JP2014157868A - Method of manufacturing semiconductor device by using bonding tool - Google Patents

Method of manufacturing semiconductor device by using bonding tool Download PDF

Info

Publication number
JP2014157868A
JP2014157868A JP2013026769A JP2013026769A JP2014157868A JP 2014157868 A JP2014157868 A JP 2014157868A JP 2013026769 A JP2013026769 A JP 2013026769A JP 2013026769 A JP2013026769 A JP 2013026769A JP 2014157868 A JP2014157868 A JP 2014157868A
Authority
JP
Japan
Prior art keywords
copper wire
tool
bonding
aluminum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013026769A
Other languages
Japanese (ja)
Other versions
JP6121741B2 (en
Inventor
Yoshio Fujii
芳雄 藤井
Shinji Hara
慎治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2013026769A priority Critical patent/JP6121741B2/en
Publication of JP2014157868A publication Critical patent/JP2014157868A/en
Application granted granted Critical
Publication of JP6121741B2 publication Critical patent/JP6121741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • H01L2224/48456Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78313Wedge
    • H01L2224/78314Shape
    • H01L2224/78315Shape of the pressing surface, e.g. tip or head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78313Wedge
    • H01L2224/78314Shape
    • H01L2224/78315Shape of the pressing surface, e.g. tip or head
    • H01L2224/78316Shape of the pressing surface, e.g. tip or head comprising protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable such manufacture that a sufficient ultrasonic energy is applied to a junction part while preventing a tool front end from being contacted with an electrode surface of a semiconductor element.SOLUTION: For example, in the case that a copper wire is bonded to an electrode configured by forming an aluminum layer on a titanium layer by a bonding tool 10 while giving ultrasonic vibration, grooves 11b and 12b extending in an ultrasonic vibration direction are provided at central parts of tool front ends 11 and 12, and one central convex part 14 or recessed part 15 is formed in each of these grooves 11b and 12b. By using a bonding tool 10 obtained by making upper surfaces of the central convex part 14 or convex part 16 flat, bonding by ultrasonic vibration is performed while making the tool front end 11, 12 bite the copper wire. Thereby, pure aluminum is raked out from the junction part to form a copper-aluminum compound between the electrode, the titanium layer, and the copper wire.

Description

本発明は半導体装置の製造方法、特に銅太線をボンディングツールにより半導体素子の電極に接合するための半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device for bonding a copper thick wire to an electrode of a semiconductor element using a bonding tool.

従来から、半導体装置における半導体素子とリード線や回路基板との間の配線は、アルミニウム線を用いたワイヤボンディングで行われており、半導体素子の電極表面に形成されたアルミニウムや金の材料に対してアルミニウム線が接合・接続される。   Conventionally, wiring between a semiconductor element and a lead wire or a circuit board in a semiconductor device has been performed by wire bonding using an aluminum wire, and the aluminum or gold material formed on the electrode surface of the semiconductor element is used. Aluminum wires are joined and connected.

一方、近年では、熱伝導率、電気伝導率等において有利となる銅線を用いてワイヤボンディングすることが提案され、半導体素子の電極表面に形成されたアルミニウム材や銅材に対して銅線を接続することが行われる。一般に、この銅線には径(直径)75μm以下の細径線と径75μm以上の太径線があり、細径線の場合はボールボンディング技術によって配線され、太径線の場合はウエッジボンディング技術によって接合される。   On the other hand, in recent years, it has been proposed that wire bonding is performed using a copper wire that is advantageous in terms of thermal conductivity, electrical conductivity, etc., and the copper wire is attached to the aluminum material or copper material formed on the electrode surface of the semiconductor element. Connecting is done. In general, this copper wire has a thin wire having a diameter (diameter) of 75 μm or less and a thick wire having a diameter of 75 μm or more. Joined by.

このウエッジボンディングに使用されるツールはウエッジツールと言われ、一般的にツール先端は、図2(B)のように90度前後の角度の開口を持つ形状(ツール先端1)となっている。そして、ワイヤボンディングでは、このツール先端で銅線を電極に圧接しかつ超音波振動を与えることで、銅線が半導体素子の電極に接合され、結線される。   A tool used for the wedge bonding is called a wedge tool, and generally, the tool tip has a shape having an opening of about 90 degrees (tool tip 1) as shown in FIG. 2B. In wire bonding, the copper wire is bonded to and connected to the electrode of the semiconductor element by pressing the copper wire to the electrode at the tool tip and applying ultrasonic vibration.

特開2012−15263号公報JP 2012-15263 A

しかしながら、超音波振動を利用した製造方法で径75μm以上の銅線をウエッジボンディングする場合、銅線の材料特性とワイヤボンディング条件によっては、ツール先端が半導体素子の電極表面に接触し、接合部への超音波エネルギーを阻害することとなり、未接合を発生させるという問題点があった。   However, when a copper wire having a diameter of 75 μm or more is wedge-bonded by a manufacturing method using ultrasonic vibration, depending on the material characteristics of the copper wire and the wire bonding conditions, the tip of the tool comes into contact with the electrode surface of the semiconductor element and goes to the joint. In this case, the ultrasonic energy is hindered and unbonded.

一般的に使用されているアルミニウム線のウエッジボンディングの場合は、接合部に超音波エネルギーを印加した際、アルミニウム線が接合部から広がりツール先端下にアルミニウムが配置されるので、ツール先端がアルミニウム線に接触することはなかった。ところが、銅線のウエッジボンディングの場合、接合部に超音波エネルギーを印加しても銅線は接合部から広がらず、ツール先端下に銅が適切に配置されない。この結果、ツール先端が半導体素子の電極表面に接触し、超音波(振動)エネルギーによる接合が良好に行われなかった。   In the case of wedge bonding of commonly used aluminum wire, when ultrasonic energy is applied to the joint, the aluminum wire spreads from the joint and aluminum is placed under the tool tip. There was no contact. However, in the case of wedge bonding of a copper wire, even if ultrasonic energy is applied to the joint portion, the copper wire does not spread from the joint portion, and copper is not properly disposed below the tool tip. As a result, the tip of the tool was in contact with the electrode surface of the semiconductor element, and bonding with ultrasonic (vibration) energy was not performed well.

この問題点の対策として、例えばツール先端を削ったり、図2(B)のツール先端1の開口角度を広げたりすることで、半導体素子電極面とツールの距離を広げ、ツール先端と電極表面との接触を防ぐ方法が行われるが、この場合には、接合部に十分な超音波エネルギーを印加することができないという問題がある。   As a countermeasure for this problem, for example, by cutting the tool tip or widening the opening angle of the tool tip 1 in FIG. 2B, the distance between the semiconductor element electrode surface and the tool is increased, and the tool tip and electrode surface In this case, there is a problem that sufficient ultrasonic energy cannot be applied to the joint.

一方、銅線の硬度を上げることで、銅線の変形を最小限とし、ツール先端と電極表面との接触を防ぐ方法もあるが、この場合、半導体素子へのダメージの懸念が大きくなる。   On the other hand, there is a method of increasing the hardness of the copper wire to minimize the deformation of the copper wire and preventing the contact between the tool tip and the electrode surface. In this case, however, the risk of damage to the semiconductor element increases.

また、本出願人は、銅太線のワイヤボンディングにおいて、半導体素子の電極として例えばチタン層の上にアルミニウム層を形成し、チタン層と銅線(ワイヤ)との間に、銅−アルミニウム化合物を形成することで、強固な接合強度、高耐熱化を図ることを提案している。しかし、この場合でも、超音波エネルギーが十分に与えられない結果、銅線とチタン層(アルミニウム下層)との間にピュアなアルミニウムが残り、良好な接合状態が得られないという不都合があった。   In addition, the present applicant forms, for example, an aluminum layer on a titanium layer as an electrode of a semiconductor element in copper thick wire bonding, and forms a copper-aluminum compound between the titanium layer and the copper wire (wire). By doing so, it has been proposed to achieve strong bonding strength and high heat resistance. However, even in this case, the ultrasonic energy is not sufficiently applied, and as a result, pure aluminum remains between the copper wire and the titanium layer (aluminum lower layer), and there is a disadvantage that a good bonded state cannot be obtained.

本発明は上記問題点に鑑みてなされたものであり、その目的は、ツール先端が半導体素子の電極表面に接触することなく、接合部に十分な超音波エネルギーを印加した製造が可能となり、銅太線においても強固な接合ができるボンディングツールを用いた半導体装置の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is to enable manufacture in which a sufficient ultrasonic energy is applied to the joint without the tool tip being in contact with the electrode surface of the semiconductor element. An object of the present invention is to provide a method of manufacturing a semiconductor device using a bonding tool capable of strong bonding even with a thick line.

上記目的を達成するために、請求項1に係る発明は、表面に所定の金属層を形成した電極に対し、超音波振動を与えながら銅線をボンディングツールにより接合する半導体装置の製造方法において、上記ツール先端の中央部に超音波振動方向に長くなる溝を設けたボンディングツールを用い、このボンディングツールの溝を上記銅線に食い付かせながらこの溝の長手方向に沿って超音波振動を与えることを特徴とする。
請求項2に係る発明は、上記電極表面の金属層をアルミニウム層とし、このアルミニウム層中のアルミニウムを接合部外へ掻き出しながら上記銅線と上記電極のアルミニウム下層の金属との間に、銅−アルミニウム化合物を形成したことを特徴とする。
In order to achieve the above object, an invention according to claim 1 is a method of manufacturing a semiconductor device in which a copper wire is bonded by a bonding tool while applying ultrasonic vibration to an electrode having a predetermined metal layer formed on a surface thereof. A bonding tool having a groove extending in the ultrasonic vibration direction at the center of the tool tip is used, and ultrasonic vibration is applied along the longitudinal direction of the groove while the groove of the bonding tool bites the copper wire. It is characterized by that.
According to a second aspect of the present invention, an aluminum layer is used as the metal layer on the surface of the electrode, and a copper- An aluminum compound is formed.

本発明の構成によれば、超音波振動方向に沿った溝を持つツール先端が銅線に食い付くように圧接され、この状態で超音波振動を与えることで、溝部分から接合部に超音波エネルギーが十分に印加されることになり、例えば電極上面のピュアなアルミニュウムが溝の長手方向の両端から接合部外へ掻き出され、銅−アルミニウム化合物が形成されることで、銅線(ワイヤ)は半導体素子電極に強固に接合される。   According to the configuration of the present invention, the tool tip having a groove along the ultrasonic vibration direction is pressed so as to bite into the copper wire, and in this state, ultrasonic vibration is applied from the groove portion to the joint. Enough energy is applied, for example, pure aluminum on the upper surface of the electrode is scraped out of the joint from both ends in the longitudinal direction of the groove to form a copper-aluminum compound, thereby forming a copper wire (wire) Is firmly bonded to the semiconductor element electrode.

本発明のボンディングツールを用いた半導体装置の製造方法によれば、ツール先端が半導体素子の電極表面に接触することなく、接合部に十分な超音波エネルギーを印加した製造ができ、特に径75μm以上の太線において、強固な接合、結線が可能となる。また、銅線の材料特性によらず、ボンディングできることから、半導体素子へのダメージのリスクも減らすことができ、銅線材料硬度の選定の必要がない。   According to the method for manufacturing a semiconductor device using the bonding tool of the present invention, it is possible to manufacture the semiconductor device by applying sufficient ultrasonic energy to the joint without contacting the tip of the tool to the electrode surface of the semiconductor element. In this thick line, strong bonding and connection are possible. Further, since bonding can be performed regardless of the material characteristics of the copper wire, the risk of damage to the semiconductor element can be reduced, and there is no need to select the copper wire material hardness.

請求項2の発明のように、表面にアルミニウム層を有する電極に銅線を接合する場合では、径75μm以上の銅太線であっても、接合領域にピュアなアルミニウムを残すことなく、銅線とアルミニウム下層金属との間に、アルミニウムと銅の金属間化合物が良好に形成され、強固な接合強度、高耐熱化が得られるという利点がある。   In the case of joining a copper wire to an electrode having an aluminum layer on the surface as in the invention of claim 2, even if the copper wire has a diameter of 75 μm or more, the copper wire and the copper wire are not left in the joining region. There is an advantage that an intermetallic compound of aluminum and copper is formed favorably between the aluminum lower layer metal and strong bonding strength and high heat resistance can be obtained.

本発明の実施例に係る半導体装置の製造方法で用いられるボンディングツールの構成を示し、図(A)はツール先端の第1例の構成図[(a)は先端面、(b)は側面]、図(B)はツール先端の第2例の構成図[(a)は先端面、(b)は側面]、図(C)はボンディングツールの先端側の一部を示す斜視図である。The structure of the bonding tool used with the manufacturing method of the semiconductor device which concerns on the Example of this invention is shown, FIG. (A) is a block diagram of the 1st example of a tool front-end | tip ((a) is a front end surface, (b) is a side surface). (B) is a block diagram of a second example of the tool tip [(a) is the tip surface, (b) is a side surface], and FIG. (C) is a perspective view showing a part of the tip side of the bonding tool. 実施例と従来のツール先端の相違を説明するもので、図(A)は、図1(B)の第2例におけるツール先端の断面を示す図、図(B)は、従来のツール先端の断面図である。The difference between the embodiment and the conventional tool tip will be described. FIG. (A) is a diagram showing a cross section of the tool tip in the second example of FIG. 1 (B), and FIG. It is sectional drawing. 実施例のボンディングツールで銅線を電極に接合する時のイメージを示し、図(A)は、ツール先端の第1例を用いた場合の図、図(B)は、ツール先端の第2例を用いた場合の図である。The image at the time of joining a copper wire to an electrode with the bonding tool of an example is shown, Drawing (A) is a figure at the time of using the 1st example of a tool tip, and Drawing (B) is the 2nd example of a tool tip. It is a figure at the time of using. 実施例の半導体装置の製造方法における接合部の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the junction part in the manufacturing method of the semiconductor device of an Example. ツール先端がワッフルタイプとなるボンディングツールを用いた場合を説明したもので、図(A)はツール先端の構成図、図(B)は接合時のイメージ図、図(C)は接合部の断面構成図である。Explains the case where a bonding tool with a waffle tip is used. FIG. (A) is a configuration diagram of the tool tip, FIG. (B) is an image diagram at the time of bonding, and FIG. (C) is a sectional configuration of the bonding portion. FIG.

図1は、実施例で用いられるボンディングツールの構成であり、図1(A),(B)には、図1(C)のボンディングツール(ウエッジツール)10のツール先端(面)11(第1例),12(第2例)が示されている。図1(A)の第1例のツール先端11は、両端(縁)に端側凸部(土手部)11aが設けられることで、その中央部に超音波印加による振動方向50に沿って長くなる溝11bが形成される。また、この溝11bの中には、上面が平面となる1つの凸部14(その他は凹部となる)が設けられる。即ち、ツール先端11は、両端の端側凸部11aが最も隆起し、超音波振動方向50に沿った溝11b内には中央凸部14を有し、この溝11bの長手方向の端部は開放される。上記溝11bは、ボンディングされる銅線(金属ワイヤ)に食い付いてこの銅線をしっかり把持、固定する役目をし、また中央凸部14も、銅線への食い付きを補強し向上させる役目をする。   FIG. 1 shows a configuration of a bonding tool used in the embodiment. FIGS. 1A and 1B show a tool tip (surface) 11 (first) of a bonding tool (wedge tool) 10 in FIG. 1 example) and 12 (second example) are shown. The tool tip 11 of the first example shown in FIG. 1A is provided with end-side convex portions (bank portions) 11a at both ends (edges), so that the central portion is elongated along the vibration direction 50 by applying ultrasonic waves. A groove 11b is formed. Further, in the groove 11b, one convex portion 14 (the other is a concave portion) whose upper surface is a flat surface is provided. That is, the tool tip 11 has the most protruding end-side convex portions 11a at both ends, and has a central convex portion 14 in the groove 11b along the ultrasonic vibration direction 50. The longitudinal end portion of the groove 11b is Opened. The groove 11b bites into a copper wire (metal wire) to be bonded and firmly holds and fixes the copper wire, and the central protrusion 14 also serves to reinforce and improve the biting of the copper wire. do.

図1(B)の第2例のツール先端12でも、両端に端側凸部(土手部)12aが設けられることで、その中央部に超音波振動方向50に沿って長くなる溝12bが形成され、この溝11bの中には、凹部15が形成されることで、上面が平面となる2つの凸部16が設けられる。即ち、ツール先端12は、両端の端側凸部12aが最も隆起し、超音波振動方向50に沿った溝12b内には2つの凸部16を有し、この溝12bの長手方向の端部は開放される。この溝12bにおいても、ボンディングされる銅線に食い付いてこの銅線をしっかり把持、固定する役目をし、また凹部15も銅線への食い付きを補強し向上させる役目をする。   Also in the tool tip 12 of the second example of FIG. 1B, the end-side convex portion (bank portion) 12a is provided at both ends, so that a groove 12b that is elongated along the ultrasonic vibration direction 50 is formed at the center portion. In the groove 11b, the concave portion 15 is formed, so that two convex portions 16 having a flat upper surface are provided. That is, the end 12 of the tool tip protrudes most at the end 12 of the tool, and has two protrusions 16 in the groove 12b along the ultrasonic vibration direction 50, and the end of the groove 12b in the longitudinal direction. Is released. The groove 12b also works to bite and fix the copper wire firmly by being bonded to the bonded copper wire, and the concave portion 15 also serves to reinforce and improve the biting of the copper wire.

図2(A)には、図1(B)のツール先端を振動方向50から見た断面が示されており、実施例では、このツール先端12のように、溝12b内における銅線を圧接する先端面を平面とすることが好ましく、図1(A)においては、凸部14の上面を平面とし、図1(B)においては、凸部16の上面を平面とすることで、超音波振動(エネルギー)が所望の範囲においてシンプルな形で効率良く接合部へ印加されるようにしている。即ち、図2(B)に示されるように、従来において径75μm以上のアルミニウム線を結線する際に使用されるボンディングツールのツール先端1では、90度前後の角度で開口し、隅部(縁部)が尖った形状とされているが、このような形状の場合、ツール先端1の下に銅が配置されないため、接合部に十分な超音波エネルギーを印加することができない。   FIG. 2A shows a cross section of the tool tip of FIG. 1B as viewed from the vibration direction 50. In the embodiment, the copper wire in the groove 12b is press-contacted like the tool tip 12 as shown in FIG. It is preferable that the leading end surface is a flat surface. In FIG. 1A, the upper surface of the convex portion 14 is a flat surface, and in FIG. 1B, the upper surface of the convex portion 16 is a flat surface. Vibration (energy) is efficiently applied to the joint in a simple manner within a desired range. That is, as shown in FIG. 2 (B), the tool tip 1 of a bonding tool conventionally used for connecting an aluminum wire having a diameter of 75 μm or more is opened at an angle of about 90 degrees, and the corner (edge) However, in such a shape, copper is not disposed under the tool tip 1, so that sufficient ultrasonic energy cannot be applied to the joint.

そこで、実施例では、ツール先端11,12において、溝11b,12bを銅線に食い付かせると共に、銅線を主に押える面、即ち凸部14,16を平面とすることで、このツール先端11,12から超音波振動を接合部へ良好に伝達するようにしている。   Therefore, in the embodiment, the tool tips 11 and 12 are made to bite the grooves 11b and 12b on the copper wire, and the surface that mainly presses the copper wire, that is, the convex portions 14 and 16 are made flat, so that the tool tip The ultrasonic vibrations from 11 and 12 are satisfactorily transmitted to the joint.

図3には、実施例のボンディングツール[図(A)は第1例、図(B)は第2例]で銅線18を電極19に接合する時(銅線中央部)の状態が示されており、第1例のツール先端11の場合は、溝11bが銅線18に食い付くと共に、図3(A)に示されるように、凸部14にて溝Gaを作ることで、銅線18に食い付き、主にこの溝Ga(凸部14)から接合部に超音波を与えることができる。第2例のツール先端12の場合は、溝12bが銅線18に食い付くと共に、図3(B)に示されるように、凹部15にて凸部Gbを作ることで、銅線18に食い付き、主にこの凸部Gbの両側(凸部16)から接合部に超音波を与えることができる。   FIG. 3 shows a state when the copper wire 18 is joined to the electrode 19 (center portion of the copper wire) in the bonding tool of the embodiment [FIG. (A) is the first example, FIG. (B) is the second example]. In the case of the tool tip 11 of the first example, the groove 11b bites the copper wire 18 and, as shown in FIG. The wire 18 can be bitten and ultrasonic waves can be given to the joint mainly from the groove Ga (convex portion 14). In the case of the tool tip 12 of the second example, the groove 12b bites into the copper wire 18 and, as shown in FIG. In addition, ultrasonic waves can be applied to the joint mainly from both sides (convex portion 16) of the convex portion Gb.

このような実施例によれば、ツール先端11,12で銅線18を確実に圧接しながら、超音波振動を溝11b,12bの長手方向に沿って与える(振動方向50と溝の長手方向を一致させる)ことで、超音波振動を接合部に対し効率良く十分に供給することができ、銅線18が電極19に強固な状態で接合される。例えば、電極の上面金属と銅線との化合物を形成する場合には、上面のピュアな金属を接合部の外(振動方向50の外側)へ掻き出しながら、上面金属と銅線の化合物を形成することができる。   According to such an embodiment, the ultrasonic vibration is applied along the longitudinal direction of the grooves 11b and 12b while the copper wire 18 is reliably pressed by the tool tips 11 and 12 (the vibration direction 50 and the longitudinal direction of the groove are defined). The ultrasonic vibrations can be efficiently and sufficiently supplied to the bonding portion, and the copper wire 18 is bonded to the electrode 19 in a strong state. For example, when forming a compound of the upper surface metal of the electrode and the copper wire, the compound of the upper surface metal and the copper wire is formed while scraping the pure metal on the upper surface to the outside of the joint (outside of the vibration direction 50). be able to.

図3(A),(B)から分かるように、第2例のツール先端12は、第1例に比べて先端面12aの振動方向50での面積が広いことから、超音波振動を印加する領域が広くなるので、第2例のツール先端12は接合エリアが広い場合、第1例のツール先端11は接合エリアが比較的狭い場合に適用される。   As can be seen from FIGS. 3A and 3B, the tool tip 12 of the second example applies an ultrasonic vibration because the area of the tip surface 12a in the vibration direction 50 is larger than that of the first example. Since the region becomes wider, the tool tip 12 of the second example is applied when the joining area is wide, and the tool tip 11 of the first example is applied when the joining area is relatively narrow.

図4には、実施例において、所定の金属層(例えばチタン層)の上にアルミニウム層を形成した電極19に、例えば第1例のツール先端11を用い、銅線18を接続した場合の接合状態(断面構成)が示されており、この図4に示されるように、電極19のアルミニウム下層金属(チタン層)19tと銅線18との間には、ピュアなアルミニウムが存在しない結果となった。即ち、図示していないが、銅線18と電極19との間には(図の銅線18側に)、100nm程度の厚さの銅−アルミニウム化合物(金属間化合物)が形成されると共に、この化合物形成に貢献しないピュアなアルミニウムは、接合部の外へ掻き出される。   In FIG. 4, in the embodiment, for example, when the tool tip 11 of the first example is used and the copper wire 18 is connected to the electrode 19 in which an aluminum layer is formed on a predetermined metal layer (for example, a titanium layer). The state (cross-sectional configuration) is shown, and as shown in FIG. 4, pure aluminum does not exist between the aluminum lower layer metal (titanium layer) 19t of the electrode 19 and the copper wire 18. It was. That is, although not shown, a copper-aluminum compound (intermetallic compound) having a thickness of about 100 nm is formed between the copper wire 18 and the electrode 19 (on the copper wire 18 side in the figure), Pure aluminum that does not contribute to this compound formation is scraped out of the joint.

図1(A)の第1例のツール先端11では、図3(A)で示されるように、接合部の中央部から超音波が与えられるので、アルミニウムを接合部の外(超音波振動方向50の外側)へ掻き出し易く、図1(B)の第2例のツール先端12でも、図3(B)に示されるように、超音波振動が広いエリアに伝わることから、接合エリアが広い場合でも、良好な接合が可能となる。なお、この図3(B)の場合、ピュアなアルミニウムが接合中心部に僅かに残ることがあるが、接合の信頼性の評価に影響しない程度であった。   In the first example of the tool tip 11 in FIG. 1 (A), as shown in FIG. 3 (A), since ultrasonic waves are applied from the center of the joint, aluminum is removed from the joint (in the direction of ultrasonic vibration). When the joining area is wide because the ultrasonic vibration is transmitted to a wide area as shown in FIG. 3B even at the tool tip 12 of the second example of FIG. 1B. However, good bonding is possible. In the case of FIG. 3 (B), pure aluminum may remain slightly in the center of the joint, but it is not affected by the evaluation of the reliability of the joint.

図5には、ツール先端がワッフルタイプとなるボンディングツールを用い、図4の場合と同様に下層金属(チタン層)の上にアルミニウム層を形成した電極19に銅線18を結線するワイヤボンディングが示されており、このワッフルタイプのツール先端21は、図5(A)のように、菱形の凸部22と凹部23から構成されるが、このツール先端21を用いると、接合時には、図5(B)のように、超音波の印加点を接合内部に多数個持つことになる。そのため、ピュアなアルミニウム24が接合部外に掻き出されず、図5(C)の断面構成のように、電極19のアルミニウム下層金属(チタン層)19tと銅線18との間に、ピュアなアルミニウム24が残る結果となった。   FIG. 5 shows a wire bonding method in which a copper wire 18 is connected to an electrode 19 in which an aluminum layer is formed on a lower layer metal (titanium layer) as in the case of FIG. As shown in FIG. 5A, the waffle-type tool tip 21 is composed of a diamond-shaped convex portion 22 and a concave portion 23. When this tool tip 21 is used, FIG. As shown in (B), there are many ultrasonic application points inside the joint. Therefore, the pure aluminum 24 is not scraped out of the joint, and the pure aluminum 24 is disposed between the aluminum lower layer metal (titanium layer) 19t of the electrode 19 and the copper wire 18 as shown in the cross-sectional configuration of FIG. As a result, aluminum 24 remained.

実施例によれば、ツール先端11,12の中央部に超音波振動方向50に長くなる溝11b,12bを設け、またこの溝内の超音波振動方向の中央部に1つの凸部14又は凹部15を形成したウエッジツールを用い、このツール先端11,12を銅線18に食い付かせながら超音波振動による接合を行うので、強固な接合強度が得られ、耐熱化を強化した接合が実現可能となる。   According to the embodiment, the grooves 11b and 12b that are elongated in the ultrasonic vibration direction 50 are provided in the central portion of the tool tips 11 and 12, and one convex portion 14 or concave portion is provided in the central portion in the ultrasonic vibration direction in the groove. 15 is used, and the tool tips 11 and 12 are bonded to the copper wire 18 by ultrasonic vibration while the tool tips 11 and 12 are biting into the copper wire 18, so that strong bonding strength can be obtained and bonding with enhanced heat resistance can be realized. It becomes.

本発明は、パワーエレクトロニクスを使用する分野への利用が可能である。近年、電気自動車、スマートグリット、産業機器関係から低炭素社会実現に向けた高温動作保証の要求が強く、高温動作で長期信頼性を満足する研究が盛んに行われており、このような要求に期待できる技術として、銅太線ボンディング技術があり、この銅太線ボンディング技術として使用できる。   The present invention can be applied to the field using power electronics. In recent years, there has been a strong demand for guaranteeing high-temperature operation for the realization of a low-carbon society from electric vehicles, smart grids, and industrial equipment, and research that satisfies long-term reliability with high-temperature operation has been actively conducted. As a promising technology, there is a copper thick wire bonding technology, which can be used as this copper thick wire bonding technology.

1,11,12,21…ツール先端、
10…ボンディングツール(ウエッジツール)、
11a,12a…端側凸部(土手部)、
11b,12b…溝、
14,16,22…凸部、15,23…凹部、
18…銅線、 19…半導体素子の電極、
19t…アルミニウム下層金属(チタン層)、
24…ピュアなアルミニウム、
50…超音波振動方向。
1, 11, 12, 21 ... Tool tip,
10 ... Bonding tool (wedge tool),
11a, 12a ... end side convex part (bank part),
11b, 12b ... groove,
14, 16, 22 ... convex part, 15, 23 ... concave part,
18 ... Copper wire, 19 ... Electrode of semiconductor element,
19t ... Aluminum lower layer metal (titanium layer),
24 ... Pure aluminum,
50: Ultrasonic vibration direction.

Claims (2)

表面に所定の金属層を形成した電極に対し、超音波振動を与えながら銅線をボンディングツールにより接合する半導体装置の製造方法において、
上記ツール先端の中央部に超音波振動方向に長くなる溝を設けたボンディングツールを用い、このボンディングツールの溝を上記銅線に食い付かせながらこの溝の長手方向に沿って超音波振動を与えることを特徴とするボンディングツールを用いた半導体装置の製造方法。
In the method of manufacturing a semiconductor device in which a copper wire is bonded by a bonding tool while applying ultrasonic vibration to an electrode having a predetermined metal layer formed on the surface,
A bonding tool having a groove extending in the ultrasonic vibration direction at the center of the tool tip is used, and ultrasonic vibration is applied along the longitudinal direction of the groove while the groove of the bonding tool bites the copper wire. A method of manufacturing a semiconductor device using a bonding tool.
上記電極表面の金属層をアルミニウム層とし、このアルミニウム層中のアルミニウムを接合部外へ掻き出しながら上記銅線と上記電極のアルミニウム下層の金属との間に、銅−アルミニウム化合物を形成したことを特徴とする請求項1記載のボンディングツールを用いた半導体装置の製造方法。   The metal layer on the electrode surface is an aluminum layer, and a copper-aluminum compound is formed between the copper wire and the metal under the aluminum layer of the electrode while scraping the aluminum in the aluminum layer out of the joint. A method for manufacturing a semiconductor device using the bonding tool according to claim 1.
JP2013026769A 2013-02-14 2013-02-14 Manufacturing method of semiconductor device using bonding tool Active JP6121741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026769A JP6121741B2 (en) 2013-02-14 2013-02-14 Manufacturing method of semiconductor device using bonding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026769A JP6121741B2 (en) 2013-02-14 2013-02-14 Manufacturing method of semiconductor device using bonding tool

Publications (2)

Publication Number Publication Date
JP2014157868A true JP2014157868A (en) 2014-08-28
JP6121741B2 JP6121741B2 (en) 2017-04-26

Family

ID=51578585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026769A Active JP6121741B2 (en) 2013-02-14 2013-02-14 Manufacturing method of semiconductor device using bonding tool

Country Status (1)

Country Link
JP (1) JP6121741B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058603A (en) * 1998-08-10 2000-02-25 Fuji Electric Co Ltd Ultrasonic wire bonder
JP2013004779A (en) * 2011-06-17 2013-01-07 Sanken Electric Co Ltd Semiconductor device and semiconductor device manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058603A (en) * 1998-08-10 2000-02-25 Fuji Electric Co Ltd Ultrasonic wire bonder
JP2013004779A (en) * 2011-06-17 2013-01-07 Sanken Electric Co Ltd Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP6121741B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP7012473B2 (en) Modules, semiconductor modules and bonding tools
JP5011562B2 (en) Semiconductor device and manufacturing method thereof
JP2020013633A (en) Terminal-equipped wire and manufacturing method thereof
JP6366723B2 (en) Semiconductor device and manufacturing method thereof
JP5433526B2 (en) Electronic device and manufacturing method thereof
JP2018113359A (en) Semiconductor device
US10833426B2 (en) Method for producing an electrically conductive bond between an electrical line and an electrically conductive component and assembly produced using the method
JP4612550B2 (en) Bonding ribbon for power device and bonding method using the same
CN106537691B (en) Terminal connection structure and manufacturing method thereof
JP5884752B2 (en) Ultrasonic bonding apparatus and semiconductor device manufacturing method
JP2022000861A (en) Terminal equipped electric wire, and manufacturing method of terminal equipped electric wire
JP6128946B2 (en) Electric wire and terminal joining structure and joining method
JP6181934B2 (en) Terminal connection structure and manufacturing method thereof
JP6121741B2 (en) Manufacturing method of semiconductor device using bonding tool
JP6080305B2 (en) Semiconductor device manufacturing method, semiconductor device, and lead frame
JP2006196765A (en) Semiconductor device
JP2009182265A (en) Electrode terminal for film capacitor, and the film capacitor
JP7412998B2 (en) Semiconductor device and semiconductor device manufacturing method
JP6128687B2 (en) Semiconductor device manufacturing method, semiconductor device, and lead frame
JP6250788B2 (en) Semiconductor device
JP2012015263A (en) Wire bonding apparatus
JP2016134547A (en) Semiconductor device
JP7443290B2 (en) Connection structure between bus bar and electric wire
JP5451655B2 (en) Terminal connection structure and semiconductor device having the terminal connection structure
JPH02224348A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170330

R150 Certificate of patent or registration of utility model

Ref document number: 6121741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250