JP2014158149A5 - - Google Patents

Download PDF

Info

Publication number
JP2014158149A5
JP2014158149A5 JP2013027618A JP2013027618A JP2014158149A5 JP 2014158149 A5 JP2014158149 A5 JP 2014158149A5 JP 2013027618 A JP2013027618 A JP 2013027618A JP 2013027618 A JP2013027618 A JP 2013027618A JP 2014158149 A5 JP2014158149 A5 JP 2014158149A5
Authority
JP
Japan
Prior art keywords
excitation electrode
substrate
vibration element
vibration
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013027618A
Other languages
Japanese (ja)
Other versions
JP6191152B2 (en
JP2014158149A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2013027618A external-priority patent/JP6191152B2/en
Priority to JP2013027618A priority Critical patent/JP6191152B2/en
Priority to TW102109355A priority patent/TWI578585B/en
Priority to US13/849,896 priority patent/US9013243B2/en
Priority to CN2013201404412U priority patent/CN203233372U/en
Priority to CN201310098772.9A priority patent/CN103368518B/en
Publication of JP2014158149A publication Critical patent/JP2014158149A/en
Priority to US14/663,888 priority patent/US20150194946A1/en
Publication of JP2014158149A5 publication Critical patent/JP2014158149A5/ja
Publication of JP6191152B2 publication Critical patent/JP6191152B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[形態1]本形態に係る振動素子は、厚み滑り振動で振動し、表裏の関係にある第1の主面及び第2の主面を含む基板と、前記第1の主面に配置され、仮想の四角形に内接する辺又は円周を含む第1の励振電極と、前記第2の主面に配置されている第2の励振電極と、を含み、前記四角形の面積をS1、前記第1の励振電極の面積をS2としたとき、
87.7%≦(S2/S1)<95.0%
の関係を満たすことを特徴とする。
本形態によれば、基本波の厚み滑り振動で励振する高周波の振動素子において、振動素子の容量比γが小さくなるという効果がある。
[形態2]本形態に係る振動素子は、前記第1の励振電極は、前記四角形の少なくとも三隅を切り欠いた形状であることを特徴とする。
本形態によれば、基本波の厚み滑り振動で励振する高周波の振動素子において、実際に振動に寄与しない励振電極の四隅のうち少なくとも三隅を取り除いた第1の励振電極を設けたので、等価直列容量C1はほとんど影響がなく変化しないが、等価並列容量C0は小さくなった面積に比例して小さくなるため、振動素子の容量比γが小さくなり、大きな周波数可変感度を有する電圧制御型発振器が得られるという効果がある。
[形態3]上記形態に記載の振動素子において、前記第1の励振電極は、平面視で、前記第2の励振電極の外縁以内に配置されていることを特徴とする。
本形態によれば、基本波の厚み滑り振動で励振する高周波の振動素子において、平面視で第1の励振電極と第2の励振電極との面積が同一の場合に比べ、電極の厚みを厚くできるので、電極膜のオーミックロスを低減し、主振動のCI値の劣化を低減できるという効果がある。
また更に、第1の励振電極と第2の励振電極とを金属マスク法で形成する場合、マスクの多少の位置ずれがあった場合でも、平面視で第1の励振電極と第2の励振電極とが重なる面積が変化し難いため、等価直列容量C1と等価並列容量C0のばらつきが生じないので、容量比γのばらつきが小さい振動素子が得られるという効果がある。
[形態4]上記形態に記載の振動素子において、前記第1の励振電極と接続され、前記第1の主面に配置されているリード電極を有し、前記リード電極は、前記第1の励振電極の外縁のうち前記切り欠いた領域外の外縁から延在していることを特徴とする。
本形態によれば、リード電極を切り欠いた領域を除く前記第1の励振電極の外縁から延在することにより、容量比γの低減に効果のある領域を避けることができるので、容量比γのより小さな振動素子が得られるという効果がある。
[形態5]上記形態に記載の振動素子において、前記第2の励振電極は、平面視で、前記四角形よりも大きく、
前記基板の厚さをts、前記第1の励振電極と前記第2の励振電極の厚さの合計をte、前記第2の励振電極の厚さをte2、前記第1の励振電極の厚みすべり振動の振動方向に沿った方向の長さをhx、前記第1の励振電極および前記第2の励振電極の密度をρe、前記基板の密度をρx、前記基板のカットオフ周波数をfs、前記基板に前記第1の励振電極および前記第2の励振電極を配置したときに前記基板で励振される周波数をfe、前記基板のエネルギー閉じ込め係数をM、周波数低下量をΔ、前記基板の周波数定数をR、前記基板の異方性定数をK、として
M=K×(hx/(2×ts))×√△
△=(fs−fe)/fs
fs=R/[ts+te2×(ρe/ρx)]
fe=R/[ts+te×(ρe/ρx)]
15.5≦M≦36.7
の関係を満たすことを特徴とする。
本形態によれば、基本波の厚み滑り振動モードで励振する高周波の振動素子において、励振電極及びリード電極の薄膜化に伴うオーミックロスの影響によるCI値の劣化を低減し、励振電極の寸法や膜厚により決定されるインハーモニックモードのスプリアスの励振強度を低減することが可能となる。これにより、主振動のCI値は小さくなり、主振動のCIm値に対する近接したスプリアスのCIs値との比、即ちCI値比(CIs/CIm)の大きな振動素子が得られるという効果がある。
[形態6]上記形態に記載の振動素子において、17.1≦M≦35.7の関係を満たすことを特徴とする。
本形態によれば、インハーモニックモードのスプリアスの励振強度をよりいっそう低減することが可能となるという効果がある。
[形態7]上記形態に記載の振動素子において、前記第1の励振電極の厚み滑り振動方向と直交する方向に沿った長さをhzとしたとき、
1.25≦hx/hz≦1.31
の関係を満たすことを特徴とする。
本形態によれば、結晶の異方性により定まる変位方向の変位分布と、それと直交する方向の変位分布が異なる基板を用いた場合、主振動のエネルギー閉じ込めの効率を高めることができる。さらに、振動素子の容量比γを小さくできる。
ここで、厚み滑り振動の共振周波数が200MHz以上とした場合、厚み滑り振動モードで励振する振動素子は、その周波数が基板の板厚に反比例し決定されるので、200MHz以上の高周波になると基板の板厚が8.4μm以下と非常に薄くなるため、形成する励振電極の膜厚も非常に薄くする必要がある。そのため、電極の薄膜化によるオーミックロスの影響が非常に大きくなり、エネルギー閉じ込め係数Mを前記範囲にすることは、これらの問題を低減できるので、発振回路が必要とするCI値仕様とスプリアス仕様を満足できる振動素子が得られるという効果がある。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
[Embodiment 1] The resonator element according to this embodiment is arranged on the first main surface, the substrate including the first main surface and the second main surface that are vibrated by thickness-shear vibration and have a front-back relationship, A first excitation electrode including a side or circumference inscribed in a virtual quadrangle, and a second excitation electrode disposed on the second main surface, wherein the area of the quadrangle is S1, the first When the area of the excitation electrode is S2,
87.7% ≦ (S2 / S1) <95.0%
It is characterized by satisfying the relationship.
According to this embodiment, in the high frequency vibration element excited by the thickness shear vibration of the fundamental wave, there is an effect that the capacitance ratio γ of the vibration element becomes small.
[Mode 2] The vibration element according to this mode is characterized in that the first excitation electrode has a shape in which at least three corners of the square are cut out.
According to this embodiment, in the high-frequency vibration element excited by the thickness shear vibration of the fundamental wave, the first excitation electrode is provided by removing at least three corners of the four corners of the excitation electrode that do not actually contribute to vibration. The capacitance C1 has almost no influence and does not change, but the equivalent parallel capacitance C0 decreases in proportion to the reduced area, so that the capacitance ratio γ of the vibration element decreases, and a voltage controlled oscillator having a large frequency variable sensitivity is obtained. There is an effect that it is.
[Mode 3] In the resonator element according to the above mode, the first excitation electrode is disposed within an outer edge of the second excitation electrode in a plan view.
According to this embodiment, in the high-frequency vibration element excited by the thickness-shear vibration of the fundamental wave, the thickness of the electrode is increased compared to the case where the areas of the first excitation electrode and the second excitation electrode are the same in plan view. Therefore, there is an effect that the ohmic cross of the electrode film can be reduced and the deterioration of the CI value of the main vibration can be reduced.
Furthermore, when the first excitation electrode and the second excitation electrode are formed by the metal mask method, the first excitation electrode and the second excitation electrode are seen in a plan view even when the mask is slightly displaced. Since the variation of the equivalent series capacitance C1 and the equivalent parallel capacitance C0 does not occur, the vibration element with a small variation in the capacitance ratio γ can be obtained.
[Mode 4] In the resonator element according to the above mode, the resonator element includes a lead electrode connected to the first excitation electrode and disposed on the first main surface, and the lead electrode includes the first excitation electrode. It extends from the outer edge outside the said notch area | region among the outer edges of an electrode, It is characterized by the above-mentioned.
According to this embodiment, by extending from the outer edge of the first excitation electrode excluding the region where the lead electrode is not cut, it is possible to avoid a region effective in reducing the capacitance ratio γ. The smaller vibration element can be obtained.
[Mode 5] In the resonator element according to the above mode, the second excitation electrode is larger than the square in plan view,
The thickness of the substrate is ts, the total thickness of the first excitation electrode and the second excitation electrode is te, the thickness of the second excitation electrode is te2, and the thickness of the first excitation electrode is slipped. The length along the vibration direction of the vibration is hx, the density of the first excitation electrode and the second excitation electrode is ρe, the density of the substrate is ρx, the cutoff frequency of the substrate is fs, and the substrate The frequency excited by the substrate when the first excitation electrode and the second excitation electrode are arranged in fe is fe, the energy confinement coefficient of the substrate is M, the frequency reduction is Δ, and the frequency constant of the substrate is R, where K is the anisotropy constant of the substrate
M = K × (hx / (2 × ts)) × √Δ
Δ = (fs−fe) / fs
fs = R / [ts + te2 × (ρe / ρx)]
fe = R / [ts + te × (ρe / ρx)]
15.5 ≦ M ≦ 36.7
It is characterized by satisfying the relationship.
According to this embodiment, in a high-frequency vibration element excited in the thickness-shear vibration mode of the fundamental wave, the deterioration of the CI value due to the effect of ohmic cross accompanying the thinning of the excitation electrode and the lead electrode is reduced, and the dimensions of the excitation electrode and It is possible to reduce the excitation intensity of the in-harmonic mode spurious determined by the film thickness. As a result, the CI value of the main vibration is reduced, and there is an effect that a vibration element having a large ratio of CIs of adjacent spurious to the CIm value of the main vibration, that is, a CI value ratio (CIs / CIm) is obtained.
[Mode 6] The resonator element according to the above mode is characterized in that the relationship of 17.1 ≦ M ≦ 35.7 is satisfied.
According to this embodiment, there is an effect that the excitation intensity of the spurious in the in-harmonic mode can be further reduced.
[Mode 7] In the resonator element according to the above mode, when the length along the direction orthogonal to the thickness-shear vibration direction of the first excitation electrode is hz,
1.25 ≦ hx / hz ≦ 1.31
It is characterized by satisfying the relationship.
According to this embodiment, when a substrate in which the displacement distribution in the displacement direction determined by the crystal anisotropy is different from the displacement distribution in the direction orthogonal thereto is used, the energy confinement efficiency of the main vibration can be increased. Furthermore, the capacitance ratio γ of the vibration element can be reduced.
Here, when the resonance frequency of the thickness-shear vibration is 200 MHz or more, the vibration element excited in the thickness-shear vibration mode is determined in inverse proportion to the thickness of the substrate. Since the plate thickness is as thin as 8.4 μm or less, the thickness of the excitation electrode to be formed needs to be very thin. Therefore, the effect of ohmic cross due to the thinning of the electrode becomes very large, and setting the energy confinement coefficient M in the above range can reduce these problems. Therefore, the CI value specification and spurious specification required by the oscillation circuit can be reduced. There is an effect that a satisfactory vibration element can be obtained.

次に、一般的に厚み滑り振動モードは基板上に部分電極を形成するか、厚み差を設けると、その部分近傍に振動エネルギーを閉じ込めることができ、安定した共振周波数を得ることができる。この場合の閉じ込めモードの共振周波数は、基板の板厚tsや励振電極の膜厚teと寸法hxにより求まるエネルギー閉じ込め係数Mの関数として表される。
エネルギー閉じ込め係数Mは、下記式(2)で表される。
M=K×(hx/2×ts)×√△・・・(2)
ここで、Kは基板の異方性係数(ATカット基板の場合は1.538)、hxは励振電極の厚み滑り振動の変位方向に沿った寸法、tsは基板の厚み、△は周波数低下量である。尚、hxは、励振電極が円形や楕円形のように形状が矩形でない場合は、厚み滑り振動モードの変位方向に沿った長さのうち最大値を寸法とする。
また、周波数低下量△は下記式(3)で表される。
△=(fs−fe)/fs・・・(3)
ここで、fsは基板のカットオフ周波数、feは基板全面に励振電極を成膜した場合の周波数である。
Next, in general, in the thickness-shear vibration mode, when a partial electrode is formed on a substrate or a thickness difference is provided, vibration energy can be confined in the vicinity of the portion, and a stable resonance frequency can be obtained. The resonance frequency of the confinement mode in this case is expressed as a function of the energy confinement coefficient M determined by the thickness ts of the substrate, the film thickness te of the excitation electrode, and the dimension hx.
The energy confinement factor M is expressed by the following formula (2).
M = K × (hx / ( 2 × ts ) ) × √Δ (2)
Here, K is the anisotropy coefficient of the substrate (1.538 in the case of an AT cut substrate), hx is the dimension along the displacement direction of the thickness-slip vibration of the excitation electrode, ts is the thickness of the substrate, and Δ is the amount of frequency reduction It is. Note that hx takes the maximum value of the length along the displacement direction of the thickness-shear vibration mode when the excitation electrode is not a rectangle such as a circle or an ellipse.
Further, the frequency drop amount Δ is expressed by the following formula (3).
Δ = (fs−fe) / fs (3)
Here, fs is a cutoff frequency of the substrate, and fe is a frequency when the excitation electrode is formed on the entire surface of the substrate.

ここで、図7に示す試作条件は、前述の式(2)、(3)、(6)、(7)を満たしている。
M=K×(hx/2×ts)×√△・・・(2)
△=(fs−fe)/fs・・・(3)
fs=R/[ts+te2×(ρe/ρx)]・・・(6)
fe=R/[ts+te×(ρe/ρx)]・・・(7)
尚、各パラメータは以下の通りである。
K(ATカット基板の異方性係数)=1.538
R(ATカット基板の周波数定数)=1.67(MHz・mm)
ρx(ATカット基板の密度)=2.649(g/cm
ρAu(金の密度)=19.3(g/cm
ρNi(ニッケルの密度)=8.9(g/cm
であり、2層構造からなる励振電極の密度ρeは以下のように算出される。
ρe=(ρAu×tAu+ρNi×tNi)/(tAu+tNi
ここで、tAuは上地層の金(Au)層の厚み、tNiは下地層のニッケル(Ni)層の厚みである。
また、fsは振動部12のカットオフ周波数、feは振動部12に励振電極を配置したときの周波数である。
Here, the trial production conditions shown in FIG. 7 satisfy the above-described formulas (2), (3), (6), and (7).
M = K × (hx / ( 2 × ts ) ) × √Δ (2)
Δ = (fs−fe) / fs (3)
fs = R / [ts + te2 × (ρe / ρx)] (6)
fe = R / [ts + te × (ρe / ρx)] (7)
Each parameter is as follows.
K (anisotropic coefficient of AT cut substrate) = 1.538
R (frequency constant of AT cut substrate) = 1.67 (MHz · mm)
ρx (AT cut substrate density) = 2.649 (g / cm 3 )
ρ Au (gold density) = 19.3 (g / cm 3 )
ρ Ni (Nickel density) = 8.9 (g / cm 3 )
The density ρe of the excitation electrode having a two-layer structure is calculated as follows.
ρe = (ρ Au × t Au + ρ Ni × t Ni ) / (t Au + t Ni )
Here, t Au is the thickness of the upper layer gold (Au) layer, and t Ni is the thickness of the lower layer nickel (Ni) layer.
Further, fs is a cut-off frequency of the vibration part 12, and fe is a frequency when the excitation electrode is arranged on the vibration part 12.

Claims (13)

厚み滑り振動で振動し、表裏の関係にある第1の主面及び第2の主面を含む基板と、
前記第1の主面に配置され、仮想の四角形に内接する辺又は円周を含む第1の励振電極と、
前記第2の主面に配置されている第2の励振電極と、
を含み、
前記四角形の面積をS1、前記第1の励振電極の面積をS2としたとき、
87.7%≦(S2/S1)<95.0%
の関係を満たすことを特徴とする振動素子。
A substrate including a first main surface and a second main surface which are vibrated by thickness-shear vibration and have a front-back relationship;
A first excitation electrode disposed on the first main surface and including a side or circumference inscribed in a virtual rectangle;
A second excitation electrode disposed on the second main surface;
Including
When the area of the square is S1, and the area of the first excitation electrode is S2,
87.7% ≦ (S2 / S1) <95.0%
A vibration element characterized by satisfying the relationship:
請求項1において、
前記第1の励振電極は、前記四角形の少なくとも三隅を切り欠いた形状であることを特徴とする振動素子。
In claim 1,
The vibration element according to claim 1, wherein the first excitation electrode has a shape in which at least three corners of the square are cut out.
請求項1又は2において、
前記第1の励振電極は、平面視で、前記第2の励振電極の外縁内に配置されていることを特徴とする振動素子。
In claim 1 or 2,
It said first excitation electrodes, in plan view, the vibration element characterized in that it is located within the outer edge than the second excitation electrode.
請求項2又は3において、
前記第1の励振電極と接続され、前記第1の主面に配置されているリード電極を有し、
前記リード電極は、前記第1の励振電極の外縁のうち前記切り欠いた領域外の外縁から延在していることを特徴とする振動素子。
In claim 2 or 3,
A lead electrode connected to the first excitation electrode and disposed on the first main surface;
The lead electrodes, the vibrating element, characterized in that you are extending from the cutaway region outside the outer edge of the outer edge of the first excitation electrode.
請求項1乃至4のいずれか一項において、
前記第2の励振電極は、平面視で、前記四角形よりも大きく、
前記基板の厚さをts、前記第1の励振電極と前記第2の励振電極の厚さの合計をte、前記第2の励振電極の厚さをte2、前記第1の励振電極の厚みすべり振動の振動方向に沿った方向の長さをhx、前記第1の励振電極および前記第2の励振電極の密度をρe、前記基板の密度をρx、前記基板のカットオフ周波数をfs、前記基板に前記第1の励振電極および前記第2の励振電極を配置したときに前記基板で励振される周波数をfe、前記基板のエネルギー閉じ込め係数をM、周波数低下量をΔ、前記基板の周波数定数をR、前記基板の異方性定数をK、として
M=K×(hx/2×ts)×√△
△=(fs−fe)/fs
fs=R/[ts+te2×(ρe/ρx)]
fe=R/[ts+te×(ρe/ρx)]
15.5≦M≦36.7
の関係を満たすことを特徴とする振動素子
In any one of Claims 1 thru | or 4,
The second excitation electrode is larger than the square in plan view,
The thickness of the substrate is ts, the total thickness of the first excitation electrode and the second excitation electrode is te, the thickness of the second excitation electrode is te2, and the thickness of the first excitation electrode is slipped. The length along the vibration direction of the vibration is hx, the density of the first excitation electrode and the second excitation electrode is ρe, the density of the substrate is ρx, the cutoff frequency of the substrate is fs, and the substrate The frequency excited by the substrate when the first excitation electrode and the second excitation electrode are arranged in fe is fe, the energy confinement coefficient of the substrate is M, the frequency reduction is Δ, and the frequency constant of the substrate is R, where K is the anisotropy constant of the substrate, M = K × (hx / ( 2 × ts ) ) × √Δ
Δ = (fs−fe) / fs
fs = R / [ts + te2 × (ρe / ρx)]
fe = R / [ts + te × (ρe / ρx)]
15.5 ≦ M ≦ 36.7
Transducer elements and satisfies the relationship.
請求項5において、
17.1≦M≦35.7
の関係を満たすことを特徴とする振動素子。
In claim 5,
17.1 ≦ M ≦ 35.7
A vibration element characterized by satisfying the relationship:
請求項5又は6において、
前記第1の励振電極の厚み滑り振動方向と直交する方向に沿った長さをhzとしたとき、
1.25≦hx/hz≦1.31
の関係を満たすことを特徴とする振動素子。
In claim 5 or 6,
When the length along the direction orthogonal to the thickness shear vibration direction of the first excitation electrode is hz,
1.25 ≦ hx / hz ≦ 1.31
A vibration element characterized by satisfying the relationship:
請求項1乃至7のいずれか一項において、
前記基板は水晶基板であることを特徴とする振動素子。
In any one of Claims 1 thru | or 7,
The vibration element, wherein the substrate is a quartz substrate.
請求項8において、
前記水晶基板がATカット水晶基板であることを特徴とする振動素子。
In claim 8,
A vibrating element, wherein the quartz substrate is an AT cut quartz substrate.
請求項1乃至9のいずれか一項に記載の振動素子と、
前記振動素子を収容するパッケージと、
を備えていることを特徴とする振動子。
The vibration element according to any one of claims 1 to 9,
A package containing the vibration element;
A vibrator characterized by comprising:
請求項1乃至9のいずれか一項に記載の振動素子と、
前記振動素子を駆動する発振回路と、
を備えていることを特徴とする電子デバイス。
The vibration element according to any one of claims 1 to 9,
An oscillation circuit for driving the vibration element;
An electronic device comprising:
請求項1乃至9のいずれか一項に記載の振動素子を備えていることを特徴とする電子機器。   An electronic apparatus comprising the vibration element according to claim 1. 請求項1乃至9のいずれか一項に記載の振動素子を備えていることを特徴とする移動体。   A moving body comprising the vibration element according to claim 1.
JP2013027618A 2012-03-27 2013-02-15 Vibration element, vibrator, electronic device, electronic device, and moving object Active JP6191152B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013027618A JP6191152B2 (en) 2013-02-15 2013-02-15 Vibration element, vibrator, electronic device, electronic device, and moving object
TW102109355A TWI578585B (en) 2012-03-27 2013-03-15 Vibrator element, vibrator, electronic device, electronic apparatus, and mobile object
US13/849,896 US9013243B2 (en) 2012-03-27 2013-03-25 Resonator element, resonator, electronic device, electronic apparatus, and mobile object
CN201310098772.9A CN103368518B (en) 2012-03-27 2013-03-26 Vibrating elements, oscillator, electronic device, electronic equipment and moving body
CN2013201404412U CN203233372U (en) 2012-03-27 2013-03-26 Oscillating element, oscillator, electronic device, electronic apparatus and mobile object
US14/663,888 US20150194946A1 (en) 2012-03-27 2015-03-20 Resonator element, resonator, electronic device, electronic apparatus, and mobile object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027618A JP6191152B2 (en) 2013-02-15 2013-02-15 Vibration element, vibrator, electronic device, electronic device, and moving object

Publications (3)

Publication Number Publication Date
JP2014158149A JP2014158149A (en) 2014-08-28
JP2014158149A5 true JP2014158149A5 (en) 2016-03-24
JP6191152B2 JP6191152B2 (en) 2017-09-06

Family

ID=51578780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027618A Active JP6191152B2 (en) 2012-03-27 2013-02-15 Vibration element, vibrator, electronic device, electronic device, and moving object

Country Status (1)

Country Link
JP (1) JP6191152B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303372B2 (en) 2013-10-01 2018-04-04 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, electronic device, and moving object
JP2016140023A (en) * 2015-01-29 2016-08-04 セイコーエプソン株式会社 Vibrating piece, vibrator, oscillation device, oscillator and mobile object
JP7027841B2 (en) * 2017-11-29 2022-03-02 セイコーエプソン株式会社 Vibration devices, electronic devices and mobiles
JP6813065B2 (en) * 2019-09-03 2021-01-13 セイコーエプソン株式会社 Vibration devices, electronics, and mobiles
JPWO2023286327A1 (en) * 2021-07-12 2023-01-19
WO2023085348A1 (en) * 2021-11-15 2023-05-19 京セラ株式会社 Crystal element and crystal device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881503B2 (en) * 2000-09-29 2007-02-14 京セラ株式会社 Piezoelectric vibrator and piezoelectric device equipped with the same
WO2007032444A1 (en) * 2005-09-15 2007-03-22 Daishinku Corporation Crystal unit
JP5796355B2 (en) * 2011-06-03 2015-10-21 セイコーエプソン株式会社 Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP2014158149A5 (en)
JP4936221B2 (en) Mesa-type piezoelectric vibrating piece, mesa-type piezoelectric vibrating device, oscillator, and electronic device
JP2014154994A5 (en)
JP5104867B2 (en) Piezoelectric vibrator
US7902721B2 (en) Crystal resonator
TWI517572B (en) Piezoelectric resonator having combined thickness and width vibrational modes
JP2001244778A (en) High-frequency piezoelectric vibrator
JP2013255052A5 (en)
JP2017220954A (en) Crystal oscillating element and crystal oscillator including crystal oscillating element
JP2013255051A5 (en)
JP2014138414A5 (en)
JP2001211052A (en) Piezoelectric resonator
JP5293852B2 (en) Mesa-type piezoelectric vibrating piece, mesa-type piezoelectric vibrating device, oscillator, and electronic device
JP2008245243A (en) Contour resonator and adjustment method therefor
JP4558433B2 (en) Crystal oscillator
US7583007B2 (en) Piezoelectric vibrator
JPH0396005A (en) Piezoelectric thin film resonator
JP2009089441A (en) Piezoelectric vibrating element, piezoelectric vibrator, and piezoelectric oscillator
JP2008193660A (en) Contour resonator
JP6075441B2 (en) Crystal vibrator
Workie et al. Analysis of high electromechanical coupling coefficient zinc oxide Lame’mode resonators and a design technique for spurious mode mitigation
JP2004179879A (en) Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JP2006129383A (en) Piezoelectric vibrating piece and piezoelectric vibrating device provided with the same
JPH09181556A (en) Piezoelectric vibrator
JP5839146B2 (en) Crystal vibrator