JP2014167352A - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP2014167352A
JP2014167352A JP2011122565A JP2011122565A JP2014167352A JP 2014167352 A JP2014167352 A JP 2014167352A JP 2011122565 A JP2011122565 A JP 2011122565A JP 2011122565 A JP2011122565 A JP 2011122565A JP 2014167352 A JP2014167352 A JP 2014167352A
Authority
JP
Japan
Prior art keywords
water
hot water
refrigerant
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011122565A
Other languages
Japanese (ja)
Inventor
Koichi Yamaguchi
山口  広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011122565A priority Critical patent/JP2014167352A/en
Priority to PCT/JP2012/063754 priority patent/WO2012165425A1/en
Publication of JP2014167352A publication Critical patent/JP2014167352A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient heating system capable of discharging high temperature hot water while securing a necessary amount of hot water by utilizing characteristics of a new cooling medium.SOLUTION: A heating system includes: a first refrigeration cycle 4 including a first water-cooling medium heat exchanger 4a for exchanging heat between water and a cooling medium, and using an HFC cooling medium which has unsaturated carbon as the cooling medium; a second refrigeration cycle 5 including a second water-cooling medium heat exchanger 5a, and using a cooling medium chosen from one of an HFC cooling medium which does not have unsaturated carbon and a natural cooling medium as the cooling medium; and a water pipe 3 for circulating water in a water heat exchange pipe of the first and the second water-cooling medium heat exchangers 4a and 5a. Also, the first water-cooling medium heat exchanger 4a and the second water-cooling medium heat exchanger 5a are connected in parallel to the water pipe 3, water is heated by the first water-cooling medium heat exchanger 4a and the second water-cooling medium heat exchanger 5a respectively, the water sent out from the first water-cooling medium heat exchanger 4a and the second water-cooling medium heat exchanger 5a are made confluent, and it is supplied to a utilization side.

Description

本発明の実施形態は加温システムに関する。   Embodiments of the present invention relate to a heating system.

近年、地球温暖化防止の観点からCO削減が急務となっており、その一環として、燃焼装置の代替としてのヒートポンプシステムの利用が検討されている。例えば、産業プロセスにおけるボイラ代替としての高温ヒートポンプ加温システムの導入や、家庭用ガス・灯油給湯器の代替としてのヒートポンプ加温システムの導入である。 In recent years, CO 2 reduction has become an urgent task from the viewpoint of preventing global warming, and as part of this, the use of a heat pump system as an alternative to a combustion apparatus has been studied. For example, introduction of a high-temperature heat pump heating system as an alternative to boilers in industrial processes and introduction of a heat pump heating system as an alternative to household gas / kerosene water heaters.

現在、普及しているヒートポンプ加温システムとしては、冷媒としてCO冷媒を使用したもの、R410Aを使用したもの、R134aを使用したものなどがあるが、上記の産業プロセス用では、出湯温度が80〜90℃、還水温度が50℃以上という要請がある。また、寒冷地用では、外気温−20℃にて出湯温度80℃という要請がある。これらの要請は、ヒートポンプ加温システムに対し過酷な運転条件であるため、これらの領域への普及は余り進んでいないのが現状である。 Currently used heat pump heating systems include those using CO 2 refrigerant as a refrigerant, those using R410A, and those using R134a. There is a request that the return water temperature is 50 ° C. or higher at ˜90 ° C. For cold districts, there is a demand for an outside temperature of -20 ° C and a hot water temperature of 80 ° C. Since these demands are severe operating conditions for the heat pump heating system, the current situation is that the spread to these areas has not progressed much.

現在普及しているヒートポンプ加温システムは、入水温度が高くなるに連れて高圧側の作動圧力が高く、圧縮機吐出温度も高くなるという性質がある。また、入水温度が高くなるに連れて作動効率も低下していく。圧縮機吐出温度には、信頼性上許容限度があるため、入水温度が高くなるに連れて、出湯可能な温度も低下して行く。一方、外気温度が低下するに連れて、圧縮機吐出温度も高くなるため、外気温度の低下に伴い出湯可能な温度も低下して行く。   The heat pump heating system that is currently popular has the property that, as the incoming water temperature increases, the operating pressure on the high-pressure side increases and the compressor discharge temperature also increases. Also, the operating efficiency decreases as the incoming water temperature increases. Since the discharge temperature of the compressor has an allowable limit in terms of reliability, the temperature at which hot water can be discharged decreases as the incoming water temperature increases. On the other hand, as the outside air temperature decreases, the compressor discharge temperature also increases, so that the temperature at which hot water can be discharged decreases as the outside air temperature decreases.

このような条件での出湯可能な温度は、使用する冷媒により異なり、R134aは、CO冷媒やR410Aよりも、より高温の出湯温度を実現できる反面、同一の出湯温度では、効率が若干低くなる。また、R134aは、CO冷媒やR410Aよりもガス密度が小さいため、冷媒配管径の大径化等機器が大きくなる欠点もある。 The temperature at which hot water can be discharged under such conditions varies depending on the refrigerant used, and R134a can achieve a higher hot water temperature than CO 2 refrigerant or R410A, but at the same hot water temperature, the efficiency is slightly lower. . In addition, since R134a has a gas density lower than that of the CO 2 refrigerant and R410A, there is a disadvantage that the equipment such as the diameter of the refrigerant pipe is increased.

そこで、これらの不具合を解決する手段として、高温側冷凍サイクルにR134aを使用し、低温側冷凍サイクルにR410Aを用いる2元冷凍サイクルを構成するヒートポンプ加温システム(以下、従来1という)が考えられている。   Therefore, as a means for solving these problems, a heat pump heating system (hereinafter referred to as conventional 1) that constitutes a dual refrigeration cycle that uses R134a for the high temperature side refrigeration cycle and R410A for the low temperature side refrigeration cycle can be considered. ing.

また、R410Aを用いた冷凍サイクルで水を中温程度まで予熱した後、この温水をR134aを用いた冷凍サイクルによって、最終的な必要温度まで加熱する直列接続加熱システム(以下、従来2という)が考えられている。   In addition, a series-connected heating system (hereinafter referred to as “conventional 2”) in which water is preheated to a medium temperature in a refrigeration cycle using R410A and then heated to a final required temperature by a refrigeration cycle using R134a is considered. It has been.

特開2007−198693公報JP 2007-198693 A

しかしながら、上記従来1の2元冷凍サイクル構成では、高温出湯が可能であるが、中間熱交換器での効率ロスが大きいため、システム全体の効率が低くなるという課題がある。   However, in the conventional two-way refrigeration cycle configuration, high-temperature hot water can be discharged, but there is a problem that the efficiency of the entire system is lowered because the efficiency loss in the intermediate heat exchanger is large.

一方、従来2の直列接続加熱システムでは、中間熱交換器による非可逆的効率ロスはなく、前段側冷凍サイクルによる予熱温度が最適化設定されていれば、2元冷凍サイクルよりも効率は高くなるものの、後段側(R134a側)の冷凍サイクルの入水温度が高いため、2元サイクルよりも出湯可能な温度は低くなる。   On the other hand, in the conventional series-connected heating system, there is no irreversible efficiency loss due to the intermediate heat exchanger, and the efficiency is higher than that of the two-way refrigeration cycle if the preheating temperature by the pre-stage side refrigeration cycle is optimized. However, since the incoming water temperature of the refrigeration cycle on the rear stage side (R134a side) is high, the temperature at which the hot water can be discharged is lower than in the dual cycle.

ところで、近年、GWP(地球温暖化係数)が一桁である不飽和炭素を持つHFC(ハイドロフルオロカーボン)冷媒が開発され、カーエアコンや定置式エアコンに使用するための提案が行われている。このHFC冷媒は、R134aの代替として開発されたものがあるが、圧縮機の吐出温度が低いという特徴をもっており、本発明者がヒートポンプ加温システムへの利用を検討したところ、R134aよりも高温出湯が可能で100℃近い温水を得ることも可能であるという新たな知見を得た。   By the way, in recent years, HFC (hydrofluorocarbon) refrigerant having unsaturated carbon having a GWP (global warming potential) of one digit has been developed, and proposals for use in car air conditioners and stationary air conditioners have been made. Although this HFC refrigerant has been developed as an alternative to R134a, it has a feature that the discharge temperature of the compressor is low, and when the present inventor examined its use in a heat pump heating system, hot water discharge hotter than R134a. And obtained new knowledge that it is possible to obtain hot water close to 100 ° C.

本発明が解決しようとする課題は、このHFC冷媒の特徴を利用して、必要湯量を確保しつつ、高温の出湯が可能で、高効率な加温システムを提供することにある。   The problem to be solved by the present invention is to provide a high-efficiency heating system capable of high-temperature hot water discharge while ensuring the necessary amount of hot water using the characteristics of the HFC refrigerant.

本実施形態の加温システムは、水と冷媒とを熱交換するための第1の水−冷媒熱交換器を備え冷媒として不飽和炭素を持つHFC冷媒を使用した第1の冷凍サイクルと、第2の水−冷媒熱交換器を備え冷媒として不飽和炭素を持たないHFC冷媒および自然冷媒のいずれかから選ばれた冷媒を使用した第2の冷凍サイクルと、上記第1及び第2の水−冷媒熱交換器の水熱交換管に水を流通させる水配管とを備えている。   The heating system of the present embodiment includes a first refrigeration cycle that includes a first water-refrigerant heat exchanger for exchanging heat between water and a refrigerant, and uses an HFC refrigerant having unsaturated carbon as a refrigerant. A second refrigeration cycle using a refrigerant selected from any one of an HFC refrigerant and a natural refrigerant having no water and an unsaturated carbon as a refrigerant, and the first and second water- And a water pipe for circulating water through the water heat exchange pipe of the refrigerant heat exchanger.

また、本実施形態は、第1の水−冷媒熱交換器と第2の水−冷媒熱交換器を上記水配管に並列に接続し、第1の水−冷媒熱交換器および第2の水−冷媒熱交換器でそれぞれ水を加熱し、第1の水−冷媒熱交換器および第2の水−冷媒熱交換器から送出された水を合流させて利用側に供給する。   In the present embodiment, the first water-refrigerant heat exchanger and the second water-refrigerant heat exchanger are connected in parallel to the water pipe, and the first water-refrigerant heat exchanger and the second water are connected. -Water is each heated with a refrigerant | coolant heat exchanger, the water sent from the 1st water-refrigerant heat exchanger and the 2nd water-refrigerant heat exchanger is merged, and it supplies to a utilization side.

第1の実施形態に係る加温システムのシステム構成図。The system block diagram of the heating system which concerns on 1st Embodiment. 図1で示す第1の実施形態の効果を示すグラフ。The graph which shows the effect of 1st Embodiment shown in FIG. 第2の実施形態に係る加温システムのシステム構成図。The system block diagram of the heating system which concerns on 2nd Embodiment.

以下、本実施形態を図面に基づいて説明する。なお、複数の図面中、同一または相当部分には同一符号を付している。   Hereinafter, the present embodiment will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in several drawing.

(第1の実施形態)
図1は、第1の実施形態に係る加温システムのシステム構成図である。この図1に示すように、加温システム1は、ヒートポンプ式加温システムであり、利用側の一例である貯湯タンク2の水配管3に、第1の冷凍サイクル4の第1の水−冷媒熱交換器4aと、第2の冷凍サイクル5の第2の水−冷媒熱交換器5aを並列に接続している。
(First embodiment)
FIG. 1 is a system configuration diagram of a heating system according to the first embodiment. As shown in FIG. 1, the heating system 1 is a heat pump type heating system, and a first water-refrigerant of a first refrigeration cycle 4 is connected to a water pipe 3 of a hot water storage tank 2 which is an example of the use side. The heat exchanger 4a and the second water-refrigerant heat exchanger 5a of the second refrigeration cycle 5 are connected in parallel.

貯湯タンク2は第1,第2の冷凍サイクル4,5により加熱された温水を貯蔵する所要容量のタンクであり、温水入口INと温水出口OUTとを連結して水ないし温水を循環させる水配管3を具備している。   The hot water storage tank 2 is a tank having a required capacity for storing hot water heated by the first and second refrigeration cycles 4 and 5, and a water pipe for circulating water or hot water by connecting the hot water inlet IN and the hot water outlet OUT. 3 is provided.

水配管3は、貯湯タンク2からの温水を、第1の水−冷媒熱交換器4aの図示しない水熱交換管に送水する第1の水分岐管3aと、この第1の水分岐管3aに並設に接続されて、第2の水−冷媒熱交換器5aの図示しない水熱交換管に送水する第2の水分岐管3bを有する。   The water pipe 3 includes a first water branch pipe 3a for sending hot water from the hot water storage tank 2 to a water heat exchange pipe (not shown) of the first water-refrigerant heat exchanger 4a, and the first water branch pipe 3a. And a second water branch pipe 3b that feeds water to a water heat exchange pipe (not shown) of the second water-refrigerant heat exchanger 5a.

これら第1,第2の水分岐管3a,3bには、第1,第2の流量調節弁6,7をそれぞれ介装している。さらに、第1,第2の水分岐管3a,3bは、その温水出口側同士の連結部に温水混合部Mを形成している。また、水配管3は、その途中に、送水ポンプ8を介装しており、貯湯タンク2からの温水を第1,第2の水−冷媒熱交換器4a,5aの水熱交換管に送水する。   These first and second water branch pipes 3a and 3b are respectively provided with first and second flow control valves 6 and 7, respectively. Furthermore, the 1st, 2nd water branch pipe 3a, 3b forms the warm water mixing part M in the connection part of the warm water exit side. In addition, the water pipe 3 is provided with a water supply pump 8 in the middle thereof, and the hot water from the hot water storage tank 2 is supplied to the water heat exchange pipes of the first and second water-refrigerant heat exchangers 4a and 5a. To do.

第1の冷凍サイクル4は、第1の圧縮機4bに、第1の四方弁4c、第1の水−冷媒熱交換器4aの図示しない冷媒熱交換管、第1の膨張弁4dおよび例えば空冷式の第1の室外熱交換器4eを第1の冷媒配管4fにより接続し、不飽和炭素を持つHFC(ハイドロフルオロカーボン)冷媒を循環させる冷凍サイクルを構成している。   The first refrigeration cycle 4 includes a first compressor 4b, a first four-way valve 4c, a refrigerant heat exchange pipe (not shown) of the first water-refrigerant heat exchanger 4a, a first expansion valve 4d, and air cooling, for example. A first outdoor heat exchanger 4e of the type is connected by a first refrigerant pipe 4f to constitute a refrigeration cycle in which an HFC (hydrofluorocarbon) refrigerant having unsaturated carbon is circulated.

不飽和炭素を持つHFC冷媒としては、例えばHFO1234yf、HFO1234ze等があり、後述する不飽和炭素を持たないHFC冷媒よりも同一飽和温度における圧力が低い低圧冷媒である。本実施形態では、不飽和炭素を持つHFC冷媒として、HFO1234yfを使用している。   Examples of HFC refrigerants having unsaturated carbon include HFO1234yf and HFO1234ze, which are low-pressure refrigerants having a lower pressure at the same saturation temperature than HFC refrigerants having no unsaturated carbon, which will be described later. In this embodiment, HFO1234yf is used as the HFC refrigerant having unsaturated carbon.

このために、第1の冷凍サイクル4は、例えば蒸発温度が−20℃にて、100℃の高温出湯が可能である。   For this reason, the first refrigeration cycle 4 is capable of hot hot water at 100 ° C., for example, at an evaporation temperature of −20 ° C.

一方、第2の冷凍サイクル5は、第2の圧縮機5b、第2の四方弁5c、第2の水−冷媒熱交換器5aの図示しない冷媒熱交換管、第2の膨張弁5dおよび第2の室外熱交換器5eを、第2の冷媒配管5fにより接続して、不飽和炭素を持たないHFC冷媒を循環させる冷凍サイクルを構成している。本実施形態では、不飽和炭素を持たないHFC冷媒として、R410Aを使用している。このために、第2の冷凍サイクル5は、中温(例えば60℃〜70℃)の温水の出湯を高効率で行うことができる。   On the other hand, the second refrigeration cycle 5 includes a second compressor 5b, a second four-way valve 5c, a refrigerant heat exchange pipe (not shown) of the second water-refrigerant heat exchanger 5a, a second expansion valve 5d, and a second The two outdoor heat exchangers 5e are connected by a second refrigerant pipe 5f to constitute a refrigeration cycle that circulates an HFC refrigerant having no unsaturated carbon. In this embodiment, R410A is used as an HFC refrigerant that does not have unsaturated carbon. For this reason, the second refrigeration cycle 5 can perform hot water extraction at an intermediate temperature (for example, 60 ° C. to 70 ° C.) with high efficiency.

さらに、第1,第2の圧縮機4b,5bの運転周波数と、第1,第2の流量調節弁6,7の開度は、温水制御手段Sによって制御され、第1,第2の圧縮機4b,5bの運転周波数と、第1,第2の流量調節弁6,7の開度によって、第1及び第2の水−冷媒熱交換器4a,5aから送出される温水の温度と流量が制御されるようになっている。   Further, the operating frequency of the first and second compressors 4b and 5b and the opening degree of the first and second flow rate regulating valves 6 and 7 are controlled by the hot water control means S, and the first and second compressions are performed. The temperature and flow rate of hot water sent from the first and second water-refrigerant heat exchangers 4a and 5a depending on the operating frequency of the machines 4b and 5b and the opening degree of the first and second flow rate control valves 6 and 7. Is to be controlled.

次に、この加温システム1の作用を説明する。   Next, the operation of the heating system 1 will be described.

第1,第2の冷凍サイクル4,5と、送水ポンプ8が運転されると、貯湯タンク2内の湯水が送水ポンプ8により図5中下部の温水出口OUTから水配管3へ汲み出され、さらに、第1,第2の流量調節弁6,7の各弁開度比に応じた流量により、第1,第2の冷凍サイクル4,5の第1,第2の水分岐管3a,3bへ分配される。   When the first and second refrigeration cycles 4 and 5 and the water pump 8 are operated, the hot water in the hot water storage tank 2 is pumped from the hot water outlet OUT at the lower part of FIG. Further, the first and second water branch pipes 3a and 3b of the first and second refrigeration cycles 4 and 5 are flowed according to the valve opening ratios of the first and second flow control valves 6 and 7, respectively. Distributed to.

この第1の冷凍サイクル4側の第1の水−冷媒熱交換器4aの水熱交換管内を通水する温水は、その冷媒熱交換管内を流れる冷媒により、例えば90℃に加熱されて、温水混合部Mへ流入する。   The hot water flowing through the water heat exchange pipe of the first water-refrigerant heat exchanger 4a on the first refrigeration cycle 4 side is heated to, for example, 90 ° C. by the refrigerant flowing through the refrigerant heat exchange pipe, It flows into the mixing part M.

一方、第2の冷凍サイクル5の第2の水−冷媒熱交換器5aの水熱交換管内を通水する温水は、その冷媒熱交換管内を流れる冷媒により例えば70℃の中湯に加熱されて温水混合部Mに流入する。   On the other hand, the hot water passing through the water heat exchange pipe of the second water-refrigerant heat exchanger 5a of the second refrigeration cycle 5 is heated to, for example, 70 ° C. hot water by the refrigerant flowing through the refrigerant heat exchange pipe. It flows into the warm water mixing part M.

したがって、この温水混合部Mでは、第1の冷凍サイクル4からの90℃の温水と、第2の冷凍サイクル5からの70℃の温水とが混合されるので、これら両温水の流量が等量である場合には、80℃となって、貯湯タンク2内に送水され、貯えられる。貯湯タンク2内の所定温度に加熱された温水は図示省略の給湯端末に給湯される。   Therefore, in this warm water mixing section M, the 90 ° C. warm water from the first refrigeration cycle 4 and the 70 ° C. warm water from the second refrigeration cycle 5 are mixed, so that the flow rates of both warm water are equal. In this case, the temperature becomes 80 ° C., and the water is supplied into the hot water storage tank 2 and stored. Hot water heated to a predetermined temperature in the hot water storage tank 2 is supplied to a hot water supply terminal (not shown).

第1,第2の冷凍サイクル4,5の出湯設定温度は、第1,第2の圧縮機4b,5bの運転周波数と、第1,第2の流量調節弁6,7の開度により制御される温水の流量により、適宜制御される。   The hot water set temperature of the first and second refrigeration cycles 4 and 5 is controlled by the operating frequency of the first and second compressors 4b and 5b and the opening degree of the first and second flow control valves 6 and 7. It is appropriately controlled according to the flow rate of the hot water.

したがって、この加温システム1によれば、高温出湯が可能な、第1の冷凍サイクル4側の送水温水温度を高く設定する一方、出湯可能な温度が低い第2の冷凍サイクル5側の送出温水温度を低く設定して送出温水流量を増大させることにより、高温出湯時でも、利用側から要求される出湯要求量を確保することができる。   Therefore, according to this warming system 1, while setting the hot water supply hot water temperature by the side of the 1st refrigeration cycle 4 in which high temperature hot water discharge is possible, the hot water supply by the side of the 2nd freezing cycle 5 where the temperature which can be discharged hot water is low is set. By setting the temperature low and increasing the delivery hot water flow rate, it is possible to ensure the required amount of hot water required from the use side even at the time of high temperature hot water.

図2は、このように構成された本実施形態に係る加温システム1のCOP(成績係数)の一例を上記従来例1,2等と対比して示すグラフである。すなわち、図2は、蒸発器として作用する第1,第2の室外熱交換器4e,5eの蒸発温度−20℃、外部から貯湯タンク2へ給水される給水の温度10℃、貯湯タンク2から出湯される出湯温度80℃を運転条件とした場合に、本実施形態の加温システム1と従来例1,2等のCOP(成績係数)を縦軸に示し、システム全体の給湯負荷に対する低圧冷媒側の冷凍サイクルの負荷の割合を横軸に示している。したがって、この横軸では全体の給湯負荷は「1」である。   FIG. 2 is a graph showing an example of COP (coefficient of performance) of the heating system 1 according to the present embodiment configured as described above in comparison with the above-described conventional examples 1 and 2 and the like. That is, FIG. 2 shows that the evaporation temperature of the first and second outdoor heat exchangers 4e and 5e acting as an evaporator is −20 ° C., the temperature of water supplied to the hot water storage tank 2 from the outside is 10 ° C. When operating temperature is 80 ° C., the COP (coefficient of performance) of the heating system 1 of this embodiment and the conventional examples 1 and 2 is shown on the vertical axis, and the low-pressure refrigerant with respect to the hot water supply load of the entire system The horizontal axis shows the load ratio of the side refrigeration cycle. Therefore, the entire hot water supply load is “1” on the horizontal axis.

上記従来例1は、高温側冷凍サイクルにR134aを使用し、低温側冷凍サイクルにR410Aを用いる2元冷凍サイクル構成であるため、給湯負荷に対する低圧冷媒側の冷凍サイクルの負荷割合と言う概念がなく図2中では、破線で示すようにCOP一定(例えば2.73)の線として描写している。   Since the conventional example 1 has a two-way refrigeration cycle configuration in which R134a is used for the high temperature side refrigeration cycle and R410A is used for the low temperature side refrigeration cycle, there is no concept of the load ratio of the refrigeration cycle on the low pressure refrigerant side to the hot water supply load. In FIG. 2, it is depicted as a COP constant (for example, 2.73) line as indicated by a broken line.

また、R410A側の冷凍サイクルで水を中温程度まで予熱した後、この温水をR134a側冷凍サイクルを用いて最終的な必要温度まで加熱する直列接続加熱システムである上記従来例2は、同一飽和温度における圧力がR410Aよりも低い低圧冷媒のR134aを使用する高温側の冷凍サイクルの負荷割合を、例えば約0.43から約0.71まで漸次増加させて行くと、COPも約2.75から約2.85まで漸次上昇する。   In addition, the conventional example 2 which is a serial connection heating system in which water is preheated to about a medium temperature in the R410A side refrigeration cycle and then heated to a final required temperature using the R134a side refrigeration cycle has the same saturation temperature. When the load ratio of the refrigeration cycle on the high temperature side using R134a, which is a low-pressure refrigerant whose pressure at R4 is lower than R410A, is gradually increased, for example, from about 0.43 to about 0.71, the COP is also increased from about 2.75 to about Gradually rises to 2.85.

さらに、図2中の「従来構成」は、本実施形態と同じ2種類の冷媒、例えば低圧冷媒のHFO1234yfとR410Aを使用するが、これら冷媒を使用する2つの冷凍サイクルの各水−冷媒熱交換器を水回路に直列に接続する上記従来例2と同じ直列回路に構成する場合を示しており、この場合、低圧冷媒(HFO1234yf)側の冷凍サイクルの負荷割合を約0.43から約0.71まで漸次増加させた場合には、COPは、約2.66から約2.85まで漸次上昇する。   Further, the “conventional configuration” in FIG. 2 uses the same two types of refrigerants as in the present embodiment, for example, the low-pressure refrigerants HFO1234yf and R410A, and each water-refrigerant heat exchange of the two refrigeration cycles using these refrigerants. In this case, the load ratio of the refrigeration cycle on the low-pressure refrigerant (HFO1234yf) side is about 0.43 to about 0.00. When gradually increased to 71, the COP gradually increases from about 2.66 to about 2.85.

これに対し本実施形態によれば、低圧冷媒側の負荷割合が約0.43から約0.71の全領域でCOPは2.9以上になり、従来例1,2や「従来構成」よりも高いCOPを示している。   On the other hand, according to the present embodiment, the COP is 2.9 or more in the entire region where the load ratio on the low-pressure refrigerant side is about 0.43 to about 0.71, and from the conventional examples 1 and 2 and the “conventional configuration” Also shows a high COP.

すなわち、不飽和炭素を持つHFC冷媒を用いる第1の冷凍サイクル4では、この冷媒の密度が小さいために、温水の送出量の増大を図る場合には、システムの大型化を招く反面、送出温水温度の高温化が容易であるので、送出温水温度を第2の冷凍サイクル5の送出温水温度よりも高い、例えば90℃に設定している。   That is, in the first refrigeration cycle 4 using the HFC refrigerant having unsaturated carbon, since the density of this refrigerant is small, when increasing the amount of hot water delivered, the system is increased in size, but the delivered hot water Since it is easy to increase the temperature, the delivery hot water temperature is set higher than the delivery hot water temperature of the second refrigeration cycle 5, for example, 90 ° C.

一方、不飽和炭素を持たないR410AやCO等の自然冷媒は密度が大きいために、システムの大型化を招かずに温水送出量の増大を図ることが容易である反面、送出温水温度については、第1の冷凍サイクル4のように高温化を図ることが容易ではない。 On the other hand, natural refrigerants such as R410A and CO 2 that do not have unsaturated carbon have a high density, so it is easy to increase the amount of hot water delivered without increasing the size of the system, but the temperature of the delivered hot water is about It is not easy to increase the temperature as in the first refrigeration cycle 4.

このために、第2の冷凍サイクル5では、送出温水温度を、第1の冷凍サイクル4の送出温水温度よりも低い中温(例えば60℃〜70℃)に止め、主に温水送出量の確保を図っている。   For this reason, in the second refrigeration cycle 5, the temperature of the hot water to be sent is stopped at an intermediate temperature (for example, 60 ° C. to 70 ° C.) lower than the temperature of the hot water to be sent in the first refrigeration cycle 4 to mainly secure the amount of hot water delivered. I am trying.

そして、このように第1,第2の冷凍サイクル4,5からそれぞれ送出される温度の異なる温水を温水混合部Mで混合することにより、利用側で要求される高温の温水が出湯可能であり、しかも、この高温出湯時においても、出湯要求量を確保することも可能であるとともに、図2から明らかなように、COP(成績係数)を高くすることができ、高効率化を図ることができる。   And by mixing the hot water with different temperatures sent from the first and second refrigeration cycles 4 and 5 in this way in the hot water mixing section M, hot water required at the use side can be discharged. In addition, it is possible to ensure the required amount of hot water at the time of high temperature hot water discharge, and as can be seen from FIG. 2, the COP (coefficient of performance) can be increased, and the efficiency can be improved. it can.

また、第1,第2の冷凍サイクル4,5では、その送出温水温度を相違させているので、蒸発温度や供給される水の温度によって冷媒の種類毎に定まる送出可能な温水温度の各上限以下に容易に適合させることが可能である。このために、加温システム1の不具合の発生を低減し、信頼性の向上を図ることができる。   In addition, since the first and second refrigeration cycles 4 and 5 have different delivery hot water temperatures, each upper limit of the sendable hot water temperature determined for each type of refrigerant depending on the evaporation temperature and the temperature of the supplied water. It can be easily adapted to: For this reason, generation | occurrence | production of the malfunction of the heating system 1 can be reduced and the improvement of reliability can be aimed at.

さらに、第1の冷凍サイクル4で使用する不飽和炭素を含むHFC冷媒は、有機材料等に悪影響を及ぼすことはないので、第1の圧縮機4bの構成部品に従来と同一材料を使用することができ、システムの低コスト化を図ることができる。   Furthermore, since the HFC refrigerant containing unsaturated carbon used in the first refrigeration cycle 4 does not adversely affect the organic material and the like, the same material as the conventional one should be used for the components of the first compressor 4b. Therefore, the cost of the system can be reduced.

(第2の実施形態)
第2の実施形態は、上記第1の実施形態に係る加温システム1から出湯される温水の温度を、利用側が要求する出湯温度Tに制御する制御方法である。以下、この制御方法を説明する。
(Second Embodiment)
The second embodiment is a control method for controlling the temperature of hot water discharged from the heating system 1 according to the first embodiment to a hot water temperature T requested by the user. Hereinafter, this control method will be described.

まず、利用側(貯湯タンク2)が要求する温水の流量(利用側要求温水流量)をW、同温度(利用側要求温水温度)をT、貯湯タンク2側から第1,第2の冷凍サイクル4,5へ供給される水である還水の温度をTinとすると、第1,第2の冷凍サイクル4,5の第1及び第2の水−冷媒熱交換器4a,5aから送出される温水の流量W1,W2と、第1及び第2の水−冷媒熱交換器4a,5aから送出される温水の温度T1,T2の間には、下記の数式が成立する。
[数1]
W=W1+W2 ……(1)
W(T−Tin)=W1(T1−Tin)+W2(T2−Tin) ……(2)
但し、T1>T2とする。
First, the flow rate of hot water required by the use side (hot water storage tank 2) (use side required hot water flow rate) is W, the same temperature (use side required hot water temperature) is T, and the first and second refrigeration cycles from the hot water storage tank 2 side. Assuming that the temperature of the return water, which is the water supplied to 4, 5, is Tin, it is sent from the first and second water-refrigerant heat exchangers 4a, 5a of the first and second refrigeration cycles 4, 5. The following formula is established between the flow rates W1 and W2 of the hot water and the temperatures T1 and T2 of the hot water sent from the first and second water-refrigerant heat exchangers 4a and 5a.
[Equation 1]
W = W1 + W2 (1)
W (T-Tin) = W1 (T1-Tin) + W2 (T2-Tin) (2)
However, T1> T2.

また、以下の第1の温度設定値A1は、第2の冷凍サイクル5が効率よく稼動できる温度を基準に定め、第2の温度設定値A2は、第2の冷凍サイクル5が出湯できる最高温度を基準に定める。   The following first temperature set value A1 is determined based on the temperature at which the second refrigeration cycle 5 can be operated efficiently, and the second temperature set value A2 is the maximum temperature at which the second refrigeration cycle 5 can discharge hot water. Based on the above.

(1)そこで、利用側が要求する温水温度Tが第1の温度設定値A1よりも低い場合(T<A1)、温水制御手段Sは、第2の水−冷媒熱交換器5aの温水流量W2の方が第1の水−冷媒熱交換器4aの温水流量W1よりも多く(W2>W1)なるように第1,第2の流量調節弁6,7の開度を制御する。さらに、これら第1及び第2の水−冷媒熱交換器4a,5aからの温水の温水混合部Mでの混合時の温水温度が利用側の要求する温水温度(利用側要求温水温度)Tとなるように、上記数式(1)と(2)から第1及び第2の水−冷媒熱交換器4a,5aの送出温水温度T1,T2を求める。
そして、第1及び第2の水−冷媒熱交換器4a,5aから送出される温水温度がT1,T2になるように、第1,第2の圧縮機4b,5bの運転周波数を制御する。
(1) Therefore, when the hot water temperature T requested by the user is lower than the first temperature set value A1 (T <A1), the hot water control means S uses the hot water flow rate W2 of the second water-refrigerant heat exchanger 5a. The opening degree of the first and second flow rate control valves 6 and 7 is controlled so that the flow rate is larger than the warm water flow rate W1 of the first water-refrigerant heat exchanger 4a (W2> W1). Furthermore, the hot water temperature at the time of mixing in the hot water mixing unit M from the first and second water-refrigerant heat exchangers 4a and 5a is the hot water temperature required by the user (user-side required hot water temperature) T Thus, the warm water temperatures T1 and T2 of the first and second water-refrigerant heat exchangers 4a and 5a are obtained from the above formulas (1) and (2).
And the operating frequency of the 1st, 2nd compressor 4b, 5b is controlled so that the warm water temperature sent from the 1st and 2nd water-refrigerant heat exchangers 4a, 5a may become T1, T2.

(2)利用側が要求する温水温度Tが第1の温度設定値A1よりも高く、かつ第2の温度設定値A2よりも低い場合(A1<T<A2)、温水制御手段Sは、第2の水−冷媒熱交換器5aの温水流量W2を第1の水−冷媒熱交換器4aの温水流量W1と等しく(W2=W1)なるように第1,第2の流量調節弁6,7の開度を制御する。さらに、これら第1及び第2の水−冷媒熱交換器4a,5aからの温水の温水混合部Mでの混合時の温水温度が利用側要求温水温度Tになるように、上記数式(1)と(2)から第1,第2の冷凍サイクル4,5の送出温度T1,T2を求める。
そして、第1及び第2の水−冷媒熱交換器4a,5aから送出される温水温度がT1,T2になるように、第1,第2の圧縮機4b,5bの運転周波数を制御する。
(2) When the hot water temperature T requested by the user side is higher than the first temperature set value A1 and lower than the second temperature set value A2 (A1 <T <A2), the hot water control means S Of the first and second flow rate control valves 6 and 7 so that the warm water flow rate W2 of the water-refrigerant heat exchanger 5a is equal to the warm water flow rate W1 of the first water-refrigerant heat exchanger 4a (W2 = W1). Control the opening. Furthermore, the above formula (1) is set so that the hot water temperature at the time of mixing in the hot water mixing section M from the first and second water-refrigerant heat exchangers 4a and 5a becomes the use-side required hot water temperature T. And (2), the delivery temperatures T1 and T2 of the first and second refrigeration cycles 4 and 5 are obtained.
And the operating frequency of the 1st, 2nd compressor 4b, 5b is controlled so that the warm water temperature sent from the 1st and 2nd water-refrigerant heat exchangers 4a, 5a may become T1, T2.

(3)利用側が要求する温水温度Tが第2の温度設定値A2以上の場合(T>A2)、温水制御手段Sは、第2の水−冷媒熱交換器5aの温水流量W2を第1の水−冷媒熱交換器4aの温水流量W1よりも少なく(W2<W1)になるように第1,第2の流量調節弁6,7の開度を制御する。さらに、第1及び第2の水−冷媒熱交換器4a,5aからの温水の湯水混合部Mでの混合時の温水温度が利用側要求温水温度Tになるように、上記数式(1)と(2)から第1及び第2の水−冷媒熱交換器4a,5aの送出温度T1,T2を求める。
そして、第1及び第2の水−冷媒熱交換器4a,5aから送出される温水温度がT1,T2になるように、第1,第2の圧縮機4b,5bの運転周波数を制御する。
(3) When the hot water temperature T requested by the user is equal to or higher than the second temperature set value A2 (T> A2), the hot water control means S sets the hot water flow rate W2 of the second water-refrigerant heat exchanger 5a to the first. The opening degree of the first and second flow rate regulating valves 6 and 7 is controlled so as to be smaller than the warm water flow rate W1 of the water-refrigerant heat exchanger 4a (W2 <W1). Furthermore, the above formula (1) and the formula (1) are set so that the hot water temperature at the time of mixing in the hot water / hot water mixing section M from the first and second water-refrigerant heat exchangers 4a and 5a becomes the user-side required hot water temperature T. From (2), the delivery temperatures T1, T2 of the first and second water-refrigerant heat exchangers 4a, 5a are obtained.
And the operating frequency of the 1st, 2nd compressor 4b, 5b is controlled so that the warm water temperature sent from the 1st and 2nd water-refrigerant heat exchangers 4a, 5a may become T1, T2.

この第2の実施形態においても、上記第1の実施形態と同一の効果が得られるとともに、より高効率で、利用側の要求に応じた温度の温水を容易に供給可能である。   Also in the second embodiment, the same effect as that of the first embodiment can be obtained, and hot water having a temperature according to a request on the use side can be easily supplied with higher efficiency.

(第3の実施形態)
第3の実施形態は、上記第1の実施形態に係る加温システム1において、保温運転を行う場合の制御方法である。なお、以下において、第1の温度設定値B1は、第2の冷凍サイクル5が効率よく稼動できる温度を基準に定め、第2の温度設定値B2は、第2の冷凍サイクル5が稼動可能な還水温度を基準に定める。
(Third embodiment)
3rd Embodiment is a control method in the case of performing heat insulation operation in the heating system 1 which concerns on the said 1st Embodiment. In the following, the first temperature set value B1 is determined based on the temperature at which the second refrigeration cycle 5 can be operated efficiently, and the second temperature set value B2 is set so that the second refrigeration cycle 5 can be operated. Determined based on return water temperature.

すなわち、利用側である貯湯タンク2の出湯の消費が殆ど無く、貯湯タンク2の入口IN側と出口OUT側の温水温度差が小さい(例えば20℃〜30℃)保温運転を行う場合は、温水制御手段Sにより第1及び第2の水−冷媒熱交換器4a,5aに供給される水の温度である還水温度TRに基づいて次のように制御する。   That is, there is almost no consumption of the hot water of the hot water storage tank 2 on the use side, and the warm water temperature difference between the inlet IN side and the outlet OUT side of the hot water storage tank 2 is small (for example, 20 ° C. to 30 ° C.) Based on the return water temperature TR which is the temperature of the water supplied to the first and second water-refrigerant heat exchangers 4a and 5a by the control means S, control is performed as follows.

(1)利用側からの還水温度TRが第1の温度設定値B1よりも低い場合(TR<B1)は、第2の水−冷媒熱交換器5aの温水流量W2を第1の水−冷媒熱交換器4aの温水流量W1よりも多く(W2>W1)になるように第1,第2の流量調節弁6,7の開度を制御する。さらに、第1,第2の水−冷媒熱交換器4a,5aからの温水の温水混合部Mでの混合時の温水温度が利用側要求温水温度Tになるように、上記数式(1)と(2)から第1,第2の水−冷媒熱交換器4a,5aの温水温度T1,T2を求める。
そして、第1,第2の水−冷媒熱交換器4a,5aから送出される温水温度がT1,T2になるように、第1,第2の圧縮機4b,5bの運転周波数を制御する。
(1) When the return water temperature TR from the use side is lower than the first temperature set value B1 (TR <B1), the hot water flow rate W2 of the second water-refrigerant heat exchanger 5a is set to the first water- The opening degree of the first and second flow rate adjusting valves 6 and 7 is controlled so as to be larger than the warm water flow rate W1 of the refrigerant heat exchanger 4a (W2> W1). Furthermore, the above formula (1) and the formula (1) are set so that the hot water temperature at the time of mixing in the hot water mixing unit M from the first and second water-refrigerant heat exchangers 4a and 5a becomes the use-side required hot water temperature T. The hot water temperatures T1, T2 of the first and second water-refrigerant heat exchangers 4a, 5a are obtained from (2).
And the operating frequency of the 1st, 2nd compressor 4b, 5b is controlled so that the warm water temperature sent from the 1st, 2nd water-refrigerant heat exchanger 4a, 5a becomes T1, T2.

(2)利用側からの還水温度TRが第1の温度設定値B1よりも高く、かつ第2の温度設定値B2よりも低い場合(B1<TR<B2)は、第2の水−冷媒熱交換器5aの温水流量W2を第1の水−冷媒熱交換器4aの温水流量W1と等しく(W2=W1)になるように第1,第2の流量調節弁6,7の開度を制御する。さらに、第1,第2の水−冷媒熱交換器4a,5aからの温水の温水混合部Mでの混合時の温水温度が利用側要求温水温度Tになるように上記数式(1)と(2)から第1,第2の水−冷媒熱交換器4a,5aの温水温度T1,T2を求める。
そして、第1,第2の水−冷媒熱交換器4a,5aから送出される温水温度がT1,T2になるように、第1,第2の圧縮機4b,5bの運転周波数を制御する。
(2) When the return water temperature TR from the use side is higher than the first temperature set value B1 and lower than the second temperature set value B2 (B1 <TR <B2), the second water-refrigerant The opening degree of the first and second flow rate control valves 6 and 7 is set so that the warm water flow rate W2 of the heat exchanger 5a is equal to the warm water flow rate W1 of the first water-refrigerant heat exchanger 4a (W2 = W1). Control. Furthermore, the above formulas (1) and (1) are set so that the hot water temperature at the time of mixing in the hot water mixing section M from the first and second water-refrigerant heat exchangers 4a and 5a becomes the user-side required hot water temperature T. The hot water temperatures T1, T2 of the first and second water-refrigerant heat exchangers 4a, 5a are obtained from 2).
And the operating frequency of the 1st, 2nd compressor 4b, 5b is controlled so that the warm water temperature sent from the 1st, 2nd water-refrigerant heat exchanger 4a, 5a becomes T1, T2.

(3)利用側からの還水温度TRが第2の温度設定値B2以上の場合(TR>B2)は、第2の水−冷媒熱交換器5aの温水流量W2をゼロとし、第1の水−冷媒熱交換器4aの温水流量W1を利用側要求温水流量W(W1=W)になるように第1,第2の流量調節弁6,7の開度を制御する。さらに、第1の水−冷媒熱交換器4aのみにより温水混合部Mでの混合温水温度が利用側要求温水温度Tになるように第1の圧縮機4bの運転周波数を制御する。なお、第1の水−冷媒熱交換器4aの温水温度T1は、第2の水−冷媒熱交換器5aの温水温度T2よりも高く(T1>T2)設定されている点は上述した通りである。   (3) When the return water temperature TR from the use side is equal to or higher than the second temperature set value B2 (TR> B2), the hot water flow rate W2 of the second water-refrigerant heat exchanger 5a is set to zero, The opening degree of the first and second flow rate control valves 6 and 7 is controlled so that the hot water flow rate W1 of the water-refrigerant heat exchanger 4a becomes the use-side required hot water flow rate W (W1 = W). Furthermore, the operating frequency of the first compressor 4b is controlled by only the first water-refrigerant heat exchanger 4a so that the mixed hot water temperature in the hot water mixing section M becomes the use-side required hot water temperature T. The hot water temperature T1 of the first water-refrigerant heat exchanger 4a is set to be higher than the hot water temperature T2 of the second water-refrigerant heat exchanger 5a (T1> T2) as described above. is there.

この制御方法により、第1の実施形態の効果が得られるとともに、幅広い温水温度に対応した高効率の保温運転が可能である。   With this control method, the effects of the first embodiment can be obtained, and a highly efficient heat retaining operation corresponding to a wide range of hot water temperatures is possible.

(第4の実施形態)
第4の実施形態に係る加温システム1Aは、上記第1の実施形態に係る第1の冷凍サイクル4と第2の冷凍サイクル5を、第1,第2の筐体11,12内にそれぞれ収容して第1,第2の冷凍サイクルユニット13,14にそれぞれ構成した点に主な特徴を有する。
(Fourth embodiment)
The heating system 1A according to the fourth embodiment includes the first refrigeration cycle 4 and the second refrigeration cycle 5 according to the first embodiment in the first and second casings 11 and 12, respectively. The main feature is that the first and second refrigeration cycle units 13 and 14 are housed and configured.

そして、加温システム1Aは、水配管3に介装された送水ポンプ8を削除する一方、第1,第2の冷凍サイクルユニット13,14の第1,第2の水分岐管3a,3bの各途中に、第1,第2の流量調節弁6,7に代えて第1,第2の送水ポンプ15,16をそれぞれ介装している。   The heating system 1A deletes the water pump 8 interposed in the water pipe 3, while the first and second water branch pipes 3a and 3b of the first and second refrigeration cycle units 13 and 14 are removed. In the middle of each, instead of the first and second flow rate regulating valves 6, 7, first and second water pumps 15, 16 are interposed, respectively.

さらに、加温システム1Aは、第1の冷凍サイクルユニット13の第1の水分岐管3aの入口側および出口側と、貯湯タンク2の水配管3の出口側および入口側とをそれぞれ着脱可能に接続する一対の第1のジョイント17a,17bを配設している。これら第1のジョイント17a,17bには図示省略の開閉弁を設けており、第1の水分岐管3aの管路を適宜開閉できる。   Furthermore, the heating system 1A can attach and detach the inlet side and the outlet side of the first water branch pipe 3a of the first refrigeration cycle unit 13 and the outlet side and the inlet side of the water pipe 3 of the hot water storage tank 2 respectively. A pair of first joints 17a and 17b to be connected is provided. The first joints 17a and 17b are provided with on-off valves (not shown), and the pipes of the first water branch pipes 3a can be appropriately opened and closed.

同じく、第2の冷凍サイクルユニット14の水分岐管3の入口側と出口側と、貯湯タンク2の水配管3の出口側と入口側とを、それぞれ着脱可能に接続する一対の第2のジョイント18a,18bを配設している。これら第2のジョイント18a,18bにも図示省略の開閉弁を設けており、第2の水分岐管3bの管路を適宜開閉できる。   Similarly, a pair of second joints detachably connect the inlet side and outlet side of the water branch pipe 3 of the second refrigeration cycle unit 14 and the outlet side and inlet side of the water pipe 3 of the hot water storage tank 2 respectively. 18a and 18b are provided. These second joints 18a and 18b are also provided with open / close valves (not shown) so that the pipes of the second water branch pipes 3b can be appropriately opened and closed.

したがって、この加温システム1Aによれば、第1の実施形態の効果が得られるとともに、不飽和炭素を含むHFC冷媒採用の第1の冷凍サイクルユニット13の組合せ台数と、不飽和炭素を含まない第2の冷凍サイクルユニット14の組合せ台数を自由に設定することができ、給湯システムを導入する業態に合せて最適なシステムを組むことができる。例えば、高温需要が多いところや寒冷地では、不飽和炭素を含むHFC冷媒の第1の冷凍サイクルユニット13の台数を多くし、温暖化地域では、不飽和炭素を含まないHFC冷媒使用の第2の冷凍サイクルユニット14の台数を多くすることが可能である。なお、各冷凍サイクルユニット13,14の運転については、集中リモコンにて制御可能に構成してもよい。   Therefore, according to this heating system 1A, the effects of the first embodiment can be obtained, the number of combined first refrigeration cycle units 13 employing an HFC refrigerant containing unsaturated carbon, and unsaturated carbon are not included. The number of combinations of the second refrigeration cycle units 14 can be freely set, and an optimum system can be assembled according to the business condition in which the hot water supply system is introduced. For example, the number of first refrigeration cycle units 13 of HFC refrigerant containing unsaturated carbon is increased in places where there is a high temperature demand or in cold regions, and the second use of HFC refrigerant containing no unsaturated carbon is used in warming areas. It is possible to increase the number of refrigeration cycle units 14. The operation of each refrigeration cycle unit 13, 14 may be configured to be controllable by a central remote controller.

また、上記実施形態では、第1,第2の水−冷媒熱交換器4a,5aを、水熱交換管を通水する温水と、冷媒熱交換管を流れる冷媒とにより熱交換するように構成した場合について説明したが、本発明はこれに限定されるものではなく、例えば熱交換しようとする水と冷媒の一方を、第1,第2の水−冷媒熱交換器4a,5aのシェルに通流させるシェルアンドチューブ型でもよい。さらに、貯湯タンク2に外部から水を補給する補給系を設けてもよい。   In the above embodiment, the first and second water-refrigerant heat exchangers 4a and 5a are configured to exchange heat with hot water that passes through the water heat exchange pipe and refrigerant that flows through the refrigerant heat exchange pipe. However, the present invention is not limited to this. For example, one of water and refrigerant to be heat exchanged is used as the shell of the first and second water-refrigerant heat exchangers 4a and 5a. A shell and tube type may be used. Furthermore, a replenishment system for replenishing water from the outside to the hot water storage tank 2 may be provided.

以上のように、各実施形態の加温システムは、利用側で要求される高温の温水が出湯可能であり、しかも、この高温出湯時においても、出湯要求量を確保することも可能であるとともに、COP(成績係数)を高くすることができ、高効率化を図ることができる。   As described above, the heating system according to each embodiment can discharge hot water at a high temperature required on the use side, and also can ensure the required amount of hot water discharge even at the time of high temperature hot water discharge. , COP (coefficient of performance) can be increased, and high efficiency can be achieved.

以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1,1A…加温システム、2…貯湯タンク(利用側)、3…水配管、4…第1の冷凍サイクル、4a…第1の水−冷媒熱交換器、5…第2の冷凍サイクル、5a…第2の水−冷媒熱交換器、11…第1の筐体、12…第2の筐体、13…第1の冷凍サイクルユニット、14…第2の冷凍サイクルユニット、17a,17b…第1のジョイント、18a,18b…第2のジョイント。   DESCRIPTION OF SYMBOLS 1,1A ... Heating system, 2 ... Hot water storage tank (use side), 3 ... Water piping, 4 ... 1st freezing cycle, 4a ... 1st water-refrigerant heat exchanger, 5 ... 2nd freezing cycle, 5a ... 2nd water-refrigerant heat exchanger, 11 ... 1st housing | casing, 12 ... 2nd housing | casing, 13 ... 1st refrigeration cycle unit, 14 ... 2nd refrigeration cycle unit, 17a, 17b ... 1st joint, 18a, 18b ... 2nd joint.

Claims (4)

水と冷媒とを熱交換するための第1の水−冷媒熱交換器を備え冷媒として不飽和炭素を持つHFC冷媒を使用した第1の冷凍サイクルと、
第2の水−冷媒熱交換器を備え冷媒として不飽和炭素を持たないHFC冷媒および自然冷媒のいずれかから選ばれた冷媒を使用した第2の冷凍サイクルと、上記第1及び第2の水−冷媒熱交換器の水熱交換管に水を流通させる水配管とを備え、
上記第1の水−冷媒熱交換器と第2の水−冷媒熱交換器を上記水配管に並列に接続し、
上記第1の水−冷媒熱交換器および第2の水−冷媒熱交換器でそれぞれ水を加熱し、
上記第1の水−冷媒熱交換器および第2の水−冷媒熱交換器から送出された水を合流させて利用側に供給することを特徴とする加温システム。
A first refrigeration cycle comprising a first water-refrigerant heat exchanger for exchanging heat between water and refrigerant and using an HFC refrigerant having unsaturated carbon as a refrigerant;
A second refrigeration cycle comprising a second water-refrigerant heat exchanger and a refrigerant selected from any one of an HFC refrigerant and a natural refrigerant having no unsaturated carbon as the refrigerant; and the first and second waters A water pipe for circulating water through the water heat exchange pipe of the refrigerant heat exchanger;
Connecting the first water-refrigerant heat exchanger and the second water-refrigerant heat exchanger in parallel to the water pipe;
Water is heated in each of the first water-refrigerant heat exchanger and the second water-refrigerant heat exchanger,
A heating system characterized in that the water sent from the first water-refrigerant heat exchanger and the second water-refrigerant heat exchanger are combined and supplied to the use side.
要求負荷に応じて上記第1,第2の水−冷媒熱交換器から送出される温水の温度と流量をそれぞれ制御する温水制御手段を備えたことを特徴とする請求項1記載の加温システム。 2. A heating system according to claim 1, further comprising hot water control means for controlling the temperature and flow rate of the hot water sent from the first and second water-refrigerant heat exchangers according to the required load. . 上記第1,第2の水−冷媒熱交換器へ供給される水の温度に応じて前記第1,第2の水−冷媒熱交換器から利用側へ送出される温水の温度と流量をそれぞれ制御する温水制御手段を備えたことを特徴とする請求項1記載の加温システム。 The temperature and flow rate of hot water sent from the first and second water-refrigerant heat exchangers to the user side according to the temperature of water supplied to the first and second water-refrigerant heat exchangers, respectively. The heating system according to claim 1, further comprising a hot water control means for controlling. 上記第1の冷凍サイクルを第1の筐体に収容して第1の冷凍サイクルユニットを構成するとともに,第2の冷凍サイクルを第2の筐体に収容して第2の冷凍サイクルユニットを構成し、これら第1,第2の冷凍サイクルユニットの第1及び第2の水−冷媒熱交換器の水熱交換管に水配管をそれぞれ連結可能に構成したことを特徴とする請求項1ないし3のいずれか1項に記載の加温システム。 The first refrigeration cycle is accommodated in a first casing to constitute a first refrigeration cycle unit, and the second refrigeration cycle is accommodated in a second casing to constitute a second refrigeration cycle unit. The water pipes can be connected to the water heat exchange pipes of the first and second water-refrigerant heat exchangers of the first and second refrigeration cycle units, respectively. The heating system according to any one of the above.
JP2011122565A 2011-05-31 2011-05-31 Heating system Withdrawn JP2014167352A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011122565A JP2014167352A (en) 2011-05-31 2011-05-31 Heating system
PCT/JP2012/063754 WO2012165425A1 (en) 2011-05-31 2012-05-29 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122565A JP2014167352A (en) 2011-05-31 2011-05-31 Heating system

Publications (1)

Publication Number Publication Date
JP2014167352A true JP2014167352A (en) 2014-09-11

Family

ID=47259279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122565A Withdrawn JP2014167352A (en) 2011-05-31 2011-05-31 Heating system

Country Status (2)

Country Link
JP (1) JP2014167352A (en)
WO (1) WO2012165425A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076061B2 (en) * 2006-02-06 2012-11-21 東芝キヤリア株式会社 Hot water system
JP4753791B2 (en) * 2006-05-12 2011-08-24 シャープ株式会社 Heat pump water heater
JP5132813B2 (en) * 2009-03-30 2013-01-30 三菱電機株式会社 Fluid heating system, fluid heating method, fluid heating control system, control apparatus, and control method
JP2011021851A (en) * 2009-07-17 2011-02-03 Toshiba Carrier Corp Refrigerating cycle

Also Published As

Publication number Publication date
WO2012165425A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
EP2246649B1 (en) Refrigerating apparatus
KR101366986B1 (en) Heat pump system
EP2182296A2 (en) District heating arrangement and method
JP5761857B2 (en) Dual refrigeration cycle equipment
US20210381715A1 (en) Controlling of a thermal energy distribution system
JP2007232282A (en) Heat pump type water heater
JP2016035045A (en) Tetra-n-butylammonium bromide aqueous solution
JP5681787B2 (en) Two-way refrigeration cycle equipment
JP2007178091A (en) Heat pump water heater
JP2010043798A (en) Heat pump type hot water supply device
JP4413188B2 (en) Heat pump water heater
JP2003240369A (en) Multi-functional hot-water supply unit
JP6643627B2 (en) Heat generation unit
JP2008256281A (en) Heat pump type water heater
JPWO2010109620A1 (en) Load-side relay unit and combined air conditioning and hot water supply system
JPWO2015056333A1 (en) Refrigeration cycle equipment
WO2012165425A1 (en) Heating system
JP2007278655A (en) Heat storage type hot water supplier
JP2017161164A (en) Air-conditioning hot water supply system
JP5333557B2 (en) Hot water supply air conditioning system
JP2017096509A (en) Power management system
CN107062668B (en) Refrigeration cycle system and refrigeration method thereof
KR20110022182A (en) Heat pump system having heat exchanger for increasing the temperature of water entering heat pump from heat source
KR100860047B1 (en) Apparatus and method for cooling and heating water using heat pump
JP2008185276A (en) Heat pump type hot water supply apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902