JP2014158131A - 画像符号化装置 - Google Patents

画像符号化装置 Download PDF

Info

Publication number
JP2014158131A
JP2014158131A JP2013027297A JP2013027297A JP2014158131A JP 2014158131 A JP2014158131 A JP 2014158131A JP 2013027297 A JP2013027297 A JP 2013027297A JP 2013027297 A JP2013027297 A JP 2013027297A JP 2014158131 A JP2014158131 A JP 2014158131A
Authority
JP
Japan
Prior art keywords
quantization
prediction error
value
prediction
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013027297A
Other languages
English (en)
Inventor
Hidekazu Tanaka
英一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013027297A priority Critical patent/JP2014158131A/ja
Publication of JP2014158131A publication Critical patent/JP2014158131A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】
平坦な画像を画面内符号化する際の量子化誤差の伝搬を抑制する。
【解決手段】
符号量制御部(110)は、エントロピー符号化部(104)からの発生符号量情報に従い量子化部(103)の量子化パラメータを決定する。予測誤差判定部(112)は、予測誤差選択部(102)で選択される予測誤差を所定閾値と比較して、符号量制御部(110)の決定した量子化パラメータの変更の要否を判定する。量子化値決定部(113)は、予測誤差判定部(112)が量子化パラメータの変更を必要としないと判定した場合、符号量制御部(110)からの量子化パラメータを量子化部(103)に設定し、そうでない場合、符号量制御部(110)からの量子化パラメータを、量子化誤差が小さくなる方向に変更して量子化部(103)に設定する。
【選択図】 図1

Description

本発明は、画像符号化装置に関し、特に、動画像を画面内符号化する画像符号化装置に関する。
動画像の圧縮符号化方式としてH.264が広く知られ、利用されている。H.264に代表される動画符号化方法は、入力画像を画面内の相関性を利用して符号化するイントラ符号化と、画面間の相関性を利用して符号化するインター符号化の2種類の符号化を利用することで、高い圧縮率/高画質を実現する。符号化しようとする動画像の各フレーム画像は、マクロブロックと呼ばれる画素ブロック単位で符号化される。
イントラ符号化された画像は、符号化が同じ画面内で完結しているので、復号化に他の画面の画像データを必要としないという特徴がある。特に、H.264におけるイントラ符号化では、符号化対象のマクロブロックに隣接する画素から予測値を生成し、その予測値と実際の画素値との差分を符号化することで、高い圧縮率を達成する。
H.264のイントラ符号化では、複数の予測方向から適用すべき予測方向を選択可能であり、適用すべき予測方向は、画像の特徴により決定される。例えば、横方向に相関性が高い画像はマクロブロックに隣接する水平方向の画素を予測値とすると、予測誤差が小さくなり圧縮効率が上がる。逆に縦方向に相関性が高い場合、垂直方向の画素を予測値とした方が、効率が良い。
イントラ符号化は、画面内の画素の相関性を利用しているので、ノイズ又はエラーの伝搬で水平方向又は垂直方向の筋状の画像劣化が発生する場合がある。他方、画素の予測誤差が非常に小さいとき、ノイズ等の伝搬が発生したとしても主観評価で確認できない場合が多い。しかし、高周波成分が少ない画像、具体的には、画像全体が同一色の壁の画像等では、非常に値が小さいノイズ等の伝搬でも肉眼で視認でき、主観評価的にも劣化が認められることがある。
イントラ符号化での予測モード数が少ない色差信号のイントラ符号化を例に量子化誤差の伝搬の様子を説明する。もちろん、輝度信号の場合でも量子化誤差等のノイズ等の伝搬に関しては同様である。
図2は、色差信号の画素値例を示す。図2に示す例では、8画素×8画素からなるブロック200〜205を構成する4画素×4画素のサブブロック内の全画素は、サブブロック内に付記した画素値を有するものとする。例えば、ブロック200では、左上の4×4画素のサブブロックを構成する16個の画素の画素値が135であり、同様に、右上の4×4画素のサブブロックを構成する16個の画素の画素値が全て135である。また、左下の4×4画素のサブブロックを構成する16個の画素と、右下の4×4画素廼サブブロックを構成する16個の画素の画素値が全て136である。
図3はH.264勧告書に記載されている色差に対する予測方向又は予測モードを示す。色差信号では、図3に示す4種類の予測モードを選択可能である。図3(a)は平均値予測モード(モード0)の予測方向を示す。図3(b)は、水平予測モード(モード1)の予測方向を示す。図3(c)は、垂直予測モード(モード2)の予測方向を示す。図3(d)は、平面予測モード(モード3)の予測方向を示す。予測値は、符号化しようとするブロック(符号化ブロック)に隣接する、先行して符号化及び局所復号化された画素値から導出される。
平均値予測モード(図3(a))では、サブブロックAの予測値は、画素群301と画素群303の平均値である。サブブロックBの予測値は、画素群302と画素群303の平均値である。サブブロックCの予測値は、画素群301と画素群304の平均値である。サブブロックDの予測値は、画素群302と画素群304の平均値である。色差信号の平均値予測モードでは、ブロックに隣接している画素全体の平均値ではなく、4つのブロックごとの平均値を採用する点が、輝度の平均予測モードとは異なる。
水平予測モードの予測値は、ブロックの左側に隣接する画素を用いて導出され、上側に隣接する画素は使用されない。
垂直予測モードの予測値は、ブロック上側に隣接する画素を用いて導出され、左側に隣接する画素は使用されない。
平面予測モードは、グラディエーションのように画素値が変化するときに用いられ、その予測値は、ブロックの上側と左側に隣接する画素の画素値を用いて導出される。
水平予測モードでは、水平方向にノイズが伝搬しやすく、垂直予測モードでは垂直方向にノイズが伝搬しやすい。平均値予測モードでは、サブブロック単位で予測値を生成するので、4画素単位で水平方向と垂直方向にノイズが伝搬する可能性がある。
図4は、図2に示す例に対する予測誤差の数値例を示す。予測誤差は、(符号化しようする入力画素の画素値と予測値との差分値である。
ブロック200では、入力画素値と予測値とが一致しているとする。このとき、全ての画素について予測誤差は0である。予測誤差が0の場合、量子化によっても誤差が発生しない。このような予測誤差のブロック200を復号すると、入力画素値に等しい画素値を得ることが出来る。
ブロック200の復号化された画素値を予測値として使用して、ブロック201〜205の予測誤差が算出される。
ブロック201〜205で水平予測モード(又は平均値予測モード)が予測方向として選択された場合、ブロック201〜205の予測誤差は、図4に示すような数値となる。入力画素値135に対して予測値が136なので、予測誤差は1となり、値的には小さい。この予測誤差を量子化した場合、量子化値又は量子化スケールによっては、1以外の値、例えば0に丸められてしまう場合がある。すなわち、局所復号化での逆量子化又は受信側での逆量子化と相俟って、量子化による誤差(量子化誤差)が発生する。
図4に示す予測誤差値を量子化及び逆量子化した結果として、図5に示すように、復号化された予測誤差値が0になったとする。図6は、図5に示す復号化された予測誤差値を使って画素信号を復号した結果を示す。
ブロック200では、図4に示すように予測誤差値が0だったので、画素値は、損失なく(正しく)復号されている。
ブロック201〜205では、逆量子化後の予測誤差に非ゼロの量子化誤差が含まれているので、入力画素値が135であったのに対して画素値136になり、1異なる値で復号されている。
画素値として1の違いは、高周波成分が少ない画像上では視覚的に目立ってしまい、その解消が望まれる。このような問題を解決する技術として、特許文献1には、量子化誤差等のノイズが伝搬しない方向の予測値に定期的に切り替える方法が記載されている。また、特許文献2には、画面内符号化の予測モード決定に使用するコスト関数を、ノイズが伝搬しやすい水平方向又は垂直方向の予測が選択されにくい計算式に切り替えることが記載されている。
特開2006−319547号公報 特開2006−295408号公報
特許文献1に記載される技術では、ノイズが伝搬しないような状況でも圧縮効率がよくない予測方向を選択することがあり、圧縮効率を低化させてしまう。
特許文献2に記載される技術では、差分値が非常に小さくなるような場合には、切り替えたコスト関数でも水平予測又は垂直予測が選択されてしまうことがあり、根本的な解決とはならない。
本発明は、画質劣化を抑えつつ水平方向又は垂直方向へのノイズ伝搬を抑制する画像符号化装置を提示することを目的とする。
上記目的を達成するために、本発明に係る画像符号化装置は、符号化すべき入力画像データの予測値に対する予測方向と予測誤差を決定する予測誤差決定手段と、前記予測誤差決定手段から出力される予測誤差を符号化する符号化手段であって、量子化手段及びエントロピー符号化手段を含む符号化手段と、前記符号化手段での発生符号量に従い、前記量子化手段の量子化パラメータを決定する符号量制御手段と、前記予測誤差に従い、前記量子化パラメータの変更の要否を判定する予測誤差判定手段と、前記予測誤差判定手段の判定結果に従い、前記予測誤差判定手段が前記量子化パラメータの変更を必要としないと判定した場合には、前記符号量制御手段からの前記量子化パラメータを前記量子化手段に設定し、前記予測誤差判定手段が前記量子化パラメータの変更を必要とすると判定した場合には、前記符号量制御手段からの前記量子化パラメータを、量子化誤差が小さくなる方向に変更して前記量子化手段に設定する量子化値決定手段とを有することを特徴とする。
本発明によれば、画面内符号化における水平・垂直方向への量子化誤差の伝搬を抑制できる。
本発明の第1実施例の概略構成ブロック図である。 入力画像の画素値例である。 H.264勧告における色差信号の予測モードの説明図である。 図2に示す例に対する予測誤差の例である。 図2に示す例に対する局所復号化された予測誤差値の例である。 図2に示す例に対する復号画像の画素値例である。 予測誤差判定装置の動作フローチャートである。 量子化パラメータ変更領域の説明図である。 本発明の第2実施例の概略構成ブロック図である。
以下、図面を参照して、本発明の実施例を詳細に説明する。
図1は、本発明の一実施例の概略構成ブロック図を示す。なお、理解を容易にするために、離散コサイン変換等の直交変換部と、局所復号化のための逆直交変換部は、省略してある。
入力端子100には、符号化すべき画像データが符号化ブロック順で外部から入力し、入力端子100からイントラ符号化装置111の予測差分値演算部101に入力する。イントラ符号化装置111は、入力端子100からの入力画像データを画面内予測符号化する。
詳細は後述するが、再構成画像記憶部108には、入力端子100からイントラ符号化装置111に入力する入力画像データの、先行して符号化及び復号化された画素データが格納されている。予測値生成部105は、再構成画像記憶部108の符号化済みの画素値から、画面内符号化で用意されている複数の予測モード(予測方向)のそれぞれに応じた予測値を生成し、予測差分値演算部101に供給する。予測差分値演算部101は、各予測モードについて、入力端子100からの画像信号の各画素値と予測値生成部105からの予測値との差分値を算出し、予測誤差選択部102に供給する。
予測誤差選択部102は、予測差分値演算部101からの画素ごとの差分値を予測符号化の単位となるブロック単位で合計し、その合計値が最も少ない予測モードを適用すべき予測モードと決定する。すなわち、予測誤差選択部102は、適用すべき予測モード又は予測方向と量子化すべき予測誤差とを決定する予測誤差決定手段である。予測誤差選択部102は、決定した予測モードの差分値を予測誤差として量子化部103と予測誤差判定部112に供給し、決定した予測モードを示す情報をエントロピー符号化部104に供給する。
量子化部103は、量子化値決定部113からの量子化パラメータ又は量子化値に従い、予測誤差選択部102からの予測誤差を量子化する。エントロピー符号化部104は、量子化部103により量子化された予測誤差をエントロピー符号化し、得られた符号データと適用した予測モード情報を所定フォーマットにまとめて出力端子109に出力する。エントロピー符号化部104はまた、所定単位での発生符号量に関する情報を符号量制御部110に供給する。
予測値算出のために、逆量子化部106が、量子化部103が量子化で使用した量子化パラメータを参照して、量子化部103の出力を逆量子化する。逆量子化部106の出力データは予測誤差選択部102の出力に対応するが、量子化及び逆量子化による量子化誤差を含む。
再構成画像生成部107は、逆量子化部106の出力に予測差分値演算部101で利用したのと同じ予測値を再構成画像記憶部108から読み出して加算することで画像データを再構成する。再構成画像生成部107は、このようにして生成した再構成画像データを再構成画像記憶部108に書き込む。
符号量制御部110は、エントロピー符号化部104からの発生符号量情報と、別途設定されるビットレート情報とから、次にブロックに対して量子化部103に設定すべき量子化パラメータを決定する。
本実施例では、予測誤差判定部112が予測誤差から量子化パラメータの変更の要否を判定し、量子化値決定部113が、予測誤差判定部112の判定結果に従い符号量制御部110が決定する量子化パラメータを変更又はスルーする。このような動作で、本実施例では、量子化誤差の伝搬を抑制する。
図7は、予測誤差判定部112の動作フローチャートを示す。図7を参照して、予測誤差判定部112の動作を詳細に説明する。
予測誤差判定部112は、予測誤差選択部102からの予測誤差をブロック内で合計し(S701)、その合計値を合計閾値Aと比較する(S702)。合計閾値Aの値自体は、合計値がこの合計閾値A以下の場合に量子化誤差が画像上で顕著になる可能性がある値として外部から設定される。合計値が合計閾値Aより大きい場合(S702)、予測誤差判定部112は、量子化パラメータ値の変更が不要であると判定し、量子化値決定部113に量子化パラメータ値の変更不要を指示する(S705)。
合計値が合計閾値A以下の場合(S702)、予測誤差判定部112は、ブロック単位で予測誤差の分散を計算し(S703)、分散値が分散閾値Bより大きいかどうかを判定する(S704)。分散閾値Bもまた、外部から設定される。
分散値が分散閾値Bより大きい場合(S704)、予測誤差判定部112は、量子化値の変更が不要であると判定する(S705)。分散値が分散閾値B以下の場合(S704)、予測誤差判定部112は、量子化パラメータ値の変更が必要であると判定し、量子化値決定部113に量子化パラメータ値の変更を指示する(S706)。
図8は、合計閾値Aと分散閾値Bに対する予測誤差判定部112の判定結果を示す。予測誤差合計値が合計閾値A以下であり、且つ、予測誤差分散値が分散閾値B以下である場合に、量子化パラメータ値を変更することになり、これ以外の場合には、量子化パラメータ値を変更しなくて良い。予測誤差判定部112は、量子化パラメータ値を変更する必要があると判定したときには、変更指示信号を量子化値決定部113に供給する。予測誤差判定部112はまた、量子化パラメータ値を変更する必要が無いと判定したときには、変更指示信号を量子化値決定部113に供給しないか、不変更指示信号を量子化値決定部113に供給する。
量子化値決定部113は、予測誤差判定部112からの変更指示信号に従い、符号量制御部110からの量子化パラメータ値から所定値を減算して量子化部103に設定する。量子化部103は入力値を量子化パラメータ値で除算することで入力値を量子化するので、量子化パラメータ値から所定値を減算することは、量子化部103での量子化をより細かいステップに変更することに相当する。他方、量子化値決定部113は、予測誤差判定部112から変更指示信号が供給されないとき、又は不変更指示信号が供給されるとき、符号量制御部110からの量子化パラメータ値をそのまま量子化部103に設定する。
量子化ノイズの伝搬は、前述したとおり、色強度が平坦で符号化難易度の低い画面で発生しやすく、しかも、予測誤差値が小さくても目立ってしまう。予測誤差値が小さい場合、一般に符号化難易度が低い。また、予測誤差の分散が小さいほど、色強度が平坦であると判断できる。そこで、図7及び図8に示すように、予測誤差合計値が合計閾値A以下であり、且つ、差分分散値が分散閾値B以下である場合に、既存のアルゴリズムに従い符号量制御部110が決定した量子化パラメータを修正するようにした。具体的には、量子化パラメータ値を大きくして、量子化ステップをより細かくする。図8で、横軸は予測誤差分散値を示し、縦軸は予測誤差合計値を示す。
通常の符号化アルゴリズムでは、圧縮率を上げるために平坦な画像部分に対する量子化パラメータ値を大きく設定しているが、量子化ノイズの伝搬が目立つ画像部分といえる。合計閾値Aと分散閾値Bにより、このような画像部分を識別できる。
合計閾値Aと分散閾値Bは、固定値でもよいが、符号化対象の画像の内容ないし特徴に応じて変動するようにしてもよい。例えば、本実施例の画像符号化装置はデジタルカメラに実装されうるが、デジタルカメラでは、ISO感度の高い撮影モードのとき必然的に高感度ノイズが多くなる。この種の高感度ノイズは、画像上で、量子化ノイズとの相違を弁別しにくい。しかし、高感度ノイズが重畳した画像では、予測誤差が大きくなり、予測誤差の分散が大きくなる。そこで、閾値A,Bを撮影モードに応じて動的に変更することにより、高感度ノイズを除去するための量子化パラメータと、量子化ノイズの伝搬を防ぐための量子化パラメータ値の両方を適切に設定することが可能となる。具体的には、デジタルカメラの撮像素子の高感度特性に応じて決められる特定のISO感度以上のISO感度が設定される場合に、閾値A及び/または閾値Bを小さくする。極端な状況としても、閾値Aまたは閾値Bを0と設定することもありうる。
図9は、本発明の第2実施例の概略構成ブロック図を示す。図1と同じ機能の構成要素には同じ符号を付してある。具体的には、予測誤差判定部112aの機能が、予測誤差判定部112とは異なる。
予測誤差判定部112aは、符号量制御部110が量子化値決定部113に供給する量子化パラメータを参照して、当該量子化パラメータの値に応じて閾値A,Bを調整する。閾値A,Bの調整以外の予測誤差判定部112aの動作は、予測誤差判定部112のそれと同じである。
符号量制御部110は、より圧縮率を高める必要があるときには、量子化パラメータの値を大きくする。予測誤差判定部112aは、符号量制御部110の出力する量子化パラメータの値が大きくなると、閾値A又はBを小さくする。この結果、図7に示すフローではステップS705が選択されやすくなり、図8では、量子化パラメータ値変更範囲が狭くなる。量子化パラメータ値変更範囲では量子化パラメータ値を小さくする、即ち、圧縮率を下げる方向に作用することから、量子化パラメータ値変更範囲を狭くすることで、符号量制御部110による符号量低減への制御への影響が少なくなる。
デジタルカメラへの適用では、その他の撮影条件に依存して閾値A,Bを変更することも有益である。例えば、撮影画面内のピントが合っている部分は、そもそも量子化ステップが細かく設定されるべきであるので、閾値A,Bにより量子化パラメータ変更領域を確保する必要が無い。他方、ピントずれが大きい領域では、画像が平坦化するので、量子化パラメータ変更領域を確保する必要が出てくる。このように、ピントからのずれ量、すなわちデフォーカス量に従い画面内で閾値A,Bを異なる値に設定してもよい。同様の処理は、被写体認識にも適用可能であり、認識した被写体に対して閾値A,Bを小さくし、当該被写体以外に対して閾値A,Bを大きくする。
色差信号の場合を例に本実施例の動作を説明したが、もちろん、輝度信号の画面内符号化にも適用可能である。一般的に、輝度信号に対する閾値A,Bの値を色差信号の閾値A,Bの値と等しくする必要は無い。
離散コサイン変換(DCT)等の変換符号化を含まない実施例で本発明を説明したが、本発明は、そのような変換符号を含む画面内符号化にも適用可能であることはいうまでもない。その場合、予測誤差選択部102と量子化部103の間に変換符号化部が配置され、逆量子化部106と再構成画像生成部107との間に変換符号化の復号化部が配置される。
以上、本発明の好ましい実施例を説明したが、本発明は上述した実施例に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。

Claims (3)

  1. 符号化すべき入力画像データの予測値に対する予測方向と予測誤差を決定する予測誤差決定手段と、
    前記予測誤差決定手段から出力される予測誤差を符号化する符号化手段であって、量子化手段及びエントロピー符号化手段を含む符号化手段と、
    前記符号化手段での発生符号量に従い、前記量子化手段の量子化パラメータを決定する符号量制御手段と、
    前記予測誤差に従い、前記量子化パラメータの変更の要否を判定する予測誤差判定手段と、
    前記予測誤差判定手段の判定結果に従い、前記予測誤差判定手段が前記量子化パラメータの変更を必要としないと判定した場合には、前記符号量制御手段からの前記量子化パラメータを前記量子化手段に設定し、前記予測誤差判定手段が前記量子化パラメータの変更を必要とすると判定した場合には、前記符号量制御手段からの前記量子化パラメータを、量子化誤差が小さくなる方向に変更して前記量子化手段に設定する量子化値決定手段
    とを有することを特徴とする画像符号化装置。
  2. 前記予測誤差判定手段は、前記予測誤差のブロック単位での合計値及び分散値をそれぞれ合計閾値及び分散閾値と比較することで、前記量子化パラメータの変更の要否を判定することを特徴とする請求項1に記載の画像符号化装置。
  3. 前記予測誤差判定手段は、前記合計閾値又は前記分散閾値を前記符号量制御手段の出力する前記量子化パラメータに従って決定することを特徴とする請求項2に記載の画像符号化装置。
JP2013027297A 2013-02-15 2013-02-15 画像符号化装置 Pending JP2014158131A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027297A JP2014158131A (ja) 2013-02-15 2013-02-15 画像符号化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027297A JP2014158131A (ja) 2013-02-15 2013-02-15 画像符号化装置

Publications (1)

Publication Number Publication Date
JP2014158131A true JP2014158131A (ja) 2014-08-28

Family

ID=51578765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027297A Pending JP2014158131A (ja) 2013-02-15 2013-02-15 画像符号化装置

Country Status (1)

Country Link
JP (1) JP2014158131A (ja)

Similar Documents

Publication Publication Date Title
US10212456B2 (en) Deblocking filter for high dynamic range (HDR) video
KR101322498B1 (ko) 부호화 장치, 부호화 방법 및 프로그램
US20150016516A1 (en) Method for intra prediction improvements for oblique modes in video coding
JP4724061B2 (ja) 動画像符号化装置
KR20220156986A (ko) 영상을 부호화 또는 복호화하는 방법 및 장치
KR20130139341A (ko) 디블록킹 필터링 제어
WO2014139396A1 (en) Video coding method using at least evaluated visual quality and related video coding apparatus
KR20150099165A (ko) Tsm 율-왜곡 최적화 방법, 그를 이용한 인코딩 방법 및 장치, 그리고 영상 처리 장치
US20140233645A1 (en) Moving image encoding apparatus, method of controlling the same, and program
JP2009224854A (ja) 画像符号化装置及び方法
US20120195364A1 (en) Dynamic mode search order control for a video encoder
JP2014075652A (ja) 画像符号化装置及び方法
JP5649296B2 (ja) 画像符号化装置
JP5178616B2 (ja) シーンチェンジ検出装置および映像記録装置
JP6652068B2 (ja) 動画像符号化装置、動画像符号化方法および動画像符号化プログラム
JP2023126531A (ja) 予測画像補正装置、画像符号化装置、画像復号装置、及びプログラム
JP2010050911A (ja) 符号化装置
KR20070034869A (ko) 동영상 부호화기의 비트율 제어 장치 및 방법
KR20150081240A (ko) 무손실 비디오 부호화/복호화 방법 및 장치
JP5295089B2 (ja) 画像符号化装置
JP4911625B2 (ja) 画像処理装置、およびそれを搭載した撮像装置
JP5713719B2 (ja) 動画像符号化装置
JP2014158131A (ja) 画像符号化装置
JP2009200871A (ja) 符号化装置
KR20140120397A (ko) 움직임 복잡도를 이용한 예측 유닛 모드 결정 방법