JP2014157876A - Thermoelectric conversion material and production method therefor - Google Patents

Thermoelectric conversion material and production method therefor Download PDF

Info

Publication number
JP2014157876A
JP2014157876A JP2013026914A JP2013026914A JP2014157876A JP 2014157876 A JP2014157876 A JP 2014157876A JP 2013026914 A JP2013026914 A JP 2013026914A JP 2013026914 A JP2013026914 A JP 2013026914A JP 2014157876 A JP2014157876 A JP 2014157876A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
clathrate compound
sintering
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013026914A
Other languages
Japanese (ja)
Other versions
JP6082617B2 (en
Inventor
Daisuke Kikuchi
大輔 菊地
Jun Tadokoro
准 田所
Tatehiko Eguchi
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2013026914A priority Critical patent/JP6082617B2/en
Publication of JP2014157876A publication Critical patent/JP2014157876A/en
Application granted granted Critical
Publication of JP6082617B2 publication Critical patent/JP6082617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a novel thermoelectric conversion material suitably used for an n-type thermoelectric conversion element having ZT of 0.4 or more in high temperature region of 600°C.SOLUTION: A thermoelectric conversion material is mainly composed of a BaGaAlSi-based clathrate compound, and B is dispersed into the clathrate compound parent phase. The clathrate compound is represented by a chemical formula BaGaAlSiB(7≤a≤9, 7≤b≤15, 1≤c≤8, 28≤d≤31, 0≤e≤1, a+b+c+d+e=54).

Description

本発明はクラスレート化合物にかかり、特にそれを用いた熱電変換材料およびその製造方法に関する。   The present invention relates to a clathrate compound, and particularly relates to a thermoelectric conversion material using the compound and a method for producing the same.

ゼーベック効果を利用した熱電変換素子は、熱エネルギーを電気エネルギーに変換することを可能とする。その性質を利用し、産業・民生用プロセスや移動体から排出される排熱を有効な電力に変換することができるため、熱電変換素子は、環境問題に配慮した省エネルギー技術として注目されている。
ゼーベック効果を利用した熱電変換素子の無次元性能指数ZTは、下記の式(1)で表すことができる。
ZT=ST/ρκ … (1)
式(1)中、S、ρ、κおよびTは、それぞれ、ゼーベック係数、電気抵抗率、熱伝導度および測定温度を表す。
Thermoelectric conversion elements using the Seebeck effect can convert thermal energy into electrical energy. Utilizing this property, it is possible to convert exhaust heat exhausted from industrial / consumer processes and mobile objects into effective electric power, and thermoelectric conversion elements are attracting attention as energy-saving technologies in consideration of environmental problems.
The dimensionless figure of merit ZT of the thermoelectric conversion element using the Seebeck effect can be expressed by the following formula (1).
ZT = S 2 T / ρκ (1)
In the formula (1), S, ρ, κ, and T represent the Seebeck coefficient, electrical resistivity, thermal conductivity, and measurement temperature, respectively.

式(1)から明らかなように、熱電変換素子の性能を向上させるためには、素子のゼーベック係数を大きくすること、電気抵抗率を小さくすること、熱伝導度を小さくすることが重要である。
高い性能指数を示す熱電変換材料として、従来、ビスマス・テルル系材料、シリコン・ゲルマニウム系材料、鉛・テルル系材料などを用いた熱電変換素子が知られている。
As is clear from equation (1), in order to improve the performance of the thermoelectric conversion element, it is important to increase the Seebeck coefficient of the element, to decrease the electrical resistivity, and to decrease the thermal conductivity. .
Conventionally, thermoelectric conversion elements using bismuth / tellurium-based materials, silicon / germanium-based materials, lead / tellurium-based materials, and the like are known as thermoelectric conversion materials exhibiting a high performance index.

ところで、従来の熱電変換素子は、それぞれ解決すべき課題を有する。
たとえば、ビスマス・テルル系材料は室温では大きなZT値を有するが、100℃を越えれば急激にそのZT値が小さくなり、廃熱発電のような200℃〜600℃程度では、熱電変換材料として利用できなくなる。また、ビスマス・テルル系、鉛・テルル系は環境負荷物質の鉛とテルルを含んでいる。
By the way, the conventional thermoelectric conversion element has the problem which should be solved, respectively.
For example, bismuth / tellurium-based materials have a large ZT value at room temperature, but when the temperature exceeds 100 ° C., the ZT value rapidly decreases. become unable. Bismuth / tellurium and lead / tellurium contain lead and tellurium, which are environmentally hazardous substances.

そこで、熱電性能が良好で環境負荷が少なく、さらに軽量な新しい熱電変換材料が求められている。そして、そのような新しい熱電変換材料の1つとしてクラスレート化合物が注目されている。
Ba、Ga、Al、Siからなるクラスレート化合物の組成や合成法については既に開示されており、特許文献1には、単位格子あたりx個(10.8≦x≦12.2)のSi原子が、Al原子とGa原子のいずれかで置換されているBa(Al,Ga)Si46−xの単結晶とその製造方法が開示されている。特許文献2には、P型のBa−Al−Siクラスレート化合物において700KでのZTが1.01であることが開示されている。また、特許文献3には、Ba−Ga−Al−Siクラスレート化合物において800℃でのZTが0.4以上であることが開示されている。特許文献4には組成比BaGaAlSiPd(7≦H≦8、9≦I≦12、0≦J≦2、33≦K≦35、0<L≦2、H+I+J+K+L=54)を有するクラスレート化合物およびこれを用いた熱電変換材料は、室温〜600℃という温度領域において、Pdを含まない同系の材料よりも高いZTを有することが開示されている。
Therefore, there is a demand for new thermoelectric conversion materials that have good thermoelectric performance, low environmental impact, and light weight. And a clathrate compound attracts attention as one of such new thermoelectric conversion materials.
The composition and synthesis method of the clathrate compound composed of Ba, Ga, Al, and Si have already been disclosed, and Patent Document 1 discloses x (10.8 ≦ x ≦ 12.2) Si atoms per unit cell. Has disclosed a single crystal of Ba 8 (Al, Ga) x Si 46-x substituted with either an Al atom or a Ga atom and a method for producing the same. Patent Document 2 discloses that in a P-type Ba—Al—Si clathrate compound, the ZT at 700 K is 1.01. Further, Patent Document 3 discloses that the Ba—Ga—Al—Si clathrate compound has a ZT at 800 ° C. of 0.4 or more. Composition ratio Ba H Ga Patent Document 4 I Al J Si K Pd L (7 ≦ H ≦ 8,9 ≦ I ≦ 12,0 ≦ J ≦ 2,33 ≦ K ≦ 35,0 <L ≦ 2, H + I + J + K + L = It is disclosed that the clathrate compound having 54) and the thermoelectric conversion material using the same have a higher ZT than a similar material containing no Pd in a temperature range of room temperature to 600 ° C.

特開2004−67425号公報JP 2004-67425 A 特許第4413323号公報(段落0048など)Japanese Patent No. 4413323 (paragraph 0048, etc.) 特開2012−033867号公報JP 2012-033867 A 特開2012−256759号公報JP 2012-256759 A

しかし、これらのクラスレート化合物には以下の課題がある。
すなわち、特許文献1に記載の技術では、ZTが明らかではなく、性能が低いことが懸念される。特許文献2に記載の技術では、p型については開示されているが、n型についてのZTは明らかではなく、性能が低いことが懸念される。特許文献3に記載の技術では、600℃でのZTが明らかではなく、性能が低いことが懸念される。特許文献4に記載の技術では、希少元素であるPdが使用されており、高価なことが懸念される。
However, these clathrate compounds have the following problems.
That is, in the technique described in Patent Document 1, ZT is not clear and there is a concern that the performance is low. In the technique described in Patent Document 2, the p-type is disclosed, but the ZT for the n-type is not clear and there is a concern that the performance is low. With the technique described in Patent Document 3, ZT at 600 ° C. is not clear, and there is a concern that the performance is low. In the technique described in Patent Document 4, Pd which is a rare element is used, and there is a concern that it is expensive.

したがって、本発明の主な目的は、有害元素を含まず、安価な材料で、600℃という高温領域でのZTが0.4以上の熱電変換素子に好適に用いられる新規な熱電変換材料およびその製造方法を提供することにある。   Therefore, the main object of the present invention is a novel thermoelectric conversion material that is suitable for a thermoelectric conversion element that does not contain harmful elements, is inexpensive, and has a ZT of 0.4 or higher in a high temperature region of 600 ° C. It is to provide a manufacturing method.

上記課題を解決するため本発明の一態様によれば、
クラスレート化合物を主体とし、
前記クラスレート化合物母相中にBが分散している熱電変換材料が提供される。
In order to solve the above problems, according to one aspect of the present invention,
Mainly clathrate compound,
A thermoelectric conversion material in which B is dispersed in the clathrate compound matrix is provided.

好ましくは、前記熱電変換材料は、
BaGaAlSi系クラスレート化合物を主体とするn型の熱電変換材料であって、
前記クラスレート化合物が化学式BaGaAlSi(7≦a≦9,7≦b≦15,1≦c≦8,28≦d≦31,0≦e≦1、a+b+c+d+e=54)で表され、前記Bの分散の密度nが0<n<2000(1/mm)である熱電変換材料である。
Preferably, the thermoelectric conversion material is
An n-type thermoelectric conversion material mainly composed of a BaGaAlSi clathrate compound,
The clathrate compound formula Ba a Ga b Al c Si d B e (7 ≦ a ≦ 9,7 ≦ b ≦ 15,1 ≦ c ≦ 8,28 ≦ d ≦ 31,0 ≦ e ≦ 1, a + b + c + d + e = 54 ), And the density n of the dispersion of B is 0 <n <2000 (1 / mm 2 ).

本発明の他の態様によれば、
前記熱電変換材料を製造する製造方法であって、
Ba,Ga,Al,Si,Bを原料として混合・溶融・凝固して所定の組成のクラスレート化合物を調製する調製工程と、
前記クラスレート化合物を粉砕して微粒子とする粉砕工程と、
前記微粒子を焼結する焼結工程と、
を有する熱電変換材料の製造方法が提供される。
According to another aspect of the invention,
A manufacturing method for manufacturing the thermoelectric conversion material,
A preparation step of preparing a clathrate compound having a predetermined composition by mixing, melting and solidifying Ba, Ga, Al, Si, and B as raw materials;
A crushing step of crushing the clathrate compound into fine particles;
A sintering step of sintering the fine particles;
The manufacturing method of the thermoelectric conversion material which has this is provided.

本発明によれば、優れた熱電変換特性を有する熱電変換材料およびその製造方法を提供することができる。
特に、有害元素を含まず、安価な材料で、600℃という高温領域でのZTが0.4以上のn型の熱電変換素子に好適に用いられる新規な熱電変換材料、さらにはその熱電変換材料の製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion material which has the outstanding thermoelectric conversion characteristic, and its manufacturing method can be provided.
In particular, a novel thermoelectric conversion material suitable for use in an n-type thermoelectric conversion element that does not contain harmful elements and is inexpensive and has a ZT in a high temperature region of 600 ° C. of 0.4 or more, and further the thermoelectric conversion material The manufacturing method of can be provided.

熱電変換材料の実施例にかかるEPMAによる元素マッピング画像である。It is an element mapping image by EPMA concerning the Example of a thermoelectric conversion material. 熱電変換材料における分散粒子の密度nと無次元性能指数ZTとの関係を概略的に表した図である。It is the figure which represented roughly the relationship between the density n of the dispersion particle in the thermoelectric conversion material, and the dimensionless figure of merit ZT.

以下、本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(A)クラスレート化合物および熱電変換材料
本発明の好ましい実施形態にかかるクラスレート化合物は、組成比BaGaAlSi(7≦a≦9,7≦b≦15,1≦c≦8,28≦d≦31,0≦e≦1、a+b+c+d+e=54)で表され、少なくともBaとGaとAlとSiとが同時に含まれた化合物を主体とし、Bを含有する第2相が分散している、n型の熱電変換材料である。
(A) The clathrate compound and clathrate compounds according to the preferred embodiment of the thermoelectric conversion material present invention, the composition ratio Ba a Ga b Al c Si d B e (7 ≦ a ≦ 9,7 ≦ b ≦ 15,1 ≦ c ≦ 8, 28 ≦ d ≦ 31, 0 ≦ e ≦ 1, a + b + c + d + e = 54), and a second phase containing B mainly composed of a compound containing at least Ba, Ga, Al, and Si at the same time. Is an n-type thermoelectric conversion material.

本実施形態にかかるクラスレート化合物は、主に、基本的な格子がSiのクラスレート格子から構成され、Ba元素がその内部に内包され、クラスレート格子を構成する原子の一部がGa,Alで置換された構造を有している。
本実施形態にかかる「クラスレート化合物」は、Siクラスレート相を主体とし、クラスレート相には該当しないBを含む他の相とからなる。
In the clathrate compound according to the present embodiment, a basic lattice is mainly composed of a Si clathrate lattice, a Ba element is included therein, and a part of atoms constituting the clathrate lattice is Ga, Al. It has the structure substituted by.
The “clathrate compound” according to this embodiment is composed of a Si clathrate phase as a main component and other phases including B that do not correspond to the clathrate phase.

化学式BaGaAlSiの組成比のうち、Ga,Al,Si,Bの各組成比b,c,d,eは概ね、次のような関係を有する。
b+c+d+e=46
このような関係を満たせば、当該クラスレート化合物はSiクラスレート相を主体とするものとして実現され、理想的な結晶構造をとりうる。
本実施形態にかかる熱電変換材料は、600℃におけるZTが0.4以上である。
なお、本実施形態にかかる熱電変換材料は、上記クラスレート化合物を主成分とし、少量の他の添加物が含まれてもよい。
Of composition ratio of the chemical formula Ba a Ga b Al c Si d B e, Ga, Al, Si, each composition ratio of B b, c, d, e are generally has the following relationship.
b + c + d + e = 46
If such a relationship is satisfied, the clathrate compound can be realized mainly with a Si clathrate phase and can have an ideal crystal structure.
As for the thermoelectric conversion material concerning this embodiment, ZT in 600 degreeC is 0.4 or more.
In addition, the thermoelectric conversion material concerning this embodiment has the said clathrate compound as a main component, and may contain a small amount of other additives.

(B)製造方法
本発明の好ましい実施形態にかかる熱電変換材料の製造方法は、
(1)Ba,Ga,Al,Si,Bを原料として混合・溶融・凝固して所定の組成のクラスレート化合物を調製する調製工程と、
(2)前記クラスレート化合物を粉砕して微粒子とする粉砕工程と、
(3)前記微粒子を焼結する焼結工程と、
を有する。
これらの工程を経ることにより、所定の組成を有し、ポア(空隙)が少ない材料が得られるという利点がある。
(B) Manufacturing method The manufacturing method of the thermoelectric conversion material concerning preferable embodiment of this invention,
(1) a preparation step of preparing a clathrate compound having a predetermined composition by mixing, melting, and solidifying Ba, Ga, Al, Si, and B as raw materials;
(2) a pulverizing step of pulverizing the clathrate compound into fine particles;
(3) a sintering step of sintering the fine particles;
Have
By passing through these steps, there is an advantage that a material having a predetermined composition and few pores (voids) can be obtained.

(1)調製工程
調製工程では、所定の組成を有しかつ均一な組成のクラスレート化合物のインゴットを製造する。
まず、所望のクラスレート化合物の組成となるように、所定量の原料(Ba,Ga,Al,Si,B)を秤量し混合させる。原料は、単体であってもよいし、合金や化合物であってもよく、その形状は、粉末でも片状でも塊状であってもよい。
(1) Preparation Step In the preparation step, an ingot of a clathrate compound having a predetermined composition and a uniform composition is produced.
First, a predetermined amount of raw materials (Ba, Ga, Al, Si, B) are weighed and mixed so as to obtain a desired clathrate compound composition. The raw material may be a simple substance, an alloy or a compound, and the shape thereof may be powder, flakes or lumps.

溶融時間としては、すべての原料が液体状態で均質に混ざり合う時間が必要とされるが、製造に要するエネルギーを考慮すると、溶融時間はできるだけ短時間であることが望まれる。そのため、溶融時間は、好ましくは1〜100分であり、さらに好ましくは1〜10分であり、特に好ましくは1〜5分である。   As the melting time, a time required for all raw materials to be homogeneously mixed in a liquid state is required, but considering the energy required for production, it is desirable that the melting time be as short as possible. Therefore, the melting time is preferably 1 to 100 minutes, more preferably 1 to 10 minutes, and particularly preferably 1 to 5 minutes.

原料混合物からなる粉末を溶融する方法は、特に限定されるものではなく、種々の方法を用いることができる。
溶融方法としては、たとえば、抵抗発熱体による加熱、高周波誘導溶解、アーク溶解、プラズマ溶解、電子ビーム溶解などが挙げられる。
ルツボとしては、グラファイト、アルミナ、コールドクルーシブルなどが、加熱方法に対応して適宜用いられる。
溶融の際は、材料の酸化を防ぐために、不活性ガス雰囲気または真空雰囲気下でおこなわれるのが好ましい。
短時間で均質に混ざり合った状態とするためには、好ましくは微細な粉末状の原料が混合されるのがよい。ただし、Baとしては、酸化を防ぐために、好ましくは塊状を呈するものを使用する。また、溶融時に機械的な攪拌または電磁的な攪拌を加えるのも好ましい。
The method for melting the powder composed of the raw material mixture is not particularly limited, and various methods can be used.
Examples of the melting method include heating with a resistance heating element, high frequency induction melting, arc melting, plasma melting, and electron beam melting.
As the crucible, graphite, alumina, cold crucible or the like is appropriately used according to the heating method.
When melting, it is preferably performed in an inert gas atmosphere or a vacuum atmosphere in order to prevent oxidation of the material.
In order to obtain a homogeneously mixed state in a short time, it is preferable that fine powdery raw materials are mixed. However, Ba preferably has a lump shape in order to prevent oxidation. It is also preferable to add mechanical stirring or electromagnetic stirring at the time of melting.

溶融後、インゴットにするためには、鋳型を用いて鋳造してもよいし、ルツボ中で凝固させてもよい。できあがったインゴットの均質化のためには、溶融後にアニール処理をおこなってもよい。
アニール処理の処理時間は、製造時の省エネルギーを考慮すると、なるべく短時間とされることが望まれるが、アニール効果を考慮すると、長い時間が必要とされる。アニール処理の処理時間は、好ましくは1時間以上であり、さらに好ましくは1〜10時間がさらに好ましい。
After melting, ingots may be cast using a mold or solidified in a crucible. In order to homogenize the completed ingot, an annealing treatment may be performed after melting.
The annealing treatment time is preferably as short as possible in consideration of energy saving during manufacturing, but a long time is required in consideration of the annealing effect. The treatment time for the annealing treatment is preferably 1 hour or more, more preferably 1 to 10 hours.

アニール処理の処理温度は、好ましくは700〜950℃であり、さらに好ましくは850〜930℃である。処理温度が700℃未満であると、均質化が不十分になるという問題が生じ、処理温度が950℃を超えると、再溶融による濃度偏析が生じるという問題が生じる。   The treatment temperature for the annealing treatment is preferably 700 to 950 ° C, more preferably 850 to 930 ° C. When the processing temperature is less than 700 ° C., there is a problem that homogenization becomes insufficient. When the processing temperature exceeds 950 ° C., concentration segregation due to remelting occurs.

(2)粉砕工程
粉砕工程では、調製工程によって得られたインゴットを、ボールミルなどを用いて粉砕し、微粒子状のクラスレート化合物を得ることができる。得られる微粒子としては、焼結性を向上するために粒度が細かいことが望まれる。本実施形態では、微粒子の粒径は、好ましくは150μm以下であり、さらに好ましくは1μm以上75μm以下である。
(2) Pulverization step In the pulverization step, the ingot obtained in the preparation step can be pulverized using a ball mill or the like to obtain a fine particle clathrate compound. The fine particles obtained are desired to have a fine particle size in order to improve the sinterability. In the present embodiment, the particle diameter of the fine particles is preferably 150 μm or less, more preferably 1 μm or more and 75 μm or less.

所望の粒径の微粒子とするためには、ボールミルなどによってインゴットを粉砕した後、粒度を調製する。粒度の調製方法は、ISO3310−1規格のレッチェ社製試験ふるいとレッチェ社製ふるい振とう機AS200デジットを用いたふるい分けによりおこなえばよい。なお、この粉砕工程に代えて、ガスアトマイズ法などの各種アトマイズ法やフローイングガスエバポレーション法などを用いて微粉末を製造することもできる。   In order to obtain fine particles having a desired particle size, the particle size is prepared after the ingot is pulverized by a ball mill or the like. The particle size may be adjusted by sieving using a ISO 3310-1 standard Lecce test sieve and a Lecce sieve shaker AS200 digit. In addition, it can replace with this grinding | pulverization process, and can also manufacture fine powder using various atomizing methods, such as a gas atomizing method, and a flowing gas evaporation method.

(3)焼結工程
焼結工程では、前記粉砕工程で得られた微粉末状のクラスレート化合物を焼結して、均質で空隙の少ない、所定の形状の固体を得ることができる。焼結方法としては、放電プラズマ焼結法、ホットプレス焼結法、熱間等方圧加圧焼結法などを用いることができる。
(3) Sintering step In the sintering step, the finely divided clathrate compound obtained in the pulverization step is sintered to obtain a solid having a uniform shape with a small number of voids. As the sintering method, a discharge plasma sintering method, a hot press sintering method, a hot isostatic pressing method, or the like can be used.

放電プラズマ焼結法を用いる場合、その焼結の1条件となる焼結温度は、好ましくは600〜1000℃であり、より好ましくは900〜1000℃である。焼結時間は好ましくは1〜10分であり、より好ましくは3〜7分である。圧力は好ましくは40〜80MPaであり、より好ましくは50〜70MPaである。   When using the discharge plasma sintering method, the sintering temperature, which is one condition for the sintering, is preferably 600 to 1000 ° C, more preferably 900 to 1000 ° C. The sintering time is preferably 1 to 10 minutes, more preferably 3 to 7 minutes. The pressure is preferably 40 to 80 MPa, more preferably 50 to 70 MPa.

焼結温度が600℃未満では焼結せず、焼結温度が1100℃以上では溶解する。焼結時間が1分未満では密度が低く、焼結時間が10分を超えると焼結が完了・飽和し、それ以上時間をかける意義がないと考えられる。
特に、焼結工程では、微粉末状のクラスレート化合物を上記焼結温度まで加熱してその温度で上記焼結時間保持し、その後に当該クラスレート化合物を加熱前の温度まで冷却する。この場合、微粉末状のクラスレート化合物を焼結温度まで加熱する工程とその温度で保持している工程とでは加圧状態とし、その後当該クラスレート化合物を冷却する工程では加圧状態を解除する。
かかる圧力操作によれば、微粉末状のクラスレート化合物の焼結工程での割れを抑制することができる。
When the sintering temperature is less than 600 ° C., the material is not sintered, and when the sintering temperature is 1100 ° C. or more, it is dissolved. When the sintering time is less than 1 minute, the density is low, and when the sintering time exceeds 10 minutes, the sintering is completed and saturated, and it is considered that there is no significance in taking more time.
In particular, in the sintering step, the finely divided clathrate compound is heated to the sintering temperature and held at the temperature for the sintering time, and then the clathrate compound is cooled to a temperature before heating. In this case, the process of heating the clathrate compound in the form of fine powder to the sintering temperature and the process of holding at that temperature are brought into a pressurized state, and then the pressurized state is released in the process of cooling the clathrate compound. .
According to such pressure operation, it is possible to suppress cracking in the sintering step of the fine powder clathrate compound.

(C)クラスレート化合物相の生成の確認
前記の製造方法によって、クラスレート化合物が生成されたかどうかは、粉末X線回折(XRD)により確認することができる。具体的には、焼結後のサンプルを再度粉砕して粉末X線回折測定し、得られるピークがタイプ1クラスレート相(Pm−3n、No.223)を示すものであれば、タイプ1クラスレート化合物が合成されたことを確認できる。
(C) Confirmation of production of clathrate compound phase Whether or not a clathrate compound has been produced by the above production method can be confirmed by powder X-ray diffraction (XRD). Specifically, the sintered sample is pulverized again and subjected to powder X-ray diffraction measurement. If the obtained peak indicates a type 1 clathrate phase (Pm-3n, No. 223), the type 1 class is used. It can be confirmed that the rate compound was synthesized.

しかし、実際にはタイプ1クラスレート相のみからなるものと、不純物相を含むものとがあるため、不純物のピークも観察される。本実施形態にかかるクラスレート化合物におけるSiクラスレート化合物相の最強ピーク比は85%以上であり、好ましくは90%以上であり、さらに好ましくは95%以上である。   However, since there are actually a type 1 clathrate phase alone and an impurity phase, an impurity peak is also observed. The strongest peak ratio of the Si clathrate compound phase in the clathrate compound according to this embodiment is 85% or more, preferably 90% or more, and more preferably 95% or more.

なお、最強ピーク比とは、粉末X線回折測定において測定されたSiクラスレート化合物相の最強ピーク(IHS)、不純物相A(BaGa4―Y(Al,Si)(0≦Y≦4))の最強ピーク強度(IA)、不純物相B(BaAlSiなど)の最強ピーク強度(IB)より、下記の式(2)で定義される。
「最強ピーク比」=IHS/(IHS+IA+IB)×100(%) … (2)
The strongest peak ratio means the strongest peak (IHS) of the Si clathrate compound phase measured in powder X-ray diffraction measurement, and the impurity phase A (BaGa 4 -Y (Al, Si) Y (0 ≦ Y ≦ 4). strongest peak intensity) (IA), than the strongest peak intensity of the impurity phase B (such as BaAl 2 Si 2) (IB), is defined by the following equation (2).
“Strongest peak ratio” = IHS / (IHS + IA + IB) × 100 (%) (2)

(D)特性評価試験
次に、上記の方法で製造される熱電変換材料の無次元性能指数ZTを算出するための特性評価について説明する。
特性評価項目は、ゼーベック係数S、電気抵抗率ρ、熱伝導度κである。
特性評価試験では、電子線マイクロアナライザー(島津製作所製EPMA−1610)による組成分析とミクロ組織観察、焼結密度測定をおこなう。各種特性評価用サンプルは、20mmφ(直径20mm)×5〜20mm(高さ5〜20mm)の円柱状焼結体から、切り出し、整形する。
(D) Characteristic Evaluation Test Next, characteristic evaluation for calculating the dimensionless figure of merit ZT of the thermoelectric conversion material manufactured by the above method will be described.
The characteristic evaluation items are Seebeck coefficient S, electrical resistivity ρ, and thermal conductivity κ.
In the characteristic evaluation test, composition analysis, microstructure observation, and sintering density measurement are performed using an electron beam microanalyzer (EPMA-1610 manufactured by Shimadzu Corporation). Various characteristic evaluation samples are cut out and shaped from a cylindrical sintered body of 20 mmφ (diameter 20 mm) × 5 to 20 mm (height 5 to 20 mm).

「ゼーベック係数S」および「電気抵抗率ρ」は、四端子法によりアルバック理工(株)製の熱電特性評価装置 ZEM−3を用いて測定する。
「熱伝導度κ」は、比熱c、密度δ、熱拡散率αの測定結果から、下記の式(3)により算出する。
κ=cδα … (3)
「比熱c」は、DSC(Differential Scanning Calorimetry)法により測定する。測定装置として、エスアイアイ・ナノテクノロジー(株)製の示差走査熱量計 EXSTAR6000DSCを用いる。
「密度δ」は、アルキメデス法により測定する。測定装置として、(株)島津製作所製の精密電子天秤 LIBROR AEG−320を用いる。
「熱拡散率α」は、レーザーフラッシュ法により測定する。測定装置として、アルバック理工(株)製の熱定数測定装置 TC−7000を用いる。
“Seebeck coefficient S” and “electric resistivity ρ” are measured by a four-terminal method using a thermoelectric property evaluation apparatus ZEM-3 manufactured by ULVAC-RIKO.
“Thermal conductivity κ” is calculated from the measurement results of specific heat c, density δ, and thermal diffusivity α according to the following equation (3).
κ = cδα (3)
The “specific heat c” is measured by a DSC (Differential Scanning Calorimetry) method. As a measuring device, a differential scanning calorimeter EXSTAR6000DSC manufactured by SII Nano Technology Co., Ltd. is used.
“Density δ” is measured by the Archimedes method. As a measuring apparatus, a precision electronic balance LIBBROR AEG-320 manufactured by Shimadzu Corporation is used.
“Thermal diffusivity α” is measured by a laser flash method. As a measuring device, a thermal constant measuring device TC-7000 manufactured by ULVAC-RIKO Co., Ltd. is used.

以上の測定結果から、式(1)を用いて熱電変換材料の性能を評価する指数である無次元性能指数ZTを算出することができる。算出された無次元性能指数から、その熱電変換材料の特性を評価することができる。本実施形態にかかる熱電変換材料では、600℃におけるZTが0.4以上である。   From the above measurement results, the dimensionless figure of merit ZT, which is an index for evaluating the performance of the thermoelectric conversion material, can be calculated using Equation (1). From the calculated dimensionless figure of merit, the characteristics of the thermoelectric conversion material can be evaluated. In the thermoelectric conversion material according to the present embodiment, ZT at 600 ° C. is 0.4 or more.

以下、本発明を、実施例を用いてさらに詳細に説明するが、本発明は下記実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited by the following Example.

(1)サンプルの作製
純度2N以上の高純度のBaとBと、純度3N以上の高純度のAl,Gaと、純度3N以上の高純度のSiとを、所定の配合比率で秤量し(表1参照)、原料混合物を調製した。
(1) Preparation of sample High-purity Ba and B having a purity of 2N or higher, high-purity Al and Ga having a purity of 3N or higher, and high-purity Si having a purity of 3N or higher are weighed at a predetermined blending ratio (Table 1), a raw material mixture was prepared.

この原料混合物を、Ar(アルゴン)雰囲気中において、水冷銅ハース上で300Aの電流で1分間アーク溶解した後、原料の不均一を解消するためにインゴットを反転して、再度アーク溶解を行う工程を5回繰り返し、そのまま水冷銅ハース上で常温まで冷却することによりクラスレート化合物を有するインゴットを得た。   The arc mixture is melted in an Ar (argon) atmosphere on a water-cooled copper hearth at a current of 300 A for 1 minute, and then the ingot is inverted in order to eliminate the unevenness of the raw material, and arc melting is performed again. Was repeated 5 times and cooled to room temperature on a water-cooled copper hearth to obtain an ingot having a clathrate compound.

その後、インゴットの均一性を高めるために、アルゴン雰囲気で、900℃で6時間のアニール処理をおこなった。得られたインゴットを、メノウ製遊星ボールミルを用いて粉砕し、微粒子を得た。このとき、得られた粒子の粒径の平均が75μm以下となるようにISO3310−1規格のレッチェ社製試験ふるいとレッチェ社製ふるい振とう機AS200デジットを用いて粒度を調製した。   Thereafter, in order to improve the uniformity of the ingot, annealing treatment was performed at 900 ° C. for 6 hours in an argon atmosphere. The obtained ingot was pulverized using an agate planetary ball mill to obtain fine particles. At this time, the particle size was adjusted using the ISO 3310-1 standard Lecce test sieve and the Lecce sieve shaker AS200 digit so that the average particle size of the obtained particles was 75 μm or less.

得られた焼結用粒子を、放電プラズマ焼結法(SPS法)を用いて、圧力50MPaまで加圧した後に1000℃まで加熱を行い、その後1000℃で5分間焼結した。焼結が終了してから、加圧状態を解除し、1000℃から室温まで冷却を行った。   The obtained particles for sintering were pressurized to a pressure of 50 MPa using a discharge plasma sintering method (SPS method), heated to 1000 ° C., and then sintered at 1000 ° C. for 5 minutes. After the sintering was completed, the pressurized state was released, and cooling was performed from 1000 ° C. to room temperature.

なお、焼結用粒子の焼結が終了してから、加圧状態を保持し続けて冷却を行うと、割れが生じてしまったが、上記のとおりに焼結後に加圧状態を解除して1000℃から室温まで冷却を行うと、そのような割れを抑制することができた。得られるサンプルやダイスの劣化を考慮すると、冷却温度が500℃以上では真空雰囲気で保持することが好ましいが、500℃未満では大気雰囲気で保持してもかまわない。   In addition, after the sintering of the particles for sintering was finished, when the pressure state was kept and cooling was performed, cracking occurred, but the pressure state was released after sintering as described above. When cooling from 1000 ° C. to room temperature, such cracks could be suppressed. Considering the deterioration of the sample and the die obtained, it is preferable to hold in a vacuum atmosphere at a cooling temperature of 500 ° C. or higher, but it may be held in an air atmosphere at less than 500 ° C.

このようにして得られたサンプルの焼結体を、組成分析するとともに、前記の「(C)クラスレート化合物の生成の確認」のX線回折と、前記の「(D)特性評価試験」とに供した。   The sample sintered body thus obtained was subjected to composition analysis, X-ray diffraction of “(C) Confirmation of formation of clathrate compound” and “(D) characteristic evaluation test” It was used for.

(2)サンプルの評価
(2.1)組成分析
組成分析の結果を表2に示す。
表2から、実施例1〜9のサンプルにおいて、所望の組成BaGaAlSi(7≦a≦9,7≦b≦15,1≦c≦8,28≦d≦31,0≦e≦1、a+b+c+d+e=54)の化合物が得られたことがわかる。
(2) Sample evaluation (2.1) Composition analysis Table 2 shows the results of composition analysis.
Table 2, in the samples of Examples 1-9, the desired composition Ba a Ga b Al c Si d B e (7 ≦ a ≦ 9,7 ≦ b ≦ 15,1 ≦ c ≦ 8,28 ≦ d ≦ 31 , 0 ≦ e ≦ 1, a + b + c + d + e = 54).

(2.2)X線回折分析
得られたサンプルを、粉末X線回折で分析した。
得られた結果から、式(2)に基づき最強ピーク比を算出し、すべてのサンプルで90%以上であることを確認した。
(2.2) X-ray diffraction analysis The obtained sample was analyzed by powder X-ray diffraction.
From the obtained results, the strongest peak ratio was calculated based on the formula (2), and it was confirmed that it was 90% or more for all samples.

(2.3)特性評価
得られたサンプルについて、上記「(D)特性評価試験」の記載のとおりに、特性評価を行った。ゼーベック係数を測定したところ、すべてのサンプルでゼーベック係数が負となり、各サンプルがn型であることがわかった。
さらに、600℃における電気抵抗率、熱伝導度を測定し、これらから無次元性能指数ZTを求めた。
(2.3) Characteristic Evaluation The obtained sample was subjected to characteristic evaluation as described in the above “(D) Characteristic Evaluation Test”. When the Seebeck coefficient was measured, the Seebeck coefficient was negative in all samples, and it was found that each sample was n-type.
Furthermore, the electrical resistivity and thermal conductivity at 600 ° C. were measured, and the dimensionless figure of merit ZT was determined from these.

さらに、450μm×450μm以上の視野の画像上で1μmより大きい分散粒子の数を計測し、これにより、分散粒子の密度n(1/mm)を算出した。
図1には、Bの分散状態の一例として、実施例5のEPMAによる元素マッピング画像を示す。図1では、白色で示された点にBが分散していることがわかる。
Further, the number of dispersed particles larger than 1 μm was measured on an image having a field of view of 450 μm × 450 μm or more, and thereby the density n (1 / mm 2 ) of the dispersed particles was calculated.
FIG. 1 shows an element mapping image by EPMA of Example 5 as an example of the dispersion state of B. In FIG. 1, it can be seen that B is dispersed at points shown in white.

表1〜表2に、各サンプルの配合量や組成比(a,b,c,d,e)、分散粒子の密度n、得られた無次元性能指数ZTの値を示す。
併せて、図2に、分散粒子の密度nとZTとの関係を表すグラフを示す。図2に示すとおり、0<n<2000の間で、ZTが0.4以上となることがわかる。
Tables 1 and 2 show the blending amount and composition ratio (a, b, c, d, e) of each sample, the density n of dispersed particles, and the obtained dimensionless figure of merit ZT.
In addition, FIG. 2 shows a graph showing the relationship between the density n of dispersed particles and ZT. As shown in FIG. 2, it can be seen that ZT is 0.4 or more when 0 <n <2000.

Figure 2014157876
Figure 2014157876

Figure 2014157876
Figure 2014157876

(3)まとめ
特定の組成比BaGaAlSi(7≦a≦9,7≦b≦15,1≦c≦8,28≦d≦31,0≦e≦1、a+b+c+d+e=54)を有するクラスレート化合物を主体とし、かつ、Bが分散した第2相を有し、その分散の密度nが0<n<2000(1/mm)である熱電変換材料が、n型の熱電特性を示しかつ600℃という高温領域でのZTが0.4以上という高い特性を得るのに、有用であることがわかる。
(3) Summary specific composition ratio Ba a Ga b Al c Si d B e (7 ≦ a ≦ 9,7 ≦ b ≦ 15,1 ≦ c ≦ 8,28 ≦ d ≦ 31,0 ≦ e ≦ 1, a + b + c + d + e A thermoelectric conversion material mainly comprising a clathrate compound having 54) and having a second phase in which B is dispersed, and the density n of the dispersion is 0 <n <2000 (1 / mm 2 ). It can be seen that the present invention is useful for obtaining the thermoelectric characteristics of the mold and having a high ZT of 0.4 or more in a high temperature region of 600 ° C.

Claims (8)

クラスレート化合物を主体とし、
前記クラスレート化合物母相中にBが分散していることを特徴とする熱電変換材料。
Mainly clathrate compound,
A thermoelectric conversion material, wherein B is dispersed in the clathrate compound matrix.
請求項1に記載の熱電変換材料において、
前記クラスレート化合物がBaGaAlSi系クラスレート化合物であることを特徴とする熱電変換材料。
In the thermoelectric conversion material according to claim 1,
A thermoelectric conversion material, wherein the clathrate compound is a BaGaAlSi-based clathrate compound.
請求項2に記載の熱電変換材料において、
前記クラスレート化合物が化学式BaGaAlSi(7≦a≦9,7≦b≦15,1≦c≦8,28≦d≦31,0≦e≦1,a+b+c+d+e=54)で表されることを特徴とする熱電変換材料。
In the thermoelectric conversion material according to claim 2,
The clathrate compound formula Ba a Ga b Al c Si d B e (7 ≦ a ≦ 9,7 ≦ b ≦ 15,1 ≦ c ≦ 8,28 ≦ d ≦ 31,0 ≦ e ≦ 1, a + b + c + d + e = 54 The thermoelectric conversion material characterized by being represented by this.
請求項1〜3のいずれか一項に記載の熱電変換材料において、
前記Bの分散の密度nが0<n<2000(1/mm)であることを特徴とする熱電変換材料。
In the thermoelectric conversion material as described in any one of Claims 1-3,
The thermoelectric conversion material, wherein the density n of dispersion of B is 0 <n <2000 (1 / mm 2 ).
請求項1〜4のいずれか一項に記載の熱電変換材料において、
n型の熱電変換特性を有することを特徴とする熱電変換材料。
In the thermoelectric conversion material as described in any one of Claims 1-4,
A thermoelectric conversion material having n-type thermoelectric conversion characteristics.
請求項1〜5のいずれか一項に記載の熱電変換材料において、
600℃におけるZTが0.4以上であることを特徴とする熱電変換材料。
In the thermoelectric conversion material as described in any one of Claims 1-5,
A thermoelectric conversion material characterized in that ZT at 600 ° C. is 0.4 or more.
請求項1〜6のいずれか一項に記載の熱電変換材料を製造する製造方法であって、
Ba,Ga,Al,Si,Bを原料として混合・溶融・凝固して所定の組成のクラスレート化合物を調製する調製工程と、
前記クラスレート化合物を粉砕して微粒子とする粉砕工程と、
前記微粒子を焼結する焼結工程と、
を有する熱電変換材料の製造方法。
It is a manufacturing method which manufactures the thermoelectric conversion material as described in any one of Claims 1-6,
A preparation step of preparing a clathrate compound having a predetermined composition by mixing, melting and solidifying Ba, Ga, Al, Si, and B as raw materials;
A crushing step of crushing the clathrate compound into fine particles;
A sintering step of sintering the fine particles;
The manufacturing method of the thermoelectric conversion material which has this.
請求項7に記載の熱電変換材料の製造方法において、
前記焼結工程は、
前記微粒子を一定の焼結温度まで加熱する加熱工程と、
前記微粒子を前記焼結温度で一定時間保持する温度保持工程と、
前記微粒子を加熱前の温度まで冷却する冷却工程を有し、
前記加熱工程および前記温度保持工程では加圧雰囲気とし、
前記冷却工程では加圧雰囲気を解除することを特徴とする熱電変換材料の製造方法。
In the manufacturing method of the thermoelectric conversion material of Claim 7,
The sintering step includes
A heating step of heating the fine particles to a certain sintering temperature;
A temperature holding step for holding the fine particles at the sintering temperature for a certain period of time;
A cooling step of cooling the fine particles to a temperature before heating;
In the heating step and the temperature holding step, a pressurized atmosphere is used,
A method for producing a thermoelectric conversion material, wherein the pressurized atmosphere is released in the cooling step.
JP2013026914A 2013-02-14 2013-02-14 Thermoelectric conversion material and method for producing the same Active JP6082617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026914A JP6082617B2 (en) 2013-02-14 2013-02-14 Thermoelectric conversion material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026914A JP6082617B2 (en) 2013-02-14 2013-02-14 Thermoelectric conversion material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014157876A true JP2014157876A (en) 2014-08-28
JP6082617B2 JP6082617B2 (en) 2017-02-15

Family

ID=51578592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026914A Active JP6082617B2 (en) 2013-02-14 2013-02-14 Thermoelectric conversion material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6082617B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045841A (en) * 2015-08-26 2017-03-02 古河電気工業株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and production method for thermoelectric conversion material
JP2018046090A (en) * 2016-09-13 2018-03-22 古河電気工業株式会社 Thermoelectric conversion element and thermoelectric conversion module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044519A (en) * 1999-08-03 2001-02-16 Ishikawajima Harima Heavy Ind Co Ltd Clathrate compound and high-efficiency thermoelectric material, manufacture thereof, and thermoelectric module using the high-efficiency thermoelectric material
JP2002064227A (en) * 2000-08-18 2002-02-28 Sumitomo Special Metals Co Ltd Thermoelectric conversion material and its manufacturing method
JP2012033868A (en) * 2010-07-08 2012-02-16 Furukawa Electric Co Ltd:The Thermoelectric conversion material
JP2012256759A (en) * 2011-06-09 2012-12-27 Furukawa Electric Co Ltd:The Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044519A (en) * 1999-08-03 2001-02-16 Ishikawajima Harima Heavy Ind Co Ltd Clathrate compound and high-efficiency thermoelectric material, manufacture thereof, and thermoelectric module using the high-efficiency thermoelectric material
JP2002064227A (en) * 2000-08-18 2002-02-28 Sumitomo Special Metals Co Ltd Thermoelectric conversion material and its manufacturing method
JP2012033868A (en) * 2010-07-08 2012-02-16 Furukawa Electric Co Ltd:The Thermoelectric conversion material
JP2012033867A (en) * 2010-07-08 2012-02-16 Furukawa Electric Co Ltd:The Clathrate compound, thermoelectric conversion material, and manufacturing method of thermoelectric conversion material
JP2012256759A (en) * 2011-06-09 2012-12-27 Furukawa Electric Co Ltd:The Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016041137; Cathe L.CONDRON et al.: 'Synthesis, Structure, and High-Temperature Thermoelectric Properties of Boron-Doped Ba8Al14Si31 Clat' Inorganic Chemistry Vol.47, No.18, 2008, pp.8204-8212 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045841A (en) * 2015-08-26 2017-03-02 古河電気工業株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and production method for thermoelectric conversion material
JP2018046090A (en) * 2016-09-13 2018-03-22 古河電気工業株式会社 Thermoelectric conversion element and thermoelectric conversion module

Also Published As

Publication number Publication date
JP6082617B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP2007116156A (en) Compound thermoelectric material and manufacturing method thereof
JP5737566B2 (en) Manufacturing method of magnesium silicide sintered body and manufacturing method of thermoelectric conversion element using the same
Ballikaya et al. Thermoelectric properties of triple-filled Ba x Yb y In z Co 4 Sb 12 skutterudites
JP2012104558A (en) THERMOELECTRIC MATERIAL COMPRISING Mg2Si GROUP COMPOUND AND MANUFACTURING METHOD THEREOF
JP6082663B2 (en) Thermoelectric conversion material and method for producing the same
JP2013219308A (en) Bismuth-tellurium based thermoelectric material
JP2012256759A (en) Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material
JP7367928B2 (en) Thermoelectric conversion material and its manufacturing method
JP6082617B2 (en) Thermoelectric conversion material and method for producing the same
JP2013161948A (en) Thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JP6560061B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP2014086541A (en) Nano-composite thermoelectric conversion material and production method therefor
JP5705640B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP6155141B2 (en) Thermoelectric conversion material and method for producing the same
JP5930744B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP5448942B2 (en) Thermoelectric conversion material
JP5653654B2 (en) Method for manufacturing thermoelectric material
WO2013108661A1 (en) Thermoelectric material
JP6826925B2 (en) Thermoelectric conversion materials, thermoelectric conversion elements, thermoelectric conversion modules, and mobiles
JP6858044B2 (en) Thermoelectric conversion materials and their manufacturing methods, as well as thermoelectric conversion elements, thermoelectric conversion modules, mobile objects
JP2015216280A (en) Thermoelectric conversion material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6082617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350