WO2020148821A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2020148821A1
WO2020148821A1 PCT/JP2019/001068 JP2019001068W WO2020148821A1 WO 2020148821 A1 WO2020148821 A1 WO 2020148821A1 JP 2019001068 W JP2019001068 W JP 2019001068W WO 2020148821 A1 WO2020148821 A1 WO 2020148821A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection hole
valve seat
center
injection
Prior art date
Application number
PCT/JP2019/001068
Other languages
French (fr)
Japanese (ja)
Inventor
啓祐 伊藤
恭輔 渡邉
宗実 毅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980087966.4A priority Critical patent/CN113260783B/en
Priority to JP2020566371A priority patent/JP7031020B2/en
Priority to PCT/JP2019/001068 priority patent/WO2020148821A1/en
Publication of WO2020148821A1 publication Critical patent/WO2020148821A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present application relates to a fuel injection device.
  • the conventional fuel injection device disclosed in Patent Document 1 has a valve body that moves in response to a control signal from an internal combustion engine control module, a valve seat on which the valve body is seated or separated, and a valve in the fuel flow direction.
  • a fuel injector nozzle disposed immediately downstream of the seat, the fuel injector nozzle having a plurality of groove-shaped channels communicating with each other at a central portion, and communicating with the downstream side of each channel.
  • a plurality of swirl chambers are provided, and each swirl chamber is provided with an injection hole for ejecting fuel.
  • the fuel flowing from the valve seat into the central portion of the fuel injection nozzle uniformly flows into the plurality of groove-shaped flow passages and is rectified in the flow passages. Then, it flows into the swirl chamber and flows into the injection hole while generating a swirling flow.
  • the swirling flow of the fuel flowing into the injection hole is maintained even inside the injection hole, and a thin liquid film is formed along the inner wall of the injection hole.
  • the thin liquid film formed on the inner wall of the injection hole is atomized by being injected into the combustion chamber of the internal combustion engine in a hollow conical shape from the injection hole, and atomization of the fuel is promoted.
  • the conventional fuel injection device disclosed in the above-mentioned Patent Document 1 has good atomization performance of the fuel spray, but has a small penetration force of the fuel spray, and therefore, at the time of fuel injection in the intake stroke of the internal combustion engine. Due to the influence of the intake flow generated in the intake port, the fuel spray is made to flow toward the ceiling side of the intake port, and a part of the fuel spray adheres to the inner wall surface of the ceiling part of the intake port, and the inflow amount of the fuel spray into the combustion chamber. May decrease. Therefore, the vaporization cooling effect in the combustion chamber becomes insufficient, the knock resistance cannot be improved, and the compression ratio of the internal combustion engine cannot be increased, so that a sufficient fuel efficiency improvement effect cannot be obtained. was there.
  • the present application has been made in order to solve the problems in the conventional fuel injection device as described above, and it is possible to reduce the adhesion of fuel to the inner wall of the intake port and promote the improvement of fuel efficiency.
  • An object is to provide an injection device.
  • the fuel injection device is Having a valve body for opening and closing the valve seat, and operating the valve body by receiving an operation signal from a control device, so that fuel passes between the valve body and the valve seat seat portion, and then the valve seat downstream side
  • a fuel injection device that injects from a plurality of injection holes provided in an injection hole plate attached to the valve seat opening of On the upstream end surface of the injection hole plate, a plurality of swirl chambers are arranged radially outside the valve seat opening, and impart swirl force to the fuel; and fuel flows from the valve seat opening to the center.
  • the swirl chamber joined to an end has a fuel passage for flowing out fuel, and the swirl chamber is provided with the injection hole for injecting fuel to the outside,
  • the plurality of swirl chambers and the injection holes are arranged point-symmetrically with respect to the center of the fuel passage.
  • the central axis of the fuel passage is offset with respect to the center of the valve seat opening
  • At least one injection hole of the plurality of injection holes is provided offset to the center side of the valve seat opening with respect to the center axis of the fuel passage
  • at least one injection hole of the fuel passage is provided. It is provided offset to the side opposite to the center of the valve seat opening with respect to the central axis, It is characterized by
  • a fuel injection device has a valve body for opening and closing a valve seat, and operates the valve body by receiving an operation signal from a control device, so that fuel flows between the valve body and the valve seat seat portion. After passing, the fuel injection device is injected from a plurality of injection holes provided in an injection hole plate attached to a valve seat opening on the downstream side of the valve seat, wherein the upstream end surface of the injection hole plate has A plurality of swirl chambers are arranged radially outward of the valve seat opening to impart swirl force to the fuel, and fuel flows into the swirl chamber from the valve seat opening to the center and is joined to the end of the swirl chamber.
  • the plurality of swirl chambers and the injection holes are arranged point-symmetrically with respect to the center of the fuel passage, and the central axis of the fuel passage is offset with respect to the center of the valve seat opening.
  • at least one injection hole is provided offset to the center side of the valve seat opening with respect to the center axis of the fuel passage, and at least one injection hole is provided in the fuel passage. Is provided on the side opposite to the center of the valve seat opening with respect to the central axis of the fuel injection device, so that it is possible to reduce the adhesion of fuel to the intake port wall and promote the improvement of fuel efficiency. can do.
  • FIG. 3 is a vertical sectional view of the fuel injection device according to the first embodiment.
  • FIG. FIG. 3 is a vertical cross-sectional view of a part of the fuel injection device according to the first embodiment.
  • FIG. 3 is a transverse cross-sectional view of a cross section taken along the line AA of FIG. 2 viewed from the arrow direction.
  • 5 is an explanatory diagram of an upstream end surface of an injection hole plate of the fuel injection device according to the first embodiment.
  • FIG. 7 is an explanatory diagram of an upstream end surface of an injection hole plate of the fuel injection device according to the second embodiment.
  • FIG. FIG. 7 is a vertical cross-sectional view of a part of the fuel injection device according to the third embodiment.
  • FIG. 7 is a transverse cross-sectional view of a cross section taken along the line BB of FIG. 6 viewed from the arrow direction.
  • FIG. 11 is an explanatory view showing an upstream end surface of an injection hole plate of the fuel injection device according to the third embodiment.
  • FIG. 13 is an explanatory diagram when the fuel injection device according to the fourth embodiment is installed in an intake port of an internal combustion engine.
  • FIG. 11 is an explanatory view of an upstream end surface of an injection hole plate of the fuel injection device according to the fourth embodiment when the cross section taken along the line CC of FIG. 9 is viewed from the arrow direction.
  • Embodiment 1. 1 is a vertical cross-sectional view of the fuel injection device according to the first embodiment
  • FIG. 2 is a vertical cross-sectional view of a part of the fuel injection device according to the first embodiment
  • FIG. 3 is a cross-sectional view taken along line AA of FIG. It is the cross-sectional view which looked at from the arrow direction.
  • the fuel injection device 1 is composed of a solenoid device 4 and a valve device 9.
  • the solenoid device 4 includes a resin frame 71 having flanges at both ends in the axial direction, a coil 7 wound around the outer periphery of the frame 71, and a yoke arranged on the outer periphery of the coil 7.
  • the inner peripheral surface of the frame body 71 and the core 6 as a metal fixed iron core inserted into the inner peripheral surface of the housing 5, the coil 7, the frame body 71, the core 6 and the housing 5. It is constituted by a resin-made insulating jacket 41 embedded inside.
  • the valve device 9 includes a valve body 10, an armature 8 made of a magnetic metal, a valve seat 12, a valve holder 11, and an injection hole plate 13.
  • the valve holder 11 is fixed to the core 6 by welding after one end portion in the axial direction is press-fitted into the outer peripheral portion of the one end portion in the axial direction of the core 6.
  • the valve holder 11 is provided with an annular guide portion 11a protruding from the inner peripheral surface on the inner peripheral surface on the one end side in the axial direction.
  • the armature 8 is press-fitted into one end of the valve body 10 in the axial direction and then fixed to the valve body 10 by welding.
  • the armature 8 is axially slidably supported by the guide portion 11a of the valve holder 11, and when sucked by the core 6 as will be described later, the armature 8 slides axially so that the end surface 8a of the armature 8 is cored. It contacts the end face of 6.
  • the ball 15 is fixed to the other axial end portion of the valve body 10 by welding, and has a flat surface 15a formed by a plurality of chamfers.
  • the valve seat 12 is formed in a hollow cylindrical shape, one end of which is open in the axial direction and the other end of which is closed by an end wall 121.
  • the above-mentioned ball 15 fixed to the other axial end of the valve body 10 by welding is arranged so as to be movable in the axial direction.
  • An annular seat portion 12a on which the ball 15 is seated is formed on the inner surface of the end wall portion 121 of the valve seat 12.
  • a valve seat opening 12b penetrating the end wall portion 121 is provided at the center of the end wall portion 121 of the valve seat 12.
  • valve seat opening 12b is closed when the ball 15 is seated on the seat portion 12a of the valve seat 12, and the ball 15 is separated from the seat portion 12a to be released from the blockage so that the inside and the outside of the valve seat 12 are separated from each other. Communicate.
  • the dish-shaped nozzle hole plate 13 has its upstream end face fixed to the downstream side of the valve seat 12 by welding.
  • the welded portion 50 indicates the welding point.
  • the peripheral edge portion of the valve seat 12 and the peripheral edge portion of the injection hole plate 13 are fixed by abutting on the inner peripheral portion of the other axial end portion of the valve holder 11.
  • the injection hole plate 13 has a first swirl chamber 18a, a second swirl chamber 18b, and a fuel passage connected to the first swirl chamber 18a and the second swirl chamber 18b. 17, a first injection hole 14a that penetrates the injection hole plate 13 in the plate thickness direction, and a second injection hole 14b are provided.
  • the first swirl chamber 18a, the second swirl chamber 18b, and the fuel passage 17 are formed by recessing the upstream end surface of the injection hole plate 13, and the bottom surfaces of the first swirl chamber 18a and the fuel passage 17 are substantially flush with each other. Is configured to. Details of the structure of the injection hole plate 13 will be described later.
  • the first injection hole 14a is formed in the center of the first swirl chamber 18a
  • the second injection hole 14b is formed in the center of the second swirl chamber 18b.
  • the center 13c of the injection hole plate 13 and the center 12c of the valve seat opening 12b of the valve seat 12 are located on the central axis X of the fuel injection device 1.
  • the compression spring 16 inserted into the core 6 has one end fixed to the core 6 and the other end abutting on one end of the valve body 10 in the axial direction. Pushing in the direction.
  • the high-pressure fuel filling the inside of the valve holder 11 is discharged between the flat surface 15a of the ball 15 of the valve body 10 and the inner peripheral surface of the valve seat 12.
  • the gas flows into the central portion of the fuel passage 17 of the injection hole plate 13. .
  • the fuel that has flowed into the central portion of the fuel passage 17 is branched from the central portion of the fuel passage 17 and flows into the first swirl chamber 18a and the second swirl chamber 18b, and the first swirl chamber 18a ejects the fuel. It is injected into the intake port of the internal combustion engine through the hole 14a, and at the same time, is injected from the second swirl chamber 18b into the intake port of the internal combustion engine through the second injection hole 14b.
  • FIG. 4 is an explanatory diagram of an upstream end surface of the injection hole plate of the fuel injection device according to the first embodiment.
  • a first swirl chamber 18a and a second swirl chamber 18b for imparting a swirl force to the fuel are provided on the upstream end surface of the injection hole plate 13 on the radially outer side of the valve seat opening 12b. Is formed in.
  • the first injection hole 14a is provided at the center of the first swirl chamber 18a, and the second injection hole 14b is provided at the center of the second swirl chamber 18b.
  • a fuel passage 17 having a central portion facing the valve seat opening 12b is provided on the upstream end surface of the injection hole plate 13. The fuel flowing out from the valve seat opening 12b is branched into the first swirl chamber 18a and the second swirl chamber 18b joined to both ends of the fuel passage 17 after flowing into the fuel passage from the central portion of the fuel passage 17. Is configured to.
  • the center 12c of the valve seat opening 12b and the center 13c of the injection hole plate 13 are It is arranged to match.
  • the first swirl chamber 18a and the second swirl chamber 18b are arranged so as to be point-symmetric with respect to the center 17c of the fuel passage 17.
  • the first injection hole 14a and the second injection hole 14b are formed so as to be point-symmetric with respect to the center 17c of the fuel passage 17.
  • the central axis 40 of the fuel passage 17 is provided so as to be offset by a predetermined amount from the center 12c of the valve seat opening and the center 13c of the injection hole plate 13.
  • the first injection hole 14a provided in the first swirl chamber 18a is offset from the central axis 40 of the fuel passage 17 toward the center 12c of the valve seat opening 12b by a predetermined amount
  • the second injection hole 14b provided in the second swirl chamber 18b is offset by a predetermined amount on the side opposite to the center 12c of the valve seat opening 12b with respect to the central axis 40 of the fuel passage 17.
  • the main flow 30a of the fuel flowing into the first injection hole 14a provided in the swirl chamber 18a is a side wall 17w of the fuel passage 17 on the side opposite to the first injection hole 14a with respect to the center 17c of the fuel passage 17. Flow toward.
  • the first swirling flow 30a1 of strong fuel is generated inside the first swirling chamber 18a, and the penetrating force is small and the fuel is sufficiently atomized.
  • a spray is formed, and the fuel spray is injected from the first injection hole 14a into the intake port of the internal combustion engine.
  • the second injection hole 14b provided in the second swirl chamber 18b is offset from the center axis 40 of the fuel passage 17 to the side opposite to the center 12c of the valve seat opening 12b.
  • the main flow 30b of the flow of the fuel flowing in the direction of the second injection hole 14b provided in the second swirl chamber 18b through the passage 17 flows toward the second injection hole 14b, It becomes easy for fuel to directly flow into 14b. Therefore, the second swirl flow 30b1 weaker than the above-described first swirl flow 30a1 is generated inside the second swirl chamber 18b, and a fuel spray having a large penetration force is formed. The fuel is injected from the injection hole 14b into the intake port of the internal combustion engine.
  • the fuel flowing into the swirl chamber from the valve seat opening flows into the injection hole while generating a swirl flow, and the swirl flow is maintained even inside the injection hole, so that the fuel along the inner wall of the injection hole is thin.
  • a liquid film is formed, and atomization of the fuel is promoted by injecting a thin liquid film from the injection hole into a hollow cone shape.
  • the main flow direction of the fuel flow flowing from the valve seat opening through the fuel passage into the nozzle hole provided in the swirl chamber is directed toward the nozzle hole. It is possible to set two directions, a weak swirling flow and a strong swirling flow in the swirling chamber, and it is possible to set the fuel spray with a large penetration force and the atomization force to a small atomization. It is possible to form two types of fuel sprays that are good fuel sprays. Therefore, even when the fuel is injected when the intake flow is present in the intake port, it becomes difficult for the fuel spray to flow due to the intake flow, and it is possible to reduce the adhesion of the fuel spray to the intake port wall. Therefore, the direct injection rate of the fuel spray into the combustion chamber can be improved, the vaporization cooling effect in the combustion chamber can be enhanced, the knock resistance can be improved, and the compression ratio can be increased, and the fuel consumption can be improved.
  • the center of the valve seat opening and the center of a plurality of radially extending fuel passages provided on the upstream end surface of the injection hole plate are
  • the main flow direction of the fuel flowing from the valve seat opening into each fuel passage toward the injection hole is substantially parallel to the central axis of the fuel passage, and is the same in each swirling chamber. A swirling flow of fuel having such strength is generated, and fuel spray having the same penetrating force is injected from each injection hole. Therefore, the above-described effects of the fuel injection device according to the first embodiment of the present application cannot be obtained.
  • the fuel sprays having different penetration forces are used.
  • Different injection holes, swirl chambers, fuel passages, etc. corresponding to each need to be formed in one injection hole plate, which complicates the fuel flow path structure and deteriorates workability.
  • the injection hole, the swirl chamber, and the fuel passage corresponding to different penetrating forces of the fuel spray have the same shape, and the central axis of the fuel passage is arranged with respect to the center of the valve seat opening. Since only the offset is required, the fuel flow passage structure can be simplified and the workability can be improved.
  • FIG. 5 is an explanatory diagram of the upstream end surface of the injection hole plate of the fuel injection device according to the second embodiment.
  • a first fuel passage 17 and a second fuel passage 171 are provided on the upstream end surface of the injection hole plate 13 so as to intersect with each other at a common center 17c and to be orthogonal to each other.
  • the first swirl chamber 18a is connected to one end of the first fuel passage 17, and the second swirl chamber 18b is connected to the other end of the first fuel passage 17.
  • the third swirl chamber 18c is connected to one end of the second fuel passage 171 and the fourth swirl chamber 18d is connected to the other end of the second fuel passage 171.
  • the first swirl chamber 18a, the second swirl chamber 18b, the third swirl chamber 18c, and the fourth swirl chamber 18d are respectively formed outside the valve seat opening 12b in the radial direction.
  • the first fuel passage 17, the second fuel passage 171, the first swirl chamber 18a, the second swirl chamber 18b, the third swirl chamber 18c, and the fourth swirl chamber 18d are the same as those described above.
  • the injection hole plate 13 is formed by denting the upstream end surface, and the bottom surfaces of the injection hole plate 13 are formed to be substantially continuous with each other.
  • a first injection hole 14a penetrating the injection hole plate 13 in the plate thickness direction is opened in the center of the first swirl chamber 18a, and the injection hole plate 13 is opened in the center of the second swirl chamber 18b.
  • the second injection hole 14b penetrating in the plate thickness direction is opened, and the third injection hole 14c penetrating the injection hole plate 13 in the plate thickness direction is opened at the center of the third swirl chamber 18c.
  • a fourth injection hole 14d that penetrates the injection hole plate 13 in the plate thickness direction is opened at the center of the fourth swirl chamber 18d.
  • the first swirl chamber 18a and the second swirl chamber 18b are arranged so as to be point-symmetric with respect to the common center 17c of the first fuel passage 17 and the second fuel passage 171.
  • the injection holes 14a and the second injection holes 14b are arranged so as to be point-symmetric with respect to the common center 17c of the first fuel passage 17 and the second fuel passage 171.
  • the third swirl chamber 18c and the fourth swirl chamber 18d are arranged so as to be point-symmetric with respect to the common center 17c of the first fuel passage 17 and the second fuel passage 171.
  • the injection hole 14c and the fourth injection hole 14d are arranged so as to be point-symmetric with respect to the common center 17c of the first fuel passage 17 and the second fuel passage 171.
  • the central axis 40 of the first fuel passage 17 and the central axis 401 of the second fuel passage 171 are provided offset from the center 12c of the valve seat opening 12b by a predetermined amount.
  • the first injection hole 14a provided in the first swirl chamber 18a and the third injection hole 14c provided in the third swirl chamber 18c respectively have the central axis 40 of the first fuel passage 17.
  • a second shaft provided in the second swirl chamber 18b so as to be offset from the central axis 401 of the second fuel passage 171 by a predetermined amount in the direction of the center 12c of the valve seat opening 12b.
  • valve seat opening 12b is provided so as to be offset by a predetermined amount in the direction opposite to the center 12c.
  • the fuel that has flowed into the upstream end surface of the injection hole plate 13 from the valve seat opening 12b is radially centered on the center 12c of the valve seat opening 12b and is located at the central portion between the first fuel passage 17 and the second fuel passage 171.
  • the first injection hole 14a provided in the first swirl chamber 18a is offset with respect to the central axis 40 of the first fuel passage 17 in the direction of the center 12c of the valve seat opening 12b. Therefore, the main flow 30a of the flow of fuel flowing into the first injection hole 14a provided in the first swirl chamber 18a through the first fuel passage 17 is the main flow 30a with respect to the central axis 40 of the first fuel passage 17. It flows toward the side wall 17w of the first fuel passage 17 opposite to the first injection hole 14a.
  • the first swirling flow 30a1 of strong fuel is generated inside the first swirling chamber 18a, and the penetrating force is small and the fuel is sufficiently atomized.
  • the spray is formed and injected from the first injection hole 14a into the intake port of the internal combustion engine.
  • the third injection hole 14c provided in the third swirl chamber 18c is offset in the direction of the center 12c of the valve seat opening 12b with respect to the central axis 401 of the second fuel passage 171. Therefore, the main flow 30c of the fuel flowing into the third injection hole 14c provided in the third swirl chamber 18c through the second fuel passage 171 is less likely to flow with respect to the central axis 401 of the second fuel passage 171.
  • the current flows toward the side wall 171w of the second fuel passage 171 opposite to the third injection hole 14c. For this reason, it becomes difficult for the fuel to directly enter the third injection hole 14c, a strong third fuel swirl flow 30c1 is generated inside the third swirl chamber 18c, and the penetration force is small and the fuel is sufficiently atomized.
  • the spray is formed and injected from the third injection hole 14c into the intake port of the internal combustion engine.
  • the second injection hole 14b provided in the second swirl chamber 18b is offset in the direction opposite to the center 12c of the valve seat opening 12b with respect to the central axis 40 of the first fuel passage 17. Therefore, the main flow 30b of the fuel flowing in the direction of the second injection hole 14b provided in the second swirl chamber 18b through the first fuel passage 17 is directed toward the second injection hole 14b. The fuel easily flows directly into the second injection hole 14b. Therefore, the second swirl flow 30b1 weaker than the above-described first swirl flow 30a1 is generated inside the second swirl chamber 18b, and fuel spray having a large penetrating force is formed and the second swirl hole 14b is formed. It is injected into the intake port of the internal combustion engine.
  • the fourth injection hole 14d provided in the fourth swirl chamber 18d is offset with respect to the central axis 401 of the second fuel passage 171 in the direction opposite to the center 12c of the valve seat opening 12b. Therefore, the main flow 30d of the fuel flow flowing in the direction of the fourth injection hole 14d provided in the fourth swirl chamber 18d through the second fuel passage 171 is directed toward the fourth injection hole 14d. The fuel easily flows directly into the fourth injection hole 14d. Therefore, the fourth swirl flow 30d1 weaker than the above-described third swirl flow 30c1 is generated inside the fourth swirl chamber 18d, and fuel spray having a large penetrating force is formed to cause the fourth swirl flow 14d to flow from the fourth injection hole 14d. It is injected into the intake port of the internal combustion engine.
  • the number of the injection holes is four, and one injection hole plate has two types of fuel sprays having different penetrating forces, that is, penetration holes. It is possible to form two types of fuel sprays, that is, a fuel spray having a large force and a fuel spray having a small penetration force and well atomized, and the same effect as that of the fuel injection device of the first embodiment can be obtained. You can
  • first injection hole 14a and the third injection hole 14c which form the fuel spray that is small in penetrating power and is well atomized, are arranged in close proximity to each other in a lump, and the fuel spray that forms a large penetrating power is formed.
  • the second injection hole 14b and the fourth injection hole 14d are arranged in a block in close proximity to each other, and the first injection hole 14a, the third injection hole 14c, the second injection hole 14b and the fourth injection hole 14b No. 14 d of the fuel spray nozzles are arranged in line symmetry with respect to the common center 17 c of the first fuel passage 17 and the second fuel passage 171. Are less likely to interfere with each other, and deterioration of atomization can be suppressed.
  • the number of injection holes is four, but the number of injection holes may be further increased to form a plurality of fuel sprays having different penetrating forces.
  • the injection flow rate can be increased by increasing the number of injection holes, and it is possible to cope with the case where the flow rate required for the fuel injection device is large.
  • Embodiment 3 Next, a fuel injection device according to a third embodiment of the present application will be described.
  • the center of the fuel passage does not coincide with the center of the injection hole plate, and the center of the fuel passage is provided offset from the center of the injection hole plate.
  • the center of the nozzle hole plate and the center of the fuel passage are aligned, The center of the injection hole plate and the center of the fuel passage are offset from the center of the valve seat opening.
  • Other configurations are similar to those of the fuel injection device according to the first embodiment.
  • FIG. 6 is a vertical cross-sectional view of a portion of the fuel injection device according to the third embodiment
  • FIG. 7 is a cross-sectional view of a cross-section taken along the line BB of FIG. 6 as seen from the direction of the arrow
  • FIG. 3 is an explanatory view of an upstream end surface of an injection hole plate of the fuel injection device according to FIG. 6, FIG. 7, and FIG. 8, the center 17c of the fuel passage 17 coincides with the center 13c of the injection hole plate 13, and the first injection hole 14a provided in the injection hole plate 13
  • the two injection holes 14b, the first swirl chamber 18a, the second swirl chamber 18b, and the fuel passage 17 are arranged point-symmetrically with respect to the center 13c of the injection hole plate and the center 17c of the fuel passage.
  • the injection hole plate 13 is formed in a flat disc shape, and the outer diameter of the injection hole plate 13 is smaller than the outer diameter of the valve seat 12.
  • the injection hole plate 13 was formed in a dish shape, but in the third embodiment, the injection hole plate 13 is formed in a flat disk shape. Therefore, the manufacture of the injection hole plate 13 Alternatively, there is an advantage that processing becomes easy. Further, in the third embodiment, the outer diameter of the injection hole plate 13 is formed smaller than the outer diameter of the valve seat 12. Therefore, even if the valve seat 12 and the injection hole plate 13 are not fixed strictly concentrically, the outer edge of the injection hole plate 13 does not contact the inner wall of the valve holder 11, and the valve seat 12 and the valve holder 11 Can be easily assembled.
  • the center 13c of the injection hole plate 13 and the center 17c of the fuel passage 17 are different from the center 12c of the valve seat opening 12b provided on the central axis X of the valve seat 12.
  • the fuel passage 17 is arranged with a predetermined offset in the direction orthogonal to the central axis 40.
  • the fuel flowing from the valve seat opening 12b of the valve seat 12 into the upstream end surface of the injection hole plate 13 radially flows into the central portion of the fuel passage 17 about the center 12c of the valve seat opening 12b.
  • the first injection hole 14a provided in the first swirl chamber 18a is offset in the direction of the center 12c of the valve seat opening 12b with respect to the central axis 40 of the fuel passage 17, so that the first injection hole 14a passes through the fuel passage 17 through the first injection hole 14a.
  • the main flow 30a of the fuel flowing into the first injection hole 14a provided in the first swirl chamber 18a is the main flow path 30a of the fuel passage 17 on the side opposite to the first injection hole 14a with respect to the central axis 40 of the fuel passage 17.
  • the first swirling flow 30a1 of strong fuel is generated inside the first swirling chamber 18a, and the penetrating force is small and the fuel is sufficiently atomized.
  • the spray is formed and injected from the first injection hole 14a into the intake port of the internal combustion engine.
  • the second injection hole 14b provided in the second swirl chamber 18b is offset in the direction opposite to the center 12c of the valve seat opening 12b with respect to the central axis 40 of the fuel passage 17.
  • the main flow 30b of the fuel flowing through the fuel passage 17 in the direction of the second injection hole 14b provided in the second swirl chamber 18b flows in the direction of the second injection hole 14b, It becomes easier for fuel to directly flow into the injection holes 14b. Therefore, the second swirl flow 30b1 weaker than the above-described first swirl flow 30a1 is generated inside the second swirl chamber 18b, and fuel spray having a large penetrating force is formed and the second swirl hole 14b is formed. It is injected into the intake port of the internal combustion engine.
  • the fuel flow flowing from the valve seat opening 12b into the first injection hole 14a and the second injection hole 14b is the same as in the case of the first embodiment.
  • the shape of the flow passage formed by the fuel passage 17, the first swirl chamber 18a, and the second swirl chamber 18b formed on the upstream end surface of the injection hole plate 13 is changed.
  • the center of the valve seat 12 and the center of the injection hole plate 13 are offset from each other and fixed to each other, so that the amount of fuel can be adjusted by simply adjusting the offset amount of the central axis 40 of the fuel passage 17 with respect to the center 12c of the valve seat opening. Since the direction of the fuel flow from the seat opening 12b to the first injection hole 14a and the second injection hole 14b can be adjusted, the amount of the optimum penetration force of the fuel spray corresponding to various internal combustion engines can be adjusted. Can be adjusted to.
  • the swirl flow is imparted to the fuel formed on the upstream end surface of the injection hole plate.
  • the design man-hour required for the adjustment can be reduced compared with the case where the shape of the flow path such as the injection hole, swirl chamber, fuel passage, etc. is changed, and the cost for changing the injection hole plate die is not necessary and the cost is reduced. can do.
  • FIG. 9 is an explanatory view of a case where the fuel injection device according to the fourth embodiment is installed in an intake port of an internal combustion engine
  • FIG. 10 is a third embodiment in which a cross section taken along the line CC of FIG. 9 is viewed from an arrow direction.
  • FIG. 4 is an explanatory view showing an upstream end face of an injection hole plate of the fuel injection device.
  • the fuel injection device 1 according to any one of the first to third embodiments described above is mounted on the ceiling portion 70b of the intake port 70 that communicates with the combustion chamber 60 of the internal combustion engine. Fuel is injected from the fuel injection device 1 toward the intake valve 80 of the engine.
  • the intake flow 90 is generated in the intake port 70 from the upstream side to the downstream side in the fuel flow direction. Since the penetrating force of the fuel spray is small in the injector, the fuel spray is caused to flow to the ceiling part 70b of the intake port 70 by the intake flow 90 and adheres to the inner wall surface of the ceiling part 70b, so that the amount of fuel flowing into the combustion chamber 60 is increased. Therefore, the vaporization cooling effect in the combustion chamber 60 becomes insufficient, the knock resistance does not improve, and the compression ratio cannot be increased, so that a sufficient fuel efficiency improving effect cannot be obtained.
  • the first injection hole 14a that is offset with respect to the central axis 40 of the fuel passage 17 in the direction of the center 12c of the valve seat opening 12b is It is arranged so as to be on the side Y1 closer to the bottom 70a of the intake port with respect to the center 17c of the fuel passage 17, and is offset in the direction opposite to the center 12c of the valve seat opening 12b with respect to the central axis 40 of the fuel passage 17.
  • the second injection hole 14b is arranged on the side Y2 closer to the ceiling portion 70b of the intake port with respect to the center 17c of the fuel passage 17.
  • the first fuel spray F1 having a small penetration force and sufficiently atomized is injected from the first injection hole 14a toward the bottom portion 70a side of the intake port 70, and the penetration force is large from the second injection hole 14b.
  • the second fuel spray F2 is injected toward the ceiling portion 70b side of the intake port 70.
  • the first fuel spray F1 which has a small penetration force and is sufficiently atomized is flowed to the ceiling portion 70b of the intake port 70 and adhered to the wall surface. This can be suppressed by the second fuel spray F2 having a large penetration force.
  • the fuel injection device according to the present application can be used in the field of internal combustion engines, and thus in the field of the automobile industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The present invention is configured so as to have, in an upstream end surface of an injection hole plate (13), a fuel passage (17) which introduces fuel from a valve seat opening part (12b) to a center part, and discharges the fuel to a plurality of swirl chambers (18a, 18b) that are joined at an end part and impart a swirling force to the fuel, wherein: injection holes (14a, 14b) are opened in the swirl chambers (18a, 18b); the swirl chambers (18a, 18b) and the injection holes (14a, 14b) are disposed in a point symmetrical manner with respect to a center (17c) of the fuel passage; and a center axis (40) of the fuel passage is offset with respect to a center (12c) of the valve seat opening part, whereby the direction of main flows (30a, 30b) of fuel flow introduced from the valve seat opening part (12b) to the injection holes (14a, 14b) via the fuel passage (17) becomes two directions including a direction separating from the injection holes and a direction heading toward the injection holes.

Description

燃料噴射装置Fuel injector
 本願は、燃料噴射装置に関するものである。 The present application relates to a fuel injection device.
 近年、自動車に搭載される内燃機関に対する排出ガス規制が強化されており、その一環として、内燃機関の燃料噴射装置から噴射される燃料噴霧の微粒化が求められており、旋回流れを利用して微粒化を図る方式に関して様々な検討がなされている。 In recent years, exhaust gas regulations for internal combustion engines mounted on automobiles have been tightened, and as a part thereof, atomization of fuel spray injected from a fuel injection device of an internal combustion engine is required, and swirling flow is used. Various studies have been made on a method for achieving atomization.
 特許文献1に開示された従来の燃料噴射装置は、内燃機関制御モジュールからの制御信号に応答して可動する弁体と、この弁体が着座又は離反する弁座と、燃料の流通方向に対する弁座の下流側の直近に設置された燃料噴射器用ノズルとを備え、燃料噴射器用ノズルには、中心部で互いに連通する複数の溝形の流路と、各々の流路の下流側に連通する複数の渦流室とが設けられ、各渦流室には、燃料を噴出させる噴孔が設けられている。 The conventional fuel injection device disclosed in Patent Document 1 has a valve body that moves in response to a control signal from an internal combustion engine control module, a valve seat on which the valve body is seated or separated, and a valve in the fuel flow direction. A fuel injector nozzle disposed immediately downstream of the seat, the fuel injector nozzle having a plurality of groove-shaped channels communicating with each other at a central portion, and communicating with the downstream side of each channel. A plurality of swirl chambers are provided, and each swirl chamber is provided with an injection hole for ejecting fuel.
 特許文献1に開示された従来の燃料噴射装置によれば、弁座から燃料噴射用ノズルの中央部に流れ込んだ燃料は、複数の溝形の流路に均等に流れ込み、その流路で整流化されて渦流室に流入し、旋回流を生じながら噴孔へ流れ込む。噴孔に流れ込んだ燃料は、噴孔の内部においても旋回流が保たれ、噴孔の内壁に沿った薄い液膜を形成する。噴孔の内壁に形成された薄い液膜は、噴孔から中空円錐状に内燃機関の燃焼室内に噴射されることで微粒化され、燃料の微粒化が促進される。 According to the conventional fuel injection device disclosed in Patent Document 1, the fuel flowing from the valve seat into the central portion of the fuel injection nozzle uniformly flows into the plurality of groove-shaped flow passages and is rectified in the flow passages. Then, it flows into the swirl chamber and flows into the injection hole while generating a swirling flow. The swirling flow of the fuel flowing into the injection hole is maintained even inside the injection hole, and a thin liquid film is formed along the inner wall of the injection hole. The thin liquid film formed on the inner wall of the injection hole is atomized by being injected into the combustion chamber of the internal combustion engine in a hollow conical shape from the injection hole, and atomization of the fuel is promoted.
特開2002-98028号公報JP-A-2002-98028
 近年、内燃機関の吸気ポート内で燃料の噴射を行う方式において、燃費改善を目的として、内燃機関の吸気行程で燃料の噴射を行うケースが増えている。周知のように、吸気行程での燃料の噴射は、吸気弁が開弁した状態で燃料噴射を行い、燃料噴霧を内燃機関の燃焼室内に直接流入させ、燃焼室内での気化冷却効果を高めて耐ノック性を向上させ、内燃機関の圧縮比を増加させることで、燃費改善を可能にする手法である。 In recent years, in the method of injecting fuel in the intake port of an internal combustion engine, cases of injecting fuel in the intake stroke of the internal combustion engine are increasing in order to improve fuel efficiency. As is well known, in the injection of fuel in the intake stroke, fuel injection is performed with the intake valve open, and the fuel spray is made to flow directly into the combustion chamber of the internal combustion engine to enhance the evaporative cooling effect in the combustion chamber. It is a method that improves fuel economy by improving knock resistance and increasing the compression ratio of the internal combustion engine.
 前述の特許文献1に開示された従来の燃料噴射装置は、燃料噴霧の微粒化性能は良好であるが燃料噴霧の貫徹力(penetration  force)が小さいため、内燃機関の吸気行程での燃料噴射時に吸気ポート内に生じる吸気流の影響で、燃料噴霧が吸気ポートの天井部側に流されて燃料噴霧の一部分が吸気ポートの天井部の内壁面に付着し、燃焼室内への燃料噴霧の流入量が少なくなることがある。このため、燃焼室内の気化冷却効果が不十分となり、耐ノック性が向上させることができず、内燃機関の圧縮比を増加することができないので、十分な燃費改善効果を得ることができないという課題があった。 The conventional fuel injection device disclosed in the above-mentioned Patent Document 1 has good atomization performance of the fuel spray, but has a small penetration force of the fuel spray, and therefore, at the time of fuel injection in the intake stroke of the internal combustion engine. Due to the influence of the intake flow generated in the intake port, the fuel spray is made to flow toward the ceiling side of the intake port, and a part of the fuel spray adheres to the inner wall surface of the ceiling part of the intake port, and the inflow amount of the fuel spray into the combustion chamber. May decrease. Therefore, the vaporization cooling effect in the combustion chamber becomes insufficient, the knock resistance cannot be improved, and the compression ratio of the internal combustion engine cannot be increased, so that a sufficient fuel efficiency improvement effect cannot be obtained. was there.
 また、前述の従来の燃料噴射装置には、吸気弁が閉弁した状態で燃料噴射する排気行程噴射の場合であっても、多気筒の内燃機関の各吸気ポート間に発生する吸気脈動の影響、及び噴射量が多く噴射期間が長い場合等に於いて、排気行程で必要量の燃料を噴射しきれずに燃料噴射動作の後半が吸気行程に移行してしまい、吸気流の影響を受けて燃料噴霧が吸気ポートの天井部に流されて吸気ポートの天井部の内壁への付着が生じ易くなり、燃費の改善が阻害されるという課題があった。 Further, in the above-mentioned conventional fuel injection device, even in the case of the exhaust stroke injection in which the fuel is injected with the intake valve closed, the influence of the intake pulsation generated between the intake ports of the multi-cylinder internal combustion engine. , And when the injection amount is large and the injection period is long, the required amount of fuel cannot be injected in the exhaust stroke, and the latter half of the fuel injection operation shifts to the intake stroke, which is affected by the intake flow. There is a problem that the spray is apt to flow to the ceiling portion of the intake port and easily adhere to the inner wall of the ceiling portion of the intake port, which hinders improvement in fuel consumption.
 本願は、前述のような従来の燃料噴射装置に於ける課題を解消するためになされたものであり、吸気ポートの内壁への燃料の付着を低減させて燃費の改善を促進させることができる燃料噴射装置を提供することを目的とする。 The present application has been made in order to solve the problems in the conventional fuel injection device as described above, and it is possible to reduce the adhesion of fuel to the inner wall of the intake port and promote the improvement of fuel efficiency. An object is to provide an injection device.
 本願による燃料噴射装置は、
 弁座を開閉するための弁体を有し、制御装置より動作信号を受けて前記弁体を動作させることにより、燃料が前記弁体と弁座シート部の間を通過後、弁座下流側の弁座開口部に装着された噴孔プレートに設けられた複数の噴孔から噴射される燃料噴射装置であって、
 前記噴孔プレートの上流側端面には、前記弁座開口部の径方向外側に複数配置され、燃料に旋回力を付与する旋回室と、前記弁座開口部から中央部に燃料を流入し、端部に接合される前記旋回室に燃料を流出する燃料通路を有し、前記旋回室に開口し燃料を外部へ噴射する前記噴孔を備えており、
 前記弁座開口部の中心軸方向に上流側から前記噴孔プレートの上流側端面を見た場合、複数の前記旋回室および前記噴孔は、前記燃料通路の中心に対して点対称に配置され、前記燃料通路の中心軸が前記弁座開口部の中心に対してオフセットしており、
 前記複数の噴孔のうち、少なくとも1つの噴孔は前記燃料通路の中心軸に対して前記弁座開口部の中心側にオフセットして設けられ、かつ、少なくとも1つの噴孔は前記燃料通路の中心軸に対して前記弁座開口部の中心の反対側にオフセットして設けられている、
ことを特徴とする。
The fuel injection device according to the present application is
Having a valve body for opening and closing the valve seat, and operating the valve body by receiving an operation signal from a control device, so that fuel passes between the valve body and the valve seat seat portion, and then the valve seat downstream side A fuel injection device that injects from a plurality of injection holes provided in an injection hole plate attached to the valve seat opening of
On the upstream end surface of the injection hole plate, a plurality of swirl chambers are arranged radially outside the valve seat opening, and impart swirl force to the fuel; and fuel flows from the valve seat opening to the center. The swirl chamber joined to an end has a fuel passage for flowing out fuel, and the swirl chamber is provided with the injection hole for injecting fuel to the outside,
When the upstream end surface of the injection hole plate is viewed from the upstream side in the central axis direction of the valve seat opening, the plurality of swirl chambers and the injection holes are arranged point-symmetrically with respect to the center of the fuel passage. , The central axis of the fuel passage is offset with respect to the center of the valve seat opening,
At least one injection hole of the plurality of injection holes is provided offset to the center side of the valve seat opening with respect to the center axis of the fuel passage, and at least one injection hole of the fuel passage is provided. It is provided offset to the side opposite to the center of the valve seat opening with respect to the central axis,
It is characterized by
 本願による燃料噴射装置は、弁座を開閉するための弁体を有し、制御装置より動作信号を受けて前記弁体を動作させることにより、燃料が前記弁体と弁座シート部の間を通過後、弁座下流側の弁座開口部に装着された噴孔プレートに設けられた複数の噴孔から噴射される燃料噴射装置であって、前記噴孔プレートの上流側端面には、前記弁座開口部の径方向外側に複数配置され、燃料に旋回力を付与する旋回室と、前記弁座開口部から中央部に燃料を流入し、端部に接合される前記旋回室に燃料を流出する燃料通路を有し、前記旋回室に開口し燃料を外部へ噴射する前記噴孔を備えており、前記弁座開口部の中心軸方向に上流側から前記噴孔プレートの上流側端面を見た場合、複数の前記旋回室および前記噴孔は、前記燃料通路の中心に対して点対称に配置され、前記燃料通路の中心軸が前記弁座開口部の中心に対してオフセットしており、前記複数の噴孔のうち、少なくとも1つの噴孔は前記燃料通路の中心軸に対して前記弁座開口部の中心側にオフセットして設けられ、かつ、少なくとも1つの噴孔は前記燃料通路の中心軸に対して前記弁座開口部の中心の反対側にオフセットして設けられているので、吸気ポート壁への燃料の付着を低減させて燃費の改善を促進し得る燃料噴射装置を提供することができる。 A fuel injection device according to the present application has a valve body for opening and closing a valve seat, and operates the valve body by receiving an operation signal from a control device, so that fuel flows between the valve body and the valve seat seat portion. After passing, the fuel injection device is injected from a plurality of injection holes provided in an injection hole plate attached to a valve seat opening on the downstream side of the valve seat, wherein the upstream end surface of the injection hole plate has A plurality of swirl chambers are arranged radially outward of the valve seat opening to impart swirl force to the fuel, and fuel flows into the swirl chamber from the valve seat opening to the center and is joined to the end of the swirl chamber. It has a fuel passage that flows out, is provided with the injection hole that is opened to the swirl chamber and injects fuel to the outside, and has an upstream end surface of the injection hole plate from the upstream side in the central axis direction of the valve seat opening. When viewed, the plurality of swirl chambers and the injection holes are arranged point-symmetrically with respect to the center of the fuel passage, and the central axis of the fuel passage is offset with respect to the center of the valve seat opening. Of the plurality of injection holes, at least one injection hole is provided offset to the center side of the valve seat opening with respect to the center axis of the fuel passage, and at least one injection hole is provided in the fuel passage. Is provided on the side opposite to the center of the valve seat opening with respect to the central axis of the fuel injection device, so that it is possible to reduce the adhesion of fuel to the intake port wall and promote the improvement of fuel efficiency. can do.
実施の形態1による燃料噴射装置の縦断面図である。3 is a vertical sectional view of the fuel injection device according to the first embodiment. FIG. 実施の形態1による燃料噴射装置の一部分の縦断面図である。FIG. 3 is a vertical cross-sectional view of a part of the fuel injection device according to the first embodiment. 図2のA-A線に沿う断面を矢印方向から視た横断面図である。FIG. 3 is a transverse cross-sectional view of a cross section taken along the line AA of FIG. 2 viewed from the arrow direction. 実施の形態1による燃料噴射装置の噴孔プレートの上流側端面の説明図である。5 is an explanatory diagram of an upstream end surface of an injection hole plate of the fuel injection device according to the first embodiment. FIG. 実施の形態2による燃料噴射装置の噴孔プレートの上流側端面の説明図である。7 is an explanatory diagram of an upstream end surface of an injection hole plate of the fuel injection device according to the second embodiment. FIG. 実施の形態3による燃料噴射装置の一部分の縦断面図である。FIG. 7 is a vertical cross-sectional view of a part of the fuel injection device according to the third embodiment. 図6のB-B線に沿う断面を矢印方向から視た横断面図である。FIG. 7 is a transverse cross-sectional view of a cross section taken along the line BB of FIG. 6 viewed from the arrow direction. 実施の形態3による燃料噴射装置の噴孔プレートの上流側端面を示す説明図である。FIG. 11 is an explanatory view showing an upstream end surface of an injection hole plate of the fuel injection device according to the third embodiment. 実施の形態4による燃料噴射装置を内燃機関の吸気ポートに設置した場合の説明図である。FIG. 13 is an explanatory diagram when the fuel injection device according to the fourth embodiment is installed in an intake port of an internal combustion engine. 図9のC-C線に沿う断面を矢印方向から視た実施の形態4による燃料噴射装置の噴孔プレートの上流側端面の説明図である。FIG. 11 is an explanatory view of an upstream end surface of an injection hole plate of the fuel injection device according to the fourth embodiment when the cross section taken along the line CC of FIG. 9 is viewed from the arrow direction.
実施の形態1.
 図1は、実施の形態1による燃料噴射装置の縦断面図、図2は、実施の形態1による燃料噴射装置の一部分の縦断面図、図3は、図2のA-A線に沿う断面を矢印方向から視た横断面図である。図1、図2、及び図3に於いて、燃料噴射装置1は、ソレノイド装置4と、弁装置9とにより構成されている。ソレノイド装置4は、軸方向の両端部に鍔部を備えた樹脂製の枠体71と、枠体71の外周部に巻回されたコイル7と、コイル7の外周部に配置されたヨークとしての金属製のハウジング5と、枠体71の内周面とハウジング5の内周面に挿入された金属製の固定鉄心としてのコア6と、コイル7と枠体71とコア6とハウジング5を内部に埋設した樹脂製の絶縁外被41とにより構成されている。
Embodiment 1.
1 is a vertical cross-sectional view of the fuel injection device according to the first embodiment, FIG. 2 is a vertical cross-sectional view of a part of the fuel injection device according to the first embodiment, and FIG. 3 is a cross-sectional view taken along line AA of FIG. It is the cross-sectional view which looked at from the arrow direction. 1, 2, and 3, the fuel injection device 1 is composed of a solenoid device 4 and a valve device 9. The solenoid device 4 includes a resin frame 71 having flanges at both ends in the axial direction, a coil 7 wound around the outer periphery of the frame 71, and a yoke arranged on the outer periphery of the coil 7. Of the metal housing 5, the inner peripheral surface of the frame body 71 and the core 6 as a metal fixed iron core inserted into the inner peripheral surface of the housing 5, the coil 7, the frame body 71, the core 6 and the housing 5. It is constituted by a resin-made insulating jacket 41 embedded inside.
 弁装置9は、弁体10と、磁性体である金属により構成されたアマチュア8と、弁座12と、弁ホルダ11と、噴孔プレート13とを備えている。弁ホルダ11は、コア6の軸方向の一端部の外周部に軸方向一端部が圧入された後、コア6に溶接により固定されている。弁ホルダ11は、軸方向の一端部側の内周面に、内周面から突出する環状のガイド部11aを備えている。アマチュア8は、弁体10の軸方向の一端部に圧入された後、弁体10に溶接により固定されている。アマチュア8は、弁ホルダ11のガイド部11aにより軸方向に摺動自在に支持されており、後述するようにコア6に吸引されたとき、軸方向に摺動してアマチュア8の端面8aがコア6の端面に当接する。ボール15は、弁体10の軸方向の他端部に溶接により固定されており、複数の面取りにより形成された平坦面15aを備えている。 The valve device 9 includes a valve body 10, an armature 8 made of a magnetic metal, a valve seat 12, a valve holder 11, and an injection hole plate 13. The valve holder 11 is fixed to the core 6 by welding after one end portion in the axial direction is press-fitted into the outer peripheral portion of the one end portion in the axial direction of the core 6. The valve holder 11 is provided with an annular guide portion 11a protruding from the inner peripheral surface on the inner peripheral surface on the one end side in the axial direction. The armature 8 is press-fitted into one end of the valve body 10 in the axial direction and then fixed to the valve body 10 by welding. The armature 8 is axially slidably supported by the guide portion 11a of the valve holder 11, and when sucked by the core 6 as will be described later, the armature 8 slides axially so that the end surface 8a of the armature 8 is cored. It contacts the end face of 6. The ball 15 is fixed to the other axial end portion of the valve body 10 by welding, and has a flat surface 15a formed by a plurality of chamfers.
 弁座12は、軸方向の一端部が開放され、他端部が端壁部121により閉塞された中空の円筒形に形成されている。弁座12の内部には、弁体10の軸方向の他端部に溶接により固定された前述のボール15が軸方向に移動可能に配置されている。弁座12の端壁部121の内面には、ボール15が着座する環状のシート部12aが形成されている。また、弁座12の端壁部121の中央部には、端壁部121を貫通する弁座開口部12bが設けられている。弁座開口部12bは、弁座12のシート部12aにボール15が着座することにより閉塞され、シート部12aからボール15が離反することにより閉塞から解放されて弁座12の内部と外部とを連通させる。 The valve seat 12 is formed in a hollow cylindrical shape, one end of which is open in the axial direction and the other end of which is closed by an end wall 121. Inside the valve seat 12, the above-mentioned ball 15 fixed to the other axial end of the valve body 10 by welding is arranged so as to be movable in the axial direction. An annular seat portion 12a on which the ball 15 is seated is formed on the inner surface of the end wall portion 121 of the valve seat 12. Further, a valve seat opening 12b penetrating the end wall portion 121 is provided at the center of the end wall portion 121 of the valve seat 12. The valve seat opening 12b is closed when the ball 15 is seated on the seat portion 12a of the valve seat 12, and the ball 15 is separated from the seat portion 12a to be released from the blockage so that the inside and the outside of the valve seat 12 are separated from each other. Communicate.
 皿状に形成された噴孔プレート13は、その上流側端面が弁座12の下流側に溶接により固定されている。溶接部50はその溶接個所を示す。弁座12の周縁部と噴孔プレート13の周縁部は、弁ホルダ11の軸方向の他端部の内周部に当接して固定されている。 The dish-shaped nozzle hole plate 13 has its upstream end face fixed to the downstream side of the valve seat 12 by welding. The welded portion 50 indicates the welding point. The peripheral edge portion of the valve seat 12 and the peripheral edge portion of the injection hole plate 13 are fixed by abutting on the inner peripheral portion of the other axial end portion of the valve holder 11.
 図3に示すように、噴孔プレート13には、第1の旋回室18aと、第2の旋回室18bと、第1の旋回室18aと第2の旋回室18bとに接続された燃料通路17と、噴孔プレート13をその板厚方向に貫通する第1の噴孔14aと、第2の噴孔14bと、が設けられている。第1の旋回室18aと第2の旋回室18bと燃料通路17は、噴孔プレート13の上流側端面を窪ませることにより形成されており、夫々の底面が実質的に同一平面をなして連続するように構成されている。噴孔プレート13の構成の詳細については、後述する。 As shown in FIG. 3, the injection hole plate 13 has a first swirl chamber 18a, a second swirl chamber 18b, and a fuel passage connected to the first swirl chamber 18a and the second swirl chamber 18b. 17, a first injection hole 14a that penetrates the injection hole plate 13 in the plate thickness direction, and a second injection hole 14b are provided. The first swirl chamber 18a, the second swirl chamber 18b, and the fuel passage 17 are formed by recessing the upstream end surface of the injection hole plate 13, and the bottom surfaces of the first swirl chamber 18a and the fuel passage 17 are substantially flush with each other. Is configured to. Details of the structure of the injection hole plate 13 will be described later.
 第1の噴孔14aは第1の旋回室18aの中央部に形成され、第2の噴孔14bは第2の旋回室18bの中央部に形成されている。噴孔プレート13の中心13cと、弁座12の弁座開口部12bの中心12cは、燃料噴射装置1の中心軸X上に位置している。コア6の内部に挿入された圧縮バネ16は、一端部がコア6に固定され、他端部が弁体10の軸方向の一端部に当接しており、弁体10を常に弁座12の方向に押圧している。 The first injection hole 14a is formed in the center of the first swirl chamber 18a, and the second injection hole 14b is formed in the center of the second swirl chamber 18b. The center 13c of the injection hole plate 13 and the center 12c of the valve seat opening 12b of the valve seat 12 are located on the central axis X of the fuel injection device 1. The compression spring 16 inserted into the core 6 has one end fixed to the core 6 and the other end abutting on one end of the valve body 10 in the axial direction. Pushing in the direction.
 次に、実施の形態1による燃料噴射装置の動作について説明する。内燃機関の制御装置(図示せず)から燃料噴射装置1の駆動回路(図示せず)に動作信号が送られると、燃料噴射装置1のコイル7に電流が流され、アマチュア8、コア6、ハウジング5、弁ホルダ11で構成される磁気回路に磁束が発生し、アマチュア8が圧縮バネ16の押圧力に抗してコア6側へ吸引されて移動する。アマチュア8がコア6側へ吸引されて移動することで、アマチュア8に固定されている弁体10のボール15は、弁座12のシート部12aから離反し、弁座開口部12bがボール15による閉塞から解放される。 Next, the operation of the fuel injection device according to the first embodiment will be described. When an operation signal is sent from a control device (not shown) of the internal combustion engine to a drive circuit (not shown) of the fuel injection device 1, a current is passed through the coil 7 of the fuel injection device 1, and the armature 8, the core 6, A magnetic flux is generated in the magnetic circuit composed of the housing 5 and the valve holder 11, and the armature 8 is attracted to the core 6 side and moves against the pressing force of the compression spring 16. As the armature 8 is sucked and moved toward the core 6, the ball 15 of the valve body 10 fixed to the armature 8 separates from the seat portion 12a of the valve seat 12, and the valve seat opening 12b is formed by the ball 15. Release from blockage.
 弁座開口部12bがボール15による閉塞から解放されると、弁ホルダ11の内部に満たされている高圧の燃料は、弁体10のボール15の平坦面15aと弁座12の内周面との間の間隙と、弁座12のシート部12aとボール15の外周面との間の間隙と、弁座開口部12bと、を介して噴孔プレート13の燃料通路17の中央部に流入する。燃料通路17の中央部に流入した燃料は、燃料通路17の中央部から分流して第1の旋回室18aと第2の旋回室18bに流入し、第1の旋回室18aから第1の噴孔14aを介して内燃機関の吸気ポート内に噴射され、同時に、第2の旋回室18bから第2の噴孔14bを介して内燃機関の吸気ポート内に噴射される。 When the valve seat opening 12b is released from the blockage by the ball 15, the high-pressure fuel filling the inside of the valve holder 11 is discharged between the flat surface 15a of the ball 15 of the valve body 10 and the inner peripheral surface of the valve seat 12. Between the seat portion 12a of the valve seat 12 and the outer peripheral surface of the ball 15 and the valve seat opening portion 12b, and the gas flows into the central portion of the fuel passage 17 of the injection hole plate 13. .. The fuel that has flowed into the central portion of the fuel passage 17 is branched from the central portion of the fuel passage 17 and flows into the first swirl chamber 18a and the second swirl chamber 18b, and the first swirl chamber 18a ejects the fuel. It is injected into the intake port of the internal combustion engine through the hole 14a, and at the same time, is injected from the second swirl chamber 18b into the intake port of the internal combustion engine through the second injection hole 14b.
 次に、内燃機関の制御装置から燃料噴射装置1の駆動回路に燃料噴射動作を停止させるための停止信号が送られると、コイル7の電流が遮断され、アマチュア8、コア6、ハウジング5、弁ホルダ11で構成される磁気回路の磁束が減少し、アマチュア8は、圧縮バネ16の押圧力により、弁ホルダ11のガイド部11aの表面を摺動して弁座12の方向に移動する。これにより、弁体10のボール15は、弁座12のシート部12aに着座して弁座開口部12bを閉塞する。その結果、第1の噴孔14aと第2の噴孔14bからの燃料の噴射が停止される。 Next, when a stop signal for stopping the fuel injection operation is sent from the control device of the internal combustion engine to the drive circuit of the fuel injection device 1, the current of the coil 7 is cut off and the armature 8, the core 6, the housing 5, the valve The magnetic flux of the magnetic circuit formed by the holder 11 decreases, and the armature 8 moves toward the valve seat 12 by sliding on the surface of the guide portion 11a of the valve holder 11 by the pressing force of the compression spring 16. As a result, the ball 15 of the valve body 10 is seated on the seat portion 12a of the valve seat 12 and closes the valve seat opening 12b. As a result, fuel injection from the first injection hole 14a and the second injection hole 14b is stopped.
 ここで、噴孔プレート13の構成について更に詳しく説明する。図4は、実施の形態1による燃料噴射装置の噴孔プレートの上流側端面の説明図である。図4に示すように、噴孔プレート13の上流側端面には、燃料に旋回力を付与する第1の旋回室18aと第2の旋回室18bとが、弁座開口部12bの径方向外側に形成されている。 Here, the structure of the injection hole plate 13 will be described in more detail. FIG. 4 is an explanatory diagram of an upstream end surface of the injection hole plate of the fuel injection device according to the first embodiment. As shown in FIG. 4, a first swirl chamber 18a and a second swirl chamber 18b for imparting a swirl force to the fuel are provided on the upstream end surface of the injection hole plate 13 on the radially outer side of the valve seat opening 12b. Is formed in.
 そして、第1の旋回室18aの中央部に第1の噴孔14aが設けられ、第2の旋回室18bの中央部に第2の噴孔14bが設けられている。また、噴孔プレート13の上流側端面に、弁座開口部12bと対峙する中央部を有する燃料通路17が設けられている。弁座開口部12bから流出した燃料は、燃料通路17の中央部から燃料通路に流入してから燃料通路17の両端部に接合された第1の旋回室18aと第2の旋回室18bに分流するように構成されている。 The first injection hole 14a is provided at the center of the first swirl chamber 18a, and the second injection hole 14b is provided at the center of the second swirl chamber 18b. A fuel passage 17 having a central portion facing the valve seat opening 12b is provided on the upstream end surface of the injection hole plate 13. The fuel flowing out from the valve seat opening 12b is branched into the first swirl chamber 18a and the second swirl chamber 18b joined to both ends of the fuel passage 17 after flowing into the fuel passage from the central portion of the fuel passage 17. Is configured to.
 また、弁座開口部12bの中心を通る中心軸Xの上流側から噴孔プレート13の上流側端面を視た場合に、弁座開口部12bの中心12cと噴孔プレート13の中心13cとが一致するように配置されている。そして、第1の旋回室18aと、第2の旋回室18bとは、燃料通路17の中心17cに対して点対称となるように配置されている。また、第1の噴孔14aと第2の噴孔14bとは、燃料通路17の中心17cに対して点対称となるように形成されている。 Further, when the upstream end face of the injection hole plate 13 is viewed from the upstream side of the central axis X passing through the center of the valve seat opening 12b, the center 12c of the valve seat opening 12b and the center 13c of the injection hole plate 13 are It is arranged to match. The first swirl chamber 18a and the second swirl chamber 18b are arranged so as to be point-symmetric with respect to the center 17c of the fuel passage 17. The first injection hole 14a and the second injection hole 14b are formed so as to be point-symmetric with respect to the center 17c of the fuel passage 17.
 更に、燃料通路17の中心軸40は、弁座開口部の中心12c及び噴孔プレート13の中心13cに対して所定量だけオフセットするように設けられている。その結果、第1の旋回室18aに設けられた第1の噴孔14aは、燃料通路17の中心軸40に対して弁座開口部12bの中心12cの側に所定量だけオフセットされ、且つ、第2の旋回室18bに設けられた第2の噴孔14bは、燃料通路17の中心軸40に対して弁座開口部12bの中心12cとは反対側に所定量オフセットされている。 Further, the central axis 40 of the fuel passage 17 is provided so as to be offset by a predetermined amount from the center 12c of the valve seat opening and the center 13c of the injection hole plate 13. As a result, the first injection hole 14a provided in the first swirl chamber 18a is offset from the central axis 40 of the fuel passage 17 toward the center 12c of the valve seat opening 12b by a predetermined amount, and The second injection hole 14b provided in the second swirl chamber 18b is offset by a predetermined amount on the side opposite to the center 12c of the valve seat opening 12b with respect to the central axis 40 of the fuel passage 17.
 弁座12の弁座開口部12bから噴孔プレート13の上流側端面に流入した燃料は、弁座開口部12bの中心12cを中心として放射状に燃料通路17の中央部に流入するが、第1の旋回室18aに設けられた第1の噴孔14aは、燃料通路17の中心軸40に対して弁座開口部12bの中心12cの方向にオフセットしているので、燃料通路17を通じて第1の旋回室18aに設けられた第1の噴孔14aに流入する燃料の流れの主流30aは、燃料通路17の中心17cに対して第1の噴孔14aとは反対側の燃料通路17の側壁17wの方向に向かって流れる。このため、第1の噴孔14aに燃料が直入し難くなり、第1の旋回室18aの内部で燃料の強い第1の旋回流30a1が発生し、貫徹力が小さく十分に微粒化された燃料噴霧が形成され、その燃料噴霧が第1の噴孔14aから内燃機関の吸気ポート内に噴射される。 The fuel flowing from the valve seat opening 12b of the valve seat 12 into the upstream end surface of the injection hole plate 13 radially flows into the center of the fuel passage 17 around the center 12c of the valve seat opening 12b. Since the first injection hole 14a provided in the swirl chamber 18a of the valve is offset with respect to the central axis 40 of the fuel passage 17 in the direction of the center 12c of the valve seat opening 12b, the first injection hole 14a passes through the fuel passage 17 through the first injection hole 14a. The main flow 30a of the fuel flowing into the first injection hole 14a provided in the swirl chamber 18a is a side wall 17w of the fuel passage 17 on the side opposite to the first injection hole 14a with respect to the center 17c of the fuel passage 17. Flow toward. For this reason, it becomes difficult for the fuel to directly enter the first injection holes 14a, the first swirling flow 30a1 of strong fuel is generated inside the first swirling chamber 18a, and the penetrating force is small and the fuel is sufficiently atomized. A spray is formed, and the fuel spray is injected from the first injection hole 14a into the intake port of the internal combustion engine.
 一方、第2の旋回室18bに設けられた第2の噴孔14bは、燃料通路17の中心軸40に対して弁座開口部12bの中心12cとは反対側にオフセットされているので、燃料通路17を通じて第2の旋回室18bに設けられた第2の噴孔14bの方向に流入する燃料の流れの主流30bは、第2の噴孔14bの方向に向かって流れ、第2の噴孔14bに燃料が直接的に流入し易くなる。従って、前述の第1の旋回流30a1より弱い第2の旋回流30b1が第2の旋回室18bの内部に発生することとなり、貫徹力が大きな燃料噴霧が形成され、この燃料噴霧が第2の噴孔14bから内燃機関の吸気ポート内に噴射される。 On the other hand, the second injection hole 14b provided in the second swirl chamber 18b is offset from the center axis 40 of the fuel passage 17 to the side opposite to the center 12c of the valve seat opening 12b. The main flow 30b of the flow of the fuel flowing in the direction of the second injection hole 14b provided in the second swirl chamber 18b through the passage 17 flows toward the second injection hole 14b, It becomes easy for fuel to directly flow into 14b. Therefore, the second swirl flow 30b1 weaker than the above-described first swirl flow 30a1 is generated inside the second swirl chamber 18b, and a fuel spray having a large penetration force is formed. The fuel is injected from the injection hole 14b into the intake port of the internal combustion engine.
 このように、弁座開口部から旋回室へ流れ込んだ燃料は、旋回流を生じながら噴孔へ流れ込み、噴孔内部に於いても旋回流れが保たれることで、噴孔内壁に沿った薄い液膜が形成され、薄い液膜を噴孔から中空円錐状に噴射することで燃料の微粒化が促進される。 In this way, the fuel flowing into the swirl chamber from the valve seat opening flows into the injection hole while generating a swirl flow, and the swirl flow is maintained even inside the injection hole, so that the fuel along the inner wall of the injection hole is thin. A liquid film is formed, and atomization of the fuel is promoted by injecting a thin liquid film from the injection hole into a hollow cone shape.
 実施の形態1による燃料噴射装置は、1つの噴孔プレートに於いて、弁座開口部から燃料通路を通じて旋回室内に設けられた噴孔に流入する燃料流れの主流の方向を噴孔に向かう方向と噴孔から離れる方向の2方向に設定が可能となり、旋回室内に弱い旋回流れと強い旋回流れの2種類を発生させることができるので、貫徹力の大きい燃料噴霧と貫徹力が小さく微粒化が良い燃料噴霧の2種類の燃料噴霧を形成することが可能となる。従って、吸気ポート内に吸気流動があるときに燃料噴射を行う場合でも、吸気流によって燃料噴霧が流され難くなり、吸気ポート壁への燃料噴霧付着を低減することが可能となる。従って、燃料噴霧の燃焼室内への直入率を向上することができ、燃焼室内の気化冷却効果を高め、耐ノック性を向上し圧縮比を増加することが可能となり、燃費を改善できる。 In the fuel injection device according to the first embodiment, in one nozzle hole plate, the main flow direction of the fuel flow flowing from the valve seat opening through the fuel passage into the nozzle hole provided in the swirl chamber is directed toward the nozzle hole. It is possible to set two directions, a weak swirling flow and a strong swirling flow in the swirling chamber, and it is possible to set the fuel spray with a large penetration force and the atomization force to a small atomization. It is possible to form two types of fuel sprays that are good fuel sprays. Therefore, even when the fuel is injected when the intake flow is present in the intake port, it becomes difficult for the fuel spray to flow due to the intake flow, and it is possible to reduce the adhesion of the fuel spray to the intake port wall. Therefore, the direct injection rate of the fuel spray into the combustion chamber can be improved, the vaporization cooling effect in the combustion chamber can be enhanced, the knock resistance can be improved, and the compression ratio can be increased, and the fuel consumption can be improved.
 これに対して、前述の特許文献1に開示された従来の燃料噴射装置の場合は、弁座開口部の中心と噴孔プレートの上流側端面に設けられ放射状に広がる複数の燃料通路の中心が一致しており、弁座開口部から各々の燃料通路に流入して噴孔へ向かう燃料の流れの主流の方向が燃料通路の中心軸に対して実質的に平行となり、夫々の旋回室で同じような強さの燃料の旋回流が発生し、各噴孔から同様の貫徹力の燃料噴霧が噴射される。従って、本願の実施の形態1による燃料噴射装置による前述のような効果を得ることができない。 On the other hand, in the case of the conventional fuel injection device disclosed in the above-mentioned Patent Document 1, the center of the valve seat opening and the center of a plurality of radially extending fuel passages provided on the upstream end surface of the injection hole plate are The main flow direction of the fuel flowing from the valve seat opening into each fuel passage toward the injection hole is substantially parallel to the central axis of the fuel passage, and is the same in each swirling chamber. A swirling flow of fuel having such strength is generated, and fuel spray having the same penetrating force is injected from each injection hole. Therefore, the above-described effects of the fuel injection device according to the first embodiment of the present application cannot be obtained.
 また、一般的な燃料の旋回流を利用した燃料の微粒化方式の燃料噴射装置に於いて、1つの噴孔プレートにより貫徹力の異なる燃料噴霧を形成させる場合、その貫徹力の異なる燃料噴霧の各々に対応した異なる形状の噴孔、旋回室、燃料通路等を1つの噴孔プレートに形成する必要があり、燃料の流路構造が複雑化し加工性が悪化するのに対して、本願の実施の形態1による燃料噴射装置によれば、燃料噴霧の異なる貫徹力に対応する噴孔、旋回室、燃料通路は同じ形状であり、弁座開口部の中心に対して、燃料通路の中心軸をオフセットするだけでよいので、燃料の流路構造を簡易化でき、加工性を改善することができる。 Further, in a fuel atomizing system fuel injection system that uses a general swirling flow of fuel, when fuel sprays having different penetration forces are formed by one injection hole plate, the fuel sprays having different penetration forces are used. Different injection holes, swirl chambers, fuel passages, etc. corresponding to each need to be formed in one injection hole plate, which complicates the fuel flow path structure and deteriorates workability. According to the fuel injection device of the first aspect, the injection hole, the swirl chamber, and the fuel passage corresponding to different penetrating forces of the fuel spray have the same shape, and the central axis of the fuel passage is arranged with respect to the center of the valve seat opening. Since only the offset is required, the fuel flow passage structure can be simplified and the workability can be improved.
実施の形態2.
 次に、本願の実施の形態2による燃料噴射装置について説明する。実施の形態1による燃料噴射装置では、噴孔プレートの上流側端面に2つの噴孔を設けていたが、実施の形態2による燃料噴射装置では、噴孔プレートの上流側端面に4つの噴孔を設けたものである。図5は、実施の形態2による燃料噴射装置の噴孔プレートの上流側端面の説明図である。
Embodiment 2.
Next, a fuel injection device according to a second embodiment of the present application will be described. In the fuel injection device according to the first embodiment, two injection holes are provided on the upstream end surface of the injection hole plate, but in the fuel injection device according to the second embodiment, four injection holes are provided on the upstream end surface of the injection hole plate. Is provided. FIG. 5 is an explanatory diagram of the upstream end surface of the injection hole plate of the fuel injection device according to the second embodiment.
 図5に於いて、噴孔プレート13の上流側端面に、第1の燃料通路17と、第2の燃料通路171と、が夫々に共通する中心17cで交叉し、互いに直交するように設けられている。第1の燃料通路17の一方の端部には第1の旋回室18aが接続され、第1の燃料通路17の他方の端部には第2の旋回室18bが接続されている。第2の燃料通路171の一方の端部には第3の旋回室18cが接続され、第2の燃料通路171の他方の端部には第4の旋回室18dが接続されている。第1の旋回室18aと、第2の旋回室18bと、第3の旋回室18cと、第4の旋回室18dは、夫々、弁座開口部12bの径方向外側に形成されている。 In FIG. 5, a first fuel passage 17 and a second fuel passage 171 are provided on the upstream end surface of the injection hole plate 13 so as to intersect with each other at a common center 17c and to be orthogonal to each other. ing. The first swirl chamber 18a is connected to one end of the first fuel passage 17, and the second swirl chamber 18b is connected to the other end of the first fuel passage 17. The third swirl chamber 18c is connected to one end of the second fuel passage 171 and the fourth swirl chamber 18d is connected to the other end of the second fuel passage 171. The first swirl chamber 18a, the second swirl chamber 18b, the third swirl chamber 18c, and the fourth swirl chamber 18d are respectively formed outside the valve seat opening 12b in the radial direction.
 第1の燃料通路17と、第2の燃料通路171と、第1の旋回室18aと、第2の旋回室18bと、第3の旋回室18cと、第4の旋回室18dは、前述の噴孔プレート13の上流側端面を窪ませて形成されており、夫々の底面が実質的に同一平面をなして連続するように形成されている。 The first fuel passage 17, the second fuel passage 171, the first swirl chamber 18a, the second swirl chamber 18b, the third swirl chamber 18c, and the fourth swirl chamber 18d are the same as those described above. The injection hole plate 13 is formed by denting the upstream end surface, and the bottom surfaces of the injection hole plate 13 are formed to be substantially continuous with each other.
 第1の旋回室18aの中央部には、噴孔プレート13を板厚方向に貫通する第1の噴孔14aが開口し、第2の旋回室18bの中央部には、噴孔プレート13を板厚方向に貫通する第2の噴孔14bが開口し、第3の旋回室18cの中央部には、噴孔プレート13を板厚方向に貫通する第3の噴孔14cが開口し、第4の旋回室18dの中央部には、噴孔プレート13を板厚方向に貫通する第4の噴孔14dが開口している。 A first injection hole 14a penetrating the injection hole plate 13 in the plate thickness direction is opened in the center of the first swirl chamber 18a, and the injection hole plate 13 is opened in the center of the second swirl chamber 18b. The second injection hole 14b penetrating in the plate thickness direction is opened, and the third injection hole 14c penetrating the injection hole plate 13 in the plate thickness direction is opened at the center of the third swirl chamber 18c. A fourth injection hole 14d that penetrates the injection hole plate 13 in the plate thickness direction is opened at the center of the fourth swirl chamber 18d.
 また、弁座開口部12bの中心12cを通る中心軸Xの上流側から噴孔プレート13の上流側端面を視た場合、弁座開口部12bの中心12cと噴孔プレート13の中心13cが一致している。そして、第1の旋回室18aと、第2の旋回室18bは、第1の燃料通路17と第2の燃料通路171の共通の中心17cに対して点対称となるように配置され、第1の噴孔14aと第2の噴孔14bは、第1の燃料通路17と第2の燃料通路171の共通の中心17cに対して点対称となるように配置されている。また、第3の旋回室18cと、第4の旋回室18dは、第1の燃料通路17と第2の燃料通路171の共通の中心17cに対して点対称となるように配置され、第3の噴孔14cと第4の噴孔14dは、第1の燃料通路17と第2の燃料通路171の共通の中心17cに対して点対称となるように配置されている。 When the upstream end face of the injection hole plate 13 is viewed from the upstream side of the central axis X passing through the center 12c of the valve seat opening 12b, the center 12c of the valve seat opening 12b and the center 13c of the injection hole plate 13 are aligned. I am doing it. The first swirl chamber 18a and the second swirl chamber 18b are arranged so as to be point-symmetric with respect to the common center 17c of the first fuel passage 17 and the second fuel passage 171. The injection holes 14a and the second injection holes 14b are arranged so as to be point-symmetric with respect to the common center 17c of the first fuel passage 17 and the second fuel passage 171. The third swirl chamber 18c and the fourth swirl chamber 18d are arranged so as to be point-symmetric with respect to the common center 17c of the first fuel passage 17 and the second fuel passage 171. The injection hole 14c and the fourth injection hole 14d are arranged so as to be point-symmetric with respect to the common center 17c of the first fuel passage 17 and the second fuel passage 171.
 更に、第1の燃料通路17の中心軸40と第2の燃料通路171の中心軸401は、弁座開口部12bの中心12cに対して所定量だけオフセットして設けられている。また、第1の旋回室18aに設けられた第1の噴孔14aと、第3の旋回室18cに設けられた第3の噴孔14cは、各々、第1の燃料通路17の中心軸40と第2の燃料通路171の中心軸401に対して、弁座開口部12bの中心12cの方向に所定量だけオフセットするように設けられ、且つ、第2の旋回室18bに設けられた第2の噴孔14bと、第4の旋回室18dに設けられた第4の噴孔14dは、各々、第1の燃料通路17の中心軸40と第2の燃料通路171の中心軸401に対して、弁座開口部12bの中心12cとは反対側の方向に所定量だけオフセットするように設けられている。 Further, the central axis 40 of the first fuel passage 17 and the central axis 401 of the second fuel passage 171 are provided offset from the center 12c of the valve seat opening 12b by a predetermined amount. Further, the first injection hole 14a provided in the first swirl chamber 18a and the third injection hole 14c provided in the third swirl chamber 18c respectively have the central axis 40 of the first fuel passage 17. And a second shaft provided in the second swirl chamber 18b so as to be offset from the central axis 401 of the second fuel passage 171 by a predetermined amount in the direction of the center 12c of the valve seat opening 12b. Of the injection hole 14b and the fourth injection hole 14d provided in the fourth swirl chamber 18d with respect to the central axis 40 of the first fuel passage 17 and the central axis 401 of the second fuel passage 171 respectively. The valve seat opening 12b is provided so as to be offset by a predetermined amount in the direction opposite to the center 12c.
 弁座開口部12bから噴孔プレート13の上流側端面に流入した燃料は、弁座開口部12bの中心12cを中心として放射状に第1の燃料通路17と第2の燃料通路171との中央部に流入するが、第1の旋回室18aに設けられた第1の噴孔14aは、第1の燃料通路17の中心軸40に対して弁座開口部12bの中心12cの方向にオフセットしているので、第1の燃料通路17を通じて第1の旋回室18aに設けられた第1の噴孔14aに流入する燃料の流れの主流30aは、第1の燃料通路17の中心軸40に対して第1の噴孔14aとは反対側の第1の燃料通路17の側壁17wの方向に向かって流れる。このため、第1の噴孔14aに燃料が直入し難くなり、第1の旋回室18aの内部で燃料の強い第1の旋回流30a1が発生し、貫徹力が小さく十分に微粒化された燃料噴霧が形成されて第1の噴孔14aから内燃機関の吸気ポート内に噴射される。 The fuel that has flowed into the upstream end surface of the injection hole plate 13 from the valve seat opening 12b is radially centered on the center 12c of the valve seat opening 12b and is located at the central portion between the first fuel passage 17 and the second fuel passage 171. However, the first injection hole 14a provided in the first swirl chamber 18a is offset with respect to the central axis 40 of the first fuel passage 17 in the direction of the center 12c of the valve seat opening 12b. Therefore, the main flow 30a of the flow of fuel flowing into the first injection hole 14a provided in the first swirl chamber 18a through the first fuel passage 17 is the main flow 30a with respect to the central axis 40 of the first fuel passage 17. It flows toward the side wall 17w of the first fuel passage 17 opposite to the first injection hole 14a. For this reason, it becomes difficult for the fuel to directly enter the first injection holes 14a, the first swirling flow 30a1 of strong fuel is generated inside the first swirling chamber 18a, and the penetrating force is small and the fuel is sufficiently atomized. The spray is formed and injected from the first injection hole 14a into the intake port of the internal combustion engine.
 また、同様に、第3の旋回室18cに設けられた第3の噴孔14cは、第2の燃料通路171の中心軸401に対して弁座開口部12bの中心12cの方向にオフセットしているので、第2の燃料通路171を通じて第3の旋回室18cに設けられた第3の噴孔14cに流入する燃料の流れの主流30cは、第2の燃料通路171の中心軸401に対して第3の噴孔14cとは反対側の第2の燃料通路171の側壁171wの方向に向かって流れる。このため、第3の噴孔14cに燃料が直入し難くなり、第3の旋回室18cの内部で燃料の強い第3の旋回流30c1が発生し、貫徹力が小さく十分に微粒化された燃料噴霧が形成されて第3の噴孔14cから内燃機関の吸気ポート内に噴射される。 Similarly, the third injection hole 14c provided in the third swirl chamber 18c is offset in the direction of the center 12c of the valve seat opening 12b with respect to the central axis 401 of the second fuel passage 171. Therefore, the main flow 30c of the fuel flowing into the third injection hole 14c provided in the third swirl chamber 18c through the second fuel passage 171 is less likely to flow with respect to the central axis 401 of the second fuel passage 171. The current flows toward the side wall 171w of the second fuel passage 171 opposite to the third injection hole 14c. For this reason, it becomes difficult for the fuel to directly enter the third injection hole 14c, a strong third fuel swirl flow 30c1 is generated inside the third swirl chamber 18c, and the penetration force is small and the fuel is sufficiently atomized. The spray is formed and injected from the third injection hole 14c into the intake port of the internal combustion engine.
 一方、第2の旋回室18bに設けられた第2の噴孔14bは、第1の燃料通路17の中心軸40に対して弁座開口部12bの中心12cとは反対側の方向にオフセットしているので、第1の燃料通路17を通じて第2の旋回室18bに設けられた第2の噴孔14bの方向に流入する燃料の流れの主流30bは、第2の噴孔14bの方向に向かって流れ、第2の噴孔14bに燃料が直接的に流入し易くなる。従って、前述の第1の旋回流30a1より弱い第2の旋回流30b1が第2の旋回室18bの内部に発生することとなり、貫徹力が大きな燃料噴霧が形成されて第2の噴孔14bから内燃機関の吸気ポート内に噴射される。 On the other hand, the second injection hole 14b provided in the second swirl chamber 18b is offset in the direction opposite to the center 12c of the valve seat opening 12b with respect to the central axis 40 of the first fuel passage 17. Therefore, the main flow 30b of the fuel flowing in the direction of the second injection hole 14b provided in the second swirl chamber 18b through the first fuel passage 17 is directed toward the second injection hole 14b. The fuel easily flows directly into the second injection hole 14b. Therefore, the second swirl flow 30b1 weaker than the above-described first swirl flow 30a1 is generated inside the second swirl chamber 18b, and fuel spray having a large penetrating force is formed and the second swirl hole 14b is formed. It is injected into the intake port of the internal combustion engine.
 同様に、第4の旋回室18dに設けられた第4の噴孔14dは、第2の燃料通路171の中心軸401に対して弁座開口部12bの中心12cとは反対の方向にオフセットしているので、第2の燃料通路171を通じて第4の旋回室18dに設けられた第4の噴孔14dの方向に流入する燃料の流れの主流30dは、第4の噴孔14dの方向に向かって流れ、第4の噴孔14dに燃料が直接的に流入し易くなる。従って、前述の第3の旋回流30c1より弱い第4の旋回流30d1が第4の旋回室18dの内部に発生することとなり、貫徹力が大きな燃料噴霧が形成されて第4の噴孔14dから内燃機関の吸気ポート内に噴射される。 Similarly, the fourth injection hole 14d provided in the fourth swirl chamber 18d is offset with respect to the central axis 401 of the second fuel passage 171 in the direction opposite to the center 12c of the valve seat opening 12b. Therefore, the main flow 30d of the fuel flow flowing in the direction of the fourth injection hole 14d provided in the fourth swirl chamber 18d through the second fuel passage 171 is directed toward the fourth injection hole 14d. The fuel easily flows directly into the fourth injection hole 14d. Therefore, the fourth swirl flow 30d1 weaker than the above-described third swirl flow 30c1 is generated inside the fourth swirl chamber 18d, and fuel spray having a large penetrating force is formed to cause the fourth swirl flow 14d to flow from the fourth injection hole 14d. It is injected into the intake port of the internal combustion engine.
 以上述べたように、実施の形態2による燃料噴射装置によれば、噴孔の数が4つ設けられており、1つの噴孔プレートに、貫徹力の異なる2種類の燃料噴霧、即ち、貫徹力の大きい燃料噴霧と、貫徹力が小さく良好に微粒化された燃料噴霧と、の2種類の燃料噴霧を形成することが可能となり、実施の形態1の燃料噴射装置と同様の効果を得ることができる。 As described above, according to the fuel injection device of the second embodiment, the number of the injection holes is four, and one injection hole plate has two types of fuel sprays having different penetrating forces, that is, penetration holes. It is possible to form two types of fuel sprays, that is, a fuel spray having a large force and a fuel spray having a small penetration force and well atomized, and the same effect as that of the fuel injection device of the first embodiment can be obtained. You can
 また、貫徹力が小さく良好に微粒化された燃料噴霧を形成する第1の噴孔14aと第3の噴孔14cは互いに近接して一塊に配置されるとともに、貫徹力の大きい燃料噴霧を形成する第2の噴孔14bと第4の噴孔14dは互いに近接して一塊に配置され、そして、第1の噴孔14aと第3の噴孔14cと、第2の噴孔14bと第4の噴孔14dとは、第1の燃料通路17と第2の燃料通路171の共通の中心17cに対して線対称に分離して配置されているので、各々の噴孔から噴射される燃料噴霧が相互に干渉し難くなり、微粒化の悪化を抑制することができる。 Further, the first injection hole 14a and the third injection hole 14c, which form the fuel spray that is small in penetrating power and is well atomized, are arranged in close proximity to each other in a lump, and the fuel spray that forms a large penetrating power is formed. The second injection hole 14b and the fourth injection hole 14d are arranged in a block in close proximity to each other, and the first injection hole 14a, the third injection hole 14c, the second injection hole 14b and the fourth injection hole 14b No. 14 d of the fuel spray nozzles are arranged in line symmetry with respect to the common center 17 c of the first fuel passage 17 and the second fuel passage 171. Are less likely to interfere with each other, and deterioration of atomization can be suppressed.
 尚、以上述べた実施の形態2による燃料噴射装置では、噴孔数が4つの場合を示したが、噴孔数を更に増やしてもよく、貫徹力の異なる複数の燃料噴霧を形成することで前述と同様の効果を得ることができ、多噴孔化による噴射流量の拡大が可能となり、燃料噴射装置に対する要求流量が大流量の場合でも対応可能となる。 In the fuel injection device according to the second embodiment described above, the number of injection holes is four, but the number of injection holes may be further increased to form a plurality of fuel sprays having different penetrating forces. The same effect as described above can be obtained, the injection flow rate can be increased by increasing the number of injection holes, and it is possible to cope with the case where the flow rate required for the fuel injection device is large.
実施の形態3.
 次に、本願の実施の形態3による燃料噴射装置について説明する。前述の実施の形態1による燃料噴射装置では、燃料通路の中心が噴孔プレートの中心と一致せず、燃料通路の中心が噴孔プレートの中心に対してオフセットして設けられていたが、実施の形態3による燃料噴射装置では、弁座開口部の中心を通る中心軸の上流側から噴孔プレートの上流側端面を視た場合に、噴孔プレートの中心と燃料通路の中心を一致させ、弁座開口部の中心に対して噴孔プレートの中心及び燃料通路の中心をオフセットさせるようにしたものである。その他の構成は、実施の形態1による燃料噴射装置と同様である。
Embodiment 3.
Next, a fuel injection device according to a third embodiment of the present application will be described. In the fuel injection device according to the first embodiment described above, the center of the fuel passage does not coincide with the center of the injection hole plate, and the center of the fuel passage is provided offset from the center of the injection hole plate. In the fuel injection device according to the third aspect, when the upstream end face of the nozzle hole plate is viewed from the upstream side of the central axis passing through the center of the valve seat opening, the center of the nozzle hole plate and the center of the fuel passage are aligned, The center of the injection hole plate and the center of the fuel passage are offset from the center of the valve seat opening. Other configurations are similar to those of the fuel injection device according to the first embodiment.
 図6は、実施の形態3による燃料噴射装置の一部分の縦断面図、図7は、図6のB-B線に沿う断面を矢印方向から視た横断面図、図8は、実施の形態3による燃料噴射装置の噴孔プレートの上流側端面の説明図である。図6、図7、及び図8に於いて、燃料通路17の中心17cは、噴孔プレート13の中心13cと一致しており、噴孔プレート13に設けられた第1の噴孔14a、第2の噴孔14b、第1の旋回室18a、第2の旋回室18b、及び燃料通路17が、噴孔プレートの中心13c及び燃料通路の中心17cに対して点対称に配置されている。噴孔プレート13は、フラットな円板形状に形成され、また、噴孔プレート13の外径は、弁座12の外径よりも小さく形成されている。 6 is a vertical cross-sectional view of a portion of the fuel injection device according to the third embodiment, FIG. 7 is a cross-sectional view of a cross-section taken along the line BB of FIG. 6 as seen from the direction of the arrow, and FIG. 3 is an explanatory view of an upstream end surface of an injection hole plate of the fuel injection device according to FIG. 6, FIG. 7, and FIG. 8, the center 17c of the fuel passage 17 coincides with the center 13c of the injection hole plate 13, and the first injection hole 14a provided in the injection hole plate 13 The two injection holes 14b, the first swirl chamber 18a, the second swirl chamber 18b, and the fuel passage 17 are arranged point-symmetrically with respect to the center 13c of the injection hole plate and the center 17c of the fuel passage. The injection hole plate 13 is formed in a flat disc shape, and the outer diameter of the injection hole plate 13 is smaller than the outer diameter of the valve seat 12.
 前述の実施の形態1では噴孔プレート13を皿状に形成していたが、実施の形態3では噴孔プレート13はフラットな円板状に形成されている、従って、噴孔プレート13の製造若しくは加工が容易となるメリットがある。また、実施の形態3では、弁座12の外径に対して、噴孔プレート13の外径が小さく形成されている。従って、弁座12と噴孔プレート13とが厳密に同心に固定されていなくても、弁ホルダ11の内壁に噴孔プレート13の外縁部が当接することがなく、弁座12と弁ホルダ11との組付けを容易にすることができる。 In the first embodiment described above, the injection hole plate 13 was formed in a dish shape, but in the third embodiment, the injection hole plate 13 is formed in a flat disk shape. Therefore, the manufacture of the injection hole plate 13 Alternatively, there is an advantage that processing becomes easy. Further, in the third embodiment, the outer diameter of the injection hole plate 13 is formed smaller than the outer diameter of the valve seat 12. Therefore, even if the valve seat 12 and the injection hole plate 13 are not fixed strictly concentrically, the outer edge of the injection hole plate 13 does not contact the inner wall of the valve holder 11, and the valve seat 12 and the valve holder 11 Can be easily assembled.
 また、実施の形態3によれば、弁座12の中心軸X上に設けられた弁座開口部12bの中心12cに対して、噴孔プレート13の中心13c及び燃料通路17の中心17cが、燃料通路17の中心軸40に直交する方向に所定量オフセットして配置されている。 Further, according to the third embodiment, the center 13c of the injection hole plate 13 and the center 17c of the fuel passage 17 are different from the center 12c of the valve seat opening 12b provided on the central axis X of the valve seat 12. The fuel passage 17 is arranged with a predetermined offset in the direction orthogonal to the central axis 40.
 従って、弁座12の弁座開口部12bから噴孔プレート13の上流側端面に流入した燃料は、弁座開口部12bの中心12cを中心として放射状に燃料通路17の中央部に流入するが、第1の旋回室18aに設けられた第1の噴孔14aは、燃料通路17の中心軸40に対して弁座開口部12bの中心12cの方向にオフセットしているので、燃料通路17を通じて第1の旋回室18aに設けられた第1の噴孔14aに流入する燃料の流れの主流30aは、燃料通路17の中心軸40に対して第1の噴孔14aとは反対側の燃料通路17の側壁17wの方向に向かって流れる。このため、第1の噴孔14aに燃料が直入し難くなり、第1の旋回室18aの内部で燃料の強い第1の旋回流30a1が発生し、貫徹力が小さく十分に微粒化された燃料噴霧が形成されて第1の噴孔14aから内燃機関の吸気ポート内に噴射される。 Therefore, the fuel flowing from the valve seat opening 12b of the valve seat 12 into the upstream end surface of the injection hole plate 13 radially flows into the central portion of the fuel passage 17 about the center 12c of the valve seat opening 12b. The first injection hole 14a provided in the first swirl chamber 18a is offset in the direction of the center 12c of the valve seat opening 12b with respect to the central axis 40 of the fuel passage 17, so that the first injection hole 14a passes through the fuel passage 17 through the first injection hole 14a. The main flow 30a of the fuel flowing into the first injection hole 14a provided in the first swirl chamber 18a is the main flow path 30a of the fuel passage 17 on the side opposite to the first injection hole 14a with respect to the central axis 40 of the fuel passage 17. Flows toward the side wall 17w of the. For this reason, it becomes difficult for the fuel to directly enter the first injection holes 14a, the first swirling flow 30a1 of strong fuel is generated inside the first swirling chamber 18a, and the penetrating force is small and the fuel is sufficiently atomized. The spray is formed and injected from the first injection hole 14a into the intake port of the internal combustion engine.
 一方、第2の旋回室18bに設けられた第2の噴孔14bは、燃料通路17の中心軸40に対して弁座開口部12bの中心12cとは反対側の方向にオフセットしているので、燃料通路17を通じて第2の旋回室18bに設けられた第2の噴孔14bの方向に流入する燃料の流れの主流30bは、第2の噴孔14bの方向に向かって流れ、第2の噴孔14bに燃料が直接的に流入し易くなる。従って、前述の第1の旋回流30a1より弱い第2の旋回流30b1が第2の旋回室18bの内部に発生することとなり、貫徹力が大きな燃料噴霧が形成されて第2の噴孔14bから内燃機関の吸気ポート内に噴射される。 On the other hand, the second injection hole 14b provided in the second swirl chamber 18b is offset in the direction opposite to the center 12c of the valve seat opening 12b with respect to the central axis 40 of the fuel passage 17. The main flow 30b of the fuel flowing through the fuel passage 17 in the direction of the second injection hole 14b provided in the second swirl chamber 18b flows in the direction of the second injection hole 14b, It becomes easier for fuel to directly flow into the injection holes 14b. Therefore, the second swirl flow 30b1 weaker than the above-described first swirl flow 30a1 is generated inside the second swirl chamber 18b, and fuel spray having a large penetrating force is formed and the second swirl hole 14b is formed. It is injected into the intake port of the internal combustion engine.
 このように、実施の形態3による燃料噴射装置によれば、弁座開口部12bから第1の噴孔14a、及び第2の噴孔14bに流れ込む燃料流を、実施の形態1の場合と同様に、噴孔に向かう方向の主流30bと噴孔から離れる方向の主流30aの2方向に設定することが可能となり、貫徹力の大きい燃料噴霧、及び貫徹力が小さく十分に微粒化された燃料噴霧の2種類の燃料噴霧を形成することが可能となり、実施の形態1と同様の効果を得ることができる。 As described above, according to the fuel injection device of the third embodiment, the fuel flow flowing from the valve seat opening 12b into the first injection hole 14a and the second injection hole 14b is the same as in the case of the first embodiment. In addition, it is possible to set the main flow 30b in the direction toward the injection hole and the main flow 30a in the direction away from the injection hole, and the fuel spray having a large penetration force and the fuel spray having a small penetration force and sufficiently atomized. It is possible to form the two types of fuel spray described above, and it is possible to obtain the same effect as that of the first embodiment.
 更に、実施の形態3による燃料噴射装置は、噴孔プレート13の上流側端面に形成される燃料通路17、第1の旋回室18a、第2の旋回室18bによる流路の形状を変更することなく、弁座12の中心と噴孔プレート13中心をずらして相互に固定することにより、弁座開口部の中心12cに対する燃料通路17の中心軸40のオフセット量を調整するだけで、燃料が弁座開口部12bから第1の噴孔14a、及び第2の噴孔14bに向かう燃料流の方向を調整することができるので、燃料噴霧を様々な内燃機関に対応した最適な貫徹力の大きさに調整することができる。従って、一般的な旋回流を利用した微粒化方式の燃料噴射装置に於いて、燃料噴霧の貫徹力を調整する際に、噴孔プレートの上流側端面に形成される燃料に旋回流を付与する噴孔、旋回室、燃料通路等の流路形状を変更して調整する場合よりも、その調整に要する設計工数を削減でき、更に噴孔プレートの金型変更などの費用が不要となりコストを削減することができる。 Furthermore, in the fuel injection device according to the third embodiment, the shape of the flow passage formed by the fuel passage 17, the first swirl chamber 18a, and the second swirl chamber 18b formed on the upstream end surface of the injection hole plate 13 is changed. Instead, the center of the valve seat 12 and the center of the injection hole plate 13 are offset from each other and fixed to each other, so that the amount of fuel can be adjusted by simply adjusting the offset amount of the central axis 40 of the fuel passage 17 with respect to the center 12c of the valve seat opening. Since the direction of the fuel flow from the seat opening 12b to the first injection hole 14a and the second injection hole 14b can be adjusted, the amount of the optimum penetration force of the fuel spray corresponding to various internal combustion engines can be adjusted. Can be adjusted to. Therefore, in the fuel injection device of the atomization system using the general swirl flow, when the penetrating force of the fuel spray is adjusted, the swirl flow is imparted to the fuel formed on the upstream end surface of the injection hole plate. The design man-hour required for the adjustment can be reduced compared with the case where the shape of the flow path such as the injection hole, swirl chamber, fuel passage, etc. is changed, and the cost for changing the injection hole plate die is not necessary and the cost is reduced. can do.
実施の形態4.
 次に、本願の実施の形態4による燃料噴射装置について説明する。図9は、実施の形態4による燃料噴射装置を内燃機関の吸気ポートに設置した場合の説明図、図10は、図9のC-C線に沿う断面を矢印方向から視た実施の形態3による燃料噴射装置の噴孔プレートの上流側端面を示す説明図である。図9に於いて、内燃機関の燃焼室60に連通する吸気ポート70の天井部70bに、前述の実施の形態1から実施の形態3の何れかに記載の燃料噴射装置1が搭載され、内燃機関の吸気弁80に向けて燃料噴射装置1から燃料が噴射される。
Fourth Embodiment
Next, a fuel injection device according to Embodiment 4 of the present application will be described. FIG. 9 is an explanatory view of a case where the fuel injection device according to the fourth embodiment is installed in an intake port of an internal combustion engine, and FIG. 10 is a third embodiment in which a cross section taken along the line CC of FIG. 9 is viewed from an arrow direction. FIG. 4 is an explanatory view showing an upstream end face of an injection hole plate of the fuel injection device. In FIG. 9, the fuel injection device 1 according to any one of the first to third embodiments described above is mounted on the ceiling portion 70b of the intake port 70 that communicates with the combustion chamber 60 of the internal combustion engine. Fuel is injected from the fuel injection device 1 toward the intake valve 80 of the engine.
 内燃機関の吸気行程で燃料を噴射する吸気行程噴射の場合には、吸気ポート70の内部に燃料の流通方向の上流側から下流側に向けて吸気流90が発生するが、前述の従来の燃料噴射装置では燃料噴霧の貫徹力が小さいため、吸気流90によって燃料噴霧が吸気ポート70の天井部70bに流されて天井部70bの内壁面に付着し、燃焼室60内への燃料の流入量が少なくなるため、燃焼室60内の気化冷却効果が不十分となり、耐ノック性が向上せず、圧縮比を増加できないので十分な燃費改善効果が十分に得られない。 In the case of the intake stroke injection in which the fuel is injected in the intake stroke of the internal combustion engine, the intake flow 90 is generated in the intake port 70 from the upstream side to the downstream side in the fuel flow direction. Since the penetrating force of the fuel spray is small in the injector, the fuel spray is caused to flow to the ceiling part 70b of the intake port 70 by the intake flow 90 and adheres to the inner wall surface of the ceiling part 70b, so that the amount of fuel flowing into the combustion chamber 60 is increased. Therefore, the vaporization cooling effect in the combustion chamber 60 becomes insufficient, the knock resistance does not improve, and the compression ratio cannot be increased, so that a sufficient fuel efficiency improving effect cannot be obtained.
 実施の形態4による燃料噴射装置は、図10に示すように、燃料通路17の中心軸40に対して弁座開口部12bの中心12cの方向にオフセットしている第1の噴孔14aは、燃料通路17の中心17cに対して吸気ポートの底部70aに近い側Y1となるように配置され、燃料通路17の中心軸40に対して弁座開口部12bの中心12cの反対方向にオフセットしている第2の噴孔14bは、燃料通路17の中心17cに対して吸気ポートの天井部70bに近い側Y2に配置される。従って、貫徹力が小さく十分に微粒化された第1の燃料噴霧F1が第1の噴孔14aから吸気ポート70の底部70a側に向けて噴射され、第2の噴孔14bから貫徹力が大きい第2の燃料噴霧F2が吸気ポート70の天井部70b側に向けて噴射される。 In the fuel injection device according to the fourth embodiment, as shown in FIG. 10, the first injection hole 14a that is offset with respect to the central axis 40 of the fuel passage 17 in the direction of the center 12c of the valve seat opening 12b is It is arranged so as to be on the side Y1 closer to the bottom 70a of the intake port with respect to the center 17c of the fuel passage 17, and is offset in the direction opposite to the center 12c of the valve seat opening 12b with respect to the central axis 40 of the fuel passage 17. The second injection hole 14b is arranged on the side Y2 closer to the ceiling portion 70b of the intake port with respect to the center 17c of the fuel passage 17. Therefore, the first fuel spray F1 having a small penetration force and sufficiently atomized is injected from the first injection hole 14a toward the bottom portion 70a side of the intake port 70, and the penetration force is large from the second injection hole 14b. The second fuel spray F2 is injected toward the ceiling portion 70b side of the intake port 70.
 実施の形態4によれば、吸気行程噴射の場合に生じる吸気流90により、貫徹力が小さく十分に微粒化された第1の燃料噴霧F1が吸気ポート70の天井部70bへ流されて壁面付着するのを、貫徹力が大きな第2の燃料噴霧F2により抑制することができる。 According to the fourth embodiment, due to the intake air flow 90 generated in the intake stroke injection, the first fuel spray F1 which has a small penetration force and is sufficiently atomized is flowed to the ceiling portion 70b of the intake port 70 and adhered to the wall surface. This can be suppressed by the second fuel spray F2 having a large penetration force.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more of the embodiments are applicable to the particular embodiment. However, the present invention is not limited to the above, and can be applied to the embodiments alone or in various combinations. Therefore, innumerable variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and at least one component is extracted and combined with the components of other embodiments.
 本願による燃料噴射装置は、内燃機関の分野、ひいては自動車産業の分野に利用することができる。 The fuel injection device according to the present application can be used in the field of internal combustion engines, and thus in the field of the automobile industry.
1 燃料噴射装置、4 ソレノイド装置、5 ハウジング、6 コア、7 コイル、8 アマチュア、9 弁装置、10 弁体、11 弁ホルダ、12 弁座、12b 弁座開口部、13 噴孔プレート、14a 第1の噴孔、14b 第2の噴孔、14c 第3の噴孔、14d 第4の噴孔、15 ボール、16 圧縮バネ、17 燃料通路、17 第1の燃料通路、171 第2の燃料通路、18a 第1の旋回室、18b 第2の旋回室、18c 第3の旋回室、 18d 第4の旋回室、50 溶接部、60 燃焼室、70 吸気ポート、80 吸気弁、90 吸気流、F1 第1の燃料噴霧、F2 第2の燃料噴霧 1 fuel injection device, 4 solenoid device, 5 housing, 6 core, 7 coil, 8 amateur, 9 valve device, 10 valve body, 11 valve holder, 12 valve seat, 12b valve seat opening, 13 injection hole plate, 14a No. 1 injection hole, 14b 2nd injection hole, 14c 3rd injection hole, 14d 4th injection hole, 15 balls, 16 compression springs, 17 fuel passage, 17 1st fuel passage, 171 2nd fuel passage , 18a first swirl chamber, 18b second swirl chamber, 18c third swirl chamber, 18d fourth swirl chamber, 50 weld, 60 combustion chamber, 70 intake port, 80 intake valve, 90 intake flow, F1 1st fuel spray, F2 2nd fuel spray

Claims (4)

  1.  弁座を開閉するための弁体を有し、制御装置より動作信号を受けて前記弁体を動作させることにより、燃料が前記弁体と弁座シート部の間を通過後、弁座下流側の弁座開口部に装着された噴孔プレートに設けられた複数の噴孔から噴射される燃料噴射装置であって、
     前記噴孔プレートの上流側端面には、前記弁座開口部の径方向外側に複数配置され、燃料に旋回力を付与する旋回室と、前記弁座開口部から中央部に燃料を流入し、端部に接合される前記旋回室に燃料を流出する燃料通路を有し、前記旋回室に開口し燃料を外部へ噴射する前記噴孔を備えており、
     前記弁座開口部の中心軸方向に上流側から前記噴孔プレートの上流側端面を見た場合、複数の前記旋回室および前記噴孔は、前記燃料通路の中心に対して点対称に配置され、前記燃料通路の中心軸が前記弁座開口部の中心に対してオフセットしており、
     前記複数の噴孔のうち、少なくとも1つの噴孔は前記燃料通路の中心軸に対して前記弁座開口部の中心側にオフセットして設けられ、かつ、少なくとも1つの噴孔は前記燃料通路の中心軸に対して前記弁座開口部の中心の反対側にオフセットして設けられることを特徴とする燃料噴射装置。
    Having a valve body for opening and closing the valve seat, and operating the valve body by receiving an operation signal from a control device, so that fuel passes between the valve body and the valve seat seat portion, and then the valve seat downstream side A fuel injection device that injects from a plurality of injection holes provided in an injection hole plate attached to the valve seat opening of
    On the upstream end surface of the injection hole plate, a plurality of swirl chambers are arranged radially outside the valve seat opening, and impart swirl force to the fuel; and fuel flows from the valve seat opening to the center. The swirl chamber joined to an end has a fuel passage for flowing out fuel, and the swirl chamber is provided with the injection hole for injecting fuel to the outside,
    When the upstream end surface of the injection hole plate is viewed from the upstream side in the central axis direction of the valve seat opening, the plurality of swirl chambers and the injection holes are arranged point-symmetrically with respect to the center of the fuel passage. , The central axis of the fuel passage is offset with respect to the center of the valve seat opening,
    At least one injection hole of the plurality of injection holes is provided offset to the center side of the valve seat opening with respect to the center axis of the fuel passage, and at least one injection hole is provided in the fuel passage. A fuel injection device, wherein the fuel injection device is provided on the side opposite to the center of the valve seat opening with respect to the central axis.
  2.  前記複数の噴孔のうち、前記燃料通路の中心軸に対して前記弁座開口部の中心側にオフセットしている少なくとも2つの噴孔と、前記燃料通路の中心軸に対して前記弁座開口部の中心の反対側にオフセットしている少なくとも2つの噴孔は、各々一塊に近接して配置されることを特徴とする請求項1に記載の燃料噴射装置。 Of the plurality of injection holes, at least two injection holes that are offset toward the center of the valve seat opening with respect to the center axis of the fuel passage, and the valve seat opening with respect to the center axis of the fuel passage. The fuel injection device according to claim 1, wherein the at least two injection holes offset to the opposite side of the center of the portion are arranged in proximity to each other.
  3.  前記弁座開口部の中心軸方向に上流側から前記噴孔プレートの上流側端面を見た場合、前記噴孔プレートの中心と前記燃料通路の中心が一致しており、
     前記噴孔プレートの中心が前記弁座開口部の中心に対してオフセットしていることを特徴とする請求項1又は2に記載の燃料噴射装置。
    When the upstream end surface of the injection hole plate is viewed from the upstream side in the central axis direction of the valve seat opening, the center of the injection hole plate and the center of the fuel passage are aligned,
    The fuel injection device according to claim 1 or 2, wherein a center of the injection hole plate is offset from a center of the valve seat opening.
  4.  内燃機関の燃焼室に連通する吸気ポートの天井側に設置される前記燃料噴射装置であって、
     前記複数の噴孔のうち、前記燃料通路の中心軸に対して前記弁座開口部の中心側にオフセットしている噴孔は前記噴孔プレート上の前記吸気ポートの底側に配置され、
     前記燃料通路の中心軸に対して前記弁座開口部の中心の反対側にオフセットしている噴孔は前記噴孔プレート上の前記吸気ポートの天井側に配置されることを特徴とする請求項1から3のうちのいずれか一項に記載の燃料噴射装置。
    The fuel injection device installed on the ceiling side of an intake port communicating with a combustion chamber of an internal combustion engine,
    Among the plurality of injection holes, an injection hole offset to the center side of the valve seat opening with respect to the central axis of the fuel passage is arranged on the bottom side of the intake port on the injection hole plate,
    The injection hole offset to the side opposite to the center of the valve seat opening with respect to the central axis of the fuel passage is arranged on the ceiling side of the intake port on the injection hole plate. The fuel injection device according to any one of 1 to 3.
PCT/JP2019/001068 2019-01-16 2019-01-16 Fuel injection device WO2020148821A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980087966.4A CN113260783B (en) 2019-01-16 2019-01-16 Fuel injection device
JP2020566371A JP7031020B2 (en) 2019-01-16 2019-01-16 Fuel injection device
PCT/JP2019/001068 WO2020148821A1 (en) 2019-01-16 2019-01-16 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001068 WO2020148821A1 (en) 2019-01-16 2019-01-16 Fuel injection device

Publications (1)

Publication Number Publication Date
WO2020148821A1 true WO2020148821A1 (en) 2020-07-23

Family

ID=71614388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001068 WO2020148821A1 (en) 2019-01-16 2019-01-16 Fuel injection device

Country Status (3)

Country Link
JP (1) JP7031020B2 (en)
CN (1) CN113260783B (en)
WO (1) WO2020148821A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503311A (en) * 1998-04-08 2002-01-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Atomizing disk and fuel injector with atomizing disk
JP2003336561A (en) * 2002-05-17 2003-11-28 Keihin Corp Fuel injection valve
JP2004278464A (en) * 2003-03-18 2004-10-07 Keihin Corp Fuel injection valve
JP2005042615A (en) * 2003-07-22 2005-02-17 Denso Corp Fluid jet valve
JP2014173478A (en) * 2013-03-08 2014-09-22 Hitachi Automotive Systems Ltd Fuel injection valve

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405945B1 (en) * 2000-09-06 2002-06-18 Visteon Global Tech., Inc. Nozzle for a fuel injector
JP4029586B2 (en) * 2000-10-26 2008-01-09 株式会社日立製作所 Fuel injection valve
DE10059007A1 (en) * 2000-11-28 2002-05-29 Bosch Gmbh Robert Fuel injector
JP3798741B2 (en) * 2002-09-09 2006-07-19 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP2007100647A (en) * 2005-10-06 2007-04-19 Hitachi Ltd Fuel injection valve
JP2008064038A (en) * 2006-09-07 2008-03-21 Denso Corp Fuel injection device
JP4808801B2 (en) * 2009-05-18 2011-11-02 三菱電機株式会社 Fuel injection valve
JP5732834B2 (en) * 2010-03-31 2015-06-10 株式会社デンソー Fuel injection device
JP5452515B2 (en) * 2011-01-31 2014-03-26 日立オートモティブシステムズ株式会社 Fuel injection valve
JP2013194624A (en) * 2012-03-21 2013-09-30 Hitachi Automotive Systems Ltd Fuel injection valve
JP5875443B2 (en) * 2012-03-30 2016-03-02 日立オートモティブシステムズ株式会社 Fuel injection valve
DE102013225948A1 (en) * 2013-12-13 2015-06-18 Continental Automotive Gmbh Nozzle head and fluid injection valve
JP5893110B1 (en) * 2014-10-01 2016-03-23 三菱電機株式会社 Fuel injection valve
JP6460802B2 (en) * 2015-01-09 2019-01-30 株式会社エンプラス Nozzle plate for fuel injector
DE112015007002T5 (en) * 2015-10-05 2018-06-28 Mitsubishi Electric Corporation Fuel injection valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503311A (en) * 1998-04-08 2002-01-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Atomizing disk and fuel injector with atomizing disk
JP2003336561A (en) * 2002-05-17 2003-11-28 Keihin Corp Fuel injection valve
JP2004278464A (en) * 2003-03-18 2004-10-07 Keihin Corp Fuel injection valve
JP2005042615A (en) * 2003-07-22 2005-02-17 Denso Corp Fluid jet valve
JP2014173478A (en) * 2013-03-08 2014-09-22 Hitachi Automotive Systems Ltd Fuel injection valve

Also Published As

Publication number Publication date
JP7031020B2 (en) 2022-03-07
JPWO2020148821A1 (en) 2021-10-14
CN113260783B (en) 2022-08-19
CN113260783A (en) 2021-08-13

Similar Documents

Publication Publication Date Title
US8567701B2 (en) Fuel injection valve
KR20060015764A (en) Fuel injection valve
US8919675B2 (en) Fuel injection valve
JP2007046518A (en) Fuel injection valve
WO2006095706A1 (en) Fuel injection valve
JP2016070070A (en) Fuel injection valve
JP2015078603A (en) Fuel injection valve
WO2020148821A1 (en) Fuel injection device
WO2021075041A1 (en) Fuel injection valve
JP6448814B2 (en) Fuel injection valve
JP5748796B2 (en) Fuel injection valve
JP6545333B2 (en) Fuel injection valve and injection hole plate
JP6141350B2 (en) Fuel injection valve
JP6190917B1 (en) Fuel injection valve
JP5766317B1 (en) Fuel injection valve
JP6113324B1 (en) Fuel injection valve
JP6758521B2 (en) Fuel injection valve
JP6735913B2 (en) Fuel injection valve
JP6644164B2 (en) Fuel injection valve and method of adjusting injection flow rate
JP6733999B2 (en) Fuel injection valve
JP2006138271A (en) Fuel injection valve
JP2007309270A (en) Fuel injection valve
JP2000283003A (en) Fuel injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910268

Country of ref document: EP

Kind code of ref document: A1