JP2014167228A - Underground wall and construction method of underground wall - Google Patents

Underground wall and construction method of underground wall Download PDF

Info

Publication number
JP2014167228A
JP2014167228A JP2013039385A JP2013039385A JP2014167228A JP 2014167228 A JP2014167228 A JP 2014167228A JP 2013039385 A JP2013039385 A JP 2013039385A JP 2013039385 A JP2013039385 A JP 2013039385A JP 2014167228 A JP2014167228 A JP 2014167228A
Authority
JP
Japan
Prior art keywords
underground wall
main body
tubular member
core material
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013039385A
Other languages
Japanese (ja)
Other versions
JP6082624B2 (en
Inventor
Hiromichi Mikami
大道 三上
Yukiyoshi Kitamoto
幸義 北本
Takeshi Sasakura
剛 笹倉
Teru Yoshida
輝 吉田
Katsutoshi Fujisaki
勝利 藤崎
Katsuhiro Uemoto
勝広 上本
Kenji Ishii
健嗣 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013039385A priority Critical patent/JP6082624B2/en
Publication of JP2014167228A publication Critical patent/JP2014167228A/en
Application granted granted Critical
Publication of JP6082624B2 publication Critical patent/JP6082624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an underground wall and a construction method thereof, capable of efficiently forming a water communication part.SOLUTION: A core material 4, a cushioning material 5 and a tubular member 6 are installed in a body 11 of a soil mortar underground wall 1 before hardening its soil mortar. A crushing material 7 is arranged in the tubular member 6. A plurality of tubular members 6 are juxtaposed in a row along the thickness direction (t) of an underground wall body 11 between mutual adjacent two core materials 4 in a part for forming the water communication part 20 among the underground wall 1. The cushioning material 5 is arranged between the core material 4 and the tubular member 6 so as to sandwich a row of the tubular member 6 from both sides via the soil mortar in the horizontal extension direction (w) of the underground wall body 11. When crushed by the crushing material 7, a compression load P acts in a plane shape on a surface of the cushioning material 5, and the cushioning material 5 is compressed and deformed in the horizontal extension direction (w) of the underground wall body 11, and as a result of this, a crack C is formed in the thickness direction (t) of the underground wall body 11.

Description

本発明は、地下構造物の施工時に構築される地中壁、及び、地中壁の構築方法に関する。   The present invention relates to an underground wall constructed during construction of an underground structure and a method for constructing an underground wall.

地下の帯水層を広範囲にわたって遮断する掘割構造物(掘割道路・掘割河川等)やトンネル構造物等の地下構造物を施工する際には、施工場所に土留め壁等の地中壁を構築して、この地中壁を用いて、施工場所に対する土留め及び止水を行うことが多い。
しかしながら、地中壁が構築されると、地下水流が阻害され、上流側では地下水位が上昇し、下流側では地下水位が低下しかねない。
When constructing underground structures such as digging structures (such as digging roads and digging rivers) and tunnel structures that block the underground aquifer over a wide area, build underground walls such as retaining walls at the construction site. In many cases, the underground wall is used for earth retaining and water stoppage.
However, if the underground wall is constructed, the groundwater flow is hindered, and the groundwater level may rise on the upstream side and the groundwater level on the downstream side may fall.

地下水上流側で地下水位が上昇することは、飽和地盤が増えることにつながり、ひいては、液状化の生じやすい地盤が増加する。このため、地下水中にある構造物では浮力が増加し、構造物の浮き上がりが生じかねない。それ以外にも、構造物への漏水量の増加、寒冷地では地盤の凍結リスクの増加、砂質地盤では水浸沈下(コラップス)リスクの増加等、様々な問題が生じかねない。
一方、地下水下流側では、地下水位の低下に伴い、圧密等によって地盤の沈下が生じやすくなる。また、軟弱地盤で圧密沈下が生じた場合には、構造物を支持している杭にネガティブフリクションが発生し、杭の耐力を減少させる問題が生じかねない。
An increase in the groundwater level on the upstream side of the groundwater leads to an increase in saturated ground, which in turn increases the ground where liquefaction is likely to occur. For this reason, the buoyancy increases in the structure in the groundwater, and the structure may be lifted. In addition, various problems such as an increase in the amount of water leakage to the structure, an increase in the risk of freezing of the ground in cold regions, and an increased risk of water subsidence (collapse) in the sandy ground may occur.
On the other hand, on the downstream side of groundwater, ground subsidence is likely to occur due to consolidation or the like as the groundwater level decreases. In addition, when consolidation settlement occurs in soft ground, negative friction is generated in the pile supporting the structure, which may cause a problem of reducing the yield strength of the pile.

これら問題に対処する手法としては、例えば、特許文献1、2に記載の手法が挙げられる。特許文献1では、地中壁に作業孔を形成し、作業孔内にてプラズマによる衝撃波を発生させて地中壁の一部を破砕することで、地中壁の通水部を形成している。また、特許文献2では、地中壁内に静的破砕材を設置し、静的破砕材に注水して膨張させて地中壁の一部を破砕することで、地中壁の通水部を形成している。   Examples of methods for dealing with these problems include the methods described in Patent Documents 1 and 2. In Patent Document 1, a work hole is formed in the underground wall, a shock wave is generated by plasma in the work hole, and a part of the underground wall is crushed to form a water passage portion of the underground wall. Yes. Moreover, in patent document 2, a static crushing material is installed in an underground wall, water is poured into a static crushing material, it is expanded, and a part of the underground wall is crushed, so that the water flow portion of the underground wall Is forming.

特開2004−124575号公報JP 2004-124575 A 特開2010−203115号公報JP 2010-203115 A

特許文献1、2に記載のような手法では、浅層部(例えば、地表面〜地下5m程度の範囲内)であれば、地表面が自由面として機能し得る。ここで自由面とは、拘束されていない自由表面を意味する。このような浅層部での破砕であれば、当該破砕により発生する衝撃波や圧縮力(破砕エネルギー)によって、地中壁の一部が自由面方向へ移動することができるため、当該破砕を効率よく行うことができる。   In the methods as described in Patent Documents 1 and 2, the ground surface can function as a free surface if it is a shallow layer portion (for example, within a range from the ground surface to about 5 m underground). Here, the free surface means an unconstrained free surface. If the shattering is performed in such a shallow layer part, a part of the underground wall can be moved in the direction of the free surface by a shock wave or compressive force (crushing energy) generated by the crushing. Can be done well.

しかしながら、特許文献1、2に記載のような手法では、深層部(例えば地下30m程度)であれば、地表面までの距離が遠く、自由面が実質的にはない状態での破砕となり、破砕効率が低くなりかねない。すなわち、深層部における破砕では、地中壁のうち破砕が行われる部分の近傍に自由面が確保されないことにより、当該破砕部分の周囲に障害が存在する状態(換言すれば、当該破砕部分が周囲によって拘束された状態)で破砕が行われることになるので、当該破砕部分にて発生する破砕エネルギーを地中壁の破砕に効率的に利用することが難しい。   However, in the methods as described in Patent Documents 1 and 2, if it is a deep layer part (for example, about 30 m underground), the distance to the ground surface is far and the free surface is substantially free, and the crushing occurs. Efficiency can be low. That is, in the crushing in the deep layer, a free surface is not secured in the vicinity of the portion of the underground wall where the crushing is performed, so that there is a failure around the crushing portion (in other words, the crushing portion is Therefore, it is difficult to efficiently use the crushing energy generated in the crushing part for crushing the underground wall.

本発明は、このような実状に鑑み、通水部を効率よく形成可能な地中壁、及び、その構築方法を提供することを目的とする。   An object of this invention is to provide the underground wall which can form a water flow part efficiently, and its construction method in view of such an actual condition.

そのため本発明では、地中壁は、その本体内に配置される緩衝材と、本体内で緩衝材に対して離間して配置される破砕材と、を含んで構成される。緩衝材は、破砕材による前記本体の破砕時に圧縮変形可能である。   Therefore, in this invention, the underground wall is comprised including the shock absorbing material arrange | positioned in the main body, and the crushing material arrange | positioned spaced apart with respect to the shock absorbing material within the main body. The buffer material can be compressed and deformed when the main body is crushed by the crushed material.

本発明では、地中壁を構築する方法として、緩衝材を芯材に固定し、緩衝材が固定された芯材を、硬化前のソイルモルタル製、モルタル製、又は、コンクリート製の地中壁の本体内に設置する。
本発明では、地中壁を構築する方法として、緩衝材及び管状部材を芯材に固定し、緩衝材及び管状部材が固定された芯材を、硬化前のソイルモルタル製、モルタル製、又は、コンクリート製の地中壁の本体内に設置する。ここで管状部材は破砕材を収容する。
In the present invention, as a method for constructing the underground wall, the buffer material is fixed to the core material, and the core material to which the buffer material is fixed is made of soil mortar, mortar, or concrete underground wall before curing. Install in the main body.
In the present invention, as a method of constructing the underground wall, the buffer material and the tubular member are fixed to the core material, and the core material to which the buffer material and the tubular member are fixed is made of a soil mortar before curing, made of mortar, or Install in the body of concrete underground wall. Here, the tubular member accommodates the crushed material.

本発明では、地中壁を構築する方法として、地中壁の構築予定場所に対応する掘削孔を地盤に形成し、芯材及び緩衝材を掘削孔内に設置し、掘削孔内に、ソイルモルタル、モルタル、又は、コンクリートを充填して地中壁を構築する。
本発明では、地中壁を構築する方法として、地中壁の設置予定場所に対応する掘削孔を地盤に形成し、芯材、緩衝材、及び、管状部材を掘削孔内に設置し、掘削孔内に、ソイルモルタル、モルタル、又は、コンクリートを充填して地中壁を構築する。ここで管状部材は破砕材を収容する。
In the present invention, as a method for constructing the underground wall, an excavation hole corresponding to the planned construction location of the underground wall is formed in the ground, a core material and a buffer material are installed in the excavation hole, and a soil is provided in the excavation hole. Fill underground wall with mortar, mortar, or concrete.
In the present invention, as a method of constructing the underground wall, an excavation hole corresponding to the planned installation location of the underground wall is formed in the ground, the core material, the buffer material, and the tubular member are installed in the excavation hole, and excavation is performed. Fill the hole with soil mortar, mortar, or concrete to build underground walls. Here, the tubular member accommodates the crushed material.

本発明によれば、地中壁の本体内に配置される緩衝材が、破砕材による地中壁本体の破砕時に、圧縮変形可能である。これにより、地中壁のうち破砕が行われる部分では、緩衝材が圧縮変形することで緩衝材の表面が自由面として機能し得るので(換言すれば、当該破砕部分の周囲による拘束状態が緩和されるので)、破砕材から生じる破砕エネルギーを地中壁の破砕に効率的に利用することができ、ひいては、地中壁の通水部を効率よく形成することができる。   According to the present invention, the cushioning material disposed in the main body of the underground wall can be compressed and deformed when the underground wall main body is crushed by the crushing material. As a result, the surface of the buffer material can function as a free surface by compressing and deforming the buffer material in the portion of the underground wall that is crushed (in other words, the restrained state around the crushed part is relaxed) Therefore, the crushing energy generated from the crushing material can be efficiently used for crushing the underground wall, and thus the water passage portion of the underground wall can be efficiently formed.

本発明によれば、緩衝材が固定された芯材を、硬化前のソイルモルタル製、モルタル製、又は、コンクリート製の地中壁の本体内に設置することにより、緩衝材の設置作業と芯材の設置作業とを一体化して行うことができるので、これら設置作業を効率よく行うことができる。
本発明によれば、緩衝材及び管状部材が固定された芯材を、硬化前のソイルモルタル製、モルタル製、又は、コンクリート製の地中壁の本体内に設置することにより、緩衝材の設置作業と管状部材の設置作業と芯材の設置作業とを一体化して行うことができるので、これら設置作業を効率よく行うことができる。
According to the present invention, by installing the core material to which the buffer material is fixed in the main body of the soil mortar, mortar, or concrete underground wall before curing, the buffer material installation work and the core are performed. Since the installation work of the material can be performed in an integrated manner, the installation work can be performed efficiently.
According to the present invention, the cushioning material and the core member to which the tubular member is fixed are installed in the main body of the underground wall made of soil mortar, mortar, or concrete before curing, thereby installing the cushioning material. Since the work, the installation work of the tubular member, and the installation work of the core material can be performed integrally, these installation work can be performed efficiently.

本発明によれば、地中壁の本体の設置予定場所に対応する掘削孔内に、芯材及び緩衝材を設置し、掘削孔内に、ソイルモルタル、モルタル、又は、コンクリートを充填する。これにより、ソイルモルタル、モルタル、又は、コンクリートの掘削孔内への充填に先立って、芯材及び緩衝材の位置決めを行うことができるので、芯材及び緩衝材を地中壁の本体内に精度よく設置することができる。
本発明によれば、地中壁の本体の設置予定場所に対応する掘削孔内に、芯材、緩衝材、及び、管状部材を設置し、掘削孔内に、ソイルモルタル、モルタル、又は、コンクリートを充填する。これにより、ソイルモルタル、モルタル、又は、コンクリートの掘削孔内への充填に先立って、芯材、緩衝材、及び、管状部材の位置決めを行うことができるので、芯材、緩衝材、及び、管状部材を地中壁の本体内に精度よく設置することができる。
According to the present invention, the core material and the buffer material are installed in the excavation hole corresponding to the planned installation location of the underground wall main body, and the soil mortar, mortar, or concrete is filled in the excavation hole. This enables positioning of the core material and the buffer material prior to filling the soil mortar, mortar, or concrete into the drilling hole, so that the core material and the buffer material can be accurately placed in the main body of the underground wall. Can be installed well.
According to the present invention, the core material, the buffer material, and the tubular member are installed in the excavation hole corresponding to the planned installation location of the underground wall main body, and the soil mortar, the mortar, or the concrete is installed in the excavation hole. Fill. Accordingly, since the core material, the buffer material, and the tubular member can be positioned prior to filling the soil mortar, the mortar, or the concrete into the excavation hole, the core material, the buffer material, and the tubular material can be performed. The member can be accurately installed in the main body of the underground wall.

本発明の一実施形態における地中壁を示す斜視図The perspective view which shows the underground wall in one Embodiment of this invention 地中壁の部分拡大断面図Partial enlarged sectional view of the underground wall 図2の部分Aの部分拡大図Partial enlarged view of part A in FIG. 緩衝材の第1例の構成を示す斜視図The perspective view which shows the structure of the 1st example of a shock absorbing material. 緩衝材の第2例の構成を示す斜視図The perspective view which shows the structure of the 2nd example of a shock absorbing material. 緩衝材の第3例の構成を示す斜視図The perspective view which shows the structure of the 3rd example of a shock absorbing material. 緩衝材の第4例の構成を示す斜視図The perspective view which shows the structure of the 4th example of a shock absorbing material. 芯材に固定された緩衝材及び管状部材を示す斜視図The perspective view which shows the shock absorbing material and the tubular member which were fixed to the core material 芯材と緩衝材との固定方法の変形例を示す斜視図The perspective view which shows the modification of the fixing method of a core material and a buffer material 管状部材の配置の第1変形例を示す図The figure which shows the 1st modification of arrangement | positioning of a tubular member 管状部材の配置の第2変形例を示す図The figure which shows the 2nd modification of arrangement | positioning of a tubular member 緩衝材の配置の変形例を示す図The figure which shows the modification of arrangement | positioning of a shock absorbing material

以下、本発明の実施の形態について、図面を参照して説明する。
図1は、本発明の一実施形態における地中壁を示す。
尚、本実施形態では、後述するソイルモルタル製の地中連続壁を例にとって本発明に係る地中壁の説明を行うが、地中壁はこれに限らない。
また、図1に示す地中壁本体の高さ方向hと水平延在方向wと厚さ方向tとは、互いに直交しているとして、以下説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an underground wall in an embodiment of the present invention.
In the present embodiment, the underground wall according to the present invention will be described by taking an underground continuous wall made of soil mortar, which will be described later, as an example. However, the underground wall is not limited to this.
Moreover, the height direction h, the horizontal extending direction w, and the thickness direction t of the underground wall main body shown in FIG.

地中壁1は、地下構造物2の構築施工時に、施工場所に対する土留め及び止水を行うことを目的として構築されるものであり、本実施形態ではソイルモルタル製の地中連続壁である。地中壁1は、地下構造物2の構築に先立って、地下構造物2の地下水上流側と地下水下流側とにそれぞれ対向して設けられる。地中壁1は、例えば、オーガ(土中掘削機)で地盤を掘削しながら掘削土と固化材(セメントミルク等)とを混合・撹拌して形成される。また、ソイルモルタルの硬化前に芯材4の建て込みが行われる。地中壁1は、地盤の帯水層(図示せず)を貫通してその下方の地盤まで到達するように構築され得る。   The underground wall 1 is constructed for the purpose of earth retaining and water stop for the construction site when the underground structure 2 is constructed, and in this embodiment is an underground continuous wall made of soil mortar. . Prior to the construction of the underground structure 2, the underground wall 1 is provided to face the upstream side of the underground water 2 and the downstream side of the underground water, respectively. The underground wall 1 is formed, for example, by mixing and stirring the excavated soil and the solidified material (cement milk or the like) while excavating the ground with an auger (underground excavator). Further, the core material 4 is built before the soil mortar is cured. The underground wall 1 can be constructed so as to penetrate the ground aquifer (not shown) and reach the ground below it.

次に、地中壁1の構成について、図2及び図3を用いて説明する。
図2(a)は、地中壁1の概略構成を示し、図2(b)は、後述する破砕材7による破砕で形成される地中壁1の通水部20を示す。図3(a)は、後述する管状部材6の第1例の構成を示し、図3(b)は、管状部材6の第2例を示す。
図2(a)に示すように、地中壁1は、その本体11と、芯材4と、緩衝材5と、管状部材6と、破砕材7とを含んで構成される。
Next, the structure of the underground wall 1 is demonstrated using FIG.2 and FIG.3.
Fig.2 (a) shows the schematic structure of the underground wall 1, FIG.2 (b) shows the water flow part 20 of the underground wall 1 formed by crushing by the crushing material 7 mentioned later. FIG. 3A shows a configuration of a first example of a tubular member 6 described later, and FIG. 3B shows a second example of the tubular member 6.
As shown in FIG. 2A, the underground wall 1 includes a main body 11, a core material 4, a buffer material 5, a tubular member 6, and a crushing material 7.

地中壁本体11内には、そのソイルモルタルの硬化前に、芯材4と緩衝材5と管状部材6とが設置される。
芯材4は、例えばH形鋼材であり、そのウェブ4aの両端部にフランジ4bを有する。芯材4は、地中壁本体11の高さ方向hに延びている。
地中壁本体11内には、複数の芯材4が地中壁本体11の水平延在方向wに沿って互いに間隔を空けて並んで配置されている。換言すれば、複数の芯材4は、地中壁本体11内でその水平延在方向wに互いに離間して配置されている。ここで、地中壁本体11の水平延在方向wとは、地中壁11の延在方向のうち、水平方向に対応する方向を意味する。
In the underground wall main body 11, the core material 4, the buffer material 5, and the tubular member 6 are installed before hardening of the soil mortar.
The core material 4 is, for example, an H-shaped steel material, and has flanges 4b at both ends of the web 4a. The core material 4 extends in the height direction h of the underground wall main body 11.
In the underground wall main body 11, a plurality of core members 4 are arranged side by side with a space along the horizontal extending direction w of the underground wall main body 11. In other words, the plurality of core members 4 are arranged in the underground wall main body 11 so as to be separated from each other in the horizontal extending direction w. Here, the horizontal extending direction w of the underground wall main body 11 means a direction corresponding to the horizontal direction among the extending directions of the underground wall 11.

芯材4の長手方向の長さ(すなわち地中壁本体11の高さ方向hでの長さ)は、必要とされる地中壁1の剛性等に基づいて設定される。
芯材4については、その一対のフランジ4b同士が、地中壁本体11の厚さ方向tにて互いに対向するように、地中壁本体11内に配置されている。また、隣り合う2つの芯材4については、一方の芯材4のウェブ4aの表面と、他方の芯材4のウェブ4aの表面とが、地中壁本体11の水平延在方向wにて互いに対向するように、地中壁本体11内に配置されている。
The length of the core material 4 in the longitudinal direction (that is, the length of the underground wall body 11 in the height direction h) is set based on the required rigidity of the underground wall 1 and the like.
About the core material 4, the pair of flanges 4b are arrange | positioned in the underground wall main body 11 so that it may mutually oppose in the thickness direction t of the underground wall main body 11. FIG. Moreover, about two adjacent core materials 4, the surface of the web 4a of one core material 4 and the surface of the web 4a of the other core material 4 are in the horizontal extending direction w of the underground wall main body 11. It arrange | positions in the underground wall main body 11 so that it may mutually oppose.

地中壁1のうち通水部20が形成される部分には、隣り合う2つの芯材4同士の間に、複数(図では3本)の管状部材6が、地中壁本体11の厚さ方向tに沿って1列に並んで配置されている。尚、管状部材6の本数は3本に限らず、1本以上の任意の本数であり得る。
管状部材6は、例えば、有底の塩化ビニル管、又は、ボイド管である。管状部材6は、地中壁本体11の高さ方向hに延びている。管状部材6は、例えば、その上端が地面3にて開口し、下端が帯水層と同等の高さ位置になるように、地中壁本体11に設置される。
A plurality (three in the figure) of tubular members 6 are provided between the two adjacent core members 4 in the portion of the underground wall 1 where the water flow portion 20 is formed. They are arranged in a line along the direction t. Note that the number of the tubular members 6 is not limited to three and may be any number of one or more.
The tubular member 6 is, for example, a bottomed vinyl chloride tube or a void tube. The tubular member 6 extends in the height direction h of the underground wall main body 11. The tubular member 6 is installed in the underground wall main body 11 so that, for example, the upper end thereof opens at the ground 3 and the lower end thereof is at a height position equivalent to the aquifer.

管状部材6内には、破砕材7が配置される。すなわち、管状部材6は破砕材7を収容している。破砕材7は、地中壁1における通水部20の形成に用いられる部材である。破砕材7としては、例えば、静的破砕材、爆薬、コンクリート破砕器用の火薬、放電破砕用の放電チップと反応液とこれらを収容する容器とからなるユニット、及び、プラズマ破砕用の電極と衝撃波伝達用の液体とこれらを収容する容器とからなるユニット等が挙げられる。破砕材7による破砕時には、衝撃波の発生、圧力の発生、破片の飛散等が起こり、これらの影響により、地中壁本体11にクラックCが入って、これにより、通水部20が形成される。   A crushing material 7 is disposed in the tubular member 6. That is, the tubular member 6 contains the crushed material 7. The crushed material 7 is a member used for forming the water flow portion 20 in the underground wall 1. Examples of the crushing material 7 include static crushing materials, explosives, explosives for concrete crushers, discharge chips for discharge crushing, reaction liquids, units containing these, and electrodes and shock waves for plasma crushing. Examples thereof include a unit comprising a transmission liquid and a container for storing these. At the time of crushing with the crushing material 7, the generation of shock waves, the generation of pressure, the scattering of debris, and the like occur, and the crack C enters the underground wall main body 11 due to these effects, thereby forming the water flow portion 20. .

図3(a)、(b)に示すように、管状部材6と破砕材7との間には、速硬性モルタル又は砂等の破砕エネルギー伝達材8が充填されている。図3(a)に示す管状部材6の第1例では、管状部材6の内周面が滑らかである。一方、図3(b)に示す管状部材6の第2例では、管状部材6のうち、地中壁本体11の厚さ方向tの両端部に、破損容易な脆弱部として、管状部材6の内周面に切欠部9が形成されている。尚、脆弱部については、管状部材6の一部(上述の両端部)を容易に破損できればよく、それゆえ、切欠部9に限らず、例えば、切込部であってもよい。   As shown in FIGS. 3A and 3B, between the tubular member 6 and the crushed material 7, a crushed energy transmission material 8 such as fast-hardening mortar or sand is filled. In the first example of the tubular member 6 shown in FIG. 3A, the inner peripheral surface of the tubular member 6 is smooth. On the other hand, in the second example of the tubular member 6 shown in FIG. 3 (b), the tubular member 6 is formed as a fragile portion easily damaged at both ends of the underground wall body 11 in the thickness direction t. A notch 9 is formed on the inner peripheral surface. In addition, about a weak part, the part (above-mentioned both ends) of the tubular member 6 should just be damaged easily, Therefore It is not restricted to the notch part 9, For example, a notch part may be sufficient.

図2(a)に戻り、地中壁本体11の水平延在方向wにおいて管状部材6の列をソイルモルタルを介して両側から挟み込むように、一対の緩衝材5が、地中壁本体11内で、その水平延在方向wに互いに離間して配置されている。すなわち、管状部材6及びその内側に配置された破砕材7は、地中壁本体11内の一対の緩衝材5同士の間に配置されている。
緩衝材5は、芯材4のウェブ4a及び一対のフランジ4bにより区画形成される空間S内に配置されている。緩衝材5は、その一側で隣り合う芯材4に固定されている。緩衝材5は、例えば、芯材4のウェブ4aに面接触するように取り付けられている。また、緩衝材5の他側は、ソイルモルタルを介して、管状部材6(破砕材7)に対向している。
Returning to FIG. 2 (a), the pair of cushioning members 5 are placed in the underground wall body 11 so as to sandwich the row of the tubular members 6 from both sides through the soil mortar in the horizontal extending direction w of the underground wall body 11. Thus, they are arranged apart from each other in the horizontal extending direction w. That is, the tubular member 6 and the crushing material 7 disposed on the inside thereof are disposed between the pair of cushioning materials 5 in the underground wall body 11.
The cushioning material 5 is disposed in a space S defined by the web 4a of the core material 4 and the pair of flanges 4b. The buffer material 5 is fixed to the adjacent core material 4 on one side thereof. The buffer material 5 is attached so as to be in surface contact with the web 4a of the core material 4, for example. Moreover, the other side of the buffer material 5 is opposed to the tubular member 6 (crushed material 7) through a soil mortar.

緩衝材5は、破砕材7による破砕時に、当該破砕により発生する衝撃波や圧力、及び、飛散する破片等の影響により、地中壁本体11の水平延在方向wに圧縮されて変形する。換言すれば、緩衝材5は、破砕材7による地中壁本体11の破砕時に圧縮変形可能なように構成されている。尚、緩衝材5の構成の詳細については、図4〜図7を用いて後述する。
尚、緩衝材5、管状部材6、及び破砕材7のそれぞれの長手方向の長さ及び設置位置(すなわち地中壁本体11の高さ方向hでの長さ及び設置位置)については、地中壁1が貫通する帯水層の位置、換言すれば、地下水流の位置に基づいて設定され得る。
When the crushing material 7 is crushed, the buffer material 5 is compressed and deformed in the horizontal extending direction w of the underground wall main body 11 due to the influence of shock waves and pressure generated by the crushing, and scattered fragments. In other words, the buffer material 5 is configured to be compressible and deformable when the underground wall body 11 is crushed by the crushed material 7. The details of the configuration of the cushioning material 5 will be described later with reference to FIGS.
In addition, about the length and installation position (namely, the length and installation position in the height direction h of the underground wall main body 11) of each of the shock absorbing material 5, the tubular member 6, and the crushing material 7, it is underground. It can be set based on the position of the aquifer through which the wall 1 penetrates, in other words, the position of the groundwater flow.

ここで、破砕材7による地中壁1の通水部20の形成について、図2(b)を用いて説明する。
破砕材7による破砕時には、衝撃波の発生、圧力の発生、破片の飛散等が起こり、これらの影響により、緩衝材5の表面に圧縮荷重Pが平面的に作用して、この結果、緩衝材5が地中壁本体11の水平延在方向wに圧縮されて変形する。この圧縮変形により、地中壁本体11の厚さ方向tに延びるクラックCが形成される。このクラックCの形成時には、圧縮変形する緩衝材5の表面が自由面として機能し得る。従って、この自由面により、地中壁本体11の当該破砕部分における拘束状態が緩和されるので、破砕材7から生じる破砕エネルギーを地中壁本体11の破砕に効率的に利用することができ、ひいては、地中壁1の通水部20を効率よく形成することができる。また、圧縮荷重Pは、主として、地中壁本体11の水平延在方向wに作用するので、この方向と直交する地中壁本体11の厚さ方向tに向かってクラックCが延びる。すなわち、地中壁本体11内にて緩衝材5、管状部材6、及び破砕材7を上述のように配置することで、クラックCが入る方向を地中壁本体11の厚さ方向tとすることができる。すなわち、クラックCに指向性を付与することができる。更に、図3(b)に示す管状部材6の第2例のように、管状部材6のうち、地中壁本体11の厚さ方向tの両端部に破損容易な脆弱部(切欠部9)を形成することにより、管状部材6がその脆弱部にて分割されて、この分割片の移動が、地中壁本体11の水平延在方向wに作用する圧縮荷重Pを強化するので、クラックCへの指向性の付与を、より安定的に行うことができる。
Here, formation of the water flow part 20 of the underground wall 1 by the crushing material 7 is demonstrated using FIG.2 (b).
At the time of crushing with the crushing material 7, the generation of shock waves, the generation of pressure, the scattering of debris, etc. occur, and due to these effects, the compression load P acts on the surface of the buffering material 5 in a plane, and as a result, the buffering material 5 Is deformed by being compressed in the horizontal extending direction w of the underground wall main body 11. By this compression deformation, a crack C extending in the thickness direction t of the underground wall body 11 is formed. When the crack C is formed, the surface of the cushioning material 5 that undergoes compression deformation can function as a free surface. Therefore, since the restraint state in the crushing part of the underground wall main body 11 is relaxed by this free surface, the crushing energy generated from the crushing material 7 can be efficiently used for crushing the underground wall main body 11, As a result, the water flow part 20 of the underground wall 1 can be formed efficiently. Moreover, since the compressive load P mainly acts in the horizontal extending direction w of the underground wall main body 11, the crack C extends toward the thickness direction t of the underground wall main body 11 orthogonal to this direction. That is, by arranging the buffer material 5, the tubular member 6, and the crushing material 7 in the underground wall body 11 as described above, the direction in which the crack C enters is the thickness direction t of the underground wall body 11. be able to. That is, directivity can be imparted to the crack C. Further, as in the second example of the tubular member 6 shown in FIG. 3B, a fragile portion (notch portion 9) that is easily damaged at both ends in the thickness direction t of the underground wall body 11 of the tubular member 6. Since the tubular member 6 is divided at the fragile portion and the movement of the divided pieces strengthens the compressive load P acting in the horizontal extending direction w of the underground wall body 11, the crack C The directivity can be imparted more stably.

次に、緩衝材5の構成について、図4〜図7を用いて説明する。
図4〜図7は、それぞれ、緩衝材5の第1例〜第4例の構成を示す。
Next, the structure of the buffer material 5 is demonstrated using FIGS.
4 to 7 show the configurations of the first to fourth examples of the cushioning material 5, respectively.

図4に示す緩衝材5の第1例では、加圧気体・液体注入方式の緩衝材5が例示されている。ここで、図4(a)は、緩衝材5の長手方向の長さが芯材4の長手方向の長さに一致している例を示している。図4(b)は、緩衝材5の長手方向の長さが芯材4の長手方向の長さよりも短い例を示している。   In the first example of the buffer material 5 shown in FIG. 4, the pressurized gas / liquid injection type buffer material 5 is illustrated. Here, FIG. 4A shows an example in which the length of the cushioning material 5 in the longitudinal direction matches the length of the core material 4 in the longitudinal direction. FIG. 4B shows an example in which the length of the cushioning material 5 in the longitudinal direction is shorter than the length of the core material 4 in the longitudinal direction.

緩衝材5は、加圧流体注入口51と、箱状の加圧流体収容部52とを含んで構成される。加圧流体収容部52は、その断面形状が角丸長方形であり、その長辺方向が、地中壁本体11の厚さ方向tに一致している。尚、図4(a)、(b)の図示では、加圧流体収容部52の断面形状が角丸長方形であるが、断面形状はこれに限らず、例えば、長方形であってもよい。
加圧流体注入口51は、加圧流体収容部52の上端部に設けられており、外部からの加圧流体(加圧気体及び/又は加圧液体)が加圧流体注入口51を介して加圧流体収容部52に注入され得る。加圧流体収容部52は、例えば、いわゆるエアバックにより構成され得る。
The buffer material 5 includes a pressurized fluid inlet 51 and a box-shaped pressurized fluid storage portion 52. The pressurized fluid container 52 has a rounded rectangular cross section, and the long side direction thereof coincides with the thickness direction t of the underground wall body 11. 4A and 4B, the cross-sectional shape of the pressurized fluid storage unit 52 is a rounded rectangle, but the cross-sectional shape is not limited to this, and may be, for example, a rectangle.
The pressurized fluid injection port 51 is provided at the upper end of the pressurized fluid storage unit 52, and pressurized fluid (pressurized gas and / or pressurized liquid) from the outside passes through the pressurized fluid injection port 51. The pressurized fluid container 52 can be injected. The pressurized fluid storage unit 52 can be configured by, for example, a so-called airbag.

次に、緩衝材5の第1例における地中壁本体11内への緩衝材5の設置方法を説明する。
まず、地中壁1の芯材4となるH形鋼材のウェブ4aに、緩衝材5の加圧流体収容部52を固定する。
次に、地中壁本体11を造成する。
次に、加圧流体を、加圧流体注入口51を介して、加圧流体収容部52内に注入して、加圧流体注入口51を閉じる。
次に、芯材4を緩衝材5と共に、ソイルモルタル硬化前の地中壁本体11に建て込む。
そして、ソイルモルタルが硬化した後に、加圧流体注入口51を開けて、加圧流体収容部52内の圧力を、加圧流体注入口51を介して、外部に解放する。
このようにして、地中壁本体11内に緩衝材5が設置される。
Next, the installation method of the shock absorbing material 5 in the underground wall main body 11 in the 1st example of the shock absorbing material 5 is demonstrated.
First, the pressurized fluid containing portion 52 of the buffer material 5 is fixed to the H-shaped steel web 4 a that becomes the core material 4 of the underground wall 1.
Next, the underground wall main body 11 is created.
Next, the pressurized fluid is injected into the pressurized fluid accommodating portion 52 through the pressurized fluid inlet 51 and the pressurized fluid inlet 51 is closed.
Next, the core material 4 is built in the underground wall body 11 before the soil mortar is cured together with the buffer material 5.
Then, after the soil mortar is hardened, the pressurized fluid inlet 51 is opened, and the pressure in the pressurized fluid container 52 is released to the outside through the pressurized fluid inlet 51.
In this way, the cushioning material 5 is installed in the underground wall main body 11.

ここにおいて、加圧流体として気体を用いる場合には、圧力解放後、加圧流体収容部52内に空隙が形成され得る。
一方、加圧流体として液体を用いる場合には、圧力解放後、加圧流体収容部52内より当該液体を除去することにより、加圧流体収容部52内に空隙が形成され得る。また、当該液体の除去については行わなくてもよい。
尚、緩衝材5の第1例では、緩衝材5の加圧流体収容部52が、ソイルモルタルの硬化前において、ソイルモルタルから緩衝材5に作用する圧力に耐えて変形しない程度の剛性(耐圧性能)を有する。
Here, when gas is used as the pressurized fluid, a void may be formed in the pressurized fluid housing portion 52 after the pressure is released.
On the other hand, when a liquid is used as the pressurized fluid, an air gap can be formed in the pressurized fluid accommodating portion 52 by removing the liquid from the pressurized fluid accommodating portion 52 after releasing the pressure. Further, the removal of the liquid may not be performed.
In the first example of the buffer material 5, the pressurized fluid accommodating portion 52 of the buffer material 5 has a rigidity (withstand pressure) enough to withstand the pressure acting on the buffer material 5 from the soil mortar before the soil mortar is cured. Performance).

図5に示す緩衝材5の第2例では、気体・液体充填済み中空部材設置方式の緩衝材5が例示されている。ここで、図5(a)は、緩衝材5が複数の金属製又はプラスチック製の箱状の中空部材53により構成されている例を示している。図5(b)は、緩衝材5がシート状の気泡緩衝材(中空部材)54により構成されている例を示している。   In the second example of the cushioning material 5 shown in FIG. 5, the cushioning material 5 of the gas / liquid filled hollow member installation method is illustrated. Here, FIG. 5A shows an example in which the cushioning material 5 is constituted by a plurality of metal or plastic box-shaped hollow members 53. FIG. 5B shows an example in which the cushioning material 5 is composed of a sheet-like bubble cushioning material (hollow member) 54.

図5(a)では、中空部材53が、芯材4の長手方向に沿って直列に連結されている。中空部材53は、その断面形状が角丸長方形であり、その長辺方向が、地中壁本体11の厚さ方向tに一致している。尚、図5(a)の図示では、中空部材53の断面形状が角丸長方形であるが、断面形状はこれに限らず、例えば、長方形であってもよい。中空部材53の内部には、気体又は液体が予め充填されている。中空部材53は、ソイルモルタルの硬化前において、ソイルモルタルから中空部材53に作用する圧力に耐えて変形しない程度の剛性を有する。また、中空部材53は、破砕材7による破砕時に圧縮変形可能な剛性を有している。   In FIG. 5A, the hollow members 53 are connected in series along the longitudinal direction of the core material 4. The hollow member 53 has a rounded rectangular cross section, and the long side direction thereof coincides with the thickness direction t of the underground wall body 11. In the illustration of FIG. 5A, the cross-sectional shape of the hollow member 53 is a rounded rectangular shape, but the cross-sectional shape is not limited to this, and may be a rectangular shape, for example. The hollow member 53 is filled with a gas or a liquid in advance. The hollow member 53 is rigid enough to withstand the pressure acting on the hollow member 53 from the soil mortar before the soil mortar is cured. Further, the hollow member 53 has a rigidity capable of compressive deformation when crushing with the crushing material 7.

一方、図5(b)では、芯材4のウェブ4aの一側の表面の少なくとも一部を覆うように、気泡緩衝材54が設けられている。尚、気泡緩衝材54は、ソイルモルタルの硬化前において、ソイルモルタルから気泡緩衝材54に作用する圧力に耐えて変形しない程度の剛性を有する。また、気泡緩衝材54は、破砕材7による破砕時に破裂して圧縮変形可能な剛性を有している。   On the other hand, in FIG.5 (b), the bubble buffering material 54 is provided so that at least one part of the surface of the one side of the web 4a of the core material 4 may be covered. The bubble cushioning material 54 has such a rigidity that it cannot withstand the pressure acting on the bubble cushioning material 54 from the soil mortar before the soil mortar is cured. Further, the bubble cushioning material 54 has a rigidity capable of being ruptured and compressed and deformed when crushing by the crushing material 7.

次に、緩衝材5の第2例における地中壁本体11内への緩衝材5の設置方法を説明する。
まず、地中壁1の芯材4となるH形鋼材のウェブ4aに、緩衝材5(中空部材53又は気泡緩衝材54)を固定する。
次に、地中壁本体11を造成する。
次に、芯材4を緩衝材5と共に、ソイルモルタル硬化前の地中壁本体11に建て込む。
このようにして、地中壁本体11内に緩衝材5が設置される。
Next, the installation method of the shock absorbing material 5 in the underground wall main body 11 in the 2nd example of the shock absorbing material 5 is demonstrated.
First, the cushioning material 5 (hollow member 53 or bubble cushioning material 54) is fixed to the H-shaped steel web 4a which becomes the core material 4 of the underground wall 1.
Next, the underground wall main body 11 is created.
Next, the core material 4 is built in the underground wall body 11 before the soil mortar is cured together with the buffer material 5.
In this way, the cushioning material 5 is installed in the underground wall main body 11.

尚、中空部材53の耐圧性能については、例えば、ソイルモルタルの比重と中空部材53の設置深度から中空部材53に作用するソイルモルタルによる液圧を算出し、この算出値に基づいて最低圧力値を設定する。この最低圧力値を上回り、可能な限り低耐力の中空部材53を使用することで、破砕材7による破砕時に中空部材53が圧縮変形しやすいように中空部材53の耐圧性能が設定され得る。この点は、気泡緩衝材54についても同様であるので、その説明を省略する。   Regarding the pressure resistance performance of the hollow member 53, for example, the hydraulic pressure due to the soil mortar acting on the hollow member 53 is calculated from the specific gravity of the soil mortar and the installation depth of the hollow member 53, and the minimum pressure value is calculated based on this calculated value. Set. By using the hollow member 53 that exceeds the minimum pressure value and has as low a proof strength as possible, the pressure resistance of the hollow member 53 can be set so that the hollow member 53 is easily compressed and deformed during crushing with the crushing material 7. Since this is the same for the bubble cushioning material 54, the description thereof is omitted.

ところで、上述の緩衝材5の第2例では、破砕材7による破砕時に中空部材53を破裂させているが、この他、ソイルモルタルの硬化後に、破砕材7による破砕に先立って、細径ボーリング等で中空部材53に孔を開け、中空部材53の内部の気体又は液体の圧力を外部に解放してもよい。この場合において、中空部材53は、破砕材7による破砕時に圧縮変形可能な剛性を有するように構成される。   By the way, in the second example of the cushioning material 5 described above, the hollow member 53 is ruptured at the time of crushing by the crushing material 7. For example, a hole may be formed in the hollow member 53 to release the gas or liquid pressure inside the hollow member 53 to the outside. In this case, the hollow member 53 is configured to have a rigidity capable of compressive deformation when crushing with the crushing material 7.

図6に示す緩衝材5の第3例では、有底筒状部材設置方式の緩衝材5が例示されている。
図6では、複数の有底円筒部材55が、芯材4の長手方向に沿ってそれぞれ延び、また、地中壁本体11の厚さ方向tに並列に配置されている。有底円筒部材55は、例えば、底部にキャップが取り付けられた塩化ビニル管、又は、ボイド管であり得る。また、有底円筒部材55の代わりとして、断面形状が矩形状の筒状部材を用いてもよい。尚、有底円筒部材55は、ソイルモルタルの硬化前において、ソイルモルタルから有底円筒部材55に作用する圧力に耐えて変形しない程度の剛性を有する。また、有底円筒部材55は、破砕材7による破砕時に圧縮変形可能な剛性を有している。
有底円筒部材55の地中壁本体11内への設置方法については、上述の中空部材53と同様であるので、その説明を省略する。
In the third example of the buffer material 5 shown in FIG. 6, the buffer material 5 of the bottomed cylindrical member installation method is illustrated.
In FIG. 6, a plurality of bottomed cylindrical members 55 respectively extend along the longitudinal direction of the core member 4 and are arranged in parallel in the thickness direction t of the underground wall main body 11. The bottomed cylindrical member 55 may be, for example, a vinyl chloride tube having a cap attached to the bottom or a void tube. Further, instead of the bottomed cylindrical member 55, a cylindrical member having a rectangular cross section may be used. The bottomed cylindrical member 55 has such a rigidity that it cannot withstand the pressure acting on the bottomed cylindrical member 55 from the soil mortar before the soil mortar is cured. Further, the bottomed cylindrical member 55 has a rigidity capable of being compressed and deformed when being crushed by the crushed material 7.
Since the installation method of the bottomed cylindrical member 55 in the underground wall main body 11 is the same as the hollow member 53 described above, the description thereof is omitted.

図7に示す緩衝材5の第4例では、複数のEPS(発泡スチロール)製の緩衝部材56が、芯材4の長手方向に沿って直列に連結されている。緩衝部材56は、その断面形状が角丸長方形であり、その長辺方向が、地中壁本体11の厚さ方向tに一致している。尚、図7の図示では、緩衝部材56の断面形状が角丸長方形であるが、断面形状はこれに限らず、例えば、長方形であってもよい。緩衝部材56は、ソイルモルタルの硬化前において、ソイルモルタルから緩衝部材56に作用する圧力に耐えて大きな変形を生じない程度の剛性を有する。また、緩衝部材56は、破砕材7による破砕時に圧縮変形可能な剛性を有している。
緩衝部材56の地中壁本体11内への設置方法については、上述の中空部材53と同様であるので、その説明を省略する。
In the fourth example of the buffer material 5 shown in FIG. 7, a plurality of EPS (styrofoam) buffer members 56 are connected in series along the longitudinal direction of the core material 4. The buffer member 56 has a rounded rectangular cross section, and the long side direction thereof coincides with the thickness direction t of the underground wall body 11. In the illustration of FIG. 7, the cross-sectional shape of the buffer member 56 is a rounded rectangle, but the cross-sectional shape is not limited to this, and may be a rectangle, for example. The buffer member 56 has such a rigidity that it can withstand the pressure applied to the buffer member 56 from the soil mortar and does not cause a large deformation before the soil mortar is cured. Further, the buffer member 56 has a rigidity capable of compressive deformation when crushing with the crushing material 7.
About the installation method in the underground wall main body 11 of the buffer member 56, since it is the same as that of the above-mentioned hollow member 53, the description is abbreviate | omitted.

図8は、芯材4に固定された緩衝材5及び管状部材6を示す。
複数(図では3本)の管状部材6が、ブラケット31を介して、芯材4の4bに固定されている。
また、緩衝材5については、上述のように、芯材4のウェブ4aに固定されている。
このように、緩衝材5及び管状部材6を芯材4に固定してユニットとし、このユニットをソイルモルタル硬化前の地中壁本体11に建て込むことで、緩衝材5及び管状部材6を芯材4と共に地中壁本体11内に設置することができる。また、図示は省略するが、一対の芯材4と、これら芯材4に対応する一対の緩衝材5と、これら緩衝材5の間に配置される管状部材6とをブラケットを介して一体化してユニットとし、このユニットを、ソイルモルタル硬化前の地中壁本体11に建て込んでもよい。
ソイルモルタルが硬化した後には、管状部材6内に破砕材7が設置され得る。
FIG. 8 shows the cushioning material 5 and the tubular member 6 fixed to the core material 4.
A plurality (three in the figure) of tubular members 6 are fixed to 4 b of the core member 4 via brackets 31.
Further, the buffer material 5 is fixed to the web 4a of the core material 4 as described above.
In this way, the cushioning material 5 and the tubular member 6 are fixed to the core material 4 to form a unit, and the unit is built in the underground wall body 11 before the soil mortar is cured, so that the cushioning material 5 and the tubular member 6 are cored. It can be installed in the underground wall body 11 together with the material 4. Although not shown, the pair of core members 4, the pair of buffer members 5 corresponding to the core members 4, and the tubular member 6 disposed between the buffer members 5 are integrated via a bracket. The unit may be built in the underground wall body 11 before the soil mortar is hardened.
After the soil mortar has hardened, the crushing material 7 can be installed in the tubular member 6.

本実施形態によれば、ソイルモルタル製の地中壁1は、その本体11内に配置される緩衝材5と、本体11内で緩衝材5に対して離間して配置される破砕材7と、を含んで構成される。緩衝材5は、破砕材7による本体11の破砕時に圧縮変形可能である。これにより、地中壁1のうち破砕が行われる部分では、緩衝材5が圧縮変形することで緩衝材5の表面が自由面として機能し得るので(換言すれば、当該破砕部分の周囲による拘束状態が緩和されるので)、破砕材7から生じる破砕エネルギーを地中壁1の破砕に効率的に利用することができ、ひいては、地中壁1の通水部20を効率よく形成することができる。また、緩衝材5の表面が自由面として機能し得ることにより、破砕材7による破砕時に周辺地盤に対する影響が抑制されるので、周辺地盤の変形等の発生を抑制することができる。
また本実施形態によれば、地中壁1に通水部20を形成することにより、地中壁1による地下水流動の阻害を軽減することできるので、地下水流動の阻害による地盤・構造物への影響を軽減することができる。
According to this embodiment, the underground wall 1 made of soil mortar includes a buffer material 5 disposed in the main body 11, and a crushing material 7 disposed separately from the buffer material 5 in the main body 11. , Including. The buffer material 5 can be compressed and deformed when the main body 11 is crushed by the crushed material 7. Thereby, since the surface of the buffer material 5 can function as a free surface by compressing and deforming the buffer material 5 in the portion of the underground wall 1 to be crushed (in other words, restraint by the periphery of the crushed portion) Since the state is relieved), the crushing energy generated from the crushing material 7 can be efficiently used for crushing the underground wall 1 and eventually the water flow part 20 of the underground wall 1 can be efficiently formed. it can. Moreover, since the surface of the buffer material 5 can function as a free surface, since the influence with respect to a surrounding ground at the time of the crushing by the crushing material 7 is suppressed, generation | occurrence | production of a deformation | transformation etc. of a surrounding ground can be suppressed.
Moreover, according to this embodiment, by forming the water flow part 20 in the underground wall 1, since the inhibition of the groundwater flow by the underground wall 1 can be reduced, it is possible to reduce the groundwater / structure due to the inhibition of the groundwater flow. The impact can be reduced.

また本実施形態によれば、一対の緩衝材5が、本体11内でその水平延在方向wに互いに離間して配置され、破砕材7が、本体11内の緩衝材5同士の間に配置される。これにより、一対の緩衝材5の各表面が破砕材7の両側に位置して実質的な自由面として機能し得るので、クラックCを地中壁本体11の厚さ方向tに安定的に指向させることができる。
また本実施形態によれば、地中壁1は、その本体11内でその水平延在方向wに互いに離間して配置され、本体11の高さ方向hに延びる複数の芯材(例えばH形鋼材)4を更に含んで構成される。これにより、本体11の剛性を高めることができる。
Further, according to the present embodiment, the pair of cushioning materials 5 are disposed in the main body 11 so as to be spaced apart from each other in the horizontal extending direction w, and the crushing material 7 is disposed between the cushioning materials 5 in the main body 11. Is done. Thereby, since each surface of a pair of shock absorbing material 5 can be located in the both sides of the crushing material 7, and can function as a substantially free surface, the crack C is stably directed to the thickness direction t of the underground wall main body 11. Can be made.
Moreover, according to this embodiment, the underground wall 1 is spaced apart from each other in the horizontal extending direction w in the main body 11 and extends in the height direction h of the main body 11 (for example, H-shaped). Steel material) 4 is further included. Thereby, the rigidity of the main body 11 can be increased.

また本実施形態によれば、緩衝材5は芯材4に固定される。これにより、緩衝材5の設置作業と芯材4の設置作業とを一体化して行うことができるので、これら設置作業を効率よく行うことができる。
また本実施形態によれば、緩衝材5は、その一側で隣り合う芯材4に固定され、他側で破砕材7(管状部材6)に対向する。これにより、破砕材7による破砕時に発生する圧縮荷重Pを緩衝材5に良好に作用させることができる。
According to the present embodiment, the buffer material 5 is fixed to the core material 4. Thereby, since the installation operation | work of the buffer material 5 and the installation operation | work of the core material 4 can be integrated and performed, these installation operations can be performed efficiently.
Moreover, according to this embodiment, the shock absorbing material 5 is fixed to the adjacent core material 4 on the one side, and opposes the crushing material 7 (tubular member 6) on the other side. Thereby, the compressive load P generated at the time of crushing by the crushing material 7 can be applied to the buffer material 5 favorably.

また本実施形態によれば、緩衝材5は、芯材4(H形鋼材)のウェブ4a及び一対のフランジ4bにより区画形成される空間S内に配置される。これにより、自由面として機能し得る部分を、空間S内に限定することができるので、破砕材7による破砕時に発生する圧縮荷重Pの作用方向を、空間Sが存在する方向に集中させることができ、ひいては、クラックCの指向性の付与を、より安定的に行うことができる。
また本実施形態によれば、地中壁本体11内の緩衝材5同士の間には、複数の破砕材7が本体11の厚さ方向tに沿って並んで配置される。これにより、破砕材7による破砕時に発生する圧縮荷重Pを、本体11の水平延在方向wに向かって平面的に、緩衝材5に作用させることができる。
Moreover, according to this embodiment, the buffer material 5 is arrange | positioned in the space S defined by the web 4a and the pair of flange 4b of the core material 4 (H-shaped steel material). Thereby, since the part which can function as a free surface can be limited in the space S, the action direction of the compression load P generated at the time of crushing by the crushing material 7 can be concentrated in the direction in which the space S exists. As a result, the directivity of the crack C can be imparted more stably.
Moreover, according to this embodiment, between the buffer materials 5 in the underground wall main body 11, the plurality of crushing materials 7 are arranged along the thickness direction t of the main body 11. Thereby, the compressive load P generated at the time of crushing by the crushing material 7 can be applied to the buffer material 5 in a plane in the horizontal extending direction w of the main body 11.

また本実施形態によれば、地中壁1は、破砕材7を収容して本体11の高さ方向hに延びる管状部材6を更に含んで構成される。これにより、破砕材7の保護カバーとして管状部材6を機能させることができる。
また本実施形態によれば、管状部材6は、その地中壁本体11の厚さ方向tの両端部に破損容易な脆弱部(切欠部9)が形成されている。これにより、破砕材7による破砕時には、管状部材6がその脆弱部にて分割されて、この分割片の移動が、地中壁本体11の水平延在方向wに作用する圧縮荷重Pを強化するので、クラックCへの指向性の付与を、より安定的に行うことができる。
また本実施形態によれば、管状部材6は芯材4に固定される。これにより、管状部材6の設置作業と芯材4の設置作業とを一体化して行うことができるので、これら設置作業を効率よく行うことができる。
Moreover, according to this embodiment, the underground wall 1 is further comprised including the tubular member 6 which accommodates the crushing material 7 and extends in the height direction h of the main body 11. Thereby, the tubular member 6 can be functioned as a protective cover for the crushing material 7.
Further, according to the present embodiment, the tubular member 6 is formed with fragile portions (notches 9) that are easily damaged at both ends in the thickness direction t of the underground wall main body 11. Thereby, at the time of crushing with the crushing material 7, the tubular member 6 is divided | segmented in the weak part, and the movement of this division | segmentation piece strengthens the compressive load P which acts on the horizontal extension direction w of the underground wall main body 11. FIG. Therefore, the directivity to the crack C can be imparted more stably.
According to the present embodiment, the tubular member 6 is fixed to the core material 4. Thereby, since the installation operation | work of the tubular member 6 and the installation operation | work of the core material 4 can be integrated and performed, these installation operations can be performed efficiently.

また本実施形態によれば、地中壁1を構築する方法として、緩衝材5を芯材4に固定し、緩衝材5が固定された芯材4を、硬化前のソイルモルタル製の地中壁1の本体11内に設置する。これにより、緩衝材5の設置作業と芯材4の設置作業とを一体化して行うことができるので、これら設置作業を効率よく行うことができる。
また本実施形態によれば、地中壁1を構築する方法として、緩衝材5及び管状部材6を芯材4に固定し、緩衝材5及び管状部材6が固定された芯材4を、硬化前のソイルモルタル製の地中壁1の本体11内に設置する。これにより、緩衝材5の設置作業と管状部材6の設置作業と芯材4の設置作業とを一体化して行うことができるので、これら設置作業を効率よく行うことができる。
Moreover, according to this embodiment, as a method of constructing the underground wall 1, the buffer material 5 is fixed to the core material 4, and the core material 4 to which the buffer material 5 is fixed is made into a soil mortar ground before curing. It is installed in the main body 11 of the wall 1. Thereby, since the installation operation | work of the buffer material 5 and the installation operation | work of the core material 4 can be integrated and performed, these installation operations can be performed efficiently.
Moreover, according to this embodiment, as a method of constructing the underground wall 1, the buffer material 5 and the tubular member 6 are fixed to the core material 4, and the core material 4 to which the buffer material 5 and the tubular member 6 are fixed is cured. It is installed in the main body 11 of the underground wall 1 made of the previous soil mortar. Thereby, since the installation work of the buffer material 5, the installation work of the tubular member 6, and the installation work of the core material 4 can be integrally performed, these installation work can be performed efficiently.

尚、本実施形態では管状部材6を用いているが、この他、管状部材6を用いることなく、緩衝材5を芯材4に固定してユニットとし、このユニットをソイルモルタル硬化前の地中壁本体11に建て込むことで、緩衝材5を芯材4と共に地中壁本体11内に設置し、ソイルモルタルの硬化後に例えば削孔機を用いて地中壁本体11を地面3側から地下に向けて削孔して、この孔の内部に破砕材7を設置してもよい。
また、本実施形態では、緩衝材5が芯材4のウェブ4aに接触して固定されているが、緩衝材5の芯材4への固定手法はこれに限らず、例えば、図9に示すように、緩衝材5を、ブラケット32を介して、芯材4のフランジ4bに固定してもよい。
In addition, although the tubular member 6 is used in this embodiment, the buffer material 5 is fixed to the core material 4 without using the tubular member 6 as a unit, and this unit is ground before the soil mortar is cured. The buffer material 5 is installed in the underground wall body 11 together with the core material 4 by being built in the wall body 11, and after the soil mortar is hardened, the underground wall body 11 is underground from the ground 3 side using, for example, a drilling machine. A hole may be drilled toward the surface, and the crushed material 7 may be installed inside the hole.
Moreover, in this embodiment, although the buffer material 5 contacts and fixes the web 4a of the core material 4, the fixing method to the core material 4 of the buffer material 5 is not restricted to this, For example, it shows in FIG. Thus, the cushioning material 5 may be fixed to the flange 4 b of the core material 4 via the bracket 32.

また、本実施形態では、地中壁1のうち通水部20が形成される部分には、緩衝材5、5間に、複数(図では3本)の管状部材6が、地中壁本体11の厚さ方向tに沿って1列に並んで配置されているが、列の数はこれに限らず、例えば、図10に示すように、管状部材6の列が、2列であってもよい。また、図11に示すように、緩衝材5、5間に、複数(図では8本)の管状部材6を散在配置してもよい。
また、本実施形態では、芯材4の一例としてH形鋼材を挙げて説明したが、芯材4はこれに限らず、例えば、鋼管であってもよい。
Moreover, in this embodiment, in the part in which the water flow part 20 is formed among the underground walls 1, a plurality of (three in the figure) tubular members 6 are provided between the buffer materials 5 and 5, and the underground wall main body. 11 are arranged in a line along the thickness direction t. However, the number of the lines is not limited to this, and for example, as shown in FIG. Also good. In addition, as shown in FIG. 11, a plurality (eight in the drawing) of tubular members 6 may be scattered between the buffer materials 5 and 5.
In the present embodiment, the H-shaped steel material is described as an example of the core material 4, but the core material 4 is not limited thereto, and may be a steel pipe, for example.

また、本実施形態では、地中壁本体11の水平延在方向wにおいて破砕材7を両側から挟み込むように、一対の緩衝材5を地中壁本体11内に配置しているが、緩衝材5の配置はこれに限らず、例えば、図12に示すように、本実施形態における一対の緩衝材5のうちいずれか一方を省略してもよい。この場合においても、破砕材7による破砕時には、緩衝材5の表面に圧縮荷重Pが平面的に作用して、この結果、緩衝材5が地中壁本体11の水平延在方向wに圧縮されて変形する。この圧縮変形により、地中壁本体11の厚さ方向tに延びるクラックCが形成される。このクラックCの形成時には、圧縮変形する緩衝材5の表面が自由面として機能し得る。従って、この自由面により、地中壁本体11の当該破砕部分における拘束状態が緩和されるので、破砕材7から生じる破砕エネルギーを地中壁本体11の破砕に効率的に利用することができ、ひいては、地中壁1の通水部20を効率よく形成することができる。   Moreover, in this embodiment, although a pair of buffer material 5 is arrange | positioned in the underground wall main body 11 so that the crushing material 7 may be inserted | pinched from both sides in the horizontal extending direction w of the underground wall main body 11, The arrangement of 5 is not limited to this, and for example, as shown in FIG. 12, any one of the pair of cushioning materials 5 in the present embodiment may be omitted. Also in this case, when crushing with the crushing material 7, the compression load P acts on the surface of the buffer material 5 in a plane, and as a result, the buffer material 5 is compressed in the horizontal extending direction w of the underground wall body 11. And deform. By this compression deformation, a crack C extending in the thickness direction t of the underground wall body 11 is formed. When the crack C is formed, the surface of the cushioning material 5 that undergoes compression deformation can function as a free surface. Therefore, since the restraint state in the crushing part of the underground wall main body 11 is relaxed by this free surface, the crushing energy generated from the crushing material 7 can be efficiently used for crushing the underground wall main body 11, As a result, the water flow part 20 of the underground wall 1 can be formed efficiently.

また、本実施形態における地中壁1の通水部20は、集水側の地中壁1と涵養側の地中壁1との双方に設けることが好ましいが、この他、対象とする地下水流の状況等を勘案して、集水側の地中壁1と涵養側の地中壁1とのいずれか一方に設けてもよい。
また、本実施形態では、地中壁本体11の水平延在方向wにおいて、地中壁1の通水部20を形成する間隔を決定する際には、対象とする地盤の地下水流の状況や、破砕材7による破砕性能等が勘案され得る。
また、本実施形態では、地中壁1として、ソイルモルタル製の地中連続壁を挙げて説明したが、破砕材7によって破砕可能であり、かつ、当該破砕によって通水部20が形成され得る地中壁1であれば、地中壁1の構成はこれに限らず、例えば、モルタル製、又は、コンクリート製の地中壁1であってもよい。
Moreover, although it is preferable to provide the water flow part 20 of the underground wall 1 in this embodiment in both the underground wall 1 by the side of a water collection, and the underground wall 1 by the side of a recharge, it is the groundwater used as object. In consideration of the flow condition, etc., it may be provided on either the water collecting side underground wall 1 or the recharge side underground wall 1.
Moreover, in this embodiment, when determining the space | interval which forms the water flow part 20 of the underground wall 1 in the horizontal extension direction w of the underground wall main body 11, the condition of the groundwater flow of the target ground, The crushing performance by the crushing material 7 can be taken into consideration.
Moreover, in this embodiment, although the underground wall 1 made from soil mortar was mentioned and demonstrated as the underground wall 1, it can be crushed by the crushing material 7, and the water flow part 20 can be formed by the said crushing. If it is the underground wall 1, the structure of the underground wall 1 is not restricted to this, For example, the underground wall 1 made from mortar or concrete may be sufficient.

また、本実施形態では、緩衝材5及び管状部材6を芯材4に固定し、緩衝材5及び管状部材6が固定された芯材4を、硬化前のソイルモルタル製、モルタル製、又は、コンクリート製の地中壁1の本体11内に設置して、地中壁1を構築しているが、地中壁の構築方法は、これに限らない。   Moreover, in this embodiment, the buffer material 5 and the tubular member 6 are fixed to the core material 4, and the core material 4 to which the buffer material 5 and the tubular member 6 are fixed is made of a soil mortar, a product of mortar before curing, or Although the underground wall 1 is constructed by installing it in the main body 11 of the concrete underground wall 1, the construction method of the underground wall is not limited to this.

例えば、地中壁1を構築する方法として、まず、地中壁1の本体11の構築予定場所に対応する掘削孔を地盤に形成する。この掘削孔については、地面3側から地下に向けて地盤を掘削することにより形成される。次に、芯材4、緩衝材5、及び、管状部材6を掘削孔内に設置する。次に、掘削孔内に、ソイルモルタル、モルタル、又は、コンクリートを充填して地中壁1の本体11を構築する。この方法によれば、ソイルモルタル、モルタル、又は、コンクリートの掘削孔内への充填に先立って、芯材4、緩衝材5、及び、管状部材6の位置決めを行うことができるので、芯材4、緩衝材5、及び、管状部材6を地中壁1の本体11内に精度よく設置することができる。
この地中壁1の構築方法では、芯材4、緩衝材5、及び、管状部材6を掘削孔内に設置するに先立って、緩衝材5及び管状部材6を芯材4に固定してもよい。これにより、芯材4の設置作業と緩衝材5の設置作業と管状部材6の設置作業とを一体化して行うことができるので、これら設置作業を効率よく行うことができる。
For example, as a method for constructing the underground wall 1, first, an excavation hole corresponding to a planned construction location of the main body 11 of the underground wall 1 is formed in the ground. The excavation hole is formed by excavating the ground from the ground 3 side toward the underground. Next, the core material 4, the buffer material 5, and the tubular member 6 are installed in the excavation hole. Next, the main body 11 of the underground wall 1 is constructed by filling the excavation hole with soil mortar, mortar, or concrete. According to this method, since the core material 4, the buffer material 5, and the tubular member 6 can be positioned prior to filling the soil mortar, mortar, or concrete into the excavation hole, the core material 4 The buffer material 5 and the tubular member 6 can be accurately installed in the main body 11 of the underground wall 1.
In the construction method of the underground wall 1, the buffer material 5 and the tubular member 6 may be fixed to the core material 4 before the core material 4, the buffer material 5, and the tubular member 6 are installed in the excavation hole. Good. Thereby, since the installation work of the core material 4, the installation work of the buffer material 5, and the installation work of the tubular member 6 can be integrated and performed, these installation work can be performed efficiently.

または、地中壁1を構築する方法として、まず、地中壁1の本体11の構築予定場所に対応する掘削孔を地盤に形成する。この掘削孔については、地面3側から地下に向けて地盤を掘削することにより形成される。次に、芯材4及び緩衝材5を掘削孔内に設置する。次に、掘削孔内に、ソイルモルタル、モルタル、又は、コンクリートを充填して地中壁1の本体11を構築する。この方法によれば、ソイルモルタル、モルタル、又は、コンクリートの掘削孔内への充填に先立って、芯材4及び緩衝材5の位置決めを行うことができるので、芯材4及び緩衝材5を地中壁1の本体11内に精度よく設置することができる。尚、ソイルモルタル、モルタル、又は、コンクリートの硬化後に例えば削孔機を用いて地中壁本体11を地面3側から地下に向けて削孔することで、この孔の内部に破砕材7を設置することが可能となる。
この地中壁1の構築方法では、芯材4及び緩衝材5を掘削孔内に設置するに先立って、緩衝材5を芯材4に固定してもよい。これにより、芯材4の設置作業と緩衝材5の設置作業とを一体化して行うことができるので、これら設置作業を効率よく行うことができる。
Alternatively, as a method for constructing the underground wall 1, first, an excavation hole corresponding to a planned construction location of the main body 11 of the underground wall 1 is formed in the ground. The excavation hole is formed by excavating the ground from the ground 3 side toward the underground. Next, the core material 4 and the buffer material 5 are installed in the excavation hole. Next, the main body 11 of the underground wall 1 is constructed by filling the excavation hole with soil mortar, mortar, or concrete. According to this method, since the core material 4 and the buffer material 5 can be positioned prior to filling the soil mortar, mortar, or concrete into the excavation hole, the core material 4 and the buffer material 5 are grounded. It can be accurately installed in the main body 11 of the middle wall 1. In addition, after hardening the soil mortar, mortar, or concrete, the ground wall body 11 is drilled from the ground 3 side to the basement by using a drilling machine, for example, and the crushed material 7 is installed inside the hole. It becomes possible to do.
In the construction method of the underground wall 1, the buffer material 5 may be fixed to the core material 4 before the core material 4 and the buffer material 5 are installed in the excavation hole. Thereby, since the installation work of the core material 4 and the installation work of the buffer material 5 can be integrated and performed, these installation work can be performed efficiently.

1 地中壁
2 地下構造物
3 地面
4 芯材
4a ウェブ
4b フランジ
5 緩衝材
6 管状部材
7 破砕材
8 破砕エネルギー伝達材
9 切欠部(脆弱部)
11 本体
20 通水部
31、32 ブラケット
51 加圧流体注入口
52 加圧流体収容部
53 中空部材
54 気泡緩衝材
55 有底円筒部材
56 緩衝部材
h 地中壁本体11の高さ方向
t 地中壁本体11の厚さ方向
w 地中壁本体11の水平延在方向
C クラック
P 圧縮荷重
S 空間
DESCRIPTION OF SYMBOLS 1 Underground wall 2 Underground structure 3 Ground 4 Core material 4a Web 4b Flange 5 Buffer material 6 Tubular member 7 Crushing material 8 Crushing energy transmission material 9 Notch (fragile part)
DESCRIPTION OF SYMBOLS 11 Main body 20 Water flow parts 31 and 32 Bracket 51 Pressurized fluid injection port 52 Pressurized fluid accommodating part 53 Hollow member 54 Bubble buffer material 55 Bottomed cylindrical member 56 Buffer member h Height direction of underground wall main body 11 t Underground Thickness direction of wall main body 11 w Horizontal extension direction of underground wall main body 11 C crack P compressive load S space

Claims (18)

地中壁の本体内に配置される緩衝材と、
前記本体内で前記緩衝材に対して離間して配置される破砕材と、
を含んで構成され、
前記緩衝材は、前記破砕材による前記本体の破砕時に圧縮変形可能であることを特徴とする地中壁。
Cushioning material placed in the body of the underground wall;
A crushed material that is spaced apart from the cushioning material within the body;
Comprising
The underground wall according to claim 1, wherein the cushioning material is compressible and deformable when the main body is crushed by the crushed material.
一対の前記緩衝材が、前記本体内でその水平延在方向に互いに離間して配置され、
前記破砕材が、前記本体内の前記緩衝材同士の間に配置されることを特徴とする請求項1に記載の地中壁。
A pair of the cushioning materials are disposed apart from each other in the horizontal extending direction in the main body,
The underground wall according to claim 1, wherein the crushing material is disposed between the cushioning materials in the main body.
前記本体内でその水平延在方向に互いに離間して配置され、かつ、前記本体の高さ方向に延びる複数の芯材を更に含んで構成されることを特徴とする請求項1又は請求項2に記載の地中壁。   3. The apparatus according to claim 1, further comprising a plurality of core members arranged in the main body so as to be spaced apart from each other in the horizontal extending direction and extending in the height direction of the main body. Underground wall as described in. 前記緩衝材は前記芯材に固定されることを特徴とする請求項3に記載の地中壁。   The underground wall according to claim 3, wherein the cushioning material is fixed to the core material. 前記緩衝材は、その一側で隣り合う前記芯材に固定され、他側で前記破砕材に対向することを特徴とする請求項4に記載の地中壁。   5. The underground wall according to claim 4, wherein the cushioning material is fixed to the adjacent core material on one side and faces the crushed material on the other side. 前記芯材はH形鋼材であることを特徴とする請求項3〜請求項5のいずれか1つに記載の地中壁。   The underground wall according to any one of claims 3 to 5, wherein the core material is an H-shaped steel material. 前記緩衝材は、前記H形鋼材のウェブ及び一対のフランジにより区画形成される空間内に配置されることを特徴とする請求項6に記載の地中壁。   The underground wall according to claim 6, wherein the cushioning material is disposed in a space defined by the web of the H-shaped steel material and a pair of flanges. 複数の前記破砕材が前記本体の厚さ方向に沿って並んで配置されることを特徴とする請求項1〜請求項7のいずれか1つに記載の地中壁。   The underground wall according to any one of claims 1 to 7, wherein a plurality of the crushed materials are arranged side by side along a thickness direction of the main body. 前記破砕材を収容して前記本体の高さ方向に延びる管状部材を更に含んで構成されることを特徴とする請求項1〜請求項8のいずれか1つに記載の地中壁。   The underground wall according to any one of claims 1 to 8, further comprising a tubular member that accommodates the crushed material and extends in a height direction of the main body. 前記管状部材は、その前記本体の厚さ方向の両端部に破損容易な脆弱部が形成されていることを特徴とする請求項9に記載の地中壁。   The underground wall according to claim 9, wherein the tubular member has fragile portions that are easily damaged at both end portions in the thickness direction of the main body. 前記管状部材は前記芯材に固定されることを特徴とする請求項9又は請求項10に記載の地中壁。   The underground wall according to claim 9 or 10, wherein the tubular member is fixed to the core member. 前記地中壁はソイルモルタル製、モルタル製、又は、コンクリート製であることを特徴とする請求項1〜請求項11のいずれか1つに記載の地中壁。   The underground wall according to any one of claims 1 to 11, wherein the underground wall is made of soil mortar, mortar, or concrete. 請求項3に記載の地中壁を構築する方法であって、
前記緩衝材を前記芯材に固定し、
前記緩衝材が固定された前記芯材を、硬化前のソイルモルタル製、モルタル製、又は、コンクリート製の前記地中壁の本体内に設置する、地中壁の構築方法。
A method for constructing an underground wall according to claim 3,
Fixing the cushioning material to the core material;
A method for constructing an underground wall, wherein the core material to which the cushioning material is fixed is installed in a body of the underground wall made of soil mortar, mortar, or concrete before curing.
請求項9に記載の地中壁を構築する方法であって、
前記緩衝材及び前記管状部材を前記芯材に固定し、
前記緩衝材及び前記管状部材が固定された前記芯材を、硬化前のソイルモルタル製、モルタル製、又はコンクリート製の前記地中壁の本体内に設置する、地中壁の構築方法。
A method for constructing an underground wall according to claim 9,
Fixing the cushioning material and the tubular member to the core material;
The construction method of the underground wall which installs the said core material to which the said buffer material and the said tubular member were fixed in the main body of the underground wall made from the soil mortar, mortar, or concrete before hardening.
請求項3に記載の地中壁を構築する方法であって、
前記地中壁の本体の構築予定場所に対応する掘削孔を地盤に形成し、
前記芯材及び前記緩衝材を前記掘削孔内に設置し、
前記掘削孔内に、ソイルモルタル、モルタル、又は、コンクリートを充填して前記地中壁の本体を構築する、地中壁の構築方法。
A method for constructing an underground wall according to claim 3,
Forming an excavation hole in the ground corresponding to the construction planned location of the main body of the underground wall,
Installing the core material and the cushioning material in the excavation hole;
The underground wall construction method of constructing the underground wall body by filling the excavation hole with soil mortar, mortar, or concrete.
前記芯材及び前記緩衝材を前記掘削孔内に設置するに先立って、前記緩衝材を前記芯材に固定する、請求項15に記載の地中壁の構築方法。   The underground wall construction method according to claim 15, wherein the buffer material is fixed to the core material before the core material and the buffer material are installed in the excavation hole. 請求項9に記載の地中壁を構築する方法であって、
前記地中壁の本体の設置予定場所に対応する掘削孔を地盤に形成し、
前記芯材、前記緩衝材、及び、前記管状部材を前記掘削孔内に設置し、
前記掘削孔内に、ソイルモルタル、モルタル、又は、コンクリートを充填して前記地中壁の本体を構築する、地中壁の構築方法。
A method for constructing an underground wall according to claim 9,
Forming an excavation hole in the ground corresponding to the planned installation location of the main body of the underground wall,
Installing the core material, the cushioning material, and the tubular member in the excavation hole;
The underground wall construction method of constructing the underground wall body by filling the excavation hole with soil mortar, mortar, or concrete.
前記芯材、前記緩衝材、及び、前記管状部材を前記掘削孔内に設置するに先立って、前記緩衝材及び前記管状部材を前記芯材に固定する、請求項17に記載の地中壁の構築方法。   18. The underground wall according to claim 17, wherein the buffer material and the tubular member are fixed to the core material prior to installing the core material, the buffer material, and the tubular member in the excavation hole. Construction method.
JP2013039385A 2013-02-28 2013-02-28 Underground wall and construction method of underground wall Active JP6082624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039385A JP6082624B2 (en) 2013-02-28 2013-02-28 Underground wall and construction method of underground wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039385A JP6082624B2 (en) 2013-02-28 2013-02-28 Underground wall and construction method of underground wall

Publications (2)

Publication Number Publication Date
JP2014167228A true JP2014167228A (en) 2014-09-11
JP6082624B2 JP6082624B2 (en) 2017-02-15

Family

ID=51617042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039385A Active JP6082624B2 (en) 2013-02-28 2013-02-28 Underground wall and construction method of underground wall

Country Status (1)

Country Link
JP (1) JP6082624B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523875A (en) * 1982-12-27 1985-06-18 Difiore Dante Auxiliary drainage system for eliminating water problems associated with a foundation of a building
JPH02108792A (en) * 1988-10-18 1990-04-20 Kajima Corp Removing method for underground continuous wall
JPH02240394A (en) * 1989-03-13 1990-09-25 Onoda Cement Co Ltd Hydration-expandible breaking agent cartridge
JPH03183896A (en) * 1989-12-12 1991-08-09 Sagami Doken:Kk Crushing method of temporary concrete
JPH10325141A (en) * 1997-05-27 1998-12-08 Kiso Koji Kk Saitougumi Crusher for pile head of cast-in-plate concrete pile and crushing method thereof
JPH11158903A (en) * 1997-11-26 1999-06-15 Ohbayashi Corp Method for permeation of underground continuous wall and reinforcement cage used therefor
JPH11270151A (en) * 1998-03-20 1999-10-05 Taisei Corp Concrete structure
JP2000328558A (en) * 1999-05-19 2000-11-28 Kubota Corp Underground water flowing construction method in soil cement column row earth retaining wall
JP2010203115A (en) * 2009-03-03 2010-09-16 Railway Technical Res Inst Method for collecting groundwater in construction of underground structure by cut-and-cover

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523875A (en) * 1982-12-27 1985-06-18 Difiore Dante Auxiliary drainage system for eliminating water problems associated with a foundation of a building
JPH02108792A (en) * 1988-10-18 1990-04-20 Kajima Corp Removing method for underground continuous wall
JPH02240394A (en) * 1989-03-13 1990-09-25 Onoda Cement Co Ltd Hydration-expandible breaking agent cartridge
JPH03183896A (en) * 1989-12-12 1991-08-09 Sagami Doken:Kk Crushing method of temporary concrete
JPH10325141A (en) * 1997-05-27 1998-12-08 Kiso Koji Kk Saitougumi Crusher for pile head of cast-in-plate concrete pile and crushing method thereof
JPH11158903A (en) * 1997-11-26 1999-06-15 Ohbayashi Corp Method for permeation of underground continuous wall and reinforcement cage used therefor
JPH11270151A (en) * 1998-03-20 1999-10-05 Taisei Corp Concrete structure
JP2000328558A (en) * 1999-05-19 2000-11-28 Kubota Corp Underground water flowing construction method in soil cement column row earth retaining wall
JP2010203115A (en) * 2009-03-03 2010-09-16 Railway Technical Res Inst Method for collecting groundwater in construction of underground structure by cut-and-cover

Also Published As

Publication number Publication date
JP6082624B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP4640674B2 (en) Tunnel excavation method
JP6423690B2 (en) Dismantling method
KR101245609B1 (en) Constructing Method of Steel Pile in Sea Ground
KR101812265B1 (en) A Foundation Method Of Continuous and Cut Off wall By Overlap Casing
JP5882143B2 (en) Anti-floating pile for underground structures and anti-floating method for underground structures
JP5728301B2 (en) Foundation structure
JP2009121063A (en) Service well, method of constructing service well, and structure of service well
JP2010090592A (en) Reinforced soil pile, method for manufacturing the same, and method for computing strength of spread foundation
JP6082624B2 (en) Underground wall and construction method of underground wall
KR20110000337A (en) Pressure grouting method
JP6277755B2 (en) Ground improvement method and ground improvement system
JP2009079415A (en) Banking reinforcing structure, reinforcing method and linear banking
KR101403997B1 (en) Concrete caisson hollow part reinforcement structure and method by using grouting device
CN203320538U (en) Water resource recycling and deep drainage device for landslides and underground water inside landslides
JP4888293B2 (en) Earth retaining wall made of parent pile sheet pile, water stop structure of earth retaining wall made of parent pile side sheet pile, construction method of earth retaining wall made of parent pile side sheet pile, and retaining wall of earth retaining wall made of parent pile side sheet pile Water method
JP2014001619A (en) Structure and method for reducing liquefaction damage of structure
JP5532325B2 (en) Construction method of underground wall
EP2848739A1 (en) Steel wall
CN109371979B (en) Deep foundation pit retaining structure combining jet anchor reverse construction and punching pile
Verstov et al. The technology of protecting objects of transport infrastructure from dynamic impacts in the ground
JP5777435B2 (en) Reinforcement method for foundations for small buildings
JP4905296B2 (en) Method for constructing retaining wall and retaining wall
JP4359928B2 (en) Construction method of columnar seismic isolation wall
KR101865075B1 (en) Method of Forming for Grouting Root
JP5416435B2 (en) Underground structure and construction method of underground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6082624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250