JP2014168725A - Wet type melting device for powder carried by gas - Google Patents
Wet type melting device for powder carried by gas Download PDFInfo
- Publication number
- JP2014168725A JP2014168725A JP2013040281A JP2013040281A JP2014168725A JP 2014168725 A JP2014168725 A JP 2014168725A JP 2013040281 A JP2013040281 A JP 2013040281A JP 2013040281 A JP2013040281 A JP 2013040281A JP 2014168725 A JP2014168725 A JP 2014168725A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- gas
- powder
- mixing chamber
- iron chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 78
- 238000002844 melting Methods 0.000 title claims abstract description 12
- 230000008018 melting Effects 0.000 title claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 83
- 239000007789 gas Substances 0.000 claims abstract description 62
- 238000002156 mixing Methods 0.000 claims abstract description 39
- 239000007921 spray Substances 0.000 claims abstract description 26
- 239000012159 carrier gas Substances 0.000 claims abstract description 18
- 239000000945 filler Substances 0.000 claims abstract description 9
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 claims description 57
- 238000005507 spraying Methods 0.000 abstract description 2
- 238000004090 dissolution Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 229910000976 Electrical steel Inorganic materials 0.000 description 5
- 229910003902 SiCl 4 Inorganic materials 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003595 mist Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000004063 acid-resistant material Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000012256 powdered iron Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Landscapes
- Separation Of Particles Using Liquids (AREA)
Abstract
Description
本発明は、吸湿性粉体の連続溶解設備に関するもので、例えば高珪素鋼帯を製造する際に生成される塩化鉄等の粉体の湿式溶解装置に関する。 The present invention relates to a continuous melting facility for hygroscopic powder, and for example, relates to a wet melting apparatus for powder such as iron chloride produced when a high silicon steel strip is manufactured.
気体搬送される吸湿性粉体の溶解装置の例としては、例えばSiCl4を原料ガスとしてCVD法により高珪素鋼帯を製造する過程において発生する塩化鉄粉の湿式溶解装置が挙げられる。
この製造過程では、SiCl4と鋼帯の化学反応により副生成物としてFeCl2が生成する。このFeCl2は反応生成ガスとして排ガスに混合され、排ガスを冷却することにより塩化鉄粉として析出し、排ガス中から分離回収される。この塩化鉄粉は溶解槽まで気体搬送され、溶解後に中和処理される。
As an example of a device for dissolving a hygroscopic powder conveyed in gas, a wet dissolving device for iron chloride powder generated in the process of producing a high silicon steel strip by the CVD method using SiCl 4 as a raw material gas can be given.
In this manufacturing process, FeCl 2 is generated as a by-product due to a chemical reaction between SiCl 4 and the steel strip. This FeCl 2 is mixed with the exhaust gas as a reaction product gas, and is precipitated as iron chloride powder by cooling the exhaust gas, and is separated and recovered from the exhaust gas. This iron chloride powder is conveyed to a dissolution tank by gas and neutralized after dissolution.
分離回収された塩化鉄粉は、吸湿による搬送路内での固着、閉塞を防ぐため、十分に露点を下げた気体により搬送し、溶解液をいれた槽へ供給され溶解される。ここで塩化鉄粉が完全に溶解しないと、未溶解塩化鉄粉が溶解槽の圧力抜き口等から搬送気体とともに外気に放散されることになる。放散された塩化鉄粉は大気中の水分を吸湿し塩化水素を生成し、周囲の設備を腐蝕させるだけでなく健康上も悪影響を及ぼす。
そこで、連続的に気体搬送される塩化鉄粉をいかに効率よく完全に溶解槽の液体に溶解させるかが重要となる。
The separated and recovered iron chloride powder is transported by a gas having a sufficiently low dew point in order to prevent sticking and blockage in the transport path due to moisture absorption, and is supplied to a tank containing a solution to be dissolved. Here, if the iron chloride powder is not completely dissolved, the undissolved iron chloride powder is diffused into the outside air together with the carrier gas from the pressure relief port of the dissolution tank. The released iron chloride powder absorbs moisture from the atmosphere and produces hydrogen chloride, which not only corrodes the surrounding equipment but also has a negative effect on health.
Therefore, it is important how to efficiently and completely dissolve the iron chloride powder that is continuously conveyed by gas in the liquid in the dissolution tank.
このような、塩化鉄粉の溶解方法としては、例えば特許文献1に開示された「塩化鉄粉の湿式回収方法」に開示がある。
特許文献1に開示された「塩化鉄粉の湿式回収方法」においては、「塩化鉄粉を非酸化性ガスにより溶解槽に気送して、溶解槽内で非酸化性ガスをバブリングさせ、塩化鉄粉を液中に溶解させることを特徴とする」ものである。
Such a method for dissolving iron chloride powder is disclosed in, for example, “Wet recovery method of iron chloride powder” disclosed in Patent Document 1.
In the “wet recovery method of iron chloride powder” disclosed in Patent Document 1, “iron chloride powder is pumped to a dissolution tank by a non-oxidizing gas, and the non-oxidizing gas is bubbled in the dissolution tank, and chlorination is performed. It is characterized by dissolving iron powder in the liquid.
特許文献1においては、溶解槽内で搬送ガスをバブリングさせることで、塩化鉄粉を液中に溶解させるようにしている。
しかしながら、気送ガス中に塩化鉄粉が混入しているため、液中でバブリングする気泡に塩化鉄粉が封入され、気泡内の塩化鉄粉は液体と接触することなく気泡に運ばれ、液面まで上昇する。そして、上昇した気泡が液面で破裂することで、塩化鉄粉は液と接触のないまま液面上で飛散し、飛散した塩化鉄粉が溶解槽の圧力抜き口等から外気に放出されるという問題がある。
この点、特許文献1においては、バブリングさせる気泡を微細にすることで、塩化鉄粉と液体との接触の可能性を高めるようにしているが、塩化鉄粉は数ミクロン〜数十ミクロンの微粒のため、気泡を微細化しても液体内を上昇する気泡内に塩化鉄粉が封入されるという現象は完全には避けられないので、未溶解の塩化鉄粉の飛散防止には限界があった。
In Patent Document 1, iron chloride powder is dissolved in a liquid by bubbling a carrier gas in a dissolution tank.
However, since iron chloride powder is mixed in the air-feeding gas, the iron chloride powder is enclosed in the bubbles that are bubbled in the liquid, and the iron chloride powder in the bubbles is carried into the bubbles without coming into contact with the liquid. Ascend to the surface. Then, as the rising bubbles burst at the liquid level, the iron chloride powder is scattered on the liquid surface without contact with the liquid, and the scattered iron chloride powder is released from the pressure relief port of the dissolution tank to the outside air. There is a problem.
In this respect, in Patent Document 1, the bubble to be bubbled is made fine to increase the possibility of contact between the iron chloride powder and the liquid. The iron chloride powder is a fine particle of several microns to several tens of microns. For this reason, the phenomenon that iron chloride powder is enclosed in bubbles that rise in the liquid even if the bubbles are refined is completely unavoidable, so there is a limit to the prevention of scattering of undissolved iron chloride powder. .
本発明はかかる課題を解決するためになされたものであり、吸湿性があり大気放散させられない粉体を、回収タンクから気体搬送した後に、効率よく確実に液体に溶解させる湿式溶解装置を提供することを目的としている。 The present invention has been made in order to solve such problems, and provides a wet-type melting apparatus that efficiently and reliably dissolves powder that is hygroscopic and cannot be released into the atmosphere after gas conveyance from a recovery tank. The purpose is to do.
(1)本発明に係る気体搬送される粉体の湿式溶解装置は、前記粉体を溶解する液体が貯留された液槽と、該液槽の上方に設けられて気体搬送された前記粉体が前記搬送気体と共に供給される混合室と、該混合室内に搬送気体と共に供給された前記粉体に霧状の前記液体を噴霧する液体噴霧ノズルと、前記混合室と前記液槽との間に設けられて前記混合室に噴射された搬送気体と噴霧された液体が通過する通過室を有し、
該通過室には前記搬送気体及び前記液体の通過時に相互の接触面が大きくなるように充填材が充填されてなり、該通過室を通過した液体を前記液槽に貯留するようにしたことを特徴とするものである。
(1) The wet-dissolving apparatus for powder transported by gas according to the present invention includes a liquid tank storing a liquid for dissolving the powder, and the powder transported by gas provided above the liquid tank. Between the mixing chamber and the liquid tank, a mixing chamber that is supplied with the carrier gas, a liquid spray nozzle that sprays the mist-like liquid onto the powder supplied together with the carrier gas into the mixing chamber, and Having a passage chamber through which the carrier gas sprayed into the mixing chamber and the sprayed liquid pass;
The passage chamber is filled with a filler so that a mutual contact surface becomes large when the carrier gas and the liquid pass, and the liquid that has passed through the passage chamber is stored in the liquid tank. It is a feature.
(2)また、上記(1)に記載のものにおいて、混合室は、上部から下部に向かって拡径する円錐台形状をしており、液体噴霧ノズルを前記混合室の上部に設けたことを特徴とするものである。 (2) Further, in the above-described (1), the mixing chamber has a truncated cone shape whose diameter increases from the upper part toward the lower part, and a liquid spray nozzle is provided in the upper part of the mixing chamber. It is a feature.
(3)また、上記(1)または(2)に記載のものにおいて、前記液槽の液体を前記液体噴霧ノズルに供給する循環ラインを設けたことを特徴とするものである。 (3) Further, in the above (1) or (2), a circulation line for supplying the liquid in the liquid tank to the liquid spray nozzle is provided.
本発明においては、混合室において、搬送気体に含有される粉体と噴霧される液体の直接接触が行われ、さらに通過室の充填物の間隙を通過する際にも粉体と液体との接触が行われるので、粉体と液体との接触が確実に行われ、粉体の液体への溶解を確実に行うことができる。 In the present invention, in the mixing chamber, direct contact between the powder contained in the carrier gas and the liquid to be sprayed is performed, and contact between the powder and the liquid also passes through the gap between the fillers in the passage chamber. Therefore, the contact between the powder and the liquid is ensured, and the powder can be reliably dissolved in the liquid.
本発明の気送搬送される粉体の湿式溶解装置の一実施の形態として、SiCl4を原料ガスとして鋼帯を浸珪処理することにより高珪素鋼帯を製造する過程において発生する塩化鉄粉の湿式溶解装置を例に挙げて説明する。 As an embodiment of the wet melting apparatus for air-conveyed powder of the present invention, iron chloride powder generated in the process of manufacturing a high silicon steel strip by subjecting the steel strip to siliconization using SiCl 4 as a raw material gas An example of the wet melting apparatus will be described.
図1は、本実施の形態の湿式溶解装置1を適用した高珪素鋼板製造用CVD処理設備の排ガス処理フローの説明図である。
図において、3は連続処理炉3であり、SiCl4を原料ガスとして鋼帯5に連続CVD処理する。
連続処理炉3には、排ガスを冷却する排ガス冷却装置9が設置されている。排ガス冷却装置9の下流側には塩化鉄分離装置11が設けられており、その下流は図示しない排ガス処理装置へと接続している。
FIG. 1 is an explanatory diagram of an exhaust gas treatment flow of a CVD processing facility for producing a high silicon steel sheet to which the wet melting apparatus 1 of the present embodiment is applied.
In the figure, 3 is a continuous processing furnace 3, which performs continuous CVD processing on the steel strip 5 using SiCl 4 as a raw material gas.
The continuous processing furnace 3 is provided with an exhaust gas cooling device 9 for cooling the exhaust gas. An iron chloride separator 11 is provided on the downstream side of the exhaust gas cooling device 9, and the downstream thereof is connected to an exhaust gas treatment device (not shown).
排ガス中の塩化鉄は排ガス冷却装置9による急冷により粉体として析出し、塩化鉄分離装置11によって排ガスから分離され、粉体払出管21を介して気送管23に送られ、低露点の搬送ガス(例えばN2ガス)によって気体搬送されて湿式溶解装置1に送られる。
以下、湿式溶解装置1について図1、図2に基づいて詳細に説明する。
Iron chloride in the exhaust gas is precipitated as a powder by rapid cooling by the exhaust gas cooling device 9, separated from the exhaust gas by the iron chloride separation device 11, sent to the air delivery pipe 23 through the powder discharge pipe 21, and transported at a low dew point. The gas is conveyed by gas (for example, N 2 gas) and sent to the wet dissolving apparatus 1.
Hereinafter, the wet dissolving apparatus 1 will be described in detail with reference to FIGS. 1 and 2.
本実施の形態の湿式溶解装置1は、液槽25の上方に設けられて気体搬送された塩化鉄粉を低露点搬送ガスと共に供給する混合室27と、混合室27内に搬送ガスと共に供給された塩化鉄粉に溶解液を噴霧する液体噴霧ノズル29と、混合室27と液槽25との間に設けられて混合室27に噴射された気体と噴霧された液体が通過する通過室31を有している。
以下、各構成を詳細に説明する。
The wet-dissolving apparatus 1 according to the present embodiment is provided with a mixing chamber 27 that is provided above the liquid tank 25 and supplies the iron chloride powder that has been conveyed in a gas together with a low dew point conveying gas, and is supplied into the mixing chamber 27 together with a conveying gas. A liquid spray nozzle 29 for spraying a solution to the iron chloride powder, and a passage chamber 31 provided between the mixing chamber 27 and the liquid tank 25 and through which the gas sprayed into the mixing chamber 27 and the sprayed liquid pass. Have.
Hereinafter, each configuration will be described in detail.
<液槽>
液槽25は、塩化鉄粉を溶解した溶解液を貯留するものであり、図1に示すように、液槽25の下部から液体を抜き出して溶液循環ポンプ33によって液体噴霧ノズル29に供給する循環ラインが設けられている。
また、液槽25の上部には気送に用いられた搬送ガスを排出するための排気管35が設けられている。
<Liquid tank>
The liquid tank 25 stores a solution obtained by dissolving iron chloride powder. As shown in FIG. 1, the liquid is extracted from the lower part of the liquid tank 25 and is supplied to the liquid spray nozzle 29 by the solution circulation pump 33. A line is provided.
In addition, an exhaust pipe 35 for discharging the carrier gas used for air feeding is provided in the upper part of the liquid tank 25.
<混合室>
混合室27は、液槽25の上方に設けられて、気体搬送された塩化鉄粉と液体噴霧ノズル29から噴霧される溶解液を混合する室である。
気体搬送された塩化鉄粉は、搬送気体と共に供給されて混合室27で一時的に滞留するが、この滞留した塩化鉄粉に液体噴霧ノズル29から溶解液が噴霧されることで、溶解液が塩化鉄粉に効率よく接触して混合される。
混合室27は、上部から下部に向かって拡径する円錐台形状をしており、ポリ塩化ビニル樹脂(PVC)などの耐酸素材によって形成されている。
<Mixing chamber>
The mixing chamber 27 is a chamber that is provided above the liquid tank 25 and mixes the iron chloride powder transported in gas and the solution sprayed from the liquid spray nozzle 29.
The iron chloride powder transported in the gas is supplied together with the transport gas and temporarily stays in the mixing chamber 27. The solution is sprayed on the retained iron chloride powder from the liquid spray nozzle 29, so that the solution is Efficient contact with iron chloride powder and mixing.
The mixing chamber 27 has a truncated cone shape whose diameter increases from the upper part toward the lower part, and is formed of an acid resistant material such as polyvinyl chloride resin (PVC).
<液体噴霧ノズル>
液体噴霧ノズル29は、混合室27内に気体と共に供給された塩化鉄粉に溶解液を噴霧する。液体噴霧ノズル29は混合室27の上部に複数設けられ、混合室27に供給される気体搬送された塩化鉄粉に向けて液体を微細霧状にしてスプレー状に噴霧する。
液体噴霧ノズルは、溶解液が塩化鉄粉と接触しやすくするため混合室上部の供給口近傍に複数設置し、スプレーが混合室の円錐状空間を可能な限り満たすようにフルコーンタイプの噴霧形状とし、所望のスプレー拡がり角とノズル個数を選定する。
<Liquid spray nozzle>
The liquid spray nozzle 29 sprays the solution on the iron chloride powder supplied together with the gas into the mixing chamber 27. A plurality of liquid spray nozzles 29 are provided in the upper part of the mixing chamber 27, and spray the liquid in the form of a fine mist toward the iron chloride powder conveyed to the gas supplied to the mixing chamber 27.
A number of liquid spray nozzles are installed near the supply port in the upper part of the mixing chamber to make it easier for the solution to come into contact with the iron chloride powder, so that the spray fills the conical space of the mixing chamber as much as possible. And a desired spray spread angle and the number of nozzles are selected.
<通過室>
通過室31は、混合室27と液槽25との間に設けられ、混合室27に供給された搬送ガスと噴霧された液体が通過する室である。
通過室31には、充填材37が充填されている。充填材37としては、溶液と塩化鉄の接触面積が大きくとれ、溶液の流下を容易にする形状・大きさのものとする。例えば、テフロン(登録商標)などの耐酸素材の細い管を短く切断した小さい短管を多数入れるのが好ましい。
<Passing room>
The passage chamber 31 is a chamber that is provided between the mixing chamber 27 and the liquid tank 25 and through which the carrier gas supplied to the mixing chamber 27 and the sprayed liquid pass.
The passage chamber 31 is filled with a filler 37. The filler 37 has a shape and size that allows a large contact area between the solution and iron chloride and facilitates the flow of the solution. For example, it is preferable to put a large number of small short tubes obtained by cutting a thin tube of acid-resistant material such as Teflon (registered trademark) short.
以上のように構成された本実施の形態の湿式溶解装置1の動作を説明する。
連続処理炉3は、SiCl4を原料ガスとして鋼帯5を連続CVD処理する設備で、CVD反応生成物として塩化鉄ガスが連続処理炉3内で生成し、生成塩化鉄ガスは炉排ガスと共に排出口から連続的に排出される。この際、排ガス冷却装置9によって排ガスは塩化鉄融点以下に急冷され、排ガス中には塩化鉄の微粉が生じる。この排ガスを塩化鉄分離装置11に通し、粉体の塩化鉄を分離・除去する。
分離・除去された塩化鉄微粉は吸湿性が高いため、外気との接触させないようにして粉体払出管21を介し気送管23に供給される。気送管23に供給された塩化鉄粉は、気送管内に付着して管を閉塞させないようにするため、十分に低い露点を有し、かつスムーズな流動を確保できる流量の気体により搬送し、湿式溶解装置1に送られる。
The operation of the wet melting apparatus 1 of the present embodiment configured as described above will be described.
The continuous processing furnace 3 is a facility for continuously CVD-treating the steel strip 5 using SiCl 4 as a raw material gas. Iron chloride gas is generated in the continuous processing furnace 3 as a CVD reaction product, and the generated iron chloride gas is discharged together with the furnace exhaust gas. It is continuously discharged from the outlet. At this time, the exhaust gas cooling device 9 rapidly cools the exhaust gas below the melting point of iron chloride, and fine powder of iron chloride is generated in the exhaust gas. This exhaust gas is passed through an iron chloride separator 11 to separate and remove powdered iron chloride.
Since the iron chloride fine powder separated and removed has high hygroscopicity, it is supplied to the air feeding pipe 23 via the powder discharge pipe 21 so as not to come into contact with the outside air. The iron chloride powder supplied to the air pipe 23 is transported by a gas having a flow rate that has a sufficiently low dew point and can ensure a smooth flow so as not to adhere to the inside of the air pipe and block the pipe. And sent to the wet dissolving apparatus 1.
湿式溶解装置1に送られた塩化鉄粉は、図2に示すように、混合室27に搬送ガスと共に供給される。
混合室27では、循環ポンプ33によって加圧された液槽25の溶解液が噴霧ノズル29から流入ガスにスプレー状に噴霧される。ミスト状になった噴霧液は塩化鉄粉と直接接触して混合され塩化鉄粉を溶解させる。
混合室27に供給されたガスは、通過室31に充填された充填物の空隙を噴霧液と接触しながら流下し液槽25に送られ、液槽25に設けられた排気管35から排気される。
混合室27において、霧状の液体が噴霧された塩化鉄粉は、液に溶解し、搬送ガスと共に通過室31を通過する。混合室27で溶解液のミストと接触を免れた塩化鉄粉は搬送ガス流れにのって通過室31に入る。ここは充填材37が充填されており、この充填材37通過中に隙間をともに流下する溶解液と接触し、通過室31を通過した後では、塩化鉄粉は液体に完全に溶液に溶けた状態となって、液槽25に供給される。
The iron chloride powder sent to the wet dissolving apparatus 1 is supplied to the mixing chamber 27 together with the carrier gas as shown in FIG.
In the mixing chamber 27, the solution in the liquid tank 25 pressurized by the circulation pump 33 is sprayed from the spray nozzle 29 onto the inflow gas in a spray form. The spray solution in mist form is mixed in direct contact with the iron chloride powder to dissolve the iron chloride powder.
The gas supplied to the mixing chamber 27 flows down in contact with the spray liquid through the gap in the filling material filled in the passage chamber 31, is sent to the liquid tank 25, and is exhausted from the exhaust pipe 35 provided in the liquid tank 25. The
In the mixing chamber 27, the iron chloride powder sprayed with the mist-like liquid is dissolved in the liquid and passes through the passage chamber 31 together with the carrier gas. The iron chloride powder that has escaped contact with the mist of the solution in the mixing chamber 27 enters the passage chamber 31 along the carrier gas flow. Here, the filler 37 is filled, and after passing through the filler 37, the iron chloride powder is completely dissolved in the liquid. It becomes a state and is supplied to the liquid tank 25.
以上のように、本実施の形態の湿式溶解装置1によれば、連続的に気体搬送される塩化鉄粉を効率よく液体と接触させることができ、塩化鉄粉を確実に回収することができ、粉の状態の塩化鉄粉が外部に排出されることがない。
なお、本発明は、具体的に説明した上述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて適宜変更することが可能である。
As described above, according to the wet dissolving apparatus 1 of the present embodiment, the iron chloride powder that is continuously conveyed by gas can be efficiently brought into contact with the liquid, and the iron chloride powder can be reliably recovered. The powdered iron chloride powder is not discharged to the outside.
In addition, this invention is not limited to the above-mentioned embodiment described concretely, Based on the technical idea of this invention, it can change suitably.
1 湿式溶解装置
3 連続処理炉
5 鋼帯
9 排ガス冷却装置
11 塩化鉄分離装置
21 粉体払出管
23 気送管
25 液槽
27 混合室
29 液体噴霧ノズル
31 通過室
33 溶液循環ポンプ
35 排気管
37 充填材
DESCRIPTION OF SYMBOLS 1 Wet melter 3 Continuous processing furnace 5 Steel strip 9 Exhaust gas cooling device 11 Iron chloride separator 21 Powder discharge pipe 23 Air feed pipe 25 Liquid tank 27 Mixing chamber 29 Liquid spray nozzle 31 Passing chamber 33 Solution circulation pump 35 Exhaust pipe 37 Filler
Claims (3)
前記粉体を溶解する液体が貯留された液槽と、該液槽の上方に設けられて気体搬送された前記粉体が前記搬送気体と共に供給される混合室と、該混合室内に搬送気体と共に供給された前記粉体に霧状の前記液体を噴霧する液体噴霧ノズルと、前記混合室と前記液槽との間に設けられて前記混合室に供給された搬送気体と噴霧された液体が通過する通過室を有し、
該通過室には前記搬送気体及び前記液体の通過時に溶解液と塩化鉄粉の接触面積を大きくするための充填材が充填されており、該通過室を通過した溶解液を前記液槽に貯留するようにしたことを特徴とする気体搬送される粉体の湿式溶解装置。 A powder wet-dissolving device for gas transport,
A liquid tank in which a liquid for dissolving the powder is stored, a mixing chamber provided above the liquid tank and transported in gas by the transport gas, and a transport gas in the mixing chamber A liquid spray nozzle that sprays the atomized liquid on the supplied powder, and a carrier gas that is provided between the mixing chamber and the liquid tank and is supplied to the mixing chamber and the sprayed liquid pass therethrough. Has a passage chamber
The passage chamber is filled with a filler for increasing the contact area between the solution and the iron chloride powder when the carrier gas and the liquid pass, and the solution that has passed through the passage chamber is stored in the liquid tank. A wet-dissolving apparatus for gas-conveyed powder, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013040281A JP6068195B2 (en) | 2013-03-01 | 2013-03-01 | Wet melting device for powder transported by gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013040281A JP6068195B2 (en) | 2013-03-01 | 2013-03-01 | Wet melting device for powder transported by gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014168725A true JP2014168725A (en) | 2014-09-18 |
JP6068195B2 JP6068195B2 (en) | 2017-01-25 |
Family
ID=51691571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013040281A Active JP6068195B2 (en) | 2013-03-01 | 2013-03-01 | Wet melting device for powder transported by gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6068195B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021024746A (en) * | 2019-07-31 | 2021-02-22 | Jfeスチール株式会社 | Wet recovery method for iron chloride powder |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5375197A (en) * | 1976-12-16 | 1978-07-04 | Mitsubishi Gas Chem Co Inc | Continuously dissolving apparatus for hydrosulfite |
JPH0657004A (en) * | 1992-08-12 | 1994-03-01 | Ohbayashi Corp | Method and device for mixing high-molecular water-absorbable material with water |
JPH08188418A (en) * | 1994-12-29 | 1996-07-23 | Nkk Corp | Wet-type recovery of iron chloride powder |
WO1998008596A1 (en) * | 1996-08-30 | 1998-03-05 | Energiagazdálkodási Részvénytársaság | Hydromechanical mixing apparatus for producing a mixture of powder or granular state material and liquid |
WO2004076042A1 (en) * | 2003-02-28 | 2004-09-10 | Okutama Kogyo Co., Ltd. | Mixing device and slurrying device |
WO2011139614A2 (en) * | 2010-05-03 | 2011-11-10 | Eviva Concepts, Inc | Apparatuses, systems and methods for efficient solubilization of carbon dioxide in water using high energy impact |
-
2013
- 2013-03-01 JP JP2013040281A patent/JP6068195B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5375197A (en) * | 1976-12-16 | 1978-07-04 | Mitsubishi Gas Chem Co Inc | Continuously dissolving apparatus for hydrosulfite |
JPH0657004A (en) * | 1992-08-12 | 1994-03-01 | Ohbayashi Corp | Method and device for mixing high-molecular water-absorbable material with water |
JPH08188418A (en) * | 1994-12-29 | 1996-07-23 | Nkk Corp | Wet-type recovery of iron chloride powder |
WO1998008596A1 (en) * | 1996-08-30 | 1998-03-05 | Energiagazdálkodási Részvénytársaság | Hydromechanical mixing apparatus for producing a mixture of powder or granular state material and liquid |
WO2004076042A1 (en) * | 2003-02-28 | 2004-09-10 | Okutama Kogyo Co., Ltd. | Mixing device and slurrying device |
WO2011139614A2 (en) * | 2010-05-03 | 2011-11-10 | Eviva Concepts, Inc | Apparatuses, systems and methods for efficient solubilization of carbon dioxide in water using high energy impact |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021024746A (en) * | 2019-07-31 | 2021-02-22 | Jfeスチール株式会社 | Wet recovery method for iron chloride powder |
JP7070518B2 (en) | 2019-07-31 | 2022-05-18 | Jfeスチール株式会社 | Wet recovery method of iron chloride powder |
Also Published As
Publication number | Publication date |
---|---|
JP6068195B2 (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101664789B1 (en) | Method and device for output of granulate from the bottom of a tank that in addition to granulate holds liquid | |
GB2466914A (en) | Water treatment apparatus | |
JP6068195B2 (en) | Wet melting device for powder transported by gas | |
JP2015229736A (en) | Desulfurization device | |
JP5984622B2 (en) | Flushing device | |
JP2018149489A (en) | Bubble solution supply mechanism of dust collector | |
JP5377535B2 (en) | Insulated wire manufacturing method and manufacturing apparatus | |
CN102230185A (en) | Device and method for absorbing chlorine acid mist in electrodeposited cobalt production process | |
TW201143957A (en) | Apparatus and method for providing an inerting gas during soldering | |
KR101841024B1 (en) | Wet etching system for printed circuit board | |
JP6854663B2 (en) | Exhaust gas treatment method and exhaust gas treatment equipment | |
JPH0697632A (en) | Method for oxygen feeding to electroless plating solution and equipment | |
JP5424225B2 (en) | Ozone water generator | |
JP2018171584A (en) | Exhaust gas treatment device and exhaust gas treatment method | |
US20170087525A1 (en) | Systems and methods for gas disposal | |
JP6243778B2 (en) | Microbubble generator | |
JP7070518B2 (en) | Wet recovery method of iron chloride powder | |
KR20160072348A (en) | Apparatus for feeding powder | |
CN207566957U (en) | A kind of tap water agent adding device for treatment of water | |
JP2020011196A (en) | Gas dissolution device | |
JP2021526733A (en) | A method of processing an object and a device for carrying out the method | |
JP6628683B2 (en) | Liquid catalyst manufacturing method and manufacturing apparatus | |
TWM577016U (en) | Efficient solvation device for hydrogen-rich water | |
JP2015077570A (en) | Structure of nozzle to be used in gas dissolution liquid manufacturing system | |
JP5795157B2 (en) | Scrubber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6068195 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |