JP2014161239A - Hibernation induction method and anhydrous transportation method - Google Patents

Hibernation induction method and anhydrous transportation method Download PDF

Info

Publication number
JP2014161239A
JP2014161239A JP2013032811A JP2013032811A JP2014161239A JP 2014161239 A JP2014161239 A JP 2014161239A JP 2013032811 A JP2013032811 A JP 2013032811A JP 2013032811 A JP2013032811 A JP 2013032811A JP 2014161239 A JP2014161239 A JP 2014161239A
Authority
JP
Japan
Prior art keywords
temperature
fish
time
flounder
hibernation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013032811A
Other languages
Japanese (ja)
Inventor
Daisuke Kudo
工藤大典
Hisashi Oyachi
久 大谷地
Go Kimura
郷 木村
Moe Takeuchi
萌 竹内
Michifumi Kimizuka
道史 君塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Aomori Prefectural Industrial Technology Research Center
Original Assignee
AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Aomori Prefectural Industrial Technology Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER, Aomori Prefectural Industrial Technology Research Center filed Critical AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Priority to JP2013032811A priority Critical patent/JP2014161239A/en
Publication of JP2014161239A publication Critical patent/JP2014161239A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hibernation induction method of fishes that can induce fishes in a pseudo-hibernation state at low cost, and enables the fishes to live at a high revival rate, even if being left in air 24 hours or more under anhydrous environment, and to provide an anhydrous transportation method.SOLUTION: A hibernation induction method includes the steps of: farming fishes at rest during a first time τin an aquarium maintained in a rest farming temperature T; quenching the fishes, by moving the fishes to the aquarium maintained in a cold acclimatization temperature Tlower than the rest farming temperature T, after the lapse of the first time τ; inducing the fishes in a pseudo-hibernation state by bringing the fishes into the acclimatization at rest during a second time τin the aquarium maintained in the cold acclimatization temperature T, and furthermore continuing the acclimatization; and moving the fishes to a shipping container maintained at an oxygen concentration of 60% or more after the lapse of the second time τand conveying the shipping container to transport the fishes in a pseudo-hibernation state under anhydrous environment.

Description

本発明は、活きた魚類の生理代謝機能等の運動機能の一部を抑制して疑似冬眠状態とさせる冬眠誘導方法、およびこの疑似冬眠状態の魚類を生きたまま、水が含まれていない輸送用容器に入れて輸送する無水輸送(無海水輸送)方法に関するものである。   The present invention relates to a hibernation-inducing method for suppressing a part of motor functions such as physiological metabolism function of live fish to make it a pseudo-hibernation state, and transporting the fish in the pseudo-hibernation state while not containing water. The present invention relates to an anhydrous transport method (seawater-free transport method) for transporting in a container.

魚類を食品の対象として扱う場合、その商品価値はなんといっても鮮度であり、鮮度を維持して消費者まで運搬する方法としては、大別して活魚として運搬するものと、冷凍などの低温で運搬するものがある。特に、魚類を調理して提供する料理屋、飲食店などにおいては、新鮮で美味な魚料理を提供できるように、魚類を生きたまま保管、陳列するための水槽や生簀(イケス)を備える店舗が増えている。魚類を生きたまま配送するために、輸送中の魚類の傷み防止や鮮度維持を目的とする様々な輸送技術が開発されている。   When treating fish as food, the value of the product is freshness, and there are two ways to maintain the freshness and transport it to consumers: one that is transported as live fish and one that is transported at a low temperature such as frozen. There is something to do. In particular, in restaurants and restaurants that cook and provide fish, stores equipped with aquariums and ginger to store and display fish alive to provide fresh and delicious fish dishes Is increasing. In order to deliver fish alive, various transport technologies have been developed for the purpose of preventing damage to the fish during transport and maintaining freshness.

従来、活魚の運搬には、生簀を備えた船舶や車両により運搬されていたが、一般には活魚の重さの1.5倍以上10倍程度の水が必要で、更に曝気装置も必要であるため、輸送費用が高いという問題点があった。例えば、1尾のヒラメを運搬する場合、3〜3.5キロの海水をいれた生簀を同時に運ばなければならなかった。しかも、魚類の種類や特性に応じた生簀が必要であり、すべての魚類を同様に運搬することは困難である。また、運搬中における魚類同士や生簀との衝突などによる魚体の損傷や、長期間の運搬における餌の問題や、輸送中の海水温度変動による魚類自体のストレスや疲労等によるいわゆる活き痩せ状態となることにより、捕れたての状態を維持するのは必ずしも簡単ではない。魚類の輸送方法が適切でなかった場合は、最悪の場合、生簀中の魚類を死に至らしめる場合もあるので、品質や歩留まりの低下の問題もある。   Conventionally, live fish has been transported by ships and vehicles equipped with ginger, but generally requires 1.5 to 10 times the weight of live fish, and an aeration device is also required. Therefore, there was a problem that the transportation cost was high. For example, when carrying one flounder, it was necessary to carry a ginger filled with 3 to 3.5 kilograms of seawater at the same time. In addition, a ginger according to the type and characteristics of the fish is necessary, and it is difficult to transport all the fish in the same way. In addition, the fish body is damaged due to collisions between fish and ginger during transportation, food problems during transportation for a long time, and the fish itself becomes stressed and fatigued due to seawater temperature fluctuation during transportation and so on. Therefore, it is not always easy to maintain a freshly caught state. If the method of transporting fish is not appropriate, in the worst case, the fish in the ginger may be killed, so there is a problem of deterioration in quality and yield.

したがって、魚類を活きた状態で、しかも運搬中における劣化を防ぎ、24時間以上の長時間の運搬にも耐え、さらに大量の運搬が可能な無水輸送(無海水輸送)方法が望まれている。すなわち、活魚の生理代謝機能等の運動機能を何らかの方法により低下させ、又は抑制して疑似冬眠状態(寒冷昏睡状態)を誘導し、呼吸器官等の生命維持機能を十分に維持した状態で、狭い空間で無水輸送ができ、その後、高い蘇生率で蘇生させることができればよい。   Therefore, there is a demand for an anhydrous transport method (seawater-free transport method) that can prevent deterioration during transport while keeping fish alive, can withstand transport for a long time of 24 hours or more, and can transport a large amount. In other words, the motor function such as physiological metabolism function of live fish is reduced or suppressed by some method to induce a pseudo-hibernation state (cold coma state), and the life support function such as respiratory organs is sufficiently maintained and narrow It is sufficient that anhydrous transport can be performed in space, and then resuscitation can be performed at a high resuscitation rate.

例えば、魚類の無水輸送技術は、図4に示すように、(a)安静畜養、(b)クールダウン、(c)低温馴化、及び(d)空中放置の4つの段階を経る理論を基礎にして実施されていた(非特許文献1参照。)。従来の理論における時刻t0〜t1における安静畜養段階は、次のクールダウン段階による冷却に備え、先ず、水温T1において魚類のストレスを除去する第1段階である。時刻t1〜t2におけるクールダウン段階は、魚類が入った水槽を水温T1から水温T1まで徐々に冷却(徐冷)し、疑似冬眠状態に誘導する第2段階である。魚類は体温が下がれば疑似冬眠状態になるが、従来の技術常識では、変温動物(外温性動物)である魚類は、急激な水温低下には適応できないで、水槽の水温を水温T1から疑似冬眠状態に必要な水温T2に急激に下げれば魚類が死んでしまうとされていた(非特許文献2参照。)。時刻t2〜t3における低温馴化段階は、水温T2において魚類を低温度に馴らして疑似冬眠状態を実現する第3段階である。時刻t3以降における空中放置段階は、無水生存状態で魚類を輸送する第4段階である。 For example, the anhydrous transport technology for fish is based on the theory of four stages: (a) resting, (b) cool-down, (c) low temperature acclimation, and (d) standing in the air, as shown in FIG. (See Non-Patent Document 1). The rest-breeding stage at times t 0 to t 1 in the conventional theory is a first stage for removing the stress of fish at the water temperature T 1 in preparation for cooling by the next cool-down stage. The cool-down stage at times t 1 to t 2 is a second stage in which the fish tank containing the fish is gradually cooled (slowly cooled) from the water temperature T 1 to the water temperature T 1 to induce a pseudo-hibernation state. Although fish become pseudo-hibernating when the body temperature decreases, fish that are variable temperature animals (exothermic animals) cannot be adapted to a sudden drop in water temperature according to conventional common general knowledge, and the water temperature in the tank is adjusted to the water temperature T 1. if suddenly lowered in temperature T 2 required for the pseudo-hibernation state fish it has been considered will die from (see non-Patent Document 2.). The low temperature acclimation stage at times t 2 to t 3 is a third stage in which the fish is acclimated to a low temperature at the water temperature T 2 to realize a pseudo-hibernation state. The air leaving stage after time t 3 is the fourth stage for transporting fish in an anhydrous state.

第2段階における徐冷により、魚類の水槽中の動きが鈍くなり、生理作用も徐々に弱まり、疑似冬眠状態に入る。疑似冬眠状態の魚類は、水中呼吸の代わりに空気呼吸をし、最小限の生理作用で延命するので、この疑似冬眠状態を用いて、水が全く含まれていない箱に入れて無水輸送ができる。疑似冬眠状態で無水輸送した後に、料理屋や飲食店で、魚類を水に戻すと魚類は、疑似冬眠状態から覚める。   The slow cooling in the second stage slows the movement of the fish in the aquarium, gradually weakens the physiological effect, and enters a pseudo-hibernation state. Pseudo-hibernating fish breathe air instead of underwater breathing and prolong life with minimal physiological action, so this pseudo-hibernating state can be used to transport anhydrous in a box that does not contain any water . After anhydrous transport in the pseudo-hibernation state, when the fish is returned to water at a restaurant or restaurant, the fish wakes up from the pseudo-hibernation state.

しかしながら、非特許文献1に記載された方法では、第4段階の無水生存時間の最長レコードは高々27時間であった。また、20時間以下の無水保存後のヒラメの蘇生率は50〜60%程度で、無水生存時間が24時間を超える場合は、蘇生率は33%程度であり、非特許文献1に記載された方法では、蘇生の歩留まりが低く、しかも活魚としての品質の低下も認められるという不都合があった。   However, in the method described in Non-Patent Document 1, the longest record of anhydrous life in the fourth stage was at most 27 hours. In addition, the resuscitation rate of flounder after anhydrous storage for 20 hours or less is about 50 to 60%, and when the anhydrous survival time exceeds 24 hours, the resuscitation rate is about 33%, which is described in Non-Patent Document 1. This method has the disadvantage that the yield of resuscitation is low and the quality of live fish is also deteriorated.

更に、非特許文献1に記載されたような徐冷によるクールダウン段階を用いる基本原理を基礎とする方法では、時刻t1〜t2におけるクールダウン段階を実施するために、温度制御装置を備えた高価な冷蔵水槽が必要であり、冷蔵水槽への資本投下や冷蔵水槽の運転のために電気代や人件費等の運転コストも必要になり、さらに、時刻t1〜t2の間のクールダウン時間も必要となるという種々の不都合がある(特許文献1参照。)。特に電力事情の深刻な状況においては、電力消費は削減することが求められる。 Furthermore, in the method based on the basic principle using the cool-down stage by slow cooling as described in Non-Patent Document 1, a temperature control device is provided to perform the cool-down stage at times t 1 to t 2 . and it requires an expensive refrigerated water tank, operating costs such as electricity bills and personnel expenses for capital investment and operation of refrigerated water tank to the refrigeration water tank is also required, further, cool between the time t 1 ~t 2 There are various inconveniences that a down time is required (see Patent Document 1). In particular, power consumption is required to be reduced in a serious power situation.

例えば、特許文献1に記載された海洋生物の人工冬眠状態へ誘導方法では、海水の温度を1℃間隔で段階的に下げながら、更に、逐次下がった各段階の温度、すなわち12℃、11℃、10℃及び9℃では海洋生物を含む海水の温度を20分、30分、40分及び50分と次第に拡張するような、コンピュータプログラムを用いた複雑な温度制御をして、オヒョウを人工冬眠状態へ誘導していた。オヒョウの場合は、最終的には氷点下(−)0.2℃まで冷却しているが、総冬眠誘導時間は約20時間必要であった(特許文献1の段落[0058]〜[0062]の欄参照。)。   For example, in the method for guiding marine organisms to an artificial hibernation state described in Patent Document 1, the temperature of the seawater is lowered step by step at intervals of 1 ° C., and further, the temperature of each step that is successively lowered, that is, 12 ° C., 11 ° C. At 10 ° C and 9 ° C, the temperature of seawater containing marine organisms is gradually expanded to 20 minutes, 30 minutes, 40 minutes, and 50 minutes, and the temperature is gradually increased to 20 minutes, 30 minutes, 40 minutes, and 50 minutes. I was leading to the state. In the case of halibut, although it is finally cooled to below freezing point (−) 0.2 ° C., the total hibernation induction time required about 20 hours (see paragraphs [0058] to [0062] of Patent Document 1). Column).

特開2008−188008号公報JP 2008-188008 A

君塚道史、他2名、「低温麻酔の無海水活魚輸送への応用」、低温生物工学会誌、低温生物工学会、2012年10月、第58巻、第2号、p.201−205Michifumi Kimizuka and two others, “Application of low-temperature anesthesia to transporting seawater-free fish”, Journal of Low-temperature Biotechnology, Society for Low-temperature Biotechnology, October 2012, Vol. 58, No. 2, p. 201-205 田村正、「外囲の変化が魚類に及ぼす影響 水温の急変が各種魚類に及ぼす影響、特に寒冷並に熱昏睡について」、日水誌、1944年、第12巻、第6号、p.204Tamura Tadashi, "Effects of changes in the surrounding environment on fishes: Effects of sudden changes in water temperature on various fishes, especially on cold and heat coma", Nissui Magazine, 1944, Vol. 12, No. 6, p. 204

本発明は、温度制御装置を備えた高価な冷蔵水槽を用いる必要がなく、低コストで魚類を疑似冬眠状態に誘導でき、且つこの疑似冬眠の状態を利用して無水の環境で24時間以上空中に放置しても魚類が高い蘇生率で生存可能な、魚類の冬眠誘導方法、及びこの冬眠誘導方法を用いた魚類の無水輸送方法を提供することを目的とする。  The present invention does not require the use of an expensive refrigerated water tank equipped with a temperature control device, can guide fish to a pseudo-hibernation state at low cost, and makes use of this pseudo-hibernation state for over 24 hours in an anhydrous environment. It is an object of the present invention to provide a method for inducing hibernation of fish, and a method for anhydrous transport of fish using this hibernation induction method, in which fish can survive at a high resuscitation rate.

上記目的を達成するために、本発明の第1の態様は、(a)安静畜養温度に維持された水槽中で、魚類を、第1の時間、安静に畜養する段階と、(b) 第1の時間の経過後、魚類を安静畜養温度より低い低温馴化温度に維持された水槽中に移動することにより、魚類を急冷する段階と、(c)魚類を、低温馴化温度に維持された水槽中で、第2の時間、安静に馴化させることにより、魚類を疑似冬眠状態に誘導し更に馴化を継続する段階とを含む冬眠誘導方法であることを要旨とする。   In order to achieve the above object, the first aspect of the present invention includes (a) a step of rearing fishes in a water tank maintained at a resting rearing temperature for a first time, and (b) second After the passage of time 1, the stage of rapidly cooling the fish by moving the fish into an aquarium maintained at a low acclimation temperature lower than the resting culture temperature; and (c) the aquarium maintained at the low acclimation temperature. Among them, the gist of the present invention is a hibernation induction method including a step of acclimating a fish for a second time and inducing a fish into a pseudo-hibernation state and continuing the habituation.

本発明の第2の態様は、(a)安静畜養温度に維持された水槽中で、魚類を、第1の時間、安静に畜養する段階と、(b) 第1の時間の経過後、魚類を安静畜養温度より低い低温馴化温度に維持された水槽中に移動することにより、魚類を急冷する段階と、(c)魚類を、低温馴化温度に維持された水槽中で、第2の時間、安静に馴化させることにより、魚類を疑似冬眠状態に誘導し更に馴化を継続する段階と、(d)第2の時間の経過後、魚類を輸送用容器に移動し、この輸送用容器の内部を酸素濃度60%以上、且つ低温馴化温度に維持して、輸送用容器を搬送することにより、疑似冬眠の状態の魚類を無水の環境で輸送する段階とを含む無水輸送方法であることを要旨とする。  According to a second aspect of the present invention, (a) a stage in which a fish is kept at rest for a first time in a water tank maintained at a resting temperature, and (b) after the first time has elapsed, the fish By cooling the fish into a tank maintained at a low acclimation temperature below the resting culture temperature, and (c) the fish in a tank maintained at a low acclimation temperature for a second time, Inducing the fish to a pseudo-hibernation state by further acclimatization at rest, and (d) after the second time has passed, move the fish to the shipping container and move the inside of the shipping container The present invention provides an anhydrous transport method including a step of transporting a fish in a state of pseudo-hibernation in an anhydrous environment by transporting a transport container while maintaining an oxygen concentration of 60% or more and a low acclimation temperature. To do.

本発明によれば、温度制御装置を備えた高価な冷蔵水槽を用いる必要がなく、低コストで魚類を疑似冬眠状態に誘導でき、且つこの疑似冬眠の状態を利用して無水の環境で24時間以上空中に放置しても魚類が高い蘇生率で生存可能な、魚類の冬眠誘導方法、及びこの冬眠誘導方法を用いた魚類の無水輸送方法を提供することができる。   According to the present invention, it is not necessary to use an expensive refrigerated water tank equipped with a temperature control device, fish can be guided to a pseudo-hibernation state at low cost, and this pseudo-hibernation state is utilized for 24 hours in an anhydrous environment. As described above, it is possible to provide a method for inducing hibernation of fish and a method for anhydrous transport of fish using this hibernation induction method, in which fish can survive at a high resuscitation rate even if left in the air.

本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法の概略を、各段階の温度と時間の関係を用いて説明する温度ダイアグラムである。It is a temperature diagram explaining the outline of the hibernation induction | guidance | derivation method and anhydrous transport method which concern on embodiment of this invention using the relationship between the temperature of each step, and time. 図2(a)は、本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法における、魚類を安静に畜養する段階で用いる水槽の概略の状態を模式的に説明する図で、図2(b)は、本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法における、魚類を安静に馴化して疑似冬眠状態に誘導するする段階で用いる水槽の概略の状態を模式的に説明する図である。FIG. 2 (a) is a diagram schematically illustrating the schematic state of the aquarium used in the stage of calmly raising fish in the hibernation induction method and the anhydrous transport method according to the embodiment of the present invention. b) is a diagram schematically illustrating a schematic state of an aquarium used in a stage of acclimatizing fish to be in a simulated hibernation state in the hibernation induction method and the anhydrous transport method according to the embodiment of the present invention. It is. 本発明の実施の形態に係る無水輸送方法における輸送用容器の輸送準備段階の構造の概略を模式的に説明する図である。It is a figure which illustrates typically the outline of the structure of the transport preparation stage of the container for transport in the anhydrous transport method which concerns on embodiment of this invention. 従来技術に係る徐冷法を用いた冬眠誘導方法を、各段階の温度と時間の関係を用いて説明する温度ダイアグラムである。It is a temperature diagram explaining the hibernation induction | guidance | derivation method using the slow cooling method which concerns on a prior art using the relationship between the temperature of each step, and time.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す本発明の実施の形態は、代表例として、従来から無水輸送が検討されているコイやフナに比して、蘇生率の低いヒラメの場合について例示的に説明するが、本発明の技術的思想はヒラメの場合に限定されるものではない。蘇生率の低いヒラメの場合について説明すれば、ヒラメ以外の、べラ、ボラ、ハゼ、ウツボ、カワハギ、アジ、タイ、フグ、オヒョウ、ベヘレイ、イカ、ノセチア、カムルチー、コイ、フナ、ティラピア、ヤイトハタ、チャイロルハタ、スジアラ、ドジョウ、ナマズなどのような冬眠もしくは疑似冬眠する種々の魚類に本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法が適用可能であることは、当業者には容易に理解できるであろう。そして、本発明の実施の形態では、ヒラメの場合について、低温馴化温度を5〜7℃の範囲として説明しているが、タイの場合であれば低温馴化温度を6〜12℃前後にすれば良く、他の魚類においても、その魚類に適した安静畜養温度や低温馴化温度を設定すればよい。   In addition, the embodiment of the present invention described below will exemplarily explain the case of Japanese flounder that has a low resuscitation rate compared to carp and crucian carp that have been studied for anhydrous transport as a typical example. The technical idea of the invention is not limited to the case of flounder. Explaining the case of Japanese flounder with a low resuscitation rate. It is easy for those skilled in the art that the hibernation induction method and the anhydrous transport method according to the embodiment of the present invention can be applied to various fish that hibernate or pseudo-hibernate, such as Chaylor Grouper, Sugiara, Loach, Catfish You can understand. And in embodiment of this invention, although the low temperature acclimation temperature is demonstrated as the range of 5-7 degreeC about the case of a flounder, if the low temperature acclimation temperature is made into about 6-12 degreeC in the case of Thailand. For other fish, it is only necessary to set a resting temperature and a low acclimation temperature suitable for the fish.

即ち、魚類が耐え得る水温の生存上限温度は非常に正確に決定でき、その個体差は多くの魚種で±0.2℃以内であるとされている。これに対して魚類の生存下限温度は、寒冷昏睡などの現象により正確な決定が困難である。各種聞の温度耐性の比較や、近縁の種と亜種との聞の差の比較もできるが、高温致死温度が近似する種間でも低温致死温度が類似するとは限らないとされるが、既往文献等により現在知られている魚類の生息水温の下限値及び低温側限界水温等の生物特性値を考慮して、実験的な検討を加えることにより、対象とする個々の魚類の安静畜養温度や低温馴化温度を、その魚類の魚体に与えるストレスを考慮して個別具体的にそれぞれ選定すれば良い。   That is, the upper limit survival temperature of the water temperature that can be tolerated by fish can be determined very accurately, and the individual difference is said to be within ± 0.2 ° C. for many fish species. On the other hand, it is difficult to accurately determine the minimum survival temperature of fish due to phenomena such as cold coma. Although it is possible to compare the temperature tolerance of various species and the difference between closely related species and subspecies, it is said that the low temperature lethal temperature is not necessarily similar even among species with similar high temperature lethal temperatures, Considering the lower limit value of the inhabitant water temperature and the lower limit water temperature of the fish that are currently known from past literature, etc., by conducting experimental studies, the resting temperature of each target fish The low temperature acclimation temperature may be selected individually and specifically in consideration of the stress applied to the fish body.

更に、本発明の水槽や輸送用容器等の材質、形状、構造、配置等は、本発明の実施の形態で例示的に説明する下記のものに特定するものでない。即ち、本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。   Furthermore, the material, shape, structure, arrangement, and the like of the water tank and the transport container of the present invention are not specified to those described below by way of example in the embodiment of the present invention. That is, the technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.

(温度ダイアグラム)
本発明の実施の形態に係る冬眠誘導方法は、図1の温度ダイアグラムに示すように、安静畜養温度TAで一定の温度に維持された水槽中で、第1の時間τ1、魚類の生理代謝機能や自発運動を抑制して、安静に低水温畜養して活力を低下させ、魚類の魚体にかかるストレスを除去する段階と、第1の時間τ1の経過後、魚類を安静畜養温度TAより低く、魚類の生理代謝機能を更に低下させる低温馴化温度TBで一定の温度に維持された水槽中に、直ちに移動させ、魚類を急冷する段階と、魚類を低温馴化温度TBで一定の温度に維持された水槽中で、第2の時間τ2、安静に馴化させることにより、魚類を疑似冬眠状態に誘導し更に馴化を継続する段階とを含む。変温動物(外温性動物)である魚類の体温は水温より 0.5〜1℃ ほど高いくらいで、水温が変化すればそれにつれて体温も変化し、生理代謝機能や自発運動が次第に低下する。一方、海水は熱容量が大きく、空気の357倍もの熱を持っている。海水の熱伝導率も空気の57W/S・cm・℃に対して1400W/S・cm・℃なので、海水は空気よりも24.5倍も速く大量の熱が伝わる。よって全身が海中に接しており、特にエラを通る海水で呼吸する魚類にとって、水温の低下はそのまま生理代謝機能の低下に直結し、生理代謝機能が低下すれば、体を維持するエネルギーが少なくなるので活性まで低くなり、疑似冬眠状態(寒冷昏睡状態)に誘導される。
(Temperature diagram)
In the hibernation induction method according to the embodiment of the present invention, as shown in the temperature diagram of FIG. 1, in a water tank maintained at a constant temperature at a resting breeding temperature T A , the first time τ 1 , the physiology of fish Suppressing metabolic function and voluntary movement, reducing the vitality by low-temperature warm-breeding and removing the stress on the fish body, and after the first time τ 1 , Immediately move it into a water tank that is lower than A and maintained at a constant temperature at a low temperature acclimation temperature T B that further lowers the physiological metabolic function of the fish, and rapidly cool the fish, and keep the fish constant at the low temperature acclimation temperature T B In a water bath maintained at a temperature of 2 for a second time τ 2 , inducing the fish to a pseudo-hibernation state by further acclimatization and continuing acclimatization. The body temperature of fishes that are variable temperature animals (externally thermogenic animals) is about 0.5 to 1 ° C higher than the water temperature. If the water temperature changes, the body temperature also changes and the physiological metabolic function and spontaneous movement gradually decrease. . On the other hand, seawater has a large heat capacity and has 357 times the heat of air. Since the thermal conductivity of seawater is 1400 W / S · cm · ° C. compared to 57 W / S · cm · ° C. of air, seawater transfers a large amount of heat 24.5 times faster than air. Therefore, the whole body is in contact with the sea, especially for fish that breathe in seawater passing through Ella, a decrease in water temperature directly leads to a decrease in physiological metabolic function, and if the physiological metabolic function decreases, the energy to maintain the body decreases. Therefore, it becomes low in activity and is induced into a pseudo-hibernation state (cold coma).

そして、本発明の実施の形態に係る無水輸送方法は、上記の本発明の実施の形態に係る冬眠誘導方法の各段階に加え、即ち、疑似冬眠(寒冷昏睡)に誘導し更に馴化を継続する段階に必要な第2の時間τ2の経過後、更に、魚類を、保温性(断熱性)のある輸送用容器に移動して、この輸送用容器の内部を酸素濃度60%以上に維持し、且つ図1の温度ダイアグラムに示した低温馴化温度TBに維持して、輸送用容器を搬送することにより、疑似冬眠の状態によって酸素消費量の低下した魚類を無水の環境で輸送する段階を含む。 Then, the anhydrous transport method according to the embodiment of the present invention is in addition to each stage of the hibernation induction method according to the above-described embodiment of the present invention, that is, it induces pseudo-hibernation (cold coma) and further acclimates. After the second time τ 2 necessary for the stage has elapsed, the fish is further moved to a transport container having heat insulation (heat insulation), and the inside of the transport container is maintained at an oxygen concentration of 60% or more. and maintained at cold acclimation temperature T B shown in the temperature diagram in Figure 1, by conveying the shipping container, the step of transporting a reduced fish oxygen consumption by the state of the pseudo-hibernation anhydrous environment Including.

上述したように、魚類はエラ呼吸に依存しているため、海水の無い状態では水によるエラ弁の支持が不能となり、有効ガス交換面積が減少して酸素不足となることが想定される。また、呼吸により排出される二酸化炭素(CO2)に着目しても、無海水環境下においてはその排出が困難となり、何れの場合も致死的である。しかしながら、本発明の実施の形態に係る冬眠誘導方法により、低温馴化温度TBにまで周囲の水温を低下させると、変温動物である魚類の体温も同様に低下し、魚類の酸素消費量をはじめとする生理代謝機能が抑制される。したがって、低温馴化温度TBにまで魚類の体温を低下させて、低温により魚類の生理代謝機能を低下させれば、無海水環境下、即ち、魚類はエラが酸素および二酸化炭素を交換することが困難な状態であっても、輸送用容器の内部を酸素濃度60%以上の環境、及び低温馴化温度TBの環境に維持することにより、24時間以上の輸送期間を有する輸送の場合であっても、高い蘇生率で無水輸送が可能となる。低温馴化温度TBは、既往文献等により現在知られている魚類の生息水温の下限値等を参照して、対象とする魚類の安静時の代謝量が最も低位を示す温度よりも、若干高い温度に選定して対象とする魚類の魚体に与えるストレスを低減すればよい。 As described above, since fish depend on gill respiration, it is assumed that in the absence of seawater, the gill valve cannot be supported by water, the effective gas exchange area is reduced, and oxygen is insufficient. Moreover, even if attention is paid to carbon dioxide (CO 2 ) discharged by respiration, the discharge becomes difficult in a seawater-free environment, and in any case, it is fatal. However, the hibernation induction method according to the embodiment of the present invention, lowering the temperature of the surroundings to a cold acclimation temperature T B, the body temperature of the fish is heterothermic also decreased similarly, the oxygen consumption of fish Physiological and metabolic functions such as the beginning are suppressed. Thus, by lowering the body temperature of the fish to a cold acclimation temperature T B, when caused to lower the physiological metabolism of the fish by a low-temperature, under no sea water environment, that is, fish that gills to exchange oxygen and carbon dioxide even hard states, internal oxygen concentration of 60% or more of the environment of the shipping container, and by maintaining the environment of the cold acclimation temperature T B, in the case of a transport with a transport period of 24 hours or more However, anhydrous transport is possible with a high resuscitation rate. Cold acclimation temperature T B refers to the lower limit value or the like of the habitat temperature of fish that are now known by past literature, than the temperature showing the highest low metabolism amount at rest fish of interest, slightly higher What is necessary is just to reduce the stress given to the fish body of the fish selected as temperature.

図1の温度ダイアグラムに示す本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法によれば、図4に示したクールダウン段階(第2段階)において、魚類が入った水槽を水温T1から水温T1まで徐々に冷却(徐冷)するステップが不要である。よって、本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法によれば、図4の温度ダイアグラムを基礎とした従来の方法に比し、温度制御装置を備えた高価な冷蔵水槽を用いる必要がなく、低コストで魚類を疑似冬眠状態に誘導できる。 According to hibernation induction method and anhydrous transportation method according to the embodiment of the present invention shown in the temperature diagram in FIG. 1, the cool-down stage (second stage) shown in FIG. 4, the water temperature T 1 of the water tank containing the fish The step of gradually cooling (slow cooling) to the water temperature T 1 is not necessary. Therefore, according to the hibernation induction method and the anhydrous transport method according to the embodiment of the present invention, it is necessary to use an expensive refrigerated water tank equipped with a temperature control device as compared with the conventional method based on the temperature diagram of FIG. And can induce fish into a pseudo-hibernation state at low cost.

更に、本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法によれば、疑似冬眠状態に誘導されるまでに魚類が受けるストレスが、安静畜養温度TAで第1の時間τ1安静に畜養することにより最小化されるので、この疑似冬眠の状態を利用して無水の環境で24時間以上空中に放置しても、非特許文献1等に示された従来の手法による蘇生率に比して、魚類が高い蘇生率で生存可能である(24時間後に100%の蘇生率が達成されることが、以下のヒラメに係る実施例1〜11により示される。)。 Furthermore, according to the hibernation induction method and anhydrous transportation method according to the embodiment of the present invention, stress fish is subjected to induced pseudo hibernation state, the first time tau 1 resting at rest farmed temperature T A Because it is minimized by breeding, even if it is left in the air for 24 hours or more in an anhydrous environment using this pseudo-hibernation state, it is compared with the resuscitation rate by the conventional technique shown in Non-Patent Document 1 etc. Thus, the fish can survive with a high resuscitation rate (100% resuscitation rate is achieved after 24 hours, as shown in Examples 1-11 below for flounder).

(ヒラメの冬眠誘導)
以下において、図2及び図3に例示した装置構成を用いて、魚類の代表例としてヒラメを例に、本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法をより具体的に説明する。既往文献等から、ヒラメの低温側限界水温5℃、成魚の生息水温の最適水温域14〜17℃、成魚の生息水温の適水温域8〜23℃程度とされる(海生研研報,第2号,2000年、p.1−315)が、これらのヒラメの生物特性値を考慮して、更に、以下の実施例において生存時間の長い結果が得られた実験条件を検討して、本発明の実施の形態に係る冬眠誘導方法では、図1に示した温度ダイアグラムにおける、ヒラメの低温馴化温度TBを5〜7℃、ヒラメの安静畜養温度TAを10〜12℃と決定している。
(Flounder hibernation induction)
In the following, the hibernation induction method and the anhydrous transport method according to the embodiment of the present invention will be described in more detail using the apparatus configuration illustrated in FIGS. 2 and 3 as an example of flounder as a typical example of fish. From the past literature, it is assumed that the low temperature side water temperature of flatfish is 5 ° C, the optimal water temperature range for adult fish is 14-17 ° C, and the optimal water temperature range for adult fish is 8-23 ° C. 2, 2000, p. 1-315), considering the biological property values of these Japanese flounder, and further examining the experimental conditions that resulted in a long survival time in the following examples, in hibernation induction method according to the embodiment of the invention, at a temperature diagram shown in FIG. 1, 5 to 7 ° C. the cold acclimation temperature T B of flounder, to determine the rest farmed temperature T a of the flatfish 10 to 12 ° C. and Yes.

(イ)先ず、図2(a)に示す安静畜養温度TA=10〜12℃で一定の温度に維持された第1の水槽21と、図2(b)に示す低温馴化温度TB=5〜7℃で一定の温度に維持された第2の水槽22とを用意する。第1の水槽21及び第2の水槽22の大きさは、ヒラメ1Aの数にも依存するが、数尾程度であれば、1m四方の大きさがあれば十分である。第1の水槽21及び第2の水槽22の内壁は、例えば、ポリ塩化ビニル(PVC)等のプラスチック、海水に強いチタンで構成し、外壁はコンクリートで構成することができるが、これらの材質に限定されるものではない。内壁と外壁の間には断熱材からなる熱遮断層を設けておくことが好ましい。第1の水槽21には、ヒラメ1Aの安静畜養に適した通常の海水が、一定の塩分濃度となるように収納されており、第2の水槽22には、ヒラメ1Aの低温馴化に適した通常の海水が、一定の塩分濃度となるように収納されている。図示を省略しているが、第1の水槽21及び第2の水槽22には、エアーを送るポンプ及び海水31、32を冷やす冷却装置(海水チラー)が設けられ、一定の溶存酸素濃度、一定の水温に維持される。あるいは、冷却装置(海水チラー)を省略して、海水31、32に氷を突っ込んで、海水31、32のそれぞれの温度を、安静畜養温度TA及び低温馴化温度TBになるように制御してもよい。第1の水槽21及び第2の水槽22は、光が遮断できる蓋を備えて、ヒラメ1Aを鎮静化できるようになっている。 (A) First, the first aquarium 21 maintained at a constant temperature of resting culture temperature T A = 10 to 12 ° C. shown in FIG. 2 (a), and the low temperature acclimation temperature T B = shown in FIG. 2 (b) A second water tank 22 maintained at a constant temperature of 5 to 7 ° C. is prepared. Although the magnitude | size of the 1st water tank 21 and the 2nd water tank 22 is dependent also on the number of the flounder 1A, if it is about several, the size of 1m square is enough. The inner walls of the first water tank 21 and the second water tank 22 can be made of, for example, plastic such as polyvinyl chloride (PVC), titanium resistant to seawater, and the outer wall can be made of concrete. It is not limited. It is preferable to provide a heat blocking layer made of a heat insulating material between the inner wall and the outer wall. The first aquarium 21 contains normal seawater suitable for resting flounder 1A so as to have a constant salinity, and the second aquarium 22 is suitable for low-temperature acclimation of the flounder 1A. Normal seawater is stored so as to have a constant salinity. Although not shown, the first water tank 21 and the second water tank 22 are provided with a pump for sending air and a cooling device (seawater chiller) for cooling the seawater 31 and 32, and a constant dissolved oxygen concentration and a constant The water temperature is maintained. Alternatively, by omitting the cooling device (seawater chiller), digs the ice seawater 31 and 32, the respective temperatures of the sea water 31 and 32, controlled to be resting farmed temperature T A and cold acclimation temperature T B May be. The 1st water tank 21 and the 2nd water tank 22 are equipped with the lid | cover which can interrupt | block light, and can calm down the flounder 1A.

(ロ)そして、図2(a)に示す安静畜養温度TAで一定の温度に維持された第1の水槽21の海水31中に、1尾ずつカゴ又は網に収納したヒラメ1Aを移動する。ヒラメ1Aは、一定の塩分濃度の海水中で第1の時間τ1=24〜48時間、遊泳運動を鎮静化して安静に低水温畜養される。光がない状態での低水温畜養によりヒラメ1Aは、低温麻酔に近い状態に生理代謝機能が抑制されて活力が低下し、ヒラメ1Aの魚体にかかるストレスが除去される。図2(a)には、簡略化のために、ヒラメ1Aが1尾しか示されていないが、実際には、複数のカゴ又は網を用意し、それぞれのカゴ又は網に1尾ずつヒラメ1A、1B、1C、……が収納されることが可能であり、複数尾のヒラメ1A、1B、1C、……を、第1の水槽21の海水31中で安静に低水温畜養させることが可能である。カゴ又は網に収納された変温動物であるヒラメ1Aは、第1の時間τ1、成魚の生息水温の適水温域の下限側の温度である安静畜養温度TAで、遊泳運動が鎮静化され、安静に低水温畜養されて、半分眠った状態になり、魚体にかかるストレスが除去される。同様に、図示を省略した他のヒラメ1B、1C、……も、第1の時間τ1、安静に低水温畜養されることにより、半分眠った状態になる。 (B) The flounder 1A stored in the cage or net is moved one by one into the seawater 31 of the first aquarium 21 maintained at a constant temperature at the resting culture temperature T A shown in FIG. 2 (a). . The flounder 1A is calmly cultivated at low water temperature by calming the swimming motion in the seawater with a constant salinity for the first time τ 1 = 24 to 48 hours. As a result of low water temperature breeding in the absence of light, flounder 1A has its physiological metabolic function suppressed to a state close to low-temperature anesthesia, and its vitality is reduced, and stress on the flounder 1A fish body is removed. In FIG. 2 (a), only one flounder 1A is shown for simplification, but actually, a plurality of cages or nets are prepared, and one flounder 1A is provided for each cage or net. 1B, 1C,... Can be stored, and a plurality of flounder 1A, 1B, 1C,... Can be raised in the seawater 31 of the first aquarium 21 at a low water temperature. It is. The flounder 1A, which is a variable temperature animal housed in a cage or net, has its swimming activity subsided at the first time τ 1 , at a resting culture temperature T A , which is the lower limit temperature range of the inhabitant water temperature of the adult fish. Then, it is rested at a low water temperature and becomes half-sleeped, and the stress on the fish body is removed. Similarly, the other flounder 1B, 1C,..., Not shown in the figure, are put into a half-sleep state by being kept at low water temperature in the first time τ 1 .

(ハ)この第1の時間τ1の経過後、カゴ又は網に収納されたヒラメ1Aを、カゴ又は網を、第1の水槽21の海水31から引き上げることにより、図2(b)に示す低温馴化温度TBで一定の温度に維持された第2の水槽22の海水32中に、直ちに移動させ、ヒラメ1Aを急冷する。同様に、図示を省略した他のヒラメ1B、1C、……も、第2の水槽22の海水32中に直ちに移動させ、他のヒラメ1B、1C、……も急冷する。ヒラメ1A、1B、1C、……は、1尾ずつカゴ又は網に収納され、眠った状態になっているので、それぞれのカゴ又は網を、海水31から引き上げて、光があたる状態にして、第1の水槽21から第2の水槽22へ移動させても、この移動は、実質的なヒラメ1A、1B、1C、……の空中滞在時間が0.5秒〜1.5秒程度となるほんの一瞬で移動できるので、空中に取り出されたことや光が照射されたことにより、安静畜養されたヒラメ1A、1B、1C、……が、目を覚ましたり暴れたりすることはなく、空中でも活力が低下した状態が維持される。 (C) After the elapse of the first time τ 1 , the flatfish 1A housed in the basket or net is pulled up from the seawater 31 of the first water tank 21 by pulling up the basket or net, as shown in FIG. during cold acclimation temperature T seawater 32 of the second water tank 22 which is maintained at a constant temperature in B, it is moved immediately quenching the flounder 1A. Similarly, other flounder 1B, 1C,..., Not shown, are immediately moved into the seawater 32 of the second water tank 22, and the other flounder 1B, 1C,. Each of the flounder 1A, 1B, 1C,... Is stored in a cage or net one by one and is in a sleeping state, so that each cage or net is lifted from the seawater 31 to be exposed to light, Even if it is moved from the first water tank 21 to the second water tank 22, this movement results in a substantial stay time in the air of the flounder 1A, 1B, 1C,. Because it can move in just a moment, the flounder 1A, 1B, 1C, etc. that have been slaughtered by being taken out into the air or irradiated with light will not wake up or rampage, but in the air A state in which the vitality is lowered is maintained.

(ニ)そして、ヒラメ1Aを低温馴化温度TBで一定の温度に維持された第2の水槽22の海水32中で、第2の時間τ2=4〜8時間、光がない状態で安静に馴化させることにより、変温動物であるヒラメ1Aを疑似冬眠(寒冷昏睡)に誘導する。同様に、図示を省略した他のヒラメ1B、1C、……も、第2の時間τ2、安静に馴化させられることにより疑似冬眠状態に誘導される。個体差があるが、通常、ヒラメ1A、1B、1C、……は30分程度で疑似冬眠状態に誘導される。 (D) And, in the seawater 32 of the second tank 22 in which the flounder 1A is maintained at a constant temperature at the low temperature acclimation temperature T B , the second time τ 2 = 4 to 8 hours, resting in the absence of light. The flounder 1A, which is a variable temperature animal, is induced into pseudo-hibernation (cold coma). Similarly, other flounder 1B, 1C,..., Not shown, are also induced into a pseudo-hibernation state by being acclimated to rest for the second time τ 2 . Although there are individual differences, flounder 1A, 1B, 1C,... Are usually induced to a pseudo-hibernation state in about 30 minutes.

(ホ)そして、第2の時間τ2の経過後、疑似冬眠状態に誘導されたヒラメ1A、1B、1C、……を、図3に示すような保温性(断熱性)のある輸送用容器の収納箱23の内部に移動する。図3では2尾のヒラメを図示しているが、実際には図示を省略した多数尾のヒラメが順次、収納箱23の内部に移動され、収納される。収納箱23は発泡ポリスチレン、発泡ポリプロピレン等の断熱材で、例えば直方体や円筒等の箱状に構成して、保温性(断熱性)を達成すれば良い。収納箱23の内部に多数のヒラメ1A、1B、1C、……を収納する場合は、図3に示すとおり、収納箱23の内部に発泡プラスチック等の断熱材等で構成した棚231を設けても良い。棚231は図3に限定されるものではなく、2段以上設けても良く、場合により、なくても良い。収納箱23の内部にヒラメ1A、1B、1C、……を収納した後、図3に示すように、収納箱23の内部を密閉する蓋232を収納箱23の上端部に取り付けて、輸送用容器(23、231、232)を構成する。蓋232も発泡プラスチック等の断熱材で構成すれば良い。輸送用容器(23、231、232)の密閉性を向上させるには、収納箱23の外壁側及び蓋232の上面等に、更にアルミニウム(膜)等のシール膜を設けても良く、輸送用容器(23、231、232)を更に空気の透過率の低い材料で構成した密閉袋の内部に収納しても良い。 (E) Then, after the elapse of the second time τ 2 , the flounder 1A, 1B, 1C,... Induced in the pseudo-hibernation state is transported with heat insulation (insulation) as shown in FIG. It moves to the inside of the storage box 23. In FIG. 3, two flounder are illustrated, but in reality, a large number of flounder that are not shown are sequentially moved into the storage box 23 and stored. The storage box 23 is a heat insulating material such as foamed polystyrene or foamed polypropylene, and may be formed in a box shape such as a rectangular parallelepiped or a cylinder to achieve heat insulation (heat insulation). When a large number of flounder 1A, 1B, 1C,... Are stored inside the storage box 23, a shelf 231 made of a heat insulating material such as foamed plastic is provided inside the storage box 23 as shown in FIG. Also good. The shelves 231 are not limited to those shown in FIG. 3, and two or more shelves may be provided. After storing the flounder 1A, 1B, 1C,... In the storage box 23, a lid 232 for sealing the inside of the storage box 23 is attached to the upper end of the storage box 23 as shown in FIG. Construct containers (23, 231, 232). The lid 232 may also be made of a heat insulating material such as foamed plastic. In order to improve the sealing performance of the transport containers (23, 231, 232), a sealing film such as aluminum (film) may be further provided on the outer wall side of the storage box 23 and the upper surface of the lid 232, etc. The containers (23, 231, 232) may be housed in a sealed bag made of a material having a lower air permeability.

収納箱23にはガス導入パイプ44及びガス排気パイプ46が設けられ、ガス導入パイプ44にはガス導入制御バルブ43が、ガス排気パイプ46にはガス排気制御バルブ47が設けられている。ガス導入制御バルブ43には、フレキシブルなガス導入配管42が着脱可能に機密継ぎ手等を用いて接続され、ガス導入配管42には圧力調整器41を介して酸素タンク24が接続されている。高圧の酸素タンク24から、圧力調整器41で圧力が調整された酸素(O2)ガスが、ガス導入配管42中を流れ、ガス導入制御バルブ43及びガス導入パイプ44を介して、輸送用容器(23、231、232)の内部に酸素ガスが注入される。酸素ガスの注入時は、ガス排気制御バルブ47を開放状態もしくは開放状態に近い状態にして、ガス導入パイプ44から一定流量で輸送用容器(23、231、232)の内部に酸素ガスを注入する。図示を省略しているが、一定流量で輸送用容器(23、231、232)の内部に酸素ガスを注入するために、ガス導入配管42の経路の一部には流量計が設けられている。図示を省略しているが、輸送用容器(23、231、232)の内部の一部もしくは、ガス排気パイプ46の排気側には酸素センサーが設けられ、酸素センサーの値を確認しながら、輸送用容器(23、231、232)の内部の酸素ガス濃度が60%以上になるように、酸素ガスを注入する。収納箱23の内部に棚231が設けられている場合には、棚231に通気穴45a、45bを設けておけば良い。通気穴45a、45bを設ける代わりに、棚231を通気性のある板で構成しても良い。 The storage box 23 is provided with a gas introduction pipe 44 and a gas exhaust pipe 46, the gas introduction pipe 44 is provided with a gas introduction control valve 43, and the gas exhaust pipe 46 is provided with a gas exhaust control valve 47. A flexible gas introduction pipe 42 is detachably connected to the gas introduction control valve 43 using a secret joint or the like, and the oxygen tank 24 is connected to the gas introduction pipe 42 via a pressure regulator 41. Oxygen (O 2 ) gas whose pressure is adjusted by the pressure regulator 41 flows from the high-pressure oxygen tank 24 through the gas introduction pipe 42, and is transported through the gas introduction control valve 43 and the gas introduction pipe 44. Oxygen gas is injected into (23, 231, 232). When injecting oxygen gas, the gas exhaust control valve 47 is opened or close to the open state, and oxygen gas is injected into the transport container (23, 231, 232) from the gas introduction pipe 44 at a constant flow rate. . Although not shown, in order to inject oxygen gas into the transport container (23, 231, 232) at a constant flow rate, a flow meter is provided in a part of the path of the gas introduction pipe 42. . Although not shown, an oxygen sensor is provided on a part of the inside of the transport container (23, 231, 232) or on the exhaust side of the gas exhaust pipe 46, and the transport is performed while checking the value of the oxygen sensor. The oxygen gas is injected so that the oxygen gas concentration inside the container (23, 231, 232) is 60% or more. When the shelf 231 is provided inside the storage box 23, the vents 45a and 45b may be provided in the shelf 231. Instead of providing the vent holes 45a and 45b, the shelf 231 may be formed of a breathable plate.

輸送用容器(23、231、232)の内部が所定の酸素濃度に到達したら、ガス導入制御バルブ43及びガス排気制御バルブ47を閉じ、輸送用容器(23、231、232)の内部を密閉状態にすれば良い。図3に示した構造の他、収納箱23にはガス交換用の小穴を2箇所設けており、一方の小穴に図3に示したガス導入パイプ44と同様なノズルを突っ込んで一定流量で酸素ガスを注入して、酸素注入が完了したら、2箇所の小穴を密閉テープ等により塞ぐようにしても良い。輸送用容器(23、231、232)の内部を密閉状態にしたら、酸素ガスの注入用のガス導入配管42等を輸送用容器(23、231、232)から取り外し、その後、酸素濃度60%以上に維持された輸送用容器(23、231、232)のみを、低温馴化温度TBに維持して輸送することにより、疑似冬眠の状態のヒラメ1A、1B、1C、……が無水の環境で輸送される。輸送用容器(23、231、232)の密閉度にも依存するが、24時間後に酸素濃度が15〜20%程度低下する場合もあるので、酸素濃度の低下を考慮して出荷時の酸素濃度を多めに決定すれば良い。 When the inside of the transport container (23, 231, 232) reaches a predetermined oxygen concentration, the gas introduction control valve 43 and the gas exhaust control valve 47 are closed, and the interior of the transport container (23, 231, 232) is sealed. You can do it. In addition to the structure shown in FIG. 3, the storage box 23 is provided with two small holes for gas exchange. A nozzle similar to the gas introduction pipe 44 shown in FIG. When the gas is injected and the oxygen injection is completed, the two small holes may be closed with a sealing tape or the like. When the inside of the transport container (23, 231, 232) is sealed, the gas introduction pipe 42 for injecting oxygen gas is removed from the transport container (23, 231, 232), and then the oxygen concentration is 60% or more. been shipping container only (23,231,232) kept by transporting and maintain the cold acclimation temperature T B, flounder 1A of pseudo hibernation, 1B, 1C, at ...... is anhydrous environment Transported. Although depending on the degree of sealing of the transport containers (23, 231, 232), the oxygen concentration may decrease by about 15 to 20% after 24 hours. It is sufficient to decide more.

以下の実施例1〜13のうち、特に実施例10では、魚類の中でも無水輸送の困難なヒラメについて、52時間の無水生存が可能なことを示す。即ち、本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法によれば、2日以上の輸送期間が必要であっても、ヒラメのような高級活魚を含む種々の魚類を、新鮮な状態で日本全国に運ぶ、もしくは空輸により世界各地に輸送し、それらの疑似冬眠状態の魚類を生簀に放って覚醒させることができるという顕著な効果を奏することが可能である。   Of the following Examples 1 to 13, especially Example 10 shows that flounder, which is difficult to carry in anhydrous transport among fish, can be anhydrous for 52 hours. That is, according to the hibernation induction method and the anhydrous transport method according to the embodiment of the present invention, various fish including high-grade live fish such as flounder are in a fresh state even if a transport period of 2 days or more is required. It can be transported all over Japan or transported to various parts of the world by air transport, and it is possible to produce a remarkable effect that these pseudo-hibernating fish can be released into a ginger and awakened.

(24時間以上の無水生存条件)
以下の比較例1〜15、実施例1〜11に係るヒラメを用いた実験では、個体差を広げないよう、漁獲地、漁獲方法、体長を、ほぼ同一にして、24時間以上、ヒラメが無水で生存できる条件を探った。即ち、以下の比較例1〜15、実施例1〜11に係る天然ヒラメの漁獲地は、下北地区、八戸地区であり、ヒラメの漁獲方法は、一本釣りと定置網のものである。これらの漁獲方法は、ヒラメの魚体に傷が付きにくく、漁獲時のヒラメの魚体に与えるストレスが比較的少ない漁法であり、漁獲後のヒラメの生存時間が長く、活魚出荷に適している。以下の比較例1〜15、実施例1〜11に係るヒラメの体長は、40〜50cm程度である。これらのヒラメは、体重で表せば1〜1.5kgのものであるが、一番美味しいとされ、単価が高いヒラメに的を絞り実験した。即ち、以下の比較例1〜15、実施例1〜11に係るヒラメは、最も出荷割合が集中しやすい体長のものを指定している。また、体長の異なるヒラメでも、活魚輸送に用いられる体長40cm〜60cmの範囲内では、実施例1〜11において指定した温度と時間の条件で、有意差は見られず、いずれも無水生存できることが分かっている。なお、体長35cm未満の天然ヒラメは漁獲しないことになっている。
(Anhydrous survival conditions over 24 hours)
In the experiments using flounder according to the following Comparative Examples 1 to 15 and Examples 1 to 11, the flounder is anhydrous for 24 hours or more with substantially the same catching area, fishing method, and length so as not to widen individual differences. I searched for the conditions to survive. That is, the natural flounder fishing areas according to the following Comparative Examples 1 to 15 and Examples 1 to 11 are the Shimokita area and the Hachinohe area, and the flounder fishing methods are those for single fishing and stationary nets. These fishing methods are fishing methods that are less likely to cause damage to the flounder fish body, and that cause relatively little stress to the flounder fish body during fishing, and the flounder life time after catching is long, and are suitable for live fish shipment. The body length of the flounder according to the following Comparative Examples 1 to 15 and Examples 1 to 11 is about 40 to 50 cm. These flounder are 1 to 1.5 kg in terms of body weight, but the experiment was focused on flounder, which is considered the most delicious and has a high unit price. That is, flounder according to the following Comparative Examples 1 to 15 and Examples 1 to 11 designates body lengths that are most likely to concentrate the shipping ratio. In addition, even in Japanese flounder with different body lengths, no significant difference is observed under the temperature and time conditions specified in Examples 1 to 11 within the range of body lengths of 40 cm to 60 cm used for live fish transportation, and both can survive anhydrous. I know. Natural flounder less than 35 cm in length is not caught.

以下の比較例1〜15、実施例1〜11における各試験区のヒラメの検体数は4尾ずつ実施しており、1尾のヒラメには心電計(生体用高感度増幅器)を取り付け、無水保持中の心拍数を測定することにより、無水生存時間を計測した。残りの3尾のヒラメは、無水生存の試験開始から24時間後に15℃の海水に戻し、蘇生実験を行った。   In the following Comparative Examples 1 to 15 and Examples 1 to 11, the number of specimens of flounder in each test section is 4 each, and an electrocardiograph (a high-sensitivity amplifier for living body) is attached to one flounder, Anhydrous survival time was measured by measuring heart rate while keeping anhydrous. The remaining three flounder were returned to seawater at 15 ° C. 24 hours after the start of the anhydrous survival test, and a resuscitation experiment was conducted.

(a)安静畜養時の保持温度と時間の特定

Figure 2014161239
表1に示すように、安静畜養温度TA=20℃の比較例1、安静畜養温度TA=15℃の比較例2、安静畜養温度TA=5℃の比較例3の場合、無水生存時間は、それぞれ6時間、13時間、0時間であり、いずれも24時間生存できていないので、24時間後の蘇生実験では3尾とも蘇生しないという結果であった。一方、安静畜養温度TA=10℃の実施例1〜4ではいずれも、24時間後の蘇生実験では3尾とも蘇生して蘇生率100%であることが分かる。実施例1及び2の安静畜養に用いる第1の時間τ1=24時間であるが、実施例3の第1の時間τ1=48時間、及び実施例4の第1の時間τ1=96時間でも、24時間後の蘇生実験で3尾とも蘇生しているので、安静畜養に用いる第1の時間τ1=24時間以上であれば良好な結果が得られることが分かるが、産業的な応用面を考慮すると、現場の品物の回転スピードや、ヒラメの身痩せ防止を考え、時間はなるべく短い方がよいので、安静畜養に用いる第1の時間τ1=24時間が最適であると判断できる。また、表1から安静畜養温度TA=10℃が、24時間後の蘇生率100%の実現に最適であることが分かる。 (A) Identification of holding temperature and time during resting
Figure 2014161239
As shown in Table 1, in the case of Comparative Example 1 where the resting temperature T A = 20 ° C, Comparative Example 2 where the resting temperature T A = 15 ° C, and Comparative Example 3 where the resting temperature T A = 5 ° C, anhydrous survival The time was 6 hours, 13 hours, and 0 hours, respectively, and none of them was able to survive for 24 hours. Therefore, in the resuscitation experiment after 24 hours, it was the result that none of the 3 fishes were resuscitated. On the other hand, in Examples 1 to 4 where the resting temperature T A is 10 ° C., it is found that in the resuscitation experiment after 24 hours, all three animals were revived and the resuscitation rate was 100%. The first time τ 1 = 24 hours used for the resting of Examples 1 and 2, but the first time τ 1 = 48 hours of Example 3 and the first time τ 1 = 96 of Example 4 In terms of time, all three fish have been revived in the resuscitation experiment 24 hours later, so it can be seen that good results can be obtained if the first time τ 1 = 24 hours or more used for resting livestock is Considering the application aspect, considering the rotation speed of items on the site and preventing slimming of flounder, the time should be as short as possible, so the first time τ 1 = 24 hours used for resting is determined to be optimal. it can. Moreover, it can be seen from Table 1 that the resting culture temperature T A = 10 ° C. is optimal for realizing a resuscitation rate of 100% after 24 hours.

(b)クールダウン速度の特定

Figure 2014161239
表2の比較例5に示すように、冷却速度0.3℃/時では、無水生存時間が26時間で、24時間後の蘇生実験では、2尾蘇生、1尾死亡という結果であった(蘇生率67%)。一方、比較例6に示すように、冷却速度2℃/時では、無水生存時間が27時間で、24時間後の蘇生実験では、3尾蘇生という結果であり、実施例5に示すように、徐冷せず、ステップ状に5℃の急冷した場合も無水生存時間が27時間で、24時間後の蘇生実験では、3尾蘇生(蘇生率100%)という結果が得られた。即ち、図4に示すクールダウン段階での冷却速度は、2℃/時よりも急激に冷却すれば、冷却速度は、無水生存時間にほとんど効果を与えないことが分かる。既に、背景技術の欄で説明したとおり、2℃/時のように徐冷をする場合、冷却速度をコントロールする技術あるいは専用の機械が必要になる。なるべく簡便な方法で冬眠させることが出来、しかも24時間後の蘇生率100%を実現するという点から、実施例5に示すように、徐冷せず、ステップ状に5℃の急冷をするのが好ましいと判断できる。比較例5に示すように、0.3℃/時間で5℃の徐冷をするとすれば16.7時間のクールダウン時間とそのための電気代等が必要となるので、ステップ状の急冷を用いる、本発明の実施の形態に係る冬眠誘導方法の顕著な効果が明らかである。 (B) Identification of cool-down speed
Figure 2014161239
As shown in Comparative Example 5 of Table 2, when the cooling rate was 0.3 ° C./hour, the anhydrous survival time was 26 hours, and the resuscitation experiment after 24 hours resulted in 2 resuscitation and 1 death ( Resuscitation rate 67%). On the other hand, as shown in Comparative Example 6, at a cooling rate of 2 ° C./hour, the anhydrous survival time was 27 hours, and in the resuscitation experiment after 24 hours, the result was 3 tail resuscitation. Even if it was not gradually cooled and rapidly cooled at 5 ° C in steps, the anhydrous survival time was 27 hours, and in the resuscitation experiment after 24 hours, a result of 3 tail resuscitation (resuscitation rate 100%) was obtained. That is, it can be seen that the cooling rate at the cool-down stage shown in FIG. 4 has little effect on the anhydrous survival time if it is cooled more rapidly than 2 ° C./hour. As already described in the Background Art section, when slow cooling is performed at 2 ° C./hour, a technology for controlling the cooling rate or a dedicated machine is required. From the point of being able to hibernate by the simplest possible method and achieving a resuscitation rate of 100% after 24 hours, as shown in Example 5, perform rapid cooling at 5 ° C. in a stepwise manner without slow cooling. Can be determined to be preferable. As shown in Comparative Example 5, if a slow cooling of 5 ° C. is performed at 0.3 ° C./hour, a 16.7 hour cool-down time and an electric bill for that are required, so stepped rapid cooling is used. The remarkable effect of the hibernation induction method according to the embodiment of the present invention is clear.

(c)低温馴化時の保持温度と時間の特定

Figure 2014161239
表3に示すように、低温馴化温度TB=3℃の比較例7、低温馴化温度TB=1.5℃の比較例8の場合、無水生存時間は、それぞれ、17時間、14時間であり、いずれも24時間生存できていないので、24時間後の蘇生実験では3尾とも蘇生しないという結果であった。また、 低温馴化温度TB=5℃の場合であっても、低温馴化に用いる経過時間(第2の時間)τ2=2時間の比較例9、経過時間(第2の時間)τ2=24時間の比較例10、経過時間(第2の時間)τ2=72時間の比較例11の場合、無水生存時間は、それぞれ、22時間、21時間、17時間であり、いずれも24時間生存できていないので、24時間後の蘇生実験では3尾とも蘇生しないという結果であった。一方、低温馴化温度TB=5℃で、経過時間(第2の時間)τ2=4時間の実施例6、7では、無水生存時間は、いずれも30時間であり、24時間後の蘇生実験ではいずれも3尾とも蘇生という蘇生率100%の結果であった。実施例6、7の結果から、低温馴化温度TB=5℃で、経過時間(第2の時間)τ2=4時間が、24時間後の蘇生率100%を実現する本発明の実施の形態に係る冬眠誘導方法に最適であると判断できる。 (C) Identification of holding temperature and time during low temperature acclimation
Figure 2014161239
As shown in Table 3, in the case of Comparative Example 7 where the low temperature acclimation temperature T B = 3 ° C. and the Comparative Example 8 where the low temperature acclimation temperature T B = 1.5 ° C., the anhydrous survival times were 17 hours and 14 hours, respectively. Yes, none of them survived for 24 hours, and in the resuscitation experiment after 24 hours, none of them revived. Further, even in the case of the low temperature acclimation temperature T B = 5 ° C., the elapsed time (second time) τ 2 = 2 hours used for the low temperature acclimation, the comparative example 9 of elapsed time (second time) τ 2 = In the case of Comparative Example 10 with 24 hours and Comparative Example 11 with elapsed time (second time) τ 2 = 72 hours, the anhydrous survival times were 22 hours, 21 hours, and 17 hours, respectively, and all survived for 24 hours. Since it was not completed, the result of the resuscitation experiment after 24 hours was that all three were not resuscitated. On the other hand, in Examples 6 and 7 where the low temperature acclimation temperature T B = 5 ° C. and the elapsed time (second time) τ 2 = 4 hours, the anhydrous survival time was 30 hours, and resuscitation after 24 hours. In the experiment, all three were resuscitated with a resuscitation rate of 100%. From the results of Examples 6 and 7, the low temperature acclimation temperature T B = 5 ° C., the elapsed time (second time) τ 2 = 4 hours, and realizing the resuscitation rate after 24 hours of 100%. It can be judged that it is optimal for the hibernation induction method according to the form.

(d)空中放置時の保持温度の特定

Figure 2014161239
表4に示すように、無水保持温度=低温馴化温度TB=1.5℃の比較例12、無水保持温度=低温馴化温度TB=3℃の比較例13、無水保持温度=低温馴化温度TB=8℃の比較例14の場合、無水生存時間は、それぞれ、14時間、17時間、2時間であり、いずれも24時間生存できていないので、24時間後の蘇生実験では3尾とも蘇生しないという結果であった。一方、無水保持温度=低温馴化温度TB=5℃の実施例8では、無水生存時間が30時間で、24時間後の蘇生実験では3尾とも蘇生し、蘇生率100%であることが分かる。表4から無水保持温度=低温馴化温度TB=5℃が、24時間後の蘇生率100%を実現する本発明の実施の形態に係る冬眠誘導方法に最適であることが分かる。 (D) Identification of holding temperature when left in the air
Figure 2014161239
As shown in Table 4, anhydrous holding temperature = low-temperature acclimation temperature T B = 1.5 ° C. Comparative Example 12, anhydrous holding temperature = low-temperature acclimation temperature T B = 3 ° C. Comparative Example 13, anhydrous holding temperature = low-temperature acclimation temperature In the case of Comparative Example 14 where T B = 8 ° C., the anhydrous survival times were 14 hours, 17 hours, and 2 hours, respectively, and none of them survived for 24 hours. The result was not to be resuscitated. On the other hand, in Example 8 where the anhydrous retention temperature = low temperature acclimation temperature T B = 5 ° C., the anhydrous survival time is 30 hours, and in the resuscitation experiment after 24 hours, all three animals are revived and the resuscitation rate is 100%. . From Table 4, it can be seen that anhydrous holding temperature = low temperature acclimation temperature T B = 5 ° C. is optimal for the hibernation induction method according to the embodiment of the present invention that realizes a resuscitation rate of 24% after 24 hours.

(e) 空中放置時の酸素濃度の特定

Figure 2014161239
表5に示すように、無水保持温度=低温馴化温度TB=5℃に統一した実験において、空中放置時の酸素濃度20%の比較例15の場合、無水生存時間は22時間であり、24時間後の蘇生実験では3尾とも蘇生しないという結果であった。一方、空中放置時の酸素濃度40%の実施例9、空中放置時の酸素濃度60%の実施例10、空中放置時の酸素濃度80%の実施例11では、無水生存時間は、それぞれ、48時間、52時間、50時間であり、24時間後の蘇生実験では3尾とも蘇生し、蘇生率100%であることが分かる。実施例9〜10の結果から、酸素濃度は60%が最も好ましく、52時間の無水生存時間が実現できており、2日以上の無水生存のためには、無水環境での空中放置時の酸素濃度を60%以上とすることが好ましいと判断できる。
以上において説明したとおり、本発明の実施の形態に係る冬眠誘導方法によれば、酸素濃度を60%以上とすることにより、無水環境下で、約2日間(最大52時間)のヒラメの生存が確保できたという顕著な効果が理解できる。 (E) Identification of oxygen concentration when left in the air
Figure 2014161239
As shown in Table 5, in the experiment in which the anhydrous retention temperature = the low temperature acclimation temperature T B = 5 ° C., in the case of Comparative Example 15 with an oxygen concentration of 20% when left in the air, the anhydrous survival time is 22 hours, 24 In the resuscitation experiment after time, it was the result that all three were not resuscitated. On the other hand, in Example 9 with an oxygen concentration of 40% when left in the air, Example 10 with an oxygen concentration of 60% when left in the air, and Example 11 with an oxygen concentration of 80% when left in the air, the anhydrous survival time was 48 respectively. It is time, 52 hours, and 50 hours, and in the resuscitation experiment after 24 hours, it can be seen that all three animals were revived and the resuscitation rate was 100%. From the results of Examples 9 to 10, the oxygen concentration is most preferably 60%, and an anhydrous survival time of 52 hours can be realized. For an anhydrous survival of 2 days or more, oxygen when left in the air in an anhydrous environment It can be determined that the concentration is preferably 60% or more.
As described above, according to the hibernation induction method according to the embodiment of the present invention, by setting the oxygen concentration to 60% or more, flounder can survive for about 2 days (up to 52 hours) in an anhydrous environment. You can understand the remarkable effect that it was secured.

(ヒラメの魚体に与えるストレス)
以下の比較例16、実施例12及び13に係るヒラメの乳酸値の測定に係る実験では、上記の比較例1〜15、実施例1〜11に係るヒラメと同様に、検体となる天然ヒラメの漁獲地は、下北地区、八戸地区であり、検体の漁獲方法は、一本釣りと定置網のものであり、検体の体長は、42〜46cm程度、体重1.06〜1.34kg程度である。そして、以下の比較例16、実施例12及び13における各試験区のヒラメの検体数は5尾ずつ実施して、その平均値を測定して、互いに比較している。乳酸値は、ヒラメの検体を過塩素酸により脱タンパクした後、高速液体クロマトグラフィーにより測定した。
(Stress on flounder fish)
In the experiment relating to the measurement of the lactic acid level of the Japanese flounder according to Comparative Example 16 and Examples 12 and 13 below, as with the Japanese flounder according to Comparative Examples 1 to 15 and Examples 1 to 11 described above, The fishing areas are the Shimokita and Hachinohe areas, and the fishing method of the specimen is that of single fishing and stationary net, and the body length of the specimen is about 42 to 46 cm and the weight is about 1.06 to 1.34 kg. In the following Comparative Example 16 and Examples 12 and 13, the number of flounder samples in each test section was five, and the average value was measured and compared with each other. Lactic acid levels were measured by high performance liquid chromatography after deproteinization of flounder samples with perchloric acid.

以下の表6において、比較例16は標準サンプルであり、図1に示した温度ダイアグラムの低温処理を全く施していないで疑似冬眠状態に誘導されず、普通に泳いでいるヒラメ5尾の平均値である。即ち、比較例16は、水槽で普通に泳いでいる5尾の標準サンプルとなるヒラメを活締め(即殺)して、その乳酸値の平均値を求めたものである。実施例12は、無水冬眠中(24時間経過後)に即殺したヒラメ5尾の平均値である。実施例12は、無水冬眠の開始から24時間経過後に海水投入し、蘇生させてから即殺したヒラメ5尾の平均値である。無水冬眠状態からの蘇生時に、魚体にストレスを受けて肉の成分に悪影響を与えるのではないかという疑問があったため、蘇生前のヒラメに係る実施例12と蘇生後のヒラメに係る実施例13のそれぞれの成分を比較した。また、魚体にかかるストレスや疲労が蓄積した魚類は、即殺直後の乳酸値の上昇が著しいので、比較例16、実施例12及び13のいずれも、表6に示すとおり、即殺3日後までの乳酸値の変化を追いかけて、即殺直後の乳酸値の上昇の影響を除くようにして比較した。

Figure 2014161239
表6に示すとおり、即殺直後の乳酸値は、比較例16、実施例12及び13のいずれの試験区においても約200mg/100g程度の値であり有意水準5%で、その数値に有意差は認められない。また、即殺後2日経過した後は、比較例16、実施例12及び13のいずれの試験区においても約800mg/100g程度の値に増加し、即殺後3日経過した後は、比較例16、実施例12及び13のいずれの試験区においても約720mg/100g程度の値に減少に転じている。 表6に示す結果から、各試験区における乳酸値に有意な差が認められないので、図1に示す温度ダイアグラムに沿った本発明の実施の形態に係る冬眠誘導方法により、疲労物質としての乳酸値の増加は、標準サンプルとしての普通に泳いでいるヒラメに比して増加していないと結論できる。 In Table 6 below, Comparative Example 16 is a standard sample, which is not induced by the pseudo-hibernation state without any low-temperature treatment of the temperature diagram shown in FIG. It is. That is, in Comparative Example 16, the average value of the lactic acid value was determined by laying down (immediately killing) flounder serving as five standard samples swimming normally in an aquarium. Example 12 is an average value of 5 flounder slaughtered immediately during anhydrous hibernation (after 24 hours). Example 12 is the average value of 5 flounder that were put into seawater after 24 hours from the start of anhydrous hibernation and killed immediately after resuscitation. During the resuscitation from the anhydrous hibernation state, there was a question that the fish body was stressed and adversely affected the meat components. Therefore, Example 12 related to Japanese flounder before resuscitation and Example 13 related to Japanese flounder after resuscitation Each component of was compared. Moreover, since the increase in the lactic acid level immediately after the killing is remarkable in the fish in which stress and fatigue applied to the fish body are accumulated, as shown in Table 6, all of the comparative examples 16 and Examples 12 and 13 until 3 days after the killing. Following the change in the lactic acid level, the effect of the increase in the lactic acid level immediately after killing was excluded.
Figure 2014161239
As shown in Table 6, the lactic acid level immediately after killing was about 200 mg / 100 g in all the test groups of Comparative Example 16, Examples 12 and 13, and the significance level was 5%. It is not allowed. In addition, after 2 days have passed since the instant killing, it increased to a value of about 800 mg / 100 g in any of the test groups of Comparative Example 16, Examples 12 and 13, and after 3 days after the instant killing, In all the test sections of Example 16 and Examples 12 and 13, the value started to decrease to a value of about 720 mg / 100 g. From the results shown in Table 6, since there is no significant difference in the lactic acid value in each test section, lactic acid as a fatigue substance was obtained by the hibernation induction method according to the embodiment of the present invention along the temperature diagram shown in FIG. It can be concluded that the increase in value is not increased compared to the normal swimming flounder as a standard sample.

以上において説明したとおり、本発明の実施の形態に係る冬眠誘導方法によれば、ヒラメの安静時の代謝量が最も低位を示す温度よりも、若干高い温度である低温馴化温度TBに、疑似冬眠状態のヒラメの体温を維持することにより、24時間の疑似冬眠状態の経過後のヒラメには、疑似冬眠状態に誘導されないヒラメに比して、乳酸値の増加が認められないようにできる。よって、本発明の実施の形態に係る冬眠誘導方法によれば、魚体にかかるストレスや疲労の蓄積が無いので、24時間の疑似冬眠後のヒラメの蘇生率が高く、また、24時間の疑似冬眠状態によって、身が痩せる等のヒラメの活魚としての品質低下も生じないという顕著な効果を奏することが可能である。 As described in the above, according to the hibernation induction method according to the embodiment of the present invention, than the temperature that indicates the metabolism of most low resting flounder, to cold acclimation temperature T B is slightly higher temperatures, the pseudo By maintaining the body temperature of the hibernating flounder, it is possible to prevent an increase in the lactic acid level from being observed in the flounder after the lapse of the pseudo-hibernation state for 24 hours compared to the flounder that is not induced in the pseudo-hibernation state. Therefore, according to the hibernation induction method according to the embodiment of the present invention, since there is no accumulation of stress and fatigue on the fish body, the resuscitation rate of flounder after 24 hours of pseudo hibernation is high, and 24 hours of pseudo hibernation. Depending on the state, it is possible to achieve a remarkable effect that the quality of the flounder as a live fish does not deteriorate, such as leaning.

(その他の実施の形態)
本発明の実施の形態を、上記の具体例によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
Although the embodiments of the present invention have been described by the above specific examples, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

既に述べた本発明の実施の形態の説明においては、ヒラメの冬眠誘導方法、及びこの冬眠誘導方法を用いたヒラメの無水輸送方法について、その概略を例示的に説明したものに過ぎないものである。よって、本発明の冬眠誘導方法及び無水輸送方法は、ヒラメ以外の各種の魚類に適用できることは、上記説明から容易に理解できるであろう。このように、本発明はここでは記載していない様々な実施の形態やその変形例等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   In the description of the embodiment of the present invention described above, the outline of the flounder hibernation induction method and the flounder anhydrous transport method using this hibernation induction method is merely illustrative. . Therefore, it will be easily understood from the above description that the hibernation induction method and the anhydrous transport method of the present invention can be applied to various fishes other than flounder. As described above, the present invention naturally includes various embodiments that are not described herein, modifications thereof, and the like. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法によれば、魚類の中でも無水輸送の困難なヒラメであっても、52時間の無水生存が可能である。よって、本発明の実施の形態に係る冬眠誘導方法及び無水輸送方法によれば、2日以上の輸送期間が必要な遠距離輸送の場合でも、ヒラメのような高級活魚を含む種々の魚類を、新鮮な状態で日本全国に運ぶ、もしくは空輸により世界各地に輸送することができるので、本発明は、水産業、漁協、水産卸業、流通業や輸送業等の産業に利用可能である。更に、これらの無水輸送された魚類を調理して提供する料理屋、飲食店などの新鮮で美味な魚料理を提供するサービス業等の産業にも利用可能である。   According to the hibernation induction method and the anhydrous transport method according to the embodiment of the present invention, even a flounder, which is difficult to transport anhydrous, among fish, can be anhydrous for 52 hours. Therefore, according to the hibernation induction method and the anhydrous transport method according to the embodiment of the present invention, various fish including high-grade live fish such as flounder, even in the case of long-distance transport that requires a transport period of 2 days or more, Since it can be transported to the whole country in Japan or transported to various parts of the world by air transportation, the present invention can be used in industries such as fisheries industry, fishery cooperatives, fisheries wholesale trade, distribution industry and transportation industry. Furthermore, the present invention can also be used in industries such as service industries that provide fresh and delicious fish dishes such as restaurants and restaurants that cook and provide these anhydrous transported fish.

1A、1B、1C、…ヒラメ
21…第1の水槽
22…第2の水槽
23…収納箱
24…酸素タンク
31…海水
32…海水
41…圧力調整器
42…ガス導入配管
43…ガス導入制御バルブ
44…ガス導入パイプ
45a、45b…通気穴
46…ガス排気パイプ
47…ガス排気制御バルブ
1A, 1B, 1C, ... Flatfish 21 ... First water tank 22 ... Second water tank 23 ... Storage box 24 ... Oxygen tank 31 ... Sea water 32 ... Sea water 41 ... Pressure regulator 42 ... Gas introduction pipe 43 ... Gas introduction control valve 44 ... Gas introduction pipes 45a, 45b ... Vent holes 46 ... Gas exhaust pipe 47 ... Gas exhaust control valve

Claims (2)

安静畜養温度に維持された水槽中で、魚類を、第1の時間、安静に畜養する段階と、
前記第1の時間の経過後、前記魚類を前記安静畜養温度より低い低温馴化温度に維持された水槽中に移動することにより、前記魚類を急冷する段階と、
前記魚類を、前記低温馴化温度に維持された水槽中で、第2の時間、安静に馴化させることにより、前記魚類を疑似冬眠状態に誘導し更に馴化を継続する段階と、
を含むことを特徴とする冬眠誘導方法。
In a water tank maintained at a rest-breeding temperature, raising the fish at rest for a first time;
After the passage of the first time, rapidly moving the fish by moving it into a water tank maintained at a low acclimation temperature lower than the resting temperature;
Inducing the fish into a pseudo-hibernation state by allowing the fish to rest in a water bath maintained at the low temperature acclimation temperature for a second time, and further acclimating;
A hibernation induction method comprising:
安静畜養温度に維持された水槽中で、魚類を、第1の時間、安静に畜養する段階と、
前記第1の時間の経過後、前記魚類を前記安静畜養温度より低い低温馴化温度に維持された水槽中に移動することにより、前記魚類を急冷する段階と、
前記魚類を、前記低温馴化温度に維持された水槽中で、第2の時間、安静に馴化させることにより、前記魚類を疑似冬眠状態に誘導し更に馴化を継続する段階と、
前記第2の時間の経過後、前記魚類を輸送用容器に移動し、前記輸送用容器の内部を酸素濃度60%以上、且つ前記低温馴化温度に維持して、前記輸送用容器を搬送することにより、前記疑似冬眠の状態の前記魚類を無水の環境で輸送する段階と、
を含むことを特徴とする無水輸送方法。
In a water tank maintained at a rest-breeding temperature, raising the fish at rest for a first time;
After the passage of the first time, rapidly moving the fish by moving it into a water tank maintained at a low acclimation temperature lower than the resting temperature;
Inducing the fish into a pseudo-hibernation state by allowing the fish to rest in a water bath maintained at the low temperature acclimation temperature for a second time, and further acclimating;
After the elapse of the second time, the fish is moved to a transport container, and the transport container is transported while maintaining the inside of the transport container at an oxygen concentration of 60% or more and the low temperature acclimation temperature. Transporting the fish in the pseudo-hibernation state in an anhydrous environment;
An anhydrous transport method comprising:
JP2013032811A 2013-02-22 2013-02-22 Hibernation induction method and anhydrous transportation method Pending JP2014161239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032811A JP2014161239A (en) 2013-02-22 2013-02-22 Hibernation induction method and anhydrous transportation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032811A JP2014161239A (en) 2013-02-22 2013-02-22 Hibernation induction method and anhydrous transportation method

Publications (1)

Publication Number Publication Date
JP2014161239A true JP2014161239A (en) 2014-09-08

Family

ID=51612499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032811A Pending JP2014161239A (en) 2013-02-22 2013-02-22 Hibernation induction method and anhydrous transportation method

Country Status (1)

Country Link
JP (1) JP2014161239A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047583A1 (en) * 2015-09-14 2017-03-23 積水化成品工業株式会社 Live fish waterless transportation method, live fish transportation container, and method for inducing hypopnea state in live fish
KR101863586B1 (en) * 2017-01-10 2018-06-05 주식회사 더피쉬 Method for Inducing Artificial Hibernation of Fish, and Container for Packing the Fish
WO2019132348A1 (en) * 2017-12-27 2019-07-04 주식회사 더피쉬 Method for inducing artificial hibernation of fish, live fish packaging method, and live fish packaging container
JP2019170329A (en) * 2018-03-29 2019-10-10 積水化成品工業株式会社 Guiding device of hypopnea state
CN111994485A (en) * 2020-08-19 2020-11-27 上海海洋大学 Waterless live shipping packing box for marine fishes and shipping method
KR20220163543A (en) * 2021-06-02 2022-12-12 목포대학교산학협력단 Effects of waterless transportation on blood characteristics and gills tissue in juvenile of starry flounder.
WO2024172585A1 (en) * 2023-02-16 2024-08-22 주식회사 디오션 Method for inducing artificial hibernation of fish, and waterless transportation method using same
WO2024196023A1 (en) * 2023-03-22 2024-09-26 주식회사 더피쉬 Method for inducing artificial hibernation in fish and method for transporting artificially induced hibernating fish

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102129257B1 (en) * 2015-09-14 2020-07-02 세키스이가세이힝코교가부시키가이샤 Live fish anhydrous transport method, a container for live fish transport, and a method of inducing hypoventilation in live fish
WO2017047107A1 (en) * 2015-09-14 2017-03-23 積水化成品工業株式会社 Live fish waterless transportation method and live fish transportation container
KR20180043319A (en) 2015-09-14 2018-04-27 세키스이가세이힝코교가부시키가이샤 Method of transporting live fish in anhydrous water, container for live fish, and method of inducing low breathing state in live fish
JPWO2017047583A1 (en) * 2015-09-14 2018-07-05 積水化成品工業株式会社 Anhydrous transport method for live fish, a container for transporting live fish
WO2017047583A1 (en) * 2015-09-14 2017-03-23 積水化成品工業株式会社 Live fish waterless transportation method, live fish transportation container, and method for inducing hypopnea state in live fish
KR101863586B1 (en) * 2017-01-10 2018-06-05 주식회사 더피쉬 Method for Inducing Artificial Hibernation of Fish, and Container for Packing the Fish
WO2018131834A1 (en) * 2017-01-10 2018-07-19 주식회사 더피쉬 Method for inducing fish into artificial hibernation and packing container
CN111655584A (en) * 2017-12-27 2020-09-11 德飞时有限公司 Artificial hibernation induction method for fish, live fish packaging method, and live fish packaging container
WO2019132348A1 (en) * 2017-12-27 2019-07-04 주식회사 더피쉬 Method for inducing artificial hibernation of fish, live fish packaging method, and live fish packaging container
JP2021510536A (en) * 2017-12-27 2021-04-30 ザ フィッシュ カンパニー,リミテッド Artificial hibernation induction method for fish, live fish packaging method and live fish packaging container
US11330805B2 (en) * 2017-12-27 2022-05-17 The Fish Co., Ltd. Method for inducing artificial hibernation of fish, live fish packaging method, and live fish packaging container
CN111655584B (en) * 2017-12-27 2022-09-27 德飞时有限公司 Artificial hibernation induction method for fish, live fish packaging method, and live fish packaging container
JP7188797B2 (en) 2017-12-27 2022-12-13 ザ フィッシュ カンパニー,リミテッド Method for inducing artificial hibernation of fish, method for packing live fish, and container for packing live fish
JP2019170329A (en) * 2018-03-29 2019-10-10 積水化成品工業株式会社 Guiding device of hypopnea state
KR101994151B1 (en) * 2018-11-23 2019-08-20 주식회사 더피쉬 Method and Container for Live Fish Packaging
CN111994485A (en) * 2020-08-19 2020-11-27 上海海洋大学 Waterless live shipping packing box for marine fishes and shipping method
KR20220163543A (en) * 2021-06-02 2022-12-12 목포대학교산학협력단 Effects of waterless transportation on blood characteristics and gills tissue in juvenile of starry flounder.
KR102571982B1 (en) * 2021-06-02 2023-08-29 목포대학교산학협력단 Effects of waterless transportation on blood characteristics and gills tissue in juvenile of starry flounder.
WO2024172585A1 (en) * 2023-02-16 2024-08-22 주식회사 디오션 Method for inducing artificial hibernation of fish, and waterless transportation method using same
WO2024196023A1 (en) * 2023-03-22 2024-09-26 주식회사 더피쉬 Method for inducing artificial hibernation in fish and method for transporting artificially induced hibernating fish

Similar Documents

Publication Publication Date Title
JP2014161239A (en) Hibernation induction method and anhydrous transportation method
JP6632630B2 (en) Method for transporting live fish anhydrous, method for transporting live fish, and method for inducing hypopnea in live fish
Tsai et al. Sugars as supplemental cryoprotectants for marine organisms
Omeji et al. Stress concept in transportation of live fishes–a review
CN104642240A (en) Waterless transport case for keeping live fish alive and method thereof for keeping live fish alive
Sæther et al. Environmental conditions required for intensive farming of Arctic charr (Salvelinus alpinus (L.))
US7707969B2 (en) Method and apparatus for inducing artificial hibernation of marine animal
RU2420064C2 (en) Method and device to put marine animals in condition of artificial hybernation
Salin Live transportation of Macrobrachium rosenbergii (De Man) in chilled sawdust
Zuanazzi et al. Effects of freezing and thawing cycles on the quality of Nile tilapia fillets
EP2015630B1 (en) Apparatus for inducing artificial hibernation of marine animals and method for transporting marine animals in said hibernated state
Le François et al. Characterization and husbandry of wild broodstock of the blackfin icefish Chaenocephalus aceratus (Lönnberg 1906) from the Palmer Archipelago (Southern Ocean) for breeding purposes
ES2300860T3 (en) PROCEDURE FOR THE CONDITIONING AND CONSERVATION OF LONG-TERM WITHOUT COLD CHAIN, OF CARNIC PRODUCTS.
JP2003164256A (en) Method for producing phase change material, the phase change material, and storage/transport technique using the same
JPH03155731A (en) Method for preserving living fish or shellfish in anhydrous state
JPH04200334A (en) Apparatus for transporting live fish and container for transportation
WO2023085417A1 (en) Method for quickly killing object to be quickly killed, quick-kill device and quick-kill system
JP2525309B2 (en) Biodry preservation method for seafood
WO2005039280A1 (en) Process for transport of live fish without water
Torres et al. Acquisition and Transport
JPH10165039A (en) Method for preserving live fish and transporting method using the same
US20100031892A1 (en) Method for storage of live crustaceans
JP2009278909A (en) Method for landing fish
Ron et al. Fish Welfare: the use of CO2 to avoid fish suffering during preparation to processing
Courteney Fit for release? Comparative respiratory physiology of captive-reared and wild-caught blue cod (Parapercis colias)