JP2014160324A - 突入電流抑制方法、リレー回路およびリレーソケット - Google Patents

突入電流抑制方法、リレー回路およびリレーソケット Download PDF

Info

Publication number
JP2014160324A
JP2014160324A JP2013030035A JP2013030035A JP2014160324A JP 2014160324 A JP2014160324 A JP 2014160324A JP 2013030035 A JP2013030035 A JP 2013030035A JP 2013030035 A JP2013030035 A JP 2013030035A JP 2014160324 A JP2014160324 A JP 2014160324A
Authority
JP
Japan
Prior art keywords
voltage
relay
relay switch
limiting element
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013030035A
Other languages
English (en)
Inventor
Naoto Nagaoka
直人 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2013030035A priority Critical patent/JP2014160324A/ja
Publication of JP2014160324A publication Critical patent/JP2014160324A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

【課題】コストアップを招くことなく、非常に簡易な構成で負荷への突入電流をある程度抑制することができる突入電流抑制方法、リレー回路およびリレーソケットを提供する。
【解決手段】交流電源2と負荷3との間に介装されたリレースイッチ5と、交流電源2から出力された出力電圧で通電されると動作遅れ時間が経過した後にリレースイッチ5をオンさせるリレーコイル6と、を備えたリレー回路1における負荷3への突入電流を抑制する突入電流抑制方法であって、所定の制限電圧以上の電圧が印加されると導通状態となる電圧制限素子7をリレーコイル6に直列接続し、当該電圧制限素子7によりリレースイッチ5がオンする時を定めることで、リレースイッチ5がオンする時における出力電圧の位相を目標とする位相範囲に収めるようにすることを特徴とする。
【選択図】図1

Description

本発明は、負荷への突入電流を抑制するための突入電流抑制方法、リレー回路およびリレーソケットに関する。
一般に、電気機器(負荷)の交流電源投入時には突入電流が発生することがある。突入電流は、変圧器等の鉄心が磁気飽和している際に発生する励磁突入電流と、整流回路等の平滑コンデンサが充電される際に発生する容量充電型の突入電流とに大別される。
励磁突入電流を抑制するためには、残留磁束を無視すれば交流電源の電圧が最大(交流電源の出力電圧の位相が90°または270°)となる時に、負荷に電源を投入することが理想であり、容量充電型の突入電流を抑制するためには、交流電源の電圧がゼロ(交流電源の出力電圧の位相が0°または180°)となる時に、負荷に電源を投入することが理想である。
このため、従来の容量充電型の突入電流抑制方法では、負荷に電源を投入するためのスイッチのスイッチング動作をマイコンで高精度に制御し、交流電源の電圧がゼロとなる時に負荷に電源が投入されるようになっている(例えば、特許文献1参照)。同様に、励磁突入電流抑制方法においても、マイコンによる高精度な制御が行われるようになっている。
特開2002−330538号公報
しかしながら、上記従来の突入電流抑制方法では、マイコンが使用されるため、コストアップは避けられなかった。また、突入電流に起因するスイッチの故障や負荷の損傷を低減させるためには、必ずしも突入電流を完全に抑制する必要はなく、突入電流を許容される電流値以下(例えば、定格の5倍以下)に抑制できればよいという実情があった。
本発明は上記事情に鑑みてなされたものであって、その課題とするところは、コストアップを招くことなく、非常に簡易な構成で負荷への突入電流をある程度抑制することができる突入電流抑制方法、リレー回路およびリレーソケットを提供することにある。
上記課題を解決するために、本発明に係る突入電流抑制方法は、(1)交流電源と負荷との間に介装されたリレースイッチと、交流電源から出力された出力電圧で通電されると動作遅れ時間が経過した後にリレースイッチをオンさせるリレーコイルと、を備えたリレー回路における負荷への突入電流を抑制する突入電流抑制方法であって、所定の制限電圧以上の電圧が印加されると導通状態となる電圧制限素子をリレーコイルに直列接続し、当該電圧制限素子によりリレースイッチがオンする時を定めることで、リレースイッチがオンする時における出力電圧の位相を目標とする位相範囲に収めるようにすることを特徴とする。
なお、上記目標とする位相範囲は、突入電流の許容値に基づいて決定することができる。例えば、突入電流の許容値が定格の5倍程度に設定されている場合において、最大で定格の10倍程度の突入電流が流れるのであれば、上記目標とする位相範囲は、突入電流の最大値が半分以下となるように、0°〜30°、150°〜210°、または330°〜360°に設定すればよい。
上記(1)の突入電流抑制方法では、(2)出力電圧の位相が目標とする位相範囲に含まれる任意の位相となる時から、想定される動作遅れ時間だけ遡った時における出力電圧の電圧値に基づいて、電圧制限素子の制限電圧を設定することができる。
上記課題を解決するために、本発明に係るリレー回路は、(3)交流電源と負荷との間に介装される第1リレースイッチと、交流電源から出力された出力電圧で通電されると動作遅れ時間が経過した後に第1リレースイッチをオンさせるリレーコイルとを備えたリレー回路であって、リレーコイルに直列接続された、所定の制限電圧以上の出力電圧が印加されると導通状態となりリレーコイルが通電されるようにする電圧制限素子をさらに備え、制限電圧は、出力電圧の位相が目標とする位相範囲に含まれる任意の位相となる時から、想定される動作遅れ時間だけ遡った時における出力電圧の電圧値に基づいて設定されていることを特徴とする。
上記(3)のリレー回路では、(4)電圧制限素子に並列接続された第2リレースイッチをさらに備えている場合、リレーコイルは、通電されると第1リレースイッチと同時に第2リレースイッチをオンさせることが好ましい。
上記(3)または(4)のリレー回路では、(5)電圧制限素子は、例えば、制限電圧以上の電圧が印加されると導通状態となるツェナーダイオードと、当該ツェナーダイオードに逆極性で直列接続されたダイオードとからなるものでもよい。
また、上記課題を解決するために、本発明に係るリレーソケットは、(6)交流電源と負荷との間に介装される第1リレースイッチと、交流電源から出力された出力電圧で通電されると動作遅れ時間が経過した後に第1リレースイッチをオンさせるリレーコイルと、第1リレースイッチおよびリレーコイルを収納した外装ケースとを備えたリレーソケットであって、外装ケースに収納され、かつリレーコイルに直列接続された、所定の制限電圧以上の出力電圧が印加されると導通状態となりリレーコイルが通電されるようにする電圧制限素子をさらに備え、制限電圧は、出力電圧の位相が目標とする位相範囲に含まれる任意の位相となる時から、想定される動作遅れ時間だけ遡った時における出力電圧の電圧値に基づいて設定されていることを特徴とする。
上記(6)のリレーソケットは、(7)外装ケースに収納され、かつ電圧制限素子に並列接続された第2リレースイッチをさらに備えている場合、リレーコイルは、通電されると第1リレースイッチと同時に第2リレースイッチをオンさせることが好ましい。
本発明によれば、コストアップを招くことなく、非常に簡易な構成で負荷への突入電流をある程度抑制することができる突入電流抑制方法、リレー回路およびリレーソケットを提供することができる。
本発明の一実施形態に係るリレー回路のブロック図である。 本発明の一実施形態における電圧制限素子の特性図であって、(A)は単極性電圧制限素子、(B)は両極性電圧制限素子、(C)は抵抗を並列接続した単極性電圧制限素子の特性図である。 電圧制限素子の制限電圧と負荷への電源投入のタイミングとの関係を示す図である。 実験回路の概略構成を示すブロック図である。 実験回路における突入電流の波形図であり、(A)は負荷をLED照明器具1台とした場合の波形図、(B)は負荷をLED照明器具10台とした場合の波形図である。 (A)は、実験回路における負荷電圧の波形図であり、(B)は実験回路における突入電流の波形図である。 (A)は本発明の一実施形態に係るリレー回路における突入電流の波形図であり、(B)は本発明の一実施形態に係るリレー回路における負荷電圧の波形図である。 本発明の一実施形態に係るリレー回路における系統電圧、リレー電圧および負荷電圧の波形図であって、(A)は電源スイッチがオンした時の系統電圧の位相が0°の場合、(B)は45°の場合、(C)は60°の場合、(D)は270°の場合の波形図である。 本発明の一実施形態に係るリレー回路における突入電流の波形図であって、(A)は電源スイッチがオンした時の系統電圧の位相が0°の場合、(B)は45°の場合、(C)は60°の場合、(D)は270°の場合の波形図である。 本発明の一実施形態に係るリレー回路におけるリレー電流およびリレー電圧の波形図であって、(A)は電源スイッチがオンした時の系統電圧の位相が45°の場合、(B)は60°の場合の波形図である。
以下、添付図面を参照して、本発明に係る突入電流抑制方法、リレー回路およびリレーソケットの実施形態について説明する。
図1に、本発明の一実施形態に係る突入電流抑制方法を実施するためのリレー回路1を示す。同図に示すように、リレー回路1は、交流電源2と負荷3との間に介装された第1リレースイッチ5と、第1リレースイッチ5をオンさせるためのリレーコイル6とを備えている。リレーコイル6は、電源スイッチ(手動スイッチ)4がオンされて交流電源2から出力された出力電圧で通電されると、動作遅れ時間が経過した後に第1リレースイッチ5をオンさせる。なお、動作遅れ時間とは、リレーコイル6が通電されてから第1リレースイッチ5がオンするまでの数ミリ秒程度の時間のことをいう。
本実施形態に係る突入電流抑制方法は、第1リレースイッチ5がオンされるとともに負荷3へ流れる突入電流(本実施形態では、容量充電型の突入電流)を抑制するための方法である。具体的には、本実施形態に係る突入電流抑制方法は、電圧制限素子7をリレーコイル6に直列接続し、当該電圧制限素子7により第1リレースイッチ5がオンされるタイミングを定めることで、第1リレースイッチ5がオンされるタイミングにおける出力電圧の位相を目標とする位相範囲に収めるようにする方法である。
電圧制限素子7としては、制限電圧(ツェナー電圧)以上の電圧が印加されると導通状態となるツェナーダイオードと、当該ツェナーダイオードに逆極性で直列接続されたダイオードとからなる単極性電圧制限素子が用いられる。単極性電圧制限素子は、図2(A)に示すように、所定の制限電圧V以上の電圧が印加されると導通状態となるが、制限電圧Vよりも小さい順方向電圧および逆方向電圧が印加されても非導通状態のままである。
また、電圧制限素子7としては、単極性電圧制限素子に替えてサイダック(登録商標)やサージアブソーバ等の両極性電圧制限素子や、抵抗を並列接続した単極性電圧制限素子を用いてもよい。両極性電圧制限素子は、図2(B)に示すように、所定の制限電圧V以上(または−V以下)の電圧が印加されると導通状態となる。抵抗を並列接続した単極性電圧制限素子は、図2(C)に示すように、単極性電圧制限素子が非導通状態でも、抵抗を経由して電流が流れる。
図3に、電圧制限素子(単極性電圧制限素子)7の制限電圧Vと負荷3への電源投入のタイミングとの関係を示す。リレー回路1では、時間tにおいて電源スイッチ4がオンされると、交流電源2の出力電圧が電圧制限素子7の制限電圧Vに達する時(時間t)まで、リレーコイル6は通電されない。時間tにおいてリレーコイル6の通電が開始されると、動作遅れ時間経過後の時間tにおいて第1リレースイッチ5がオンし、負荷3に電源が投入される。
本実施形態に係る突入電流抑制方法では、出力電圧の位相が目標とする位相範囲に含まれる任意の位相(例えば、180°)となる時(図3の時間t)から、想定される動作遅れ時間だけ遡った時における出力電圧の電圧値に基づいて、電圧制限素子7の制限電圧を設定する。換言すれば、制限電圧が上記電圧値(または上記電圧値に近い値)となる電圧制限素子7を選定する。これにより、本実施形態に係る突入電流抑制方法によれば、コストアップを招くことなく、非常に簡易な構成で負荷3への容量充電型の突入電流をある程度抑制することができる。
なお、動作遅れ時間は、同一のリレーコイル6および第1リレースイッチ5の組み合わせにおいても、使用期間等に応じて多少変動する。例えば、使用当初は出力電圧の位相が180°となるタイミング(図3の時間t)で第1リレースイッチ5がオンしていても、長期間の使用により、第1リレースイッチ5がオンするタイミングが時間tからずれることがある。しかしながら、出力電圧の位相が90°または270°となる(出力電圧が最大となる)タイミングで第1リレースイッチ5がオンしてしまうことはなく、非常に大きな突入電流が流れることは確実に防ぐことができる。
再び図1を参照して、本実施形態に係るリレー回路1は、電圧制限素子7に並列接続された第2リレースイッチ8をさらに備えている。第2リレースイッチ8は、リレーコイル6が通電されて励磁すると、当該リレーコイル6に引き寄せられて、第1リレースイッチ5とほぼ同時にオンする。また、第2リレースイッチ8がオンすることで、リレーコイル6が常に通電された状態となるので、電源スイッチ4がオフされない限り第1リレースイッチ5および第2リレースイッチ8がオフすることはない。また、第2リレースイッチ8がオンすることで、電圧制限素子7に電流が流れなくなるので、電圧制限素子7による電力損失はなくなる。
本実施形態に係るリレー回路1では、第1リレースイッチ5およびリレーコイル6を外装ケースに収納して一体化した汎用リレーを使用し、当該汎用リレーに電圧制限素子7と第2リレースイッチ8を内蔵して配線を施してもよい(本発明の「リレーソケット」に相当)。この場合、第1リレースイッチ5および第2リレースイッチ8の交換や、電圧制限素子7の交換、第2リレースイッチ8および電圧制限素子7の配線等が容易となる。また、この場合、従来のリレー回路における汎用リレーを「リレーソケット」に置き換えるだけで、本実施形態に係る突入電流抑制方法を実施することが可能となる。
[効果確認実験]
効果確認実験では、本実施形態に係るリレー回路1と、図4に示す実験回路11における突入電流の測定を行った。いずれの場合も、交流電源2、12には、低背後インピーダンスを想定した安定化電源AA2000XG(Case−A)、またはビル配電系統を想定した同志社大学の実験室YE303のコンセント(Case−B)を用いた。負荷3、13には、定格電流が0.13AのLED照明器具(1台または10台)を用いた。また、実験回路11では、PICマイコンによりスイッチ15を任意のタイミングでオン/オフできる。なお、LED照明器具を用いた場合に発生する突入電流は、容量充電型の突入電流である。
(実験1)
まず、実験回路11において、交流電源12の出力電圧の位相が90°(交流電源12の電圧が最大)となった時に、スイッチ15をオンさせて負荷13に電源を投入した。図5(A)は、負荷13をLED照明器具1台とした場合における突入電流の波形図であり、図5(B)は、負荷13をLED照明器具10台とした場合における突入電流の波形図である。表1は、それぞれの突入電流の最大値を示したものである。なお、図5(A)および(B)では、20マイクロ秒間で移動平均をとり、高周波振動成分を除去している。
Figure 2014160324
表1に示すように、負荷13をLED照明器具10台とした場合における突入電流の最大値は、負荷13をLED照明器具1台とした場合における突入電流の最大値の約7〜10倍となった。
(実験2)
次に、実験回路11において、交流電源12を安定化電源(Case−A)とし、負荷13をLED照明器具10台として、出力電圧の位相が30°、45°、60°、90°となった時にスイッチ15をオンさせた。図6(A)は、各位相における負荷電圧の波形図である。図6(B)は、各位相における突入電流の波形図である。表2は、各位相における突入電流の最大値を示したものである。なお、図6(B)では、16マイクロ秒間で移動平均をとり、高周波振動成分を除去している。
Figure 2014160324
負荷13への電源投入時(time=0)における出力電圧の位相が0°に近いほど、図6(A)に示すように、負荷13への電源投入時における負荷電圧が小さくなり、表2に示すように、突入電流の最大値も小さくなった。
(実験3)
次に、本実施形態に係るリレー回路1において、交流電源2を実験室のコンセント(Case−B)とし、負荷3をLED照明器具1台として、電圧制限素子7の制限電圧が30V、39V、51V、62Vの時の突入電流および負荷電圧を測定した。
本実験で使用したリレーコイル6の動作電圧が80V程度であることから、電圧制限素子7の制限電圧は60V(=100×√2−80)以下にする必要がある。このため、制限電圧を60Vよりも大きい62Vとする場合は、4.7kΩの抵抗を並列接続した単極性電圧制限素子(図2(C)参照)を用いることにより、リレーコイル6が動作するよう配慮した。制限電圧が30V、39V、51Vの電圧制限素子7としては、図1に示すように、ツェナーダイオードと、当該ツェナーダイオードに逆極性で直列接続されたダイオードとからなる単極性電圧制限素子を用いた。
図7(A)は、各制限電圧における突入電流の波形図である。図7(B)は、各制限電圧における負荷電圧の波形図である。表3は、各制限電圧における突入電流の最大値を示したものである。なお、図7(A)および(B)では、30マイクロ秒間で移動平均をとり、高周波振動成分を除去している。
Figure 2014160324
本実施形態に係るリレー回路1では、電圧制限素子7の制限電圧が30V、39V、51V、62Vの全ての場合において、突入電流の最大値が実験回路11における突入電流の最大値(3.18A)よりも低くなった(表3および表1参照)。これは、電圧制限素子7により、第1リレースイッチ5がオンした時の交流電源(実験室のコンセント)2の出力電圧(以下、系統電圧)の位相が、90°から離れた位相範囲に収まったためである。
さらに、図7(B)に示すように、電圧制限素子7の制限電圧を上げると、負荷3への電源投入直後における負荷電圧が小さくなった。これは、電圧制限素子7の制限電圧を上げたことにより、リレーコイル6の通電が開始されるタイミング(図3の時間t)および第1リレースイッチ5がオンするタイミング(図3の時間t)が遅れ、その結果、負荷3への電源投入時(第1リレースイッチ5がオンした時)における系統電圧の位相が0°に近づいたためである。より具体的には、制限電圧が30V、39Vの電圧制限素子7を用いた場合は、負荷3への電源投入時における負荷電圧が約100Vであることから、負荷3への電源投入時における系統電圧の位相は約140°であることが分かる。また、制限電圧が51V、62Vの電圧制限素子7を用いた場合は、負荷3への電源投入時における負荷電圧が約50Vであることから、負荷3への電源投入時における系統電圧の位相は約160°であることが分かる。
(実験4)
次に、本実施形態に係るリレー回路1において、交流電源2を実験室のコンセント(Case−B)、負荷3をLED照明器具1台、電圧制限素子7を制限電圧が39Vの単極性電圧制限素子とし、系統電圧の位相が0°、45°、60°、270°となった時に電源スイッチ4をオンさせた。
図8(A)〜(D)は、それぞれ系統電圧の位相が0°、45°、60°、270°の場合における系統電圧、リレーコイル6に印加された電圧(リレー電圧)、および負荷電圧の波形図である。図9(A)〜(D)は、それぞれ系統電圧の位相が0°、45°、60°、270°の場合における突入電流の波形図である。図10(A)は、系統電圧の位相が45°の場合におけるリレー電圧およびリレーコイル6に流れる電流(リレー電流)の波形図であり、図10(B)は、系統電圧の位相が60°の場合におけるリレー電圧およびリレー電流の波形図である。なお、系統電圧は、電源スイッチ4の後段で測定した。
また、図8および図10において、電源スイッチ4がオンされた時を時間tとし、リレーコイル6の通電が開始された時を時間tおよび時間t’とし、第1リレースイッチ5がオンした時を時間tおよび時間t’とした。
図8(A)に示すように、系統電圧の位相が0°の時(時間t)に電源スイッチ4をオンさせた場合、電源スイッチ4をオンさせた直後は、系統電圧が制限電圧(39V)よりも小さいためリレーコイル6は通電されず、時間tにおいて系統電圧が39Vに達してから、リレーコイル6の通電が開始された。リレーコイル6の通電が開始されると、動作遅れ時間経過後の時間tにおいて第1リレースイッチ5がオンした。この時に負荷3に流れる突入電流の最大値は、約1.5Aであった(図9(A)参照)。
図8(B)に示すように、系統電圧の位相が45°の時(時間t)に電源スイッチ4をオンさせた場合、電源スイッチ4がオンされた時点で系統電圧が39Vに達しているため、電源スイッチ4がオンされるのと同時にリレーコイル6の通電が開始された(時間t=時間t)。リレーコイル6の通電が開始されると、動作遅れ時間経過後の時間tにおいて第1リレースイッチ5がオンした。この時に負荷3に流れる突入電流の最大値は、約1.3Aであった(図9(B)参照)。
図8(A)と図8(B)を比較すると、前者の方がリレーコイル6の通電が開始されるタイミングは早いにもかかわらず、ほぼ同じタイミング(時間t)で第1リレースイッチ5がオンしている。これは、系統電圧の位相が0°から45°までの間は、系統電圧の電圧値が低く、リレーコイル6に吸引力がほとんど生じなかったためと考えられる。
図8(C)に示すように、系統電圧の位相が60°の時(時間t)に電源スイッチ4をオンさせた場合、電源スイッチ4がオンされた時点で系統電圧が39Vに達しているため、電源スイッチ4がオンされるのと同時にリレーコイル6の通電が開始された(時間t=時間t)。リレーコイル6の通電が開始されると、最初の周期で第1リレースイッチ5がオンすることなく、次の周期の時間t’において再びリレーコイル6の通電が開始されてから動作遅れ時間経過後の時間t’において第1リレースイッチ5がオンした。この時に負荷3に流れる突入電流の最大値は、約1.7Aであった(図9(C)参照)。
最初の周期で第1リレースイッチ5がオンしなかったのは、第1リレースイッチ5をオンさせるのに必要な吸引力がリレーコイル6に生ずる前に、系統電圧が39Vを下回ってしまったためと考えられる。図10(B)に示すように、リレーコイル6の1回目の通電では、リレーコイル6に15mA程度のリレー電流しか流れていないが、2回目の通電では、リレーコイル6に15mA以上の電流が流れていた。なお、図10(A)に示すように、系統電圧の位相が45°の時に電源スイッチ4をオンさせた場合は、リレーコイル6の1回目の通電でリレーコイル6に15mA以上の電流が流れ、第1リレースイッチ5がオンしていた。
図8(D)に示すように、系統電圧の位相が270°の時(時間t)に電源スイッチ4をオンさせた場合、電源スイッチ4をオンさせた直後は、系統電圧が制限電圧(39V)よりも小さいためリレーコイル6は通電されず、時間tにおいて系統電圧が39Vに達してから、リレーコイル6の通電が開始された。リレーコイル6の通電が開始されると、動作遅れ時間経過後の時間tにおいて第1リレースイッチ5がオンした。この時に負荷3に流れる突入電流の最大値は、約2.2Aであった(図9(D)参照)。
本実施形態に係るリレー回路1では、系統電圧の位相が0°、45°、60°、270°のいずれの時に電源スイッチ4がオンされても、突入電流の最大値が実験回路11における突入電流の最大値(3.18A)よりも低くなった。また、本実施形態に係るリレー回路1では、突入電流の最大値は1.3A〜2.2Aの間でバラついてはいるものの、スパイク状電流を無視すれば1.5A以下で、図8(A)〜(D)に示すように、第1リレースイッチ5はいずれも系統電圧の位相が約140°の時にオンした。
結局、本実施形態に係るリレー回路1では、交流電源2の出力電圧(上記実験4では、系統電圧)が電圧制限素子7の制限電圧よりも小さい時に電源スイッチ4がオンされた場合(図8(A)、(D)の場合)、電圧制限素子7によりリレーコイル6の通電開始時を遅らせることで、第1リレースイッチ5がオンする時における出力電圧の位相を目標とする位相範囲に収めるようにすることができる。また、本実施形態に係るリレー回路1では、交流電源2の出力電圧が電圧制限素子7の制限電圧以上の時に電源スイッチ4がオンされた場合(図8(B)、(C)の場合)であっても、電圧制限素子7によりリレー電圧を抑制して第1リレースイッチ5がオンする時を遅らせることで、第1リレースイッチ5がオンする時における出力電圧の位相を目標とする位相範囲に収めるようにすることができる。
したがって、本実施形態に係るリレー回路1によれば、コストアップを招くことなく、非常に簡易な構成で負荷3への容量充電型の突入電流をある程度抑制することができる。
以上、本発明に係る突入電流抑制方法、リレー回路およびリレーソケットの好ましい実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態における電圧制限素子7の構成は、リレーコイル6に印加される電圧を制限できるのであれば、任意に変更することができる。例えば、単極性電圧制限素子として、ツェナーダイオードと、当該ツェナーダイオードに逆極性で直列接続されたダイオードとからなる素子を用いた場合、ツェナーダイオードにのみ抵抗を並列接続させてもよい。
また、本発明の突入電流抑制方法、リレー回路およびリレーソケットは、励磁突入電流を抑制することもできる。具体的には、交流電源2の出力電圧の位相が目標とする位相範囲に含まれる任意の位相(例えば、90°または270°)となる時から、想定される動作遅れ時間だけ遡った時における出力電圧の電圧値に基づいて、電圧制限素子7の制限電圧を設定すればよい。
1 リレー回路
2 交流電源
3 負荷
4 電源スイッチ
5 第1リレースイッチ
6 リレーコイル
7 電圧制限素子
8 第2リレースイッチ

Claims (7)

  1. 交流電源と負荷との間に介装されたリレースイッチと、前記交流電源から出力された出力電圧で通電されると動作遅れ時間が経過した後に前記リレースイッチをオンさせるリレーコイルと、を備えたリレー回路における前記負荷への突入電流を抑制する突入電流抑制方法であって、
    所定の制限電圧以上の電圧が印加されると導通状態となる電圧制限素子を前記リレーコイルに直列接続し、当該電圧制限素子により前記リレースイッチがオンする時を定めることで、前記リレースイッチがオンする時における前記出力電圧の位相を目標とする位相範囲に収めるようにすることを特徴とする突入電流抑制方法。
  2. 前記出力電圧の位相が前記目標とする位相範囲に含まれる任意の位相となる時から、想定される前記動作遅れ時間だけ遡った時における前記出力電圧の電圧値に基づいて、前記電圧制限素子の前記制限電圧を設定することを特徴とする請求項1に記載の突入電流抑制方法。
  3. 交流電源と負荷との間に介装される第1リレースイッチと、前記交流電源から出力された出力電圧で通電されると動作遅れ時間が経過した後に前記第1リレースイッチをオンさせるリレーコイルとを備えたリレー回路であって、
    前記リレーコイルに直列接続された、所定の制限電圧以上の前記出力電圧が印加されると導通状態となり前記リレーコイルが通電されるようにする電圧制限素子をさらに備え、
    前記制限電圧は、前記出力電圧の位相が目標とする位相範囲に含まれる任意の位相となる時から、想定される前記動作遅れ時間だけ遡った時における前記出力電圧の電圧値に基づいて設定されていることを特徴とするリレー回路。
  4. 前記電圧制限素子に並列接続された第2リレースイッチをさらに備え、
    前記リレーコイルは、通電されると前記第1リレースイッチと同時に前記第2リレースイッチをオンさせることを特徴とする請求項3に記載のリレー回路。
  5. 前記電圧制限素子は、前記制限電圧以上の電圧が印加されると導通状態となるツェナーダイオードと、当該ツェナーダイオードに逆極性で直列接続されたダイオードとからなることを特徴とする請求項3または4に記載のリレー回路。
  6. 交流電源と負荷との間に介装される第1リレースイッチと、前記交流電源から出力された出力電圧で通電されると動作遅れ時間が経過した後に前記第1リレースイッチをオンさせるリレーコイルと、前記第1リレースイッチおよび前記リレーコイルを収納した外装ケースとを備えたリレーソケットであって、
    前記外装ケースに収納され、かつ前記リレーコイルに直列接続された、所定の制限電圧以上の前記出力電圧が印加されると導通状態となり前記リレーコイルが通電されるようにする電圧制限素子をさらに備え、
    前記制限電圧は、前記出力電圧の位相が目標とする位相範囲に含まれる任意の位相となる時から、想定される前記動作遅れ時間だけ遡った時における前記出力電圧の電圧値に基づいて設定されていることを特徴とするリレーソケット。
  7. 前記外装ケースに収納され、かつ前記電圧制限素子に並列接続された第2リレースイッチをさらに備え、
    前記リレーコイルは、通電されると前記第1リレースイッチと同時に前記第2リレースイッチをオンさせることを特徴とする請求項6に記載のリレーソケット。
JP2013030035A 2013-02-19 2013-02-19 突入電流抑制方法、リレー回路およびリレーソケット Pending JP2014160324A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030035A JP2014160324A (ja) 2013-02-19 2013-02-19 突入電流抑制方法、リレー回路およびリレーソケット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030035A JP2014160324A (ja) 2013-02-19 2013-02-19 突入電流抑制方法、リレー回路およびリレーソケット

Publications (1)

Publication Number Publication Date
JP2014160324A true JP2014160324A (ja) 2014-09-04

Family

ID=51611981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030035A Pending JP2014160324A (ja) 2013-02-19 2013-02-19 突入電流抑制方法、リレー回路およびリレーソケット

Country Status (1)

Country Link
JP (1) JP2014160324A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552475A (zh) * 2020-04-24 2021-10-26 贵州振华群英电器有限公司(国营第八九一厂) 一种电流浪涌试验装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552475A (zh) * 2020-04-24 2021-10-26 贵州振华群英电器有限公司(国营第八九一厂) 一种电流浪涌试验装置
CN113552475B (zh) * 2020-04-24 2023-03-31 贵州振华群英电器有限公司(国营第八九一厂) 一种电流浪涌试验装置

Similar Documents

Publication Publication Date Title
JP5775026B2 (ja) ダイナミックダンパ
US7612471B2 (en) Hybrid electrical switching device
US20090261929A1 (en) Electromagnetic actuating device being actuated by AC power and held by DC power
US8878449B2 (en) LED drive circuit and LED illumination unit
JP2012095502A (ja) 電源回路
EP3346804A1 (en) Light-dimming device
WO2016045607A1 (zh) 电子脱扣器的保护装置及保护方法
JP2022545484A (ja) コイル駆動装置
JP5676478B2 (ja) リレーの動作特性を正確に制御するシステム
WO2018055990A1 (ja) 調光装置の保護回路、及び調光装置
JP2014160324A (ja) 突入電流抑制方法、リレー回路およびリレーソケット
CN109585223B (zh) 一种接触器控制电路
CN202384759U (zh) 抑制浪涌电流的电路
JP2014192915A (ja) 電源装置及び照明装置
JP6673801B2 (ja) ゲートパルス発生回路およびパルス電源装置
US20090262479A1 (en) Electromagnetic actuating device being actuated by high voltage and held electrification by low voltage
JP5480307B2 (ja) スイッチ回路に給電する供給回路
US20090260944A1 (en) Electromagnetic actuating device with driving and holding tapped coil
JP6349203B2 (ja) 電磁接触器、パワーコンディショナ
US20240186913A1 (en) Power supply circuit, related actuator and method of supplying a load
US10424435B2 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
CN110880398B (zh) 用于低压和中压应用的线圈致动器
JP2004178812A (ja) 除電装置
RU2441733C1 (ru) Тиристорный трансформатор для дуговой сварки
RU149050U1 (ru) Магнитогидростатический сепаратор с электромагнитом