body lower surface 2a and the orifice plate upper surface 20a has a smaller area than the flow path structure 31 of the first embodiment, so that friction loss can be reduced and sufficient fuel flow can be achieved.
  • Speed can be secured. From the above, it is possible to further uniform the speed distribution of the turning passage 21a.
  • Other shapes that can be easily processed with respect to the nozzle body 2 include a structure in which the channel cross-sectional shape is rectangular as in FIG.
  • the speed distribution of the turning passage section can be made uniform.
  • Example 1 As a further example based on Example 1, Example 2, and Example 3, a fourth example will be described.
  • An example in which an inclined fuel injection hole 23as is provided to change the spray shape is shown in FIG. 13, and a protrusion 61 is provided on the lower surface of the turning passage 21a in order to make the velocity distribution in the section of the turning passage 21a more uniform.
  • An example is shown in FIG. Since the structure of the fuel injection valve 1 and the flow path structure 31 provided at the edge of the fuel introduction hole 5 serving as the opening of the nozzle body 2 are the same as those in the first embodiment, the description thereof is omitted.
  • FIG. 13 includes a valve body 6, a nozzle body 2 having a flow path structure 31, and an orifice plate 20.
  • a fuel injection hole 23as provided in the orifice plate has a swirl center axis of the swirl chamber. It is characterized in that it is inclined by ⁇ with respect to 41. The inclination of the fuel injection hole is used to obtain various spray shapes. However, since the swirling center and the fuel injection hole outlet center are shifted, the particle size is easily deteriorated unless the swirling flow is stronger. Accordingly, since the strength of turning is improved by making the cross-sectional velocity distribution in the turning passage 21a uniform by the flow path structure 33 according to the present invention, the inclined fuel as compared with the conventional shape without the flow path structure 33 is provided. Deterioration of the particle size due to the injection holes 23as can be reduced.
  • FIG. 14 is composed of a valve body 6, a nozzle body 2 having a flow path structure 31, and an orifice plate 20.
  • a protrusion 61 is provided near the entrance of the swirl chamber on the lower surface of the swirl passage 21a provided in the orifice plate.
  • the length 61 in the width direction of the protrusion 61 is 1/3 or less of the turning passage length L, and the height h of the protrusion 61 is formed to be 1/6 or less of the turning passage height H. .
  • the fast flow generated on the bottom surface of the turning passage 21a can be deflected to the upward flow of the flow path, and the velocity distribution in the section of the turning passage 21a can be made more uniform. Can do.
  • the flow path structures 31, 32a, 32b, 32c, 32d, 33, and 34 have a notch-like structure.
  • SYMBOLS 1 Fuel injection valve, 2 ... Nozzle body, 2a ... Lower surface of nozzle body, 2b ... Orifice plate inflow part, 3 ... Valve seat surface, 3a ... Seat part, 4 ... Fuel injection chamber, 5 ... Fuel introduction hole, 6 ... Valve body, 7 ... Core, 8 ... Spring, 9 ... Spring adjuster, 10 ... Yoke, 11 ... Electromagnetic coil, 12 ... Fuel passage, 13 ... Thin pipe, 14 ... Filter, 15 ... Resin mold, 20 ... Orifice plate, 20a ... upper surface, 21a, 21b, 21c, 21d ... turning passage, 22a, 22b, 22c, 22d ...

Abstract

The purpose of the present invention is to provide a fuel injection valve that uses swirl flow, wherein atomization performance is increased by improving speed distribution uniformity in a fuel flow channel. In order to solve the abovementioned problem, this fuel injection valve has a swirl chamber having an inner peripheral wall formed so that the curvature gradually increases from the upstream side toward the downstream side, swirling passages (21a-d) for introducing fuel into the swirl chamber, and a fuel injection hole opening into the swirl chamber. A fuel flow channel is formed by the swirling passages (21a-d) of an orifice plate (20), the orifice plate (20) in which the swirl chamber and the fuel injection hole are formed, and an opening (5) provided to the bottom surface of a nozzle member (2) in contact with the top surface of the orifice plate (20). Notches (31) for communicating the opening (5) and the swirling passages (21a-d) are provided to the bottom surface of the nozzle member (2) in contact with the top surface of the orifice plate (20).

Description

燃料噴射弁Fuel injection valve
 本発明は、内燃機関で使用される燃料噴射弁に係り、旋回燃料を噴射して微粒化性能を向上させ得る燃料噴射弁に関する。 The present invention relates to a fuel injection valve used in an internal combustion engine, and relates to a fuel injection valve capable of improving atomization performance by injecting swirling fuel.
 複数個の燃料噴射孔から噴射される燃料の微粒化を、旋回流れを利用して促進する従来技術として、特許文献1に記載された燃料噴射弁が知られている。 A fuel injection valve described in Patent Document 1 is known as a prior art that promotes atomization of fuel injected from a plurality of fuel injection holes using a swirl flow.
 この燃料噴射弁では、不動の弁座を有する弁座体(ノズル体)と、弁閉鎖体と、弁座体の下流に配置された孔付き円板(オリフィスプレート)とが設けられており、孔付き円板は少なくとも一つの流入領域と、少なくとも一つの流出開口を有している。さらに各機能平面において異なった開口ジオメトリを持っており、弁座体の下端面が孔付き円板の少なくとも一つの流入領域を覆っており、少なくとも二つの流出開口が弁座体によって覆われている。 In this fuel injection valve, a valve seat body (nozzle body) having an immobile valve seat, a valve closing body, and a holed disk (orifice plate) disposed downstream of the valve seat body are provided. The perforated disc has at least one inflow region and at least one outflow opening. Furthermore, each functional plane has a different opening geometry, the lower end surface of the valve seat body covers at least one inflow region of the perforated disc, and at least two outflow openings are covered by the valve seat body. .
 また、この燃料噴射弁では、特許文献1の図11に示すような、円形、らせん形、鎌形、円弧形となる流入領域の開口ジオメトリとすることによって、燃料にねじり(旋回)を加え、燃料の霧化を促進できるとしている。 In addition, in this fuel injection valve, as shown in FIG. 11 of Patent Document 1, an opening geometry of the inflow region that is circular, spiral, sickle-shaped, arc-shaped is added to the fuel to twist (turn), It is said that fuel atomization can be promoted.
特表2000-508739Special table 2000-508739 特願2011-17388Japanese Patent Application No. 2011-17388
 しかし、このような流出開口(燃料噴射孔)と流入領域が一対となるオリフィスプレートでは、弁座体(ノズル体)開口部から孔付き円板(オリフィスプレート)の流入領域にかけての流路断面積変化が大きく、ノズル体開口部とオリフィスプレートの接面において流路絞りとなる。この場合、流路絞りによって速度の大きい流れが誘起されてしまい、流入領域の流路断面の速度分布に偏りが生じる。結果として燃料にねじり(旋回)を加える旋回室へ不均一な速度部分のまま流入するため、旋回室内でも不均一な速度分布の旋回流となってしまい、燃料の微粒化に悪影響を及ぼす。 However, in such an orifice plate in which the outflow opening (fuel injection hole) and the inflow region are paired, the flow path cross-sectional area from the valve seat (nozzle body) opening to the inflow region of the holed disk (orifice plate) The change is large, and the flow passage is narrowed at the contact surface between the nozzle body opening and the orifice plate. In this case, a flow having a high speed is induced by the flow path restriction, and the speed distribution of the flow path cross section in the inflow region is biased. As a result, the fuel flows into the swirl chamber where the fuel is twisted (swirled) with a non-uniform velocity portion, resulting in a swirl flow having a non-uniform velocity distribution in the swirl chamber, which adversely affects the atomization of the fuel.
 上記課題を解決するために、本発明の燃料噴射弁は、オリフィスプレートにおいて上流側から下流側に向かって曲率が次第に大きくなるように形成された内周壁を有する旋回室と、前記旋回室に燃料を導入する旋回用通路と、前記旋回室に開口する燃料噴射孔とを有し、前記オリフィスプレートの旋回用通路と、前記オリフィスプレート上面と接するノズル体の開口部によって燃料流路が形成されている燃料噴射弁において、前記オリフィスプレート上面と接する前記ノズル体の下面に設けられた開口部(燃料導入孔)の周縁上に、前記旋回用通路の側面上部から燃料が流入するための流路構造を備える。 In order to solve the above problems, a fuel injection valve according to the present invention includes a swirl chamber having an inner peripheral wall formed so that a curvature gradually increases from an upstream side to a downstream side in an orifice plate, and a fuel in the swirl chamber. A fuel passage is formed by the turning passage of the orifice plate and the opening of the nozzle body in contact with the upper surface of the orifice plate. In the fuel injection valve, the flow path structure for allowing the fuel to flow from the upper part of the side surface of the turning passage onto the periphery of the opening (fuel introduction hole) provided on the lower surface of the nozzle body in contact with the upper surface of the orifice plate Is provided.
 本発明によると、燃料導入孔の縁に設けた流路構造によって、燃料が旋回用通路の上部へ流入することで、旋回用通路断面の速度分布の偏りを低減し、旋回力を向上させること
ができ、燃料の微粒化を向上させる事が可能となる。
According to the present invention, the flow structure provided at the edge of the fuel introduction hole allows the fuel to flow into the upper part of the turning passage, thereby reducing the uneven speed distribution of the turning passage and improving the turning force. It is possible to improve the atomization of the fuel.
本発明の一つの実施例に係る燃料噴射弁の全体構成を弁軸心に沿う断面で示した縦断面図である。It is the longitudinal cross-sectional view which showed the whole structure of the fuel injection valve which concerns on one Example of this invention with the cross section which follows a valve shaft center. 本発明の一つの実施例に係る燃料噴射弁におけるノズル体の近傍を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vicinity of the nozzle body in the fuel injection valve which concerns on one Example of this invention. 本発明の一つの実施例に係る燃料噴射弁に用いられる、オリフィスプレートの平面図である。It is a top view of an orifice plate used for the fuel injection valve concerning one example of the present invention. オリフィスプレートと従来のノズル体形状の詳細を説明する為の図である。It is a figure for demonstrating the detail of an orifice plate and the conventional nozzle body shape. 図4の旋回用通路のB-B断面図である。FIG. 5 is a BB cross-sectional view of the turning passage of FIG. 4. オリフィスプレートと本発明のの一つの実施例に係る流路構造を設けたノズル体形状の詳細を説明する為の図である。It is a figure for demonstrating the detail of the nozzle body shape which provided the orifice plate and the flow-path structure which concerns on one Example of this invention. 図6の旋回用通路の断面図である。It is sectional drawing of the channel | path for rotation of FIG. オリフィスプレートと本発明の流路構造を設けたノズル体形状の詳細を説明する為の図6のノズル体開口部から見た断面図である。It is sectional drawing seen from the nozzle body opening part of FIG. 6 for demonstrating the detail of the nozzle body shape which provided the orifice plate and the flow-path structure of this invention. 本発明の一つの実施例に係る燃料噴射弁に用いられる、旋回用通路が連結したオリフィスプレートの平面図である。It is a top view of the orifice plate used for the fuel injection valve which concerns on one Example of this invention to which the channel | path for rotation was connected. オリフィスプレートと本発明の一つの実施例流路構造を設けたノズル体形状の詳細を説明する為の図6の別実施例におけるノズル体開口部から見た断面図である。It is sectional drawing seen from the nozzle body opening part in another Example of FIG. 6 for demonstrating the detail of the nozzle body shape which provided the orifice plate and the flow-path structure of one Example of this invention. 旋回用通路側面側から燃料が流入するようにノズル体開口部縁の設けた流路構造の実施例を説明する為の図である。It is a figure for demonstrating the Example of the flow-path structure in which the nozzle body opening edge was provided so that a fuel might flow in from the side surface of a turning channel | path. 旋回用通路側面側から燃料が流入するようにノズル体開口部縁の設けた流路構造の実施例を説明する為の図である。It is a figure for demonstrating the Example of the flow-path structure in which the nozzle body opening edge was provided so that a fuel might flow in from the side surface of a turning channel | path. オリフィスプレートに設けた傾斜した燃料噴射孔の構造を説明する為の図である。It is a figure for demonstrating the structure of the inclined fuel-injection hole provided in the orifice plate. 旋回用通路の下面に設けた突起部の構造と効果を説明する為の図である。It is a figure for demonstrating the structure and effect of the projection part provided in the lower surface of the channel | path for rotation.
以下、実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 本発明の一実施例について、以下説明する。図1は、本発明に係る燃料噴射弁1の全体構成を示した縦断面図である。 An embodiment of the present invention will be described below. FIG. 1 is a longitudinal sectional view showing the overall configuration of a fuel injection valve 1 according to the present invention.
 図1において、燃料噴射弁1は、ステンレス製の薄肉パイプ13にノズル体2、弁体6を収容し、この弁体6を外側に配置した電磁コイル11で往復動作(開閉動作)させる構造である。以下、構造の詳細について説明する。 In FIG. 1, a fuel injection valve 1 has a structure in which a nozzle body 2 and a valve body 6 are accommodated in a thin stainless steel pipe 13 and the valve body 6 is reciprocated (open / closed) by an electromagnetic coil 11 disposed outside. is there. Details of the structure will be described below.
 電磁コイル11を取り囲む磁性体のヨーク10と、電磁コイル11の中心に位置し、一端がヨーク10と磁気的に接触したコア7と、所定量リフトする弁体6と、この弁体6に接する弁座面3と、弁体6と弁座面3との隙間を通って流れる燃料の通過を許す燃料噴射室4(図2参照)と、燃料噴射室4の下流に複数個の燃料噴射孔23a、23b、23c、23d(図3参照)を有するオリフィスプレート20とを備えている。本実施例では4孔の燃料噴射孔を例として説明するが、孔数は4に限らない。例えば2孔、3孔、5孔、6孔、8孔、10孔、12孔等も同様である。 A magnetic yoke 10 surrounding the electromagnetic coil 11, a core 7 positioned at the center of the electromagnetic coil 11 and having one end magnetically in contact with the yoke 10, a valve body 6 that lifts a predetermined amount, and a contact with the valve body 6. A fuel injection chamber 4 (see FIG. 2) that allows passage of fuel flowing through the valve seat surface 3, a gap between the valve body 6 and the valve seat surface 3, and a plurality of fuel injection holes downstream of the fuel injection chamber 4 And an orifice plate 20 having 23a, 23b, 23c, and 23d (see FIG. 3). In this embodiment, four fuel injection holes are described as an example, but the number of holes is not limited to four. For example, the same applies to 2 holes, 3 holes, 5 holes, 6 holes, 8 holes, 10 holes, 12 holes, and the like.
 また、コア7の中心には、弁体6を弁座面3に押圧する弾性部材としてのスプリング8が備えてある。このスプリング8の弾性力はスプリングアジャスタ9の弁座面3方向への押し込み量によって調整される。 Further, a spring 8 as an elastic member for pressing the valve body 6 against the valve seat surface 3 is provided at the center of the core 7. The elastic force of the spring 8 is adjusted by the pushing amount of the spring adjuster 9 in the direction of the valve seat surface 3.
 コイル11に通電されていない状態では、弁体6と弁座面3とが密着している。この状態では燃料通路が閉じられているため、燃料は燃料噴射弁1内部に留まり、複数個設けられている各々燃料噴射孔23a、23b、23c、23dからの燃料噴射は行われない。 When the coil 11 is not energized, the valve body 6 and the valve seat surface 3 are in close contact with each other. In this state, since the fuel passage is closed, the fuel stays inside the fuel injection valve 1 and fuel injection from each of the plurality of fuel injection holes 23a, 23b, 23c, and 23d is not performed.
 一方、コイル11への通電があると、電磁力によって弁体6が対面するコア7の下端面に接触するまで移動する。 On the other hand, when the coil 11 is energized, it moves until it contacts the lower end surface of the core 7 facing the valve element 6 by electromagnetic force.
 この開弁状態では弁体6と弁座面3との間に隙間ができるため、燃料通路が開かれて各々燃料噴射孔23a、23b、23c、23dから燃料が噴射される。 In this valve open state, a gap is formed between the valve body 6 and the valve seat surface 3, so that the fuel passage is opened and fuel is injected from the fuel injection holes 23a, 23b, 23c, and 23d.
 なお、燃料噴射弁1には入口部にフィルター14を有する燃料通路12が設けられており、この燃料通路12はコア7の中央部を貫通する貫通孔部分を含み、図示しない燃料ポンプにより加圧された燃料を燃料噴射弁1の内部を通して各々燃料噴射孔23a、23b、23c、23dへと導く通路である。また、燃料噴射弁1の外側部分は樹脂モールド15によって被覆され電気絶縁されている。 The fuel injection valve 1 is provided with a fuel passage 12 having a filter 14 at the inlet. The fuel passage 12 includes a through-hole portion that penetrates the center of the core 7 and is pressurized by a fuel pump (not shown). This is a passage that guides the fuel to the fuel injection holes 23a, 23b, 23c, and 23d through the inside of the fuel injection valve 1. The outer portion of the fuel injection valve 1 is covered with a resin mold 15 and electrically insulated.
 燃料噴射弁1の動作は、上述したように、コイル11への通電(噴射パルス)に伴って、弁体6の位置を開弁状態と閉弁状態に切り替えることで、燃料の供給量を制御している。 As described above, the operation of the fuel injection valve 1 controls the amount of fuel supplied by switching the position of the valve body 6 between the valve open state and the valve closed state in accordance with energization (injection pulse) to the coil 11. is doing.
 燃料供給量の制御にあたっては、特に、閉弁状態では燃料漏れがない弁体設計が施されている。 ∙ In the control of the fuel supply amount, the valve body design is designed so that there is no fuel leakage, especially when the valve is closed.
 この種の燃料噴射弁では、弁体6に真円度が高く鏡面仕上げが施されているボール(JIS規格品の玉軸受用鋼球)を用いておりシート性の向上に有益である。 This type of fuel injection valve uses a ball (steel ball for ball bearing of JIS standard product) having a high roundness and a mirror finish on the valve body 6, which is beneficial for improving the sheet property.
 一方、ボールが密着する弁座面3の弁座角は、研磨性が良好で真円度を高精度にできる最適な角度80゜から100゜であり、上述したボールとのシート性を極めて高く維持できるものである。 On the other hand, the valve seat angle of the valve seat surface 3 with which the ball is in close contact is an optimum angle of 80 ° to 100 ° with good grindability and high roundness, and the sheet property with the above-mentioned ball is extremely high. It can be maintained.
 なお、弁座面3を有するノズル体2は、焼入れによって硬度が高められており、また、脱磁処理により無用な磁気が除去されている。 The nozzle body 2 having the valve seat surface 3 has increased hardness by quenching, and unnecessary magnetism has been removed by demagnetization treatment.
 このような弁体6の構成により、燃料漏れの無い噴射量制御を可能としている。以って、コストパフォーマンスに優れた弁体構造としている。 Such a configuration of the valve body 6 enables injection amount control without fuel leakage. Therefore, the valve body structure is excellent in cost performance.
 図2は、本発明に係る燃料噴射弁1におけるノズル体2の近傍を示す縦断面図である。図2に示すように、オリフィスプレート20はオリフィスプレート20の上面20aがノズル体2の下面2aに接触しており、この接触部分の外周をレーザ溶接してノズル体2に固定されている。 FIG. 2 is a longitudinal sectional view showing the vicinity of the nozzle body 2 in the fuel injection valve 1 according to the present invention. As shown in FIG. 2, the upper surface 20 a of the orifice plate 20 is in contact with the lower surface 2 a of the nozzle body 2, and the outer periphery of this contact portion is fixed to the nozzle body 2 by laser welding.
 尚、本明細書及び特許請求の範囲において上下方向は図1を基準としており、燃料噴射弁1の弁軸心方向において燃料通路12側を上側、各々燃料噴射孔23a、23b、23c、23d(図3参照)側を下側とする。 In the present specification and claims, the vertical direction is based on FIG. 1, and the fuel passage 12 side is the upper side in the valve axial direction of the fuel injection valve 1, and the fuel injection holes 23a, 23b, 23c, 23d ( The side is referred to as the lower side.
 ノズル体2の下端部には、弁座面3のシート部3aの径φSより小径の燃料導入孔5が設けられている。弁座面3は円錐形状をしており、その下流端中央部に燃料導入孔5が形
成されている。
A fuel introduction hole 5 having a diameter smaller than the diameter φS of the seat portion 3 a of the valve seat surface 3 is provided at the lower end portion of the nozzle body 2. The valve seat surface 3 has a conical shape, and a fuel introduction hole 5 is formed at the center of the downstream end thereof.
 弁座面3の中心線oと燃料導入孔5の中心線oとは弁軸心oに一致するように、弁座面3と燃料導入孔5とが形成されている。燃料導入孔5とオリフィスプレート20に設けられた旋回用通路21aとによって、旋回室22a、燃料噴射孔23aへの燃料の流路が構成されることになる。 The valve seat surface 3 and the fuel introduction hole 5 are formed so that the center line o of the valve seat surface 3 and the center line o of the fuel introduction hole 5 coincide with the valve axis o. The fuel introduction hole 5 and the turning passage 21a provided in the orifice plate 20 constitute a fuel flow path to the turning chamber 22a and the fuel injection hole 23a.
 次に、オリフィスプレート20の構成について、図3を用いて説明する。図3は、本発明に係る燃料噴射弁1におけるノズル体2の下端部に位置するオリフィスプレート20の平面図である。 Next, the configuration of the orifice plate 20 will be described with reference to FIG. FIG. 3 is a plan view of the orifice plate 20 located at the lower end of the nozzle body 2 in the fuel injection valve 1 according to the present invention.
 オリフィスプレート20には90°の間隔で4つの旋回用通路21a、21b、21c、21dが配置されている。 The orifice plate 20 is provided with four turning passages 21a, 21b, 21c, 21d at intervals of 90 °.
 旋回用通路21a、21b、21c、21dの下流端は、それぞれ旋回室22a、22b、22c、22dに連通するよう接続されている。 The downstream ends of the turning passages 21a, 21b, 21c, and 21d are connected to communicate with the turning chambers 22a, 22b, 22c, and 22d, respectively.
 旋回用通路21a,21b,21c、21dは旋回室22a,22b,22c、22dにそれぞれ燃料を供給する燃料通路であり、この意味において旋回用通路21a,21b,21c、21dを旋回燃料供給通路21a,21b,21c、21dと呼んでもよい。 The turning passages 21a, 21b, 21c, and 21d are fuel passages that supply fuel to the turning chambers 22a, 22b, 22c, and 22d, respectively. In this sense, the turning passages 21a, 21b, 21c, and 21d are turned into the turning fuel supply passage 21a. , 21b, 21c, 21d.
 旋回室22a,22b,22c、22dの壁面は、上流側から下流側に向かって曲率が次第に大きくなるように(曲率半径が次第に小さくなるように)形成されている。 The wall surfaces of the swirl chambers 22a, 22b, 22c, and 22d are formed so that the curvature gradually increases from the upstream side toward the downstream side (so that the radius of curvature gradually decreases).
 旋回用通路21a,21b,21c、21dと旋回室22a,22b,22c、22dの接続部は燃料流れの衝突を考慮して厚み形成部25a,25b,25c、25dとを形成している。 The connecting portions of the turning passages 21a, 21b, 21c, and 21d and the turning chambers 22a, 22b, 22c, and 22d form thickness forming portions 25a, 25b, 25c, and 25d in consideration of the collision of the fuel flow.
 また、旋回室22a,22b,22c、22dの中心には燃料噴射孔23a,23b,23c、23dがそれぞれ開口している。 Further, fuel injection holes 23a, 23b, 23c, and 23d are opened at the centers of the swirl chambers 22a, 22b, 22c, and 22d, respectively.
 ノズル体2とオリフィスプレート20とは、図示していないが、治具等を用いて両者の位置決めが簡単且つ容易に実施されように構成されており、組み合わせ時の寸法精度が高められている。 Although the nozzle body 2 and the orifice plate 20 are not shown in the drawing, they are configured to be easily and easily positioned using a jig or the like, and the dimensional accuracy at the time of combination is enhanced.
 また、オリフィスプレート20は切削加工やプレス成形(塑性加工)により製作される。なお、この方法以外に、放電加工や電鋳法、エッチング加工など比較的応力の加わらない加工精度の高い方法が考えられる。 The orifice plate 20 is manufactured by cutting or press forming (plastic processing). In addition to this method, a method with high processing accuracy that is relatively free of stress such as electric discharge machining, electroforming, and etching may be considered.
 まず従来構造の課題を説明するために、図4~5を用いて、従来のノズル体2の開口部周辺の構造と燃料流れ場を説明する。以下では旋回用通路21a、旋回室22a、燃料噴射孔23aからなる流路を代表して説明するが、旋回用通路21b、21c、21d、旋回室22b、22c、22d、燃料噴射孔23b、23c、23dからなる流路も同様である。 First, in order to explain the problems of the conventional structure, the structure around the opening of the conventional nozzle body 2 and the fuel flow field will be described with reference to FIGS. In the following, the flow path composed of the turning passage 21a, the turning chamber 22a, and the fuel injection hole 23a will be described as a representative, but the turning passages 21b, 21c, 21d, the turning chambers 22b, 22c, 22d, and the fuel injection holes 23b, 23c. , 23d is the same.
 図4はオリフィスプレート20と、従来のノズル体2’の拡大断面図である。図は弁体6、ノズル体2’、オリフィスプレート20、燃料流れFから構成されている。図5は図4のB-B断面である。 FIG. 4 is an enlarged cross-sectional view of the orifice plate 20 and the conventional nozzle body 2 '. The figure includes a valve body 6, a nozzle body 2 ′, an orifice plate 20, and a fuel flow F. FIG. 5 is a BB cross section of FIG.
 図4に示すように弁体6とノズル体2’との隙間から燃料Fが燃料噴射室4へ流入し、ノズル体2’の開口部と旋回用通路21aとの接続部であるオリフィスプレートへの燃料流入部2b’へと流入する。その際、図4、図5の燃料流れFの矢印で示すように、オリフィスプレート流入部2b’より上方から旋回用通路21aの底面に向かう流れとなり、底面近傍で圧力が高くなる。よって旋回用通路21aの下面に比べて上面近傍51は流速が遅くなってしまい、旋回用通路21aの断面内は不均一な速度分布となる。この不均一な速度分布の流れがそのまま旋回室22aへ流入するために旋回室22a内でも不均一な速度分布の旋回流となり、結果として旋回力が低下してしまうことが課題であった。 As shown in FIG. 4, the fuel F flows into the fuel injection chamber 4 from the gap between the valve body 6 and the nozzle body 2 ′, and enters the orifice plate which is the connection between the opening of the nozzle body 2 ′ and the turning passage 21a. Into the fuel inflow portion 2b ′. At that time, as indicated by arrows of the fuel flow F in FIGS. 4 and 5, the flow is directed from the upper side of the orifice plate inflow portion 2b 'toward the bottom surface of the turning passage 21a, and the pressure is increased in the vicinity of the bottom surface. Therefore, the flow velocity in the vicinity of the upper surface 51 is lower than that of the lower surface of the turning passage 21a, and the cross section of the turning passage 21a has a non-uniform velocity distribution. Since the flow with the non-uniform velocity distribution flows into the swirl chamber 22a as it is, the swirl flow has a non-uniform velocity distribution within the swirl chamber 22a, and as a result, the swirl force is reduced.
 次に図6~図8を用いて本発明の構造を詳細に説明する。 Next, the structure of the present invention will be described in detail with reference to FIGS.
 図6はオリフィスプレート20と、本発明であるノズル体2の開口部となる燃料導入孔5の縁に設けた流路構造31の関係を説明するための拡大断面図である。図は弁体6、ノズル体2、オリフィスプレート20、燃料流れFから構成されている。図7は図6のB'-B'断面であり、流路構造31と燃料流れFから構成されている。図8は図6のC-C断面であり、ノズル体2の開口部である燃料導入孔5から見た流路構造31とオリフィスプレート20から構成されている。 FIG. 6 is an enlarged cross-sectional view for explaining the relationship between the orifice plate 20 and the flow path structure 31 provided at the edge of the fuel introduction hole 5 serving as the opening of the nozzle body 2 according to the present invention. The figure includes a valve body 6, a nozzle body 2, an orifice plate 20, and a fuel flow F. FIG. 7 is a B′-B ′ cross section of FIG. 6 and includes a flow path structure 31 and a fuel flow F. FIG. 8 is a cross-sectional view taken along the line CC of FIG. 6 and is composed of a flow path structure 31 and an orifice plate 20 viewed from the fuel introduction hole 5 which is an opening of the nozzle body 2.
 本発明では図6、図8に示すように、旋回用通路21aの側面上部から燃料が流入するように燃料導入孔5の縁に沿って流路構造31を設ける。これによって図7に示すように、流路構造31は旋回用通路21aと連通する流路となる。 In the present invention, as shown in FIGS. 6 and 8, a flow path structure 31 is provided along the edge of the fuel introduction hole 5 so that fuel flows from the upper part of the side surface of the turning passage 21a. As a result, as shown in FIG. 7, the flow path structure 31 becomes a flow path communicating with the turning passage 21a.
 次に本発明によって生じる燃料流れについて説明する。図4と同様に、燃料Fは燃料噴射室4からオリフィスプレートへの燃料流入部2bへと流入するが、図7と図8に示すように、流路構造31を通じて旋回用通路21aの側面上部から、燃料導入孔5に沿って、燃料Fが旋回用通路21aへ流入する。よって図6に示すように、従来構造(図4)で生じていた旋回用通路21aの上面近傍51の低速部が緩和され、断面全体として不均一な速度分布が改善できる。さらに図7、図8の矢印Fが示すように、流路構造31によって側面燃料流れFが旋回用通路21aの側面上部から流入する構造となっていることが分かる。 Next, the fuel flow generated by the present invention will be described. As in FIG. 4, the fuel F flows from the fuel injection chamber 4 to the fuel inflow portion 2 b to the orifice plate, but as shown in FIGS. 7 and 8, the upper side surface of the turning passage 21 a is passed through the flow path structure 31. The fuel F flows into the turning passage 21 a along the fuel introduction hole 5. Therefore, as shown in FIG. 6, the low-speed portion near the upper surface 51 of the turning passage 21a, which has occurred in the conventional structure (FIG. 4), is alleviated, and the non-uniform velocity distribution can be improved as a whole section. Further, as indicated by an arrow F in FIGS. 7 and 8, it can be seen that the side surface fuel flow F flows from the upper side surface of the turning passage 21a by the flow path structure 31.
 本発明の構造を得るための加工について説明する。流路構造31は燃料導入孔5の縁に設けるために加工が容易であり,また高い加工精度を必要としないために、低コストでの量産が可能である。 Processing for obtaining the structure of the present invention will be described. Since the flow path structure 31 is provided at the edge of the fuel introduction hole 5, it is easy to process, and since high processing accuracy is not required, mass production at low cost is possible.
 上記で説明した流路構造31は、ノズル体2に対する加工であるため、オリフィスプレート20に加工される流路の形状によらず適用することができる。例えば狙いの流量や噴霧角、粒径によって旋回用通路や旋回室、燃料噴射孔の形状は異なるが、本発明の構造はこれらの形状によらず旋回用通路内で速度分布を均一化する効果を得ることができる。また例えば図9に示すように各旋回用通路21a、21b、21c、21dを連結部24で連結したオリフィスプレート20の流路形状においても、旋回用通路内の不均一な速度分布改善の効果を得ることができる。 Since the flow path structure 31 described above is processing for the nozzle body 2, it can be applied regardless of the shape of the flow path processed in the orifice plate 20. For example, the shape of the swirling passage, swirl chamber, and fuel injection hole differs depending on the target flow rate, spray angle, and particle size, but the structure of the present invention has the effect of equalizing the velocity distribution in the swirling passage regardless of these shapes. Can be obtained. Further, for example, as shown in FIG. 9, even in the flow path shape of the orifice plate 20 in which the respective turning passages 21a, 21b, 21c, and 21d are connected by the connecting portion 24, the effect of improving the nonuniform velocity distribution in the turning passage is obtained. Obtainable.
 また、ノズル体ではなくオリフィスプレートに凹部を設ける方法でも本実施例で述べた効果を得ることができるが、オリフィスプレートに設ける凹部と、旋回用通路と、ノズル体開口部において、高い加工精度に加え、高い精度の位置決めとアセンブリが必要である。さらにオリフィスプレートとノズル体を溶接する際のオリフィスプレート変形が凹部の形状に影響するため、加工バラつきが生じてしまう。よってノズル体(燃料導入孔の縁)に旋回用通路と連通する流路を設ける構造が最も容易であり、低コストでの量産が可能である。 In addition, the method described in this embodiment can be achieved by providing a recess in the orifice plate instead of the nozzle body. However, in the recess provided in the orifice plate, the turning passage, and the nozzle body opening, high processing accuracy is achieved. In addition, high precision positioning and assembly is required. Further, deformation of the orifice plate when welding the orifice plate and the nozzle body affects the shape of the recess, resulting in processing variations. Therefore, the structure in which the nozzle body (the edge of the fuel introduction hole) is provided with a flow path communicating with the turning passage is the easiest, and mass production at low cost is possible.
 第2の実施例について説明する。実施例1の図8と同様に、図10に図6のC-C断面を示す。ノズル体2の開口部となる燃料導入孔5の縁に設けた流路構造32a、32b、32c、32d以外は実施例1と同一なため、説明を省略する。 The second embodiment will be described. Like FIG. 8 of the first embodiment, FIG. 10 shows a CC cross section of FIG. Except for the flow path structures 32a, 32b, 32c, and 32d provided at the edge of the fuel introduction hole 5 serving as the opening of the nozzle body 2, the description is omitted because it is the same as the first embodiment.
 図10は図8と同様に燃料導入孔5から見た流路構造32a、32b、32c、32dとオリフィスプレート20である。図はオリフィスプレート20と、オリフィスプレート20に設けられた旋回用通路21a、旋回室22a、燃料噴射孔23a、燃料導入孔5と、燃料導入孔5に設けられた流路構造32a、32b、32c、32dとからなる。 FIG. 10 shows the flow path structures 32a, 32b, 32c, 32d and the orifice plate 20 as seen from the fuel introduction hole 5 as in FIG. The figure shows the orifice plate 20, the turning passage 21 a provided in the orifice plate 20, the turning chamber 22 a, the fuel injection hole 23 a, the fuel introduction hole 5, and the flow path structures 32 a, 32 b, 32 c provided in the fuel introduction hole 5. , 32d.
 図8で説明した流路構造31とは異なり、図10の流路構造32a、32b、32c、32dはそれぞれの旋回用通路21a、21b、21c、21dに対応して設けられる。例えば、旋回用通路21aに対しては、流路構造32aが設けられる。また流路構造32aは燃料導入孔5に沿った流れを誘起するために、旋回用通路21aの横幅よりも燃料導入孔5の縁に沿って長く設けられる。本構造によって、実施例1の流路構造31と比べて流路を一部設けていない分、デッドボリュームを小さくすることができる。 8, unlike the flow path structure 31 described in FIG. 8, the flow path structures 32a, 32b, 32c, and 32d in FIG. 10 are provided corresponding to the respective turning passages 21a, 21b, 21c, and 21d. For example, a flow path structure 32a is provided for the turning passage 21a. The flow path structure 32 a is provided longer along the edge of the fuel introduction hole 5 than the lateral width of the turning passage 21 a in order to induce a flow along the fuel introduction hole 5. With this structure, compared with the flow path structure 31 of the first embodiment, the dead volume can be reduced as much as a part of the flow path is not provided.
 第3の実施例について説明する。図11、図12にノズル体2の開口部となる燃料導入孔5の縁に設けた流路構造33、34の拡大図を示す。流路構造33、34以外は実施例1と同一なため、説明を省略する。 The third embodiment will be described. 11 and 12 are enlarged views of the flow path structures 33 and 34 provided at the edge of the fuel introduction hole 5 serving as the opening of the nozzle body 2. Other than the channel structures 33 and 34 are the same as those in the first embodiment, and thus description thereof is omitted.
 実施例1で示した流路構造31はテーパ形状であったが、他の断面形状でも同様の効果を得ることができる。 Although the flow path structure 31 shown in Example 1 has a tapered shape, the same effect can be obtained with other cross-sectional shapes.
 図11は弁体6と、流路構造33を有するノズル体2と、オリフィスプレート20とからなる。例えば、図11に示す流路構造33は断面が台形となるような断面形状をしている。これにより流路構造33の断面全体から大きい速度で旋回用通路21aの上部の領域に燃料を流入させることができる。以上から旋回用通路21aの更なる速度分布均一化が可能である。 FIG. 11 includes a valve body 6, a nozzle body 2 having a flow path structure 33, and an orifice plate 20. For example, the flow path structure 33 shown in FIG. 11 has a cross-sectional shape that has a trapezoidal cross section. As a result, the fuel can flow into the upper region of the turning passage 21a from the entire cross section of the flow path structure 33 at a high speed. From the above, it is possible to further uniform the speed distribution of the turning passage 21a.
 図12は弁体6と、流路構造34を有するノズル体2と、オリフィスプレート20とからなる。実施例1で示した流路構造31に対し、断面を略4分の1円状にした形状を持つ流路構造34となっている。これによりノズル体下面2aとオリフィスプレート上面20aに挟まれた流路構造34は、実施例1の流路構造31と比べて狭い領域が少なくなるため、摩擦損失を低減でき、十分な燃料流れの速度を確保することができる。以上から旋回用通路21aの更なる速度分布均一化が可能である。 FIG. 12 includes a valve body 6, a nozzle body 2 having a flow path structure 34, and an orifice plate 20. In contrast to the flow channel structure 31 shown in the first embodiment, the flow channel structure 34 has a shape in which the cross-section is substantially a quarter of a circle. As a result, the flow path structure 34 sandwiched between the nozzle body lower surface 2a and the orifice plate upper surface 20a has a smaller area than the flow path structure 31 of the first embodiment, so that friction loss can be reduced and sufficient fuel flow can be achieved. Speed can be secured. From the above, it is possible to further uniform the speed distribution of the turning passage 21a.
 他にノズル体2に対する加工が容易な形状として、図11と同様に流路断面形状を矩形にした構造、図12と同様に流路断面形状を4分の1楕円状にしたものや、図12とは逆向きのR形状など、断面の一部が円弧状となる構造が考えられる。いずれも旋回用通路断面上部の領域に対して燃料導入孔5の縁に沿って燃料が流入するため、旋回用通路断面の
速度分布を均一化できる。
Other shapes that can be easily processed with respect to the nozzle body 2 include a structure in which the channel cross-sectional shape is rectangular as in FIG. A structure in which a part of the cross section has an arc shape, such as an R shape opposite to 12, is conceivable. In any case, since the fuel flows along the edge of the fuel introduction hole 5 with respect to the region in the upper section of the turning passage section, the speed distribution of the turning passage section can be made uniform.
 実施例1、実施例2、実施例3をふまえたさらなる実施例として、第4の実施例について説明する。噴霧形状を変化させるために傾斜した燃料噴射孔23asを設けた例を図13に、旋回用通路21a断面の速度分布をさらに均一にするために旋回用通路21aの下面に突起部61を設けた例を図14に示す。燃料噴射弁1の構成とノズル体2の開口部となる燃料導入孔5の縁に設けた流路構造31とは実施例1と同一なため、説明を省略する。 As a further example based on Example 1, Example 2, and Example 3, a fourth example will be described. An example in which an inclined fuel injection hole 23as is provided to change the spray shape is shown in FIG. 13, and a protrusion 61 is provided on the lower surface of the turning passage 21a in order to make the velocity distribution in the section of the turning passage 21a more uniform. An example is shown in FIG. Since the structure of the fuel injection valve 1 and the flow path structure 31 provided at the edge of the fuel introduction hole 5 serving as the opening of the nozzle body 2 are the same as those in the first embodiment, the description thereof is omitted.
 図13は弁体6と、流路構造31を有するノズル体2と、オリフィスプレート20とから構成されており、本実施例はオリフィスプレートに設けられた燃料噴射孔23asが旋回室の旋回中心軸41に対してθ傾斜していることを特徴とする。燃料噴射孔の傾斜は様々な噴霧形状を得るために利用されるが、旋回中心と燃料噴射孔出口中心がずれるため、より強い旋回流でなければ粒径が容易に悪化してしまう。そこで本発明による流路構造33によって旋回用通路21a内の断面速度分布を均一化することで旋回の強さが改善されるため、流路構造33を持たない従来形状に比べて、傾斜した燃料噴射孔23asによる粒径の悪化を低減することができる。 FIG. 13 includes a valve body 6, a nozzle body 2 having a flow path structure 31, and an orifice plate 20. In this embodiment, a fuel injection hole 23as provided in the orifice plate has a swirl center axis of the swirl chamber. It is characterized in that it is inclined by θ with respect to 41. The inclination of the fuel injection hole is used to obtain various spray shapes. However, since the swirling center and the fuel injection hole outlet center are shifted, the particle size is easily deteriorated unless the swirling flow is stronger. Accordingly, since the strength of turning is improved by making the cross-sectional velocity distribution in the turning passage 21a uniform by the flow path structure 33 according to the present invention, the inclined fuel as compared with the conventional shape without the flow path structure 33 is provided. Deterioration of the particle size due to the injection holes 23as can be reduced.
 図14は弁体6と、流路構造31を有するノズル体2と、オリフィスプレート20とから構成されており、本実施例ではオリフィスプレートに設けられた旋回用通路21a下面の旋回室入口付近に、突起部61を設けていることを特徴とする。突起部61の幅方向長さlは旋回用通路長さLの1/3以下であり、突起部61の高さhは旋回用通路高さHの1/6以下になるように形成される。 FIG. 14 is composed of a valve body 6, a nozzle body 2 having a flow path structure 31, and an orifice plate 20. In this embodiment, near the entrance of the swirl chamber on the lower surface of the swirl passage 21a provided in the orifice plate. , A protrusion 61 is provided. The length 61 in the width direction of the protrusion 61 is 1/3 or less of the turning passage length L, and the height h of the protrusion 61 is formed to be 1/6 or less of the turning passage height H. .
 突起部61を設けることで、旋回用通路21aの底面で生じる速い流れを流路の上方向に向かう流れへと偏向させることができ、旋回用通路21a断面での速度分布をより均一
化することができる。
By providing the protrusion 61, the fast flow generated on the bottom surface of the turning passage 21a can be deflected to the upward flow of the flow path, and the velocity distribution in the section of the turning passage 21a can be made more uniform. Can do.
 以上の図13で示した傾斜した燃料噴射孔23asや、図14で示した突起部61の組み合わせにより、旋回力向上による更なる微粒化と、自由度の高い噴霧形状を得ることができる。 By the combination of the inclined fuel injection hole 23as shown in FIG. 13 and the protrusion 61 shown in FIG. 14, further atomization by improving the turning force and a spray shape with a high degree of freedom can be obtained.
 なお、流路構造31,32a,32b,32c,32d,33,34は切り欠き状の構造を成す。 The flow path structures 31, 32a, 32b, 32c, 32d, 33, and 34 have a notch-like structure.
 1…燃料噴射弁,2… ノズル体,2a… ノズル体の下面,2b…オリフィスプレート流入部,3…弁座面,3a…シート部,4…燃料噴射室,5…燃料導入孔,6…弁体,7…コア,8…スプリング,9…スプリングアジャスタ,10…ヨーク,11…電磁コイル,12…燃料通路,13…薄肉パイプ,14…フィルター,15…樹脂モールド,20…オリフィスプレート,20a…上面,21a、21b、21c、21d…旋回用通路,22a、22b、22c、22d…旋回室,23a、23b、23c、23d…燃料噴射孔,23as…傾斜した燃料噴射孔,24…連結部,25a、25b、25c、25d…厚み形成部,31、32a、32b、32c、32d、33、34…流路構造,41…旋回室の旋回中心軸,51…旋回用通路の上面近傍,61…突起部,F…燃料流れ DESCRIPTION OF SYMBOLS 1 ... Fuel injection valve, 2 ... Nozzle body, 2a ... Lower surface of nozzle body, 2b ... Orifice plate inflow part, 3 ... Valve seat surface, 3a ... Seat part, 4 ... Fuel injection chamber, 5 ... Fuel introduction hole, 6 ... Valve body, 7 ... Core, 8 ... Spring, 9 ... Spring adjuster, 10 ... Yoke, 11 ... Electromagnetic coil, 12 ... Fuel passage, 13 ... Thin pipe, 14 ... Filter, 15 ... Resin mold, 20 ... Orifice plate, 20a ... upper surface, 21a, 21b, 21c, 21d ... turning passage, 22a, 22b, 22c, 22d ... turning chamber, 23a, 23b, 23c, 23d ... fuel injection hole, 23as ... inclined fuel injection hole, 24 ... connecting part , 25a, 25b, 25c, 25d ... thickness forming part, 31, 32a, 32b, 32c, 32d, 33, 34 ... channel structure, 41 ... swirl center axis of swirl chamber, 51 ... turn Vicinity of the upper surface of the use passage 61 ... protrusion, F ... fuel flow

Claims (3)

  1.  上流側から下流側に向かって曲率が次第に大きくなるように形成された内周壁を有する旋回室と前記旋回室に燃料を導入する旋回用通路と前記旋回室に開口する燃料噴射孔とが形成されたオリフィスプレートと、前記オリフィスプレートの上面と接する下面に開口部が設けられたノズル体とを備え、前記ノズル体の下面に設けられた開口部によって前記オリフィスプレートに形成された前記旋回用通路と連通する燃料流路が形成されている燃料噴射弁において、
     前記オリフィスプレートの上面と接する前記ノズル体の下面に、前記開口部と前記旋回用通路とを連通する切り欠きを設けたことを特徴とする燃料噴射弁。
    A swirl chamber having an inner peripheral wall formed so that the curvature gradually increases from the upstream side toward the downstream side, a swirl passage for introducing fuel into the swirl chamber, and a fuel injection hole opening in the swirl chamber are formed. An orifice plate, and a nozzle body provided with an opening on a lower surface in contact with the upper surface of the orifice plate, and the turning passage formed in the orifice plate by the opening provided on the lower surface of the nozzle body; In a fuel injection valve in which a communicating fuel flow path is formed,
    The fuel injection valve according to claim 1, wherein a cutout for communicating the opening and the turning passage is provided on a lower surface of the nozzle body in contact with an upper surface of the orifice plate.
  2.  請求項1に記載の燃料噴射弁において、
     前記切り欠きが前記開口部の縁の周全体に設けられていることを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 1, wherein
    The fuel injection valve according to claim 1, wherein the notch is provided on the entire periphery of the edge of the opening.
  3.  請求項1に記載の燃料噴射弁において、
     前記切り欠きが、前記開口部の縁の周上に、部分的に設けられていることを特徴とする燃料噴射弁。
    The fuel injection valve according to claim 1, wherein
    The fuel injection valve, wherein the notch is partially provided on a periphery of an edge of the opening.
PCT/JP2014/060671 2013-04-26 2014-04-15 Fuel injection valve WO2014175112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN1033DEN2015 IN2015DN01033A (en) 2013-04-26 2014-04-15
CN201480002181.XA CN104603444A (en) 2013-04-26 2014-04-15 Fuel injection valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-093180 2013-04-26
JP2013093180A JP2014214682A (en) 2013-04-26 2013-04-26 Fuel injection valve

Publications (1)

Publication Number Publication Date
WO2014175112A1 true WO2014175112A1 (en) 2014-10-30

Family

ID=51791691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060671 WO2014175112A1 (en) 2013-04-26 2014-04-15 Fuel injection valve

Country Status (4)

Country Link
JP (1) JP2014214682A (en)
CN (1) CN104603444A (en)
IN (1) IN2015DN01033A (en)
WO (1) WO2014175112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002845A (en) * 2018-06-27 2020-01-09 株式会社Soken Fuel injection valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211525A (en) * 2015-05-14 2016-12-15 株式会社エンプラス Nozzle plate for fuel injection device
JP6549508B2 (en) 2016-03-14 2019-07-24 日立オートモティブシステムズ株式会社 Fuel injection valve
JP6733999B2 (en) * 2017-11-01 2020-08-05 三菱電機株式会社 Fuel injection valve
JP2019183848A (en) * 2019-06-27 2019-10-24 日立オートモティブシステムズ株式会社 Fuel injection valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508739A (en) * 1997-01-30 2000-07-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2011190728A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Fuel injection valve
JP2012158995A (en) * 2011-01-31 2012-08-23 Hitachi Automotive Systems Ltd Fuel injection valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4296519B2 (en) * 2006-12-19 2009-07-15 株式会社日立製作所 Fuel injection valve
JP5537512B2 (en) * 2011-07-25 2014-07-02 日立オートモティブシステムズ株式会社 Fuel injection valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508739A (en) * 1997-01-30 2000-07-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2011190728A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Fuel injection valve
JP2012158995A (en) * 2011-01-31 2012-08-23 Hitachi Automotive Systems Ltd Fuel injection valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002845A (en) * 2018-06-27 2020-01-09 株式会社Soken Fuel injection valve
JP7040320B2 (en) 2018-06-27 2022-03-23 株式会社デンソー Fuel injection valve

Also Published As

Publication number Publication date
JP2014214682A (en) 2014-11-17
IN2015DN01033A (en) 2015-06-26
CN104603444A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5961383B2 (en) Fuel injection valve
JP5452515B2 (en) Fuel injection valve
JP5537512B2 (en) Fuel injection valve
JP4808801B2 (en) Fuel injection valve
JP5978154B2 (en) Fuel injection valve
WO2014175112A1 (en) Fuel injection valve
JP5277264B2 (en) Fuel injection valve
KR20040034340A (en) Fuel injection valve
JP5930903B2 (en) Fuel injection valve
US9322375B2 (en) Fuel injection valve
JP5875442B2 (en) Fuel injection valve
JP2014173477A (en) Fuel injection valve
JP5887291B2 (en) Fuel injection valve
JP5893110B1 (en) Fuel injection valve
JP6523984B2 (en) Fuel injection valve
JP6239317B2 (en) Fuel injection valve
JP2014025365A (en) Fuel injection valve
JP2007182807A (en) Fuel injection valve
JPWO2018198309A1 (en) Fuel injection valve
JP5258644B2 (en) Fuel injection valve
JP6141350B2 (en) Fuel injection valve
JP5909479B2 (en) Fuel injection valve
JP2007100647A (en) Fuel injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201500815

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788150

Country of ref document: EP

Kind code of ref document: A1