JP2014156650A - Composite plating film and thin grindstone using the same and method of producing the same - Google Patents

Composite plating film and thin grindstone using the same and method of producing the same Download PDF

Info

Publication number
JP2014156650A
JP2014156650A JP2013042292A JP2013042292A JP2014156650A JP 2014156650 A JP2014156650 A JP 2014156650A JP 2013042292 A JP2013042292 A JP 2013042292A JP 2013042292 A JP2013042292 A JP 2013042292A JP 2014156650 A JP2014156650 A JP 2014156650A
Authority
JP
Japan
Prior art keywords
plating film
composite plating
fine particles
composite
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013042292A
Other languages
Japanese (ja)
Other versions
JP6171230B2 (en
Inventor
Nobuhisa Suzuki
庸久 鈴木
Junichi Muraoka
潤一 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata Prefecture
Original Assignee
Yamagata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata Prefecture filed Critical Yamagata Prefecture
Priority to JP2013042292A priority Critical patent/JP6171230B2/en
Publication of JP2014156650A publication Critical patent/JP2014156650A/en
Application granted granted Critical
Publication of JP6171230B2 publication Critical patent/JP6171230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite plating film which has anisotropy or periodicity in the in-plane direction or the direction perpendicular to the plane, an electrodeposition/electrocasting grindstone which is composite of the composite plating film and has good sharpness and a method of producing the composite plating film.SOLUTION: Fine particles are arranged periodically in a composite plating film in the form of linear rows of the fine particles so as to add directionality or periodicity to the functions of the composite plating film of the fine particles due to compositeness. An electrodeposition/electrocasting grindstone composed of the composite plating film in which fine particles of e.g. diamond are arranged regularly as hard grindstones has improved sharpness. A method of producing the composite plating film and the electrodeposition/electrocasting grindstone comprises forming a stationary wave sound field in a plating film formation surface by using an ultrasonic source.

Description

本発明は、複合めっき被膜及びそれを用いた薄型砥石とその製造方法に関するもので、より詳細には、数ナノメートルないし数十マイクロメートルの微粒子を直線状の微粒子列として周期的に配置し、微粒子の複合化による機能性が方向性を有する複合めっき被膜、及び前記微粒子がダイヤモンドなどの硬質砥粒である前記複合めっき被膜からなる切れ味の良い電着・電鋳砥石、及び超音波音源を用いてめっき被膜形成面に定在波音場を形成することで周期的な微粒子列を含む複合めっき被膜及び電着・電鋳砥石の製造方法に関する。  The present invention relates to a composite plating film, a thin grindstone using the same, and a method for producing the same. More specifically, fine particles of several nanometers to several tens of micrometers are periodically arranged as linear fine particle rows, Using a composite plating film in which the functionality due to the combination of fine particles is directional, and the above-mentioned composite plating film in which the fine particles are hard abrasive grains such as diamond, and a sharp electrodeposition / electroforming grindstone, and an ultrasonic sound source In particular, the present invention relates to a composite plating film including periodic fine particle arrays by forming a standing wave sound field on a plating film forming surface and a method for producing an electrodeposition / electroforming grindstone.

ニッケルや銅などの母層に機能性の粒子を含んだ複合めっき被膜は、めっき被膜の摺動性、伝導性、機械的強度などの機能性を向上させることを目的として広く用いられている。さらに面内方向、面直方向(厚み方向)に対して、その機能性に方向性や周期性を持たせるためには、微粒子を規則的に複合させる必要がある。  A composite plating film containing functional particles in a mother layer such as nickel or copper is widely used for the purpose of improving functionality such as slidability, conductivity, and mechanical strength of the plating film. Furthermore, in order to provide directionality and periodicity in the in-plane direction and the perpendicular direction (thickness direction), it is necessary to regularly combine fine particles.

従来の方法では、基板表面にマスクなど形成し、複合めっき処理を行い、さらにマスクの除去する工程を含む多段階のプロセスが検討されている。特許文献1によれば、カーボンナノチューブなどのナノ粒子に関するパターニングめっき被膜およびマスクを用いたその製造方法が提示されている。しかし、マスクレスで、数ナノメートルないし数十マイクロメートルの微粒子を面内方向に周期的に配置する有効な手法がないという課題がある。さらに、面直方向に周期性を持たせようとすると、その周期ごとに別のマスクを用意しなければならず、作業性が著しく悪いという課題がある。  In the conventional method, a multi-stage process including a process of forming a mask on the substrate surface, performing a composite plating process, and further removing the mask has been studied. According to Patent Document 1, a manufacturing method using a patterning plating film and a mask related to nanoparticles such as carbon nanotubes is proposed. However, there is a problem that there is no effective method for periodically arranging fine particles of several nanometers to several tens of micrometers in the in-plane direction without using a mask. Furthermore, if it is intended to provide periodicity in the direction perpendicular to the surface, another mask must be prepared for each period, and there is a problem that workability is extremely poor.

硬質砥粒を含む複合めっき被膜によって形成される薄型砥石において、規則的に硬質砥粒の集中度を制御し、寿命が長く、切断面の精度が高い薄型砥石およびその製造方法が求められている。特許文献1によれば、規則的に硬質砥粒を配置するために、予め微細な穴を基板に加工した上で、超音波振動により砥粒をその穴に落とし込む方法が提案されているが、穴加工など基板の準備のために、時間とコストがかかるという課題と、砥粒層が単層のものしかできない根本的な課題がある。  In a thin grindstone formed by a composite plating film containing hard abrasive grains, there is a demand for a thin grindstone that regularly controls the concentration of hard abrasive grains, has a long life, and has a high accuracy of the cut surface, and a method for producing the same. . According to Patent Document 1, in order to regularly arrange hard abrasive grains, a method of dropping the abrasive grains into the holes by ultrasonic vibration after processing fine holes in the substrate in advance has been proposed. There is a problem that it takes time and cost to prepare a substrate such as drilling, and a fundamental problem that only a single abrasive layer is available.

特許文献3によれば、屈曲振動モードを有する振動板を用いて、振動板上に形成される定在波の節部に微粒子の濃度が高い複合めっき被膜を形成することができるが、そのパターンは基板となる振動板形状によって制限されるため、周期について自由度が低く、改善の余地がある。  According to Patent Document 3, a composite plating film having a high concentration of fine particles can be formed on a node portion of a standing wave formed on a diaphragm using a diaphragm having a bending vibration mode. Is limited by the shape of the diaphragm serving as a substrate, so that the degree of freedom of the period is low and there is room for improvement.

以上のように、従来の方法では、数ナノメートルないし数十マイクロメートルの微粒子を直線状の微粒子列として面内方向に周期的に配置し、微粒子の複合化による機能性が方向性を有する複合めっき被膜、さらにその複合めっき被膜が面直方向に周期性を有する形態である複合めっき被膜を形成することが難しい。したがって、その摺動性、伝導性、機械的強度などの機能性に周期性や方向性を有する複合めっき被膜、およびそれを用いた電着・電鋳砥石が製造されず、実用化されていない。  As described above, in the conventional method, fine particles of several nanometers to several tens of micrometers are periodically arranged in the in-plane direction as a linear fine particle array, and the composite property of the fine particles is directional. It is difficult to form a plating film and a composite plating film in which the composite plating film has a periodicity in the direction perpendicular to the surface. Therefore, a composite plating film having periodicity and directionality in functionality such as slidability, conductivity, and mechanical strength, and an electrodeposition / electroforming grindstone using the same are not manufactured and put into practical use. .

特開2010−222707号公報  JP 2010-222707 A 特開平11−254331号公報  JP 11-254331 A 特開2012−77356号公報  JP 2012-77356 A

本発明は、数ナノメートルないし数十マイクロメートルの微粒子を直線状の微粒子列として周期的に配置し、微粒子の複合化による機能性が方向性または周期性を有する複合めっき被膜、及び前記微粒子がダイヤモンドなどの硬質砥粒である前記複合めっき被膜からなる切れ味の良い電着・電鋳砥石、及び超音波音源を用いてめっき被膜形成面に定在波音場を形成することで周期的な微粒子列を含む複合めっき被膜及び電着・電鋳砥石の製造方法を提供することを目的とする。  The present invention provides a composite plating film in which fine particles of several nanometers to several tens of micrometers are periodically arranged as a linear fine particle array, the composite plating film whose functionality by the combination of the fine particles has directionality or periodicity, and the fine particles Periodic fine particle arrays by forming a standing wave sound field on the plating film forming surface using a sharp electrodeposition / electroformed grinding wheel composed of the composite plating film, which is a hard abrasive such as diamond, and an ultrasonic sound source It aims at providing the manufacturing method of the composite plating film containing this, and an electrodeposition and an electroforming grindstone.

上記目的達成するため、請求項1記載の複合めっき被膜は、数ナノメートルないし数十マイクロメートルの微粒子が直線状の微粒子列をなし、その微粒子列が周期的に配置された複合めっき層を有することを特徴とする。  In order to achieve the above object, the composite plating film according to claim 1 has a composite plating layer in which fine particles of several nanometers to several tens of micrometers form a linear fine particle row, and the fine particle rows are periodically arranged. It is characterized by that.

請求項2記載の複合めっき被膜は、前記微粒子列の周期が0.05ないし2ミリメートルであることを特徴とする。  The composite plating film according to claim 2 is characterized in that a period of the fine particle row is 0.05 to 2 millimeters.

請求項3記載の複合めっき被膜は、周期的に配置された微粒子列が2組以上あり、前記複合めっき被膜中の同一平面内にあり、各微粒子列が角度αで配置されていることを特徴とする。  The composite plating film according to claim 3 is characterized in that there are two or more pairs of finely arranged fine particles arranged in the same plane in the composite plated film, and each fine particle row is arranged at an angle α. And

請求項4記載の複合めっき被膜は、前記微粒子列が周期的に配置された複合めっき層が積層されてなり、各複合めっき層における前記周期が同一であることを特徴とする。  The composite plating film according to claim 4 is characterized in that a composite plating layer in which the fine particle rows are periodically arranged is laminated, and the cycle in each composite plating layer is the same.

請求項5記載の複合めっき被膜は、前記微粒子列が周期的に配置された複合めっき層が積層されてなり、連続する複合めっき層における前記周期が異なることを特徴とする。  The composite plating film according to claim 5 is characterized in that a composite plating layer in which the fine particle rows are periodically arranged is laminated, and the period in the continuous composite plating layer is different.

請求項6記載の複合めっき被膜は、前記微粒子が、ダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子であることを特徴とする。  The composite plating film according to claim 6 is characterized in that the fine particles are fine particles of either diamond or cubic boron nitride.

請求項7記載の複合めっき被膜は、前記微粒子が、単層カーボンナノチューブ、多層カーボンナノチューブ、グラフェンのいずれかの微粒子であることを特徴とする。  The composite plating film according to claim 7 is characterized in that the fine particles are fine particles of single-walled carbon nanotubes, multi-walled carbon nanotubes, or graphene.

請求項8記載の複合めっき被膜は、前記微粒子が、めっき母相と合金を形成する金属微粒子であることを特徴とする。  The composite plating film according to claim 8 is characterized in that the fine particles are fine metal particles that form an alloy with the plating matrix.

請求項9記載の複合めっき被膜は、前記微粒子が、2種類以上の微粒子であり、ダイヤモンド、立方晶窒化ホウ素、単層カーボンナノチューブ、多層カーボンナノチューブ、グラフェン、金属微粒子から選ばれた微粒子であることを特徴とする。  The composite plating film according to claim 9, wherein the fine particles are two or more kinds of fine particles, and are selected from diamond, cubic boron nitride, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, and metal fine particles. It is characterized by.

請求項10記載の複合めっき被膜は、前記めっき被膜の母相がニッケル、銅、ニッケル合金、銅合金のいずれかであることを特徴とする。  The composite plating film according to claim 10 is characterized in that a parent phase of the plating film is any one of nickel, copper, a nickel alloy, and a copper alloy.

請求項11記載の電着砥石は、前記微粒子に、少なくともダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子が含まれている請求項1ないし請求項10のいずれかに記載の複合めっき被膜が円板状の台金の側面及び外周面に成膜され、砥石の切れ刃であることを特徴とする。  The electrodeposited grindstone according to claim 11, wherein the composite plating film according to any one of claims 1 to 10, wherein the fine particles contain at least fine particles of either diamond or cubic boron nitride. A film is formed on the side surface and the outer peripheral surface of the base metal and is a cutting edge of a grindstone.

請求項12記載の電鋳砥石は、前記微粒子に、少なくともダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子が含まれている請求項1ないし請求項10のいずれかに記載の複合めっき被膜が自立膜であり、砥石の切れ刃であることを特徴とする。  The electroplating grindstone according to claim 12, wherein the composite plating film according to any one of claims 1 to 10 is a self-supporting film, wherein the fine particles include at least fine particles of either diamond or cubic boron nitride. It is a cutting edge of a grindstone.

請求項13記載の複合めっき被膜の製造方法は、請求項1ないし請求項10のいずれかに記載の複合めっき被膜の製造方法であり、めっき被膜を形成する母材と超音波音源を、前記微粒子を分散させためっき浴に浸漬させ、超音波音源によって母材表面に定在波音場を形成し、周期的に存在する定在波音場の節部に、音響放射力によって前記微粒子を配列させながら、母材表面からめっき被膜を成長させることを特徴とする。  A method for producing a composite plating film according to claim 13 is the method for producing a composite plating film according to any one of claims 1 to 10, wherein a base material for forming the plating film and an ultrasonic sound source are used as the fine particles. Is immersed in a plating bath dispersed, and a standing wave sound field is formed on the surface of the base material by an ultrasonic sound source, while the fine particles are arranged by acoustic radiation force at the nodes of the standing wave sound field periodically present The plating film is grown from the surface of the base material.

請求項14記載の複合めっき被膜の製造方法は、前記超音波音源が振動板であり、前記定在波音場が、めっき基板面の上方にある振動板と反射板の組あるいは2つの振動板の組でめっき基板面に形成されるものであり、振動板の振動面、反射板の反射面および母材のめっき基板面が平面であり、めっき形成部の中心点9を通る振動面の法線1とめっき基板面のなす交差角度がθであり、振動面と対をなすもう一つの振動面または反射面の法線2とめっき基板面となす交差角度がθであり、法線1と法線2が異なり、法線1と法線2が同一平面上にあり、2つの振動面から励振される平面波または1つの振動面から励振される平面波と平面反射板から反射される平面波によって、めっき基板面上にλ/(2×cosθ)の間隔L(ただし、λ[m]はめっき浴中の超音波の波長であり、超音波の周波数f[Hz]の逆数とめっき浴中の超音波の音速c[m/s]の積で求められる)で、振動面とめっき基板面の交線方向へ直線状の節部を形成し、音響放射力をこの節部に向かわせることにより、節部に微粒子を直線上に配列させながら、母材表面からめっき被膜を形成させることを特徴とする。  The method of manufacturing a composite plating film according to claim 14, wherein the ultrasonic sound source is a diaphragm, and the standing wave sound field is a combination of a diaphragm and a reflector above the plating substrate surface or two diaphragms. The vibration surface of the vibration plate, the reflection surface of the reflection plate, and the plating substrate surface of the base material are flat surfaces, and are normal to the vibration surface passing through the center point 9 of the plating forming portion. The angle of intersection between 1 and the plated substrate surface is θ, and the angle of intersection between the normal line 2 of the other vibration surface or reflecting surface that makes a pair with the vibration surface and the plated substrate surface is θ, The line 2 is different, and the normal line 1 and the normal line 2 are on the same plane and are plated by a plane wave excited from two vibration planes or a plane wave excited from one vibration plane and a plane wave reflected from a plane reflector. Λ / (2 × cos θ) interval L on the substrate surface (where λ [m] It is the wavelength of the ultrasonic wave in the plating bath, and is obtained by the product of the reciprocal of the frequency f [Hz] of the ultrasonic wave and the sound velocity c [m / s] of the ultrasonic wave in the plating bath. By forming a straight node in the direction of the line of crossing and directing the acoustic radiation force toward this node, a plating film is formed from the surface of the base material while arranging fine particles on the node in a straight line And

請求項15記載の複合めっき被膜の製造方法は、前記交差角度θまたは前記超音波の周波数fを変化させることで、前記直線状の微粒子列の間隔Lを変化させることを特徴とする。  The method for producing a composite plating film according to claim 15 is characterized in that the interval L between the linear particle rows is changed by changing the intersecting angle θ or the frequency f of the ultrasonic waves.

請求項16記載の複合めっき被膜の製造方法は、振動面での振動速度を制御して、めっき基板面での音響放射力を調整し、微粒子列の幅を変化させることを特徴とする。  The method for producing a composite plating film according to claim 16 is characterized in that the vibration speed on the vibration surface is controlled to adjust the acoustic radiation force on the plating substrate surface, thereby changing the width of the fine particle row.

請求項17記載の複合めっき被膜の製造方法は、前記微粒子がダイヤモンド砥粒であり、前記音響放射力F[pN]がダイヤモンド砥粒の粒径D[μm]に対して、次の(1)式を満足することを特徴とする。
≧2.697×D−4.403×D−21.38 ・・・・(1)
The method for producing a composite plating film according to claim 17, wherein the fine particles are diamond abrasive grains, and the acoustic radiation force F R [pN] is the following (1 ) Is satisfied.
F R ≧ 2.697 × D 2 -4.403 × D-21.38 ···· (1)

請求項18記載の複合めっき被膜の製造方法は、2つの振動面または1つの振動面と平面反射板を2組以上用いて、めっき被膜形成面上に角度αで交わる直線状の節部を形成することを特徴とする。  The method of manufacturing a composite plating film according to claim 18, wherein two or more vibration surfaces or one vibration surface and two or more plane reflectors are used to form a linear node intersecting at an angle α on the plating film forming surface. It is characterized by doing.

請求項19記載の電着砥石の製造方法は、請求項13ないし請求項18のいずれかに記載の複合めっき被膜の製造方法を用いて、円板状の台金の側面及び外周面に、砥石の切れ刃として複合めっき被膜を形成し、電着砥石を製造することを特徴とする。  The method for producing an electrodeposited grindstone according to claim 19 uses the method for producing a composite plating film according to any one of claims 13 to 18 on a side surface and an outer peripheral surface of a disk-shaped base metal. A composite plating film is formed as a cutting edge, and an electrodeposition grindstone is produced.

請求項20記載の電着砥石の製造方法は、請求項13ないし請求項18のいずれかに記載の複合めっき被膜の製造方法を用いて、基板上に複合めっき被膜を形成し、基板から剥離し、複合めっき被膜のみからなる電鋳砥石を製造することを特徴とする。  A method for producing an electrodeposited grindstone according to claim 20 uses a method for producing a composite plating film according to any one of claims 13 to 18 to form a composite plating film on a substrate and to peel the composite plating film from the substrate. An electroforming grindstone consisting only of a composite plating film is manufactured.

請求項1記載の発明によれば、従来の方法ではマスクレスで配列することが困難であった数ナノメートルないし数十マイクロメートルの微粒子が直線状の微粒子列をなし、前記微粒子列が周期的に配置されることで、ナノ粒子あるいはマイクロ粒子の機能性を方向性あるいは周期性を持って発現する複合めっき被膜となる。  According to the first aspect of the present invention, fine particles of several nanometers to several tens of micrometers, which are difficult to arrange without a mask by the conventional method, form a linear fine particle array, and the fine particle array is periodic. As a result, the composite plating film that expresses the functionality of the nanoparticles or microparticles with directionality or periodicity is obtained.

請求項2記載の発明によれば、前記微粒子列の周期が0.05ないし2ミリメートルであることにより、周期によってナノ粒子あるいはマイクロ粒子の機能性の発現量や方向性の程度を変えた複合めっき被膜となる。  According to the second aspect of the present invention, the composite plating in which the functional particle expression level and the directionality of the nanoparticles or microparticles are changed according to the period when the period of the fine particle array is 0.05 to 2 millimeters. It becomes a film.

請求項3記載の発明によれば、周期的に配置された微粒子列が2組以上あり、前記複合めっき被膜中の同一平面内にあり、各微粒子列が角度αで配置されていることで、角度αで規定された2方向以上に機能の方向性を有する複合めっき被膜となる。さらに、角度αによって方向性の程度が制御された複合めっき被膜となる。  According to the invention of claim 3, there are two or more pairs of finely arranged fine particles arranged in the same plane in the composite plating film, and each fine particle row is arranged at an angle α. The composite plating film has a functional directionality in two or more directions defined by the angle α. Furthermore, a composite plating film in which the degree of directivity is controlled by the angle α is obtained.

請求項4記載の発明によれば、ナノ粒子あるいはマイクロ粒子による機能性を方向性あるいは周期性に発現させた複合めっき被膜が積層されてなり、各複合めっき層における前記微粒子の周期が同一であることにより、厚み方向にも同じ機能性を有する複合めっき被膜となる。  According to invention of Claim 4, the composite plating film which expressed the functionality by a nanoparticle or microparticle in directionality or periodicity is laminated | stacked, and the period of the said microparticles | fine-particles in each composite plating layer is the same. Thus, a composite plating film having the same functionality in the thickness direction is obtained.

請求項5記載の発明によれば、ナノ粒子あるいはマイクロ粒子による機能性を方向性あるいは周期性に発現させた複合めっき被膜が積層されてなり、各複合めっき層における前記微粒子の周期が異なることにより、厚み方向に異なる機能性を有する複合めっき被膜となる。  According to the invention of claim 5, the composite plating film in which the functionality of the nanoparticles or microparticles is expressed in the directionality or periodicity is laminated, and the period of the fine particles in each composite plating layer is different. A composite plating film having different functionality in the thickness direction is obtained.

請求項6記載の発明によれば、前記微粒子が、ダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子であることにより、機械的強度、摺動性、硬さ、弾性率、熱伝導性などの機能性が発現され、それらの機能性に方向性を有する複合めっき被膜となる。  According to the sixth aspect of the invention, the fine particles are fine particles of either diamond or cubic boron nitride, so that functions such as mechanical strength, slidability, hardness, elastic modulus, and thermal conductivity are provided. Therefore, a composite plating film having directionality in their functionality is exhibited.

請求項7記載の発明によれば、前記微粒子が、単層カーボンナノチューブ、多層カーボンナノチューブ、グラフェンのいずれかの微粒子であることにより、機械的強度、摺動性、硬さ、弾性率、熱伝導性、電気伝導性などの機能性が発現され、それらの機能性に方向性を有する複合めっき被膜となる。  According to the invention of claim 7, the fine particles are fine particles of single-walled carbon nanotubes, multi-walled carbon nanotubes, or graphene, so that mechanical strength, slidability, hardness, elastic modulus, heat conduction Functionality such as property and electrical conductivity is expressed, and a composite plating film having directionality in the functionality is obtained.

請求項8記載の発明によれば、前記微粒子が、めっき母相と合金を形成する金属微粒子であることにより、熱処理あるいは加工によって、合金層が形成され、機械的強度、摺動性、硬さ、弾性率、熱伝導性、電気伝導性、磁気特性などの機能性が発現され、それらの機能性に方向性を有する複合めっき被膜となる。  According to the eighth aspect of the invention, the fine particles are metal fine particles that form an alloy with the plating matrix phase, so that an alloy layer is formed by heat treatment or processing, and mechanical strength, slidability, and hardness are formed. Functionality such as elastic modulus, thermal conductivity, electrical conductivity, and magnetic properties is exhibited, and a composite plating film having directionality in the functionality is obtained.

請求項9記載の発明によれば、前記微粒子が、2種類以上の微粒子であり、ダイヤモンド、立方晶窒化ホウ素、単層カーボンナノチューブ、多層カーボンナノチューブ、グラフェン、金属微粒子から選ばれた微粒子であることにより、異なる2種類以上の機能性が発現され、それらの機能性に方向性を有する複合めっき被膜となる。  According to the invention described in claim 9, the fine particles are two or more kinds of fine particles, and are selected from diamond, cubic boron nitride, single-walled carbon nanotube, multi-walled carbon nanotube, graphene, and metal fine particle. Thus, two or more different functionalities are expressed, and a composite plating film having directionality in these functionalities is obtained.

請求項10記載の発明によれば、前記めっき被膜の母相がニッケル、銅、ニッケル合金、銅合金のいずれかであることにより、ニッケル、銅、ニッケル合金、銅合金の基本機能に、前記微粒子による機能を付与でき、それらの機能性に方向性を有する複合めっき被膜となる。  According to the invention described in claim 10, when the matrix phase of the plating film is any one of nickel, copper, nickel alloy, and copper alloy, the fine particles have a basic function of nickel, copper, nickel alloy, and copper alloy. Thus, a composite plating film having directionality in the functionality can be provided.

請求項11記載の発明によれば、前記微粒子に、少なくともダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子が含まれ、機械的強度、摺動性、硬さ、弾性率、熱伝導性などの機能性が発現され、それらの機能性に方向性を有する複合めっき被膜が円板状の台金の側面及び外周面に成膜され、砥石の切れ刃であることにより、前記機能性により切れ味が良い電着砥石となる。  According to the invention of claim 11, the fine particles include at least fine particles of diamond or cubic boron nitride, and functions such as mechanical strength, slidability, hardness, elastic modulus, thermal conductivity and the like. The composite plating film having the directivity in the functionality is formed on the side surface and the outer peripheral surface of the disk-shaped base metal, and is a sharpening blade due to the above-mentioned functionality by being a cutting edge of a grindstone It becomes an electrodeposition grindstone.

請求項12記載の発明によれば、前記微粒子に、少なくともダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子が含まれ、機械的強度、摺動性、硬さ、弾性率、熱伝導性などの機能性が発現され、それらの機能性に方向性を有する複合めっき被膜が自立膜であり、砥石の切れ刃であることにより、前記機能性により切れ味が良い電鋳砥石となる。  According to the twelfth aspect of the invention, the fine particles include at least fine particles of diamond or cubic boron nitride, and functions such as mechanical strength, slidability, hardness, elastic modulus, and thermal conductivity. The composite plating film having the properties and the directionality of the functionality is a self-supporting film, and the cutting edge of the grindstone results in an electroformed grindstone having a good sharpness due to the functionality.

請求項13記載の発明によれば、めっき被膜を形成する母材と超音波音源を、前記微粒子を分散させためっき浴に浸漬させ、超音波音源によって母材表面に定在波音場を形成し、周期的に存在する定在波音場の節部に、音響放射力によって前記微粒子を配列させながら、母材表面からめっき被膜を成長させることにより、前記微粒子が周期的に存在する複合めっき被膜を形成することができる。  According to the invention of claim 13, a base material for forming a plating film and an ultrasonic sound source are immersed in a plating bath in which the fine particles are dispersed, and a standing wave sound field is formed on the surface of the base material by the ultrasonic sound source. The composite coating film in which the fine particles periodically exist is grown by growing the plating film from the surface of the base material while arranging the fine particles by acoustic radiation force at the nodes of the standing wave sound field that exists periodically. Can be formed.

請求項14記載の発明によれば、複合めっき被膜の製造方法において、前記超音波音源が振動板であり、前記定在波音場が、めっき基板面の上方にある振動板と反射板の組あるいは2つの振動板の組でめっき基板面に形成されるものであり、振動板の振動面、反射板の反射面および母材のめっき基板面が平面であり、めっき形成部の中心点9を通る振動面の法線1とめっき基板面のなす交差角度がθであり、振動面と対をなすもう一つの振動面または反射面の法線2とめっき基板面となす交差角度がθであり、法線1と法線2が異なり、法線1と法線2が同一平面上にあり、2つの振動面から励振される平面波または1つの振動面から励振される平面波と平面反射板から反射される平面波によって、めっき基板面上にλ/(2×cosθ)の間隔L(ただし、λ[m]はめっき浴中の超音波の波長であり、超音波の周波数f[Hz]の逆数とめっき浴中の超音波の音速c[m/s]の積で求められる)で、振動面とめっき基板面の交線方向へ直線状の節部を形成し、音響放射力をこの節部に向かわせることにより、節部に微粒子を直線上に配列させながら、母材表面からめっき被膜を形成することによって、微粒子を直線上に配列した状態でめっき被膜に取り込み、機能に周期性を有する複合めっき被膜を形成することができる。  According to the invention of claim 14, in the method of manufacturing a composite plating film, the ultrasonic sound source is a vibration plate, and the standing wave sound field is a set of a vibration plate and a reflection plate above the plating substrate surface or A set of two diaphragms is formed on the plating substrate surface, and the vibration surface of the diaphragm, the reflection surface of the reflection plate, and the plating substrate surface of the base material are flat and pass through the center point 9 of the plating forming portion. The crossing angle between the normal 1 of the vibration surface and the plating substrate surface is θ, and the crossing angle between the other vibration surface or the normal 2 of the reflecting surface and the plating substrate surface is θ, Normal line 1 and normal line 2 are different, and normal line 1 and normal line 2 are on the same plane and are reflected from a plane wave excited by two vibrating surfaces or a plane wave excited from one vibrating surface and a plane reflector. Λ / (2 × cos θ) on the plated substrate surface by plane waves L (where λ [m] is the wavelength of the ultrasonic wave in the plating bath, and is determined by the product of the reciprocal of the ultrasonic frequency f [Hz] and the sound velocity c [m / s] of the ultrasonic wave in the plating bath. ), Forming a straight nodal portion in the direction of the intersection of the vibration surface and the plated substrate surface, and by directing the acoustic radiation force toward this nodal portion, the fine particles are arranged in a straight line on the nodal portion surface. By forming a plating film from the above, it is possible to form a composite plating film having periodicity in function by incorporating fine particles into the plating film in a state of being arranged in a straight line.

請求項15記載の発明によれば、複合めっき被膜の製造方法において、前記交差角度θまたは前記超音波の周波数fを変化させることで、前記直線状の微粒子列の間隔Lを変化させることによって、機能性の周期が異なる複合めっき被膜を形成することができる。  According to the invention of claim 15, in the method of manufacturing a composite plating film, by changing the interval L between the linear fine particle rows by changing the crossing angle θ or the frequency f of the ultrasonic wave, Composite plating films having different functional periods can be formed.

請求項16記載の発明によれば、振動面での振動速度を制御して、めっき基板面での音響放射力を調整し、微粒子列の幅を変化させることができる。振動速度を上げて、前記音響放射力を増加させ、微粒子列の幅を狭く、逆に振動速度を下げて、前記音響放射力を減少させ、微粒子列の幅を広くすることができる。  According to the sixteenth aspect of the present invention, the vibration speed on the vibration surface can be controlled to adjust the acoustic radiation force on the plating substrate surface, thereby changing the width of the fine particle row. By increasing the vibration speed, the acoustic radiation force can be increased, and the width of the particle array can be narrowed, and conversely, the vibration speed can be decreased, the acoustic radiation force can be decreased, and the width of the particle array can be increased.

請求項17記載の発明によれば、ダイヤモンド砥粒の整列において、前記音響放射力F[pN]がダイヤモンド砥粒の粒径D[μm]に対して、次の(1)式を満足することで異なる粒径のダイヤモンド砥粒を動かすことができ、ダイヤモンド砥粒を整列させた複合めっき被膜を作製することができる。
≧2.697×D−4.403×D−21.38 ・・・・(1)
According to the seventeenth aspect of the present invention, in the diamond abrasive grain alignment, the acoustic radiation force F R [pN] satisfies the following expression (1) with respect to the diamond abrasive grain diameter D [μm]. Thus, diamond abrasive grains having different particle diameters can be moved, and a composite plating film in which diamond abrasive grains are aligned can be produced.
F R ≧ 2.697 × D 2 -4.403 × D-21.38 ···· (1)

請求項18記載の発明によれば、複合めっき被膜の製造方法において、2つの振動面または1つの振動面と平面反射板を2組以上用いて、めっき被膜形成面上に角度αで交わる直線状の節部を形成することによって、角度αで規定された2方向以上に機能の方向性を有する複合めっき被膜を形成することができる。さらに、角度αによって方向性の程度が制御された複合めっき被膜を形成することができる。  According to the invention of claim 18, in the method of manufacturing a composite plating film, two vibration surfaces or two vibration surfaces and two or more sets of planar reflectors are used, and a linear shape intersecting the plating film forming surface at an angle α. By forming the nodal portion, it is possible to form a composite plating film having functional directionality in two or more directions defined by the angle α. Furthermore, a composite plating film whose degree of directivity is controlled by the angle α can be formed.

請求項19記載の発明によれば、電着砥石の製造方法において、前記複合めっき被膜の製造方法を用いて、円板状の台金の側面及び外周面に、砥石の切れ刃として複合めっき被膜を形成することで、微粒子の複合化による機能性が方向性または周期性を有する電着砥石を製造することができる。  According to the nineteenth aspect of the present invention, in the electrodeposition grindstone manufacturing method, the composite plating film is used as a cutting edge of the grindstone on the side surface and the outer peripheral surface of the disk-shaped base metal by using the composite plating film manufacturing method. By forming the electrodeposition wheel, it is possible to produce an electrodeposition grindstone whose functionality due to the combination of fine particles has directionality or periodicity.

請求項20記載の発明によれば、電鋳砥石の製造方法において、前記複合めっき被膜の製造方法を用いて、基板上に複合めっき被膜を形成し、基板から剥離し、微粒子の複合化による機能性が方向性または周期性を有する複合めっき被膜のみからなる電鋳砥石を製造することができる。  According to the invention of claim 20, in the method of manufacturing an electroforming grindstone, the composite plating film is formed on the substrate using the method of manufacturing the composite plating film, peeled off from the substrate, and the function by combining fine particles It is possible to manufacture an electroforming grindstone composed only of a composite plating film having a directionality or periodicity.

複数の硬質砥粒を有する薄型砥石において、規則的に硬質砥粒の集中度を制御し、寿命が長く、切断面の精度が高い薄型砥石およびその製造方法に関する発明の効果を以下にまとめる。本発明の薄型砥石の製造方法は、外部の超音波音源と反射板を用いて、薄型砥石を形成する基板に外部より斜めに超音波(平面波)を入射させ、反射板からの反射波を用いて、基板近傍の液中に音圧分布を形成し、音圧の低い部分に硬質砥粒を集中させ、めっきにより硬質砥粒を固着させる方法である。従来技術では、規則的に硬質砥粒を配置するために、予め微細な穴を基板に加工した上で、超音波振動により砥粒をその穴に落とし込む方法が提案されているが、穴加工など基板の準備のために、時間とコストがかかるという点と、基本的には砥粒層が単層でなければならないという課題があった。本発明は、基板に加工する必要がなく、めっき層が成長した後も砥粒の配置を制御できるため、低コストでかつ砥粒層が多層のものにも対応できる。さらに、超音波の入射角度や周波数を変えることにより集中度の粗密の間隔を任意に変えることができる。さらに、振動板の屈曲振動を用いた場合に比べ、外部音源を用いることにより原理的に面内、面直方向に高砥粒集中度層を微細にパターニング(積層)でき、さらにパターニングの間隔により砥粒集中度の制御が厳密にできるという効果がある。  In the thin grindstone having a plurality of hard abrasive grains, the effects of the invention relating to the thin grindstone that regularly controls the concentration degree of the hard abrasive grains, has a long life, and has a high accuracy of the cut surface and its manufacturing method are summarized below. The method for producing a thin grindstone of the present invention uses an external ultrasonic sound source and a reflector to make an ultrasonic wave (plane wave) enter the substrate on which the thin grindstone is formed obliquely from the outside, and uses a reflected wave from the reflector. In this method, sound pressure distribution is formed in the liquid in the vicinity of the substrate, hard abrasive grains are concentrated on a portion where the sound pressure is low, and the hard abrasive grains are fixed by plating. In the prior art, in order to regularly arrange hard abrasive grains, a method of processing fine holes in a substrate in advance and dropping the abrasive grains into the holes by ultrasonic vibration has been proposed. There are problems that it takes time and cost to prepare the substrate and that the abrasive layer must basically be a single layer. According to the present invention, it is not necessary to process the substrate, and the arrangement of the abrasive grains can be controlled even after the plating layer is grown. Further, by changing the incident angle and frequency of the ultrasonic wave, the density density interval can be arbitrarily changed. Furthermore, in comparison with the case of using the flexural vibration of the diaphragm, in principle, a high abrasive concentration layer can be finely patterned (laminated) in the in-plane and perpendicular directions by using an external sound source, and further, depending on the patterning interval. There is an effect that it is possible to strictly control the concentration of abrasive grains.

以下、図を参照して本発明を説明する。この図および説明は単なる一例に過ぎず、本発明の全般的な概念を制限するものではない。
本発明の複合めっき被膜の形成方法における1組の外部音源および反射板を反射角θで配置した構成を示す断面概略図である。 本発明の複合めっき被膜の形成方法における2組の外部音源および反射板を角度αで配置した構成を示す概略図(基板を上方から見た図)である。 本発明の複合めっき被膜の形成方法における、有限要素法により解析した基板近傍での音圧分布および音響放射力の断面図である。 本発明の複合めっき被膜の形成方法により、周期的に配置した平均粒径15μmのダイヤモンド砥粒の微粒子列の表面写真である。図4(a)、図4(b)は、それぞれ音圧10.7kPa、16.6kPaで形成した微粒子列である。 本発明の複合めっき被膜の形成方法により、周期的に配置した平均粒径16μmのアルミナ砥粒の微粒子列の間隔と反射角θの関係である。 本発明の複合めっき被膜の形成方法により周期的に配置した平均粒径7.5、15、50μmのダイヤモンド砥粒の微粒子列の幅と基板近傍の音圧の関係である。 本発明の複合めっき被膜の形成方法により周期的に配置した平均粒径7.5、15、50μmのダイヤモンド砥粒の微粒子列の幅と微粒子列のエッジ部における基板表面で節に向かう音響放射力の関係である。 本発明の複合めっき被膜の形成方法により周期的に配置したダイヤモンド砥粒の粒径に対して砥粒の配列に必要な基板表面で節に向かう音響放射力の関係である。 本発明の周期的に配置した平均粒径15μmのダイヤモンド砥粒の微粒子列の含む複合めっき被膜の電子顕微鏡写真である。 図9に示した本発明の周期的に配置した平均粒径15μmのダイヤモンド砥粒の微粒子列の含む複合めっき被膜の熱拡散率の異方性である。 本発明の面内方向、面直方向に周期性を有する電鋳砥石の断面図である。 図11(a)および図11(b)は、それぞれ本発明の電鋳砥石を示した図10の中のA−A’断面図およびB−B’断面図である。
The present invention will be described below with reference to the drawings. This diagram and description are merely examples and do not limit the general concept of the invention.
It is the cross-sectional schematic which shows the structure which has arrange | positioned 1 set of external sound sources and reflecting plates by reflection angle (theta) in the formation method of the composite plating film of this invention. It is the schematic (figure which looked at the board | substrate from the top) which shows the structure which has arrange | positioned two sets of external sound sources and reflectors in angle (alpha) in the formation method of the composite plating film of this invention. It is sectional drawing of the sound pressure distribution and acoustic radiation force in the board | substrate vicinity analyzed by the finite element method in the formation method of the composite plating film of this invention. It is the surface photograph of the fine particle row | line | column of the diamond abrasive grain with an average particle diameter of 15 micrometers arrange | positioned periodically by the formation method of the composite plating film of this invention. 4 (a) and 4 (b) are fine particle arrays formed with sound pressures of 10.7 kPa and 16.6 kPa, respectively. The relationship between the interval of fine particle rows of alumina abrasive grains having an average particle diameter of 16 μm arranged periodically and the reflection angle θ by the method for forming a composite plating film of the present invention. It is the relationship between the width of fine particle rows of diamond abrasive grains having an average particle diameter of 7.5, 15, and 50 μm periodically arranged by the method of forming a composite plating film of the present invention and the sound pressure near the substrate. The width of fine particle rows of diamond abrasive grains having an average particle diameter of 7.5, 15, and 50 μm periodically arranged by the method of forming a composite plating film of the present invention and the acoustic radiation force toward the nodes on the substrate surface at the edge portions of the fine particle rows It is a relationship. It is the relationship of the acoustic radiation force which goes to a node on the substrate surface required for the arrangement | sequence of an abrasive grain with respect to the particle diameter of the diamond abrasive grain periodically arrange | positioned with the formation method of the composite plating film of this invention. It is an electron micrograph of the composite plating film containing the fine particle row | line | column of the diamond abrasive grain of the average particle diameter of 15 micrometers arrange | positioned periodically of this invention. FIG. 10 shows the anisotropy of the thermal diffusivity of the composite plating film included in the fine particle rows of diamond abrasive grains having an average particle diameter of 15 μm arranged periodically according to the present invention shown in FIG. It is sectional drawing of the electroformed grindstone which has periodicity in the in-plane direction of this invention and a surface orthogonal | vertical direction. FIG. 11A and FIG. 11B are an AA ′ sectional view and a BB ′ sectional view in FIG. 10 showing the electroformed grinding wheel of the present invention, respectively.

以下、本発明の好ましい実施例を、添付した図面を参照して詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1において、x−y面に配置しためっき基板3表面上に、振動板1aを有する超音波振動子1と反射板2により、定在波音場を発生させる。超音波振動子1は、振動板1aの法線とめっき基板3がx−z面上で角度θ[°]となるように固定する。反射板2は、反射板2の法線とめっき基板3がx−z面上で角度θ[°]となり、かつ振動板1aと反射板2がx−z面上で角度180°−2θとなるように固定する。振動板1aから照射された超音波平面波は、超音波伝搬方向18に沿ってめっき液4を直進し、めっき基板3にて角度θで反射した後に、反射板で180°反射する。この進行波と反射波により、基板上に、周期的で、超音波の進行方向と垂直な節線を有する定在波音場が発生する。めっき液中に分散させた微粒子は、節線に向かう音響放射力により、その節線上に整列し、微粒子列5を形成する。この微粒子列をめっき基板3表面から成長させるめっき被膜によって埋め込むことで方向性を有する複合めっき被膜を形成することができる。反射板2は、振動板に置き換えても良い。  In FIG. 1, a standing wave sound field is generated on the surface of the plating substrate 3 arranged on the xy plane by the ultrasonic vibrator 1 having the vibration plate 1 a and the reflection plate 2. The ultrasonic vibrator 1 is fixed so that the normal line of the vibration plate 1a and the plating substrate 3 are at an angle θ [°] on the xz plane. Reflector 2 has a normal of reflector 2 and plated substrate 3 at an angle θ [°] on the xz plane, and diaphragm 1a and reflector 2 have an angle 180 ° -2θ on the xz plane. Fix to be. The ultrasonic plane wave irradiated from the vibration plate 1a travels straight through the plating solution 4 along the ultrasonic wave propagation direction 18, is reflected by the plating substrate 3 at an angle θ, and is then reflected by 180 ° by the reflecting plate. The traveling wave and the reflected wave generate a standing wave sound field having a nodal line that is periodic and perpendicular to the traveling direction of the ultrasonic wave on the substrate. The fine particles dispersed in the plating solution are aligned on the nodal line by the acoustic radiation force toward the nodal line to form the fine particle row 5. By embedding this fine particle row with a plating film grown from the surface of the plating substrate 3, a composite plating film having directionality can be formed. The reflector 2 may be replaced with a diaphragm.

図1の構成で振動板とめっき基板面のめっき形成部の中心点9との距離Ltを60mm、反射板とめっき形成部の中心点9との距離Lrを40mm、反射角θを45°として有限要素法解析によって求めた音圧分布と音響放射力を示した図3において、音圧の節がめっき基板3上にλ/(2×cosθ)の間隔10で存在する。ただし、λ[m]はめっき浴中の超音波の波長であり、超音波の周波数f[Hz]の逆数とめっき浴中の超音波の音速c[m/s]の積で求められる。めっき基板上で、音響放射力8は音圧の腹7から音圧の節6に向かって働き、音圧の節6上に微粒子を集めることができる。音圧の節の間隔10は、周波数fおよび反射角θで変えることができる。  In the configuration of FIG. 1, the distance Lt between the diaphragm and the central point 9 of the plating formation portion on the plating substrate surface is 60 mm, the distance Lr between the reflection plate and the central point 9 of the plating formation portion is 40 mm, and the reflection angle θ is 45 °. In FIG. 3 showing the sound pressure distribution and the acoustic radiation force obtained by the finite element method analysis, sound pressure nodes exist on the plated substrate 3 at an interval 10 of λ / (2 × cos θ). However, λ [m] is the wavelength of the ultrasonic wave in the plating bath, and is obtained by the product of the reciprocal of the frequency f [Hz] of the ultrasonic wave and the sound velocity c [m / s] of the ultrasonic wave in the plating bath. On the plated substrate, the acoustic radiation force 8 works from the sound pressure antinode 7 toward the sound pressure node 6, and can collect fine particles on the sound pressure node 6. The interval 10 between the nodes of the sound pressure can be changed by the frequency f and the reflection angle θ.

超音波の周波数は、超音波の減衰を考慮し、高周波数側は20MHz程度(波長0.075mm程度)までが好ましく、超音波の回折の影響を考慮し、低周波側は1MHz程度(波長1.5mm程度)までが好ましい。反射角θは、振動板1a、反射板2、めっき基板3の干渉を考慮し、20°〜70°程度が好ましい。この周波数範囲および角度範囲において、微粒子列は0.05〜2mmの間隔(周期)で配列することができる。  The ultrasonic frequency is preferably about 20 MHz (wavelength of about 0.075 mm) on the high frequency side in consideration of attenuation of the ultrasonic wave, and about 1 MHz (wavelength 1) on the low frequency side in consideration of the influence of ultrasonic diffraction. Up to about 5 mm). The reflection angle θ is preferably about 20 ° to 70 ° in consideration of interference between the vibration plate 1a, the reflection plate 2, and the plating substrate 3. In this frequency range and angle range, the fine particle rows can be arranged at intervals (periods) of 0.05 to 2 mm.

音響放射力は、音圧の節から、節の間隔の4分の1の位置で最大値を取る。さらに、実験的検証から、配列できる最大の砥粒のサイズは、節の間隔の10分の1程度である。  The acoustic radiation force takes a maximum value from the node of the sound pressure at a position that is a quarter of the interval between the nodes. Furthermore, from the experimental verification, the maximum size of the abrasive grains that can be arranged is about one-tenth of the knot spacing.

図1の構成で行った微粒子配列の光学顕微鏡写真を図4(a)と図4(b)に示す。振動子は、振動板直径18mm、共振周波数1.6MHzの振動子(本多電子株式会社製HM−1630)を用い、基板と反射板は、厚さ10mmのSUS304鋼板を用いた.振動板と基板の距離Ltを60mm、反射板と基板との距離Lrを40mm、反射角θを45°とし、実験装置を水で満たし、平均粒径15μmのダイヤモンド砥粒の整列実験を行った。図4(a)と図4(b)は、基板近傍の音圧の腹部での音圧10.7kPaと音圧22.4kPaの条件で行った実験結果である。音圧は、音圧による水の密度変化を光路長変化としてレーザードップラー振動計で測定した。音圧が低い10.7kPaでは、幅の広い砥粒列となった。一方、音圧が高い16.6kPaにおいては、音圧が低い場合と比較して、幅の狭い砥粒列となった。  4A and 4B show optical micrographs of the fine particle arrangement performed in the configuration of FIG. A vibrator (diameter HM-1630 manufactured by Honda Electronics Co., Ltd.) having a diaphragm diameter of 18 mm and a resonance frequency of 1.6 MHz was used as the vibrator, and a SUS304 steel plate having a thickness of 10 mm was used as the substrate and the reflector. The distance Lt between the vibration plate and the substrate was 60 mm, the distance Lr between the reflection plate and the substrate was 40 mm, the reflection angle θ was 45 °, the experiment apparatus was filled with water, and the diamond abrasive grains having an average particle diameter of 15 μm were aligned. . 4 (a) and 4 (b) show the results of experiments conducted under conditions of a sound pressure of 10.7 kPa and a sound pressure of 22.4 kPa at the abdomen of sound pressure near the substrate. The sound pressure was measured with a laser Doppler vibrometer using the change in water density due to the sound pressure as the change in optical path length. At a low sound pressure of 10.7 kPa, a wide abrasive grain array was obtained. On the other hand, at 16.6 kPa where the sound pressure was high, a narrower abrasive grain row was formed compared to the case where the sound pressure was low.

図1の構成で配列を行った微粒子列の間隔と反射角θの関係を図5に示す。砥粒列の間隔はデジタルマイクロスコープを用いて測定した。振動子は、振動板直径18mm、共振周波数1.6MHzの振動子(本多電子株式会社製HM−1630)を用い、基板と反射板は、厚さ10mmのSUS304鋼板を用いた。振動板と基板の距離Ltを60mm、反射板と基板との距離Lrを40mm、反射角θを20°〜65°とし、実験装置を水で満たし、平均粒径16μmのアルミナ砥粒の整列実験を行った。微粒子列の間隔は、反射角θによって大きくなり、その間隔はλ/(2×cosθ)による計算値とほぼ一致した。  FIG. 5 shows the relationship between the interval between the fine particle arrays arranged in the configuration of FIG. 1 and the reflection angle θ. The interval between the rows of abrasive grains was measured using a digital microscope. A vibrator (diameter HM-1630 manufactured by Honda Electronics Co., Ltd.) having a diaphragm diameter of 18 mm and a resonance frequency of 1.6 MHz was used as the vibrator, and a SUS304 steel plate having a thickness of 10 mm was used as the substrate and the reflector. The distance Lt between the diaphragm and the substrate is 60 mm, the distance Lr between the reflector and the substrate is 40 mm, the reflection angle θ is 20 ° to 65 °, the experimental apparatus is filled with water, and the alumina abrasive grains are aligned with an average particle diameter of 16 μm. Went. The interval between the fine particle rows was increased by the reflection angle θ, and the interval substantially coincided with the calculated value by λ / (2 × cos θ).

図1の構成で配列した微粒子列の幅とめっき基板近傍の音圧との関係を図6に示す。砥粒列の幅はデジタルマイクロスコープを用いて測定した。振動子は、振動板直径18mm、共振周波数1.6MHzの振動子(本多電子株式会社製HM−1630)を用い、基板と反射板は、厚さ10mmのSUS304鋼板を用いた。振動板と基板の距離Ltを60mm、反射板と基板との距離Lrを40mm、反射角θを45°とし、実験装置を水で満たし、平均粒径7.5、15、50μmのダイヤモンド砥粒の整列実験を行った。図6より、音圧が高いほど微粒子列の幅が狭くなること、ダイヤモンド砥粒の径が小さいほど列の幅が狭くなることが分かる。つまり、微粒子列の幅は、音圧によって決まる。さらに、音圧を制御する振動板の振動振幅により決定できるといえる。  FIG. 6 shows the relationship between the width of the fine particle array arranged in the configuration of FIG. 1 and the sound pressure in the vicinity of the plating substrate. The width of the abrasive grain row was measured using a digital microscope. A vibrator (diameter HM-1630 manufactured by Honda Electronics Co., Ltd.) having a diaphragm diameter of 18 mm and a resonance frequency of 1.6 MHz was used as the vibrator, and a SUS304 steel plate having a thickness of 10 mm was used as the substrate and the reflector. Diamond abrasive grains having an average particle diameter of 7.5, 15, and 50 μm, with the distance Lt between the diaphragm and the substrate being 60 mm, the distance Lr between the reflector and the substrate being 40 mm, the reflection angle θ being 45 °, and the experimental apparatus being filled with water. An alignment experiment was conducted. From FIG. 6, it can be seen that the higher the sound pressure, the narrower the row of fine particles, and the smaller the diameter of the diamond abrasive grains, the narrower the row width. That is, the width of the fine particle row is determined by the sound pressure. Further, it can be determined by the vibration amplitude of the diaphragm that controls the sound pressure.

図1の構成で配列した微粒子列のエッジ部での音響放射力と微粒子列の幅の関係を図7に示す。砥粒列の端における音響放射力は、砥粒を動かすために必要な音響放射力を示しているといえる。エッジ部での音響放射力は、振動板からは完全な平面波が照射され、砥粒が存在しない仮定で音圧と粒子速度の分布を有限要素法により解析した。解析では、音圧の計算値が、実測値と同じになるように、振動子端面での振動速度を設定した。砥粒に加わる音響放射力は、砥粒の中心部での音圧と粒子速度、砥粒の体積から計算した。体積は、砥粒が完全な球であると仮定して計算した。実験条件は、図6の実験と同様である。平均粒径7.5μm、15μm、50μmのダイヤモンド砥粒において、それぞれの砥粒列の端における音響放射力が約4.7×10−11N、約5.5×10−10N、約6.5×10−9Nでほぼ一定値を示した。これらの値が、それぞれの砥粒を動かすために必要な音響放射力である。FIG. 7 shows the relationship between the acoustic radiation force at the edge portion of the particle array arranged in the configuration of FIG. 1 and the width of the particle array. It can be said that the acoustic radiation force at the end of the abrasive grain row indicates the acoustic radiation force necessary to move the abrasive grains. The acoustic radiation force at the edge portion was analyzed by the finite element method on the distribution of sound pressure and particle velocity under the assumption that a perfect plane wave was irradiated from the diaphragm and no abrasive grains were present. In the analysis, the vibration speed at the end face of the vibrator was set so that the calculated value of the sound pressure was the same as the actually measured value. The acoustic radiation force applied to the abrasive grains was calculated from the sound pressure and particle velocity at the center of the abrasive grains, and the volume of the abrasive grains. The volume was calculated assuming that the abrasive grains were perfect spheres. The experimental conditions are the same as in the experiment of FIG. In diamond abrasive grains having an average grain size of 7.5 μm, 15 μm, and 50 μm, the acoustic radiation force at the end of each abrasive grain row is about 4.7 × 10 −11 N, about 5.5 × 10 −10 N, about 6 .5 × 10 −9 N showed a substantially constant value. These values are the acoustic radiation forces required to move each abrasive grain.

図8に、前述の砥粒を動かすために必要な音響放射力とダイヤモンド砥粒の粒径との関係を示す。前記音響放射力F[pN]がダイヤモンド砥粒の粒径D[μm]に対して、次の(1)式を満足するときに、砥粒を動かすことができることが分かる。
≧2.697×D−4.403×D−21.38 ・・・・(1)
FIG. 8 shows the relationship between the acoustic radiation force necessary to move the above-mentioned abrasive grains and the grain diameter of the diamond abrasive grains. It can be seen that the abrasive can be moved when the acoustic radiation force F R [pN] satisfies the following equation (1) with respect to the particle size D [μm] of the diamond abrasive.
F R ≧ 2.697 × D 2 -4.403 × D-21.38 ···· (1)

図2に、2組の振動子1および反射板2をx−y面で角度αで配置した構成の概略図(基板を上方から見た図)を示す。2組の振動子1および反射板のx−z面で構成はそれぞれ図1に等しい。このような構成では、角度αで交わる2種類の微粒子列5をめっき基板3上に形成することができる。  FIG. 2 shows a schematic diagram (a view of the substrate viewed from above) of a configuration in which two sets of the vibrator 1 and the reflecting plate 2 are arranged at an angle α on the xy plane. The configurations of the two vibrators 1 and the xz plane of the reflector are the same as those in FIG. With such a configuration, two types of fine particle arrays 5 that intersect at an angle α can be formed on the plating substrate 3.

図9に、周期的に配置した平均粒径15μmのダイヤモンド砥粒の微粒子列を含む複合めっき被膜の電子顕微鏡写真を示す。めっき処理は、スルファミン酸ニッケル浴(浴組成:Ni(NHSO・4HO:500g/L HBO:33g/L)にダイヤモンド砥粒(平均粒径15μm)を分散させためっき浴を用い、浴温度50℃、電流密度5A/dmで形成した。ダイヤモンド砥粒が列を形成したまま、ニッケルめっき被膜に取り込まれていることが確認できる。FIG. 9 shows an electron micrograph of a composite plating film including a fine particle array of diamond abrasive grains having an average particle diameter of 15 μm arranged periodically. In the plating treatment, diamond abrasive grains (average particle diameter of 15 μm) are dispersed in a nickel sulfamate bath (bath composition: Ni (NH 2 SO 3 ) 2 .4H 2 O: 500 g / L H 3 BO 3 : 33 g / L). The plating bath was formed at a bath temperature of 50 ° C. and a current density of 5 A / dm 2 . It can be confirmed that the diamond abrasive grains are taken into the nickel plating film while forming a row.

図9に示した周期的に配置した平均粒径15μmのダイヤモンド砥粒の微粒子列の含む複合めっき被膜の自立膜を作製し、レーザーフラッシュ法による熱拡散率測定を行った。図10にダイヤモンド砥粒の微粒子列の方向とそれに直交する方向の熱拡散率を示す。図10より、微粒子複合による機能性の一つである熱伝導性に異方性があることが確認できる。このように機能性微粒子を方向性をもって配置することによって、複合めっき被膜の機能性に方向性を持たせることができる。  A self-supporting film of a composite plating film including fine particles of diamond abrasive grains having an average particle diameter of 15 μm arranged periodically as shown in FIG. 9 was prepared, and thermal diffusivity measurement was performed by a laser flash method. FIG. 10 shows the thermal diffusivity in the direction of the diamond abrasive grains and the direction perpendicular thereto. From FIG. 10, it can be confirmed that there is anisotropy in thermal conductivity, which is one of the functions of the composite of fine particles. Thus, by arranging the functional fine particles with directivity, the functionality of the composite plating film can be provided with directivity.

図11に、本発明の複合めっき被膜を用いて面内方向、面直方向に周期性を有する電鋳砥石の断面図を示している。図12(a)および図12(b)は、それぞれ本発明の電鋳砥石を示した図11の中のA−A’断面図およびB−B’断面図を示している。図12(a)および図12(b)に示す複合めっき層は、それぞれ角度90°に直交するダイヤモンド砥粒、立方晶窒化ホウ素砥粒などの砥粒列を有しており、この角度や砥粒列の本数は用途に応じて定めることができる。砥石の場合、面内方向の機能の方向性は不要であるが、この周期的な配置によって砥粒集中度を制御でき、さらに規則的な配置による切りくず除去、チップポケットの拡大などの効果が期待できる。図12(a)に示す複合めっき層は砥粒列の幅が狭く、砥粒集中度が高い。図12(b)に示す複合めっき層は砥粒列の幅が広く、砥粒集中度が低い。面直方向へ周期性を持たせることにより、加工に作用する砥石側面16の両面とその砥石側面の層に挟まれるボディー層にそれぞれ別の機能を持たせる、機能の度合いを変えることが可能である。たとえば、砥粒集中度を変えることで、砥石側面では切れ味を優先し、ボディー層では砥石強度を優先する構成の電鋳砥石を作製できる。  FIG. 11 shows a cross-sectional view of an electroforming grindstone having periodicity in the in-plane direction and the perpendicular direction using the composite plating film of the present invention. FIGS. 12A and 12B show an A-A ′ sectional view and a B-B ′ sectional view in FIG. 11 showing the electroformed grinding wheel of the present invention, respectively. The composite plating layer shown in FIG. 12A and FIG. 12B has a row of abrasive grains such as diamond abrasive grains and cubic boron nitride abrasive grains orthogonal to each other at an angle of 90 °. The number of grain rows can be determined according to the application. In the case of a grindstone, the directionality of the function in the in-plane direction is unnecessary, but this periodic arrangement can control the concentration of abrasive grains, and there are effects such as chip removal by regular arrangement and expansion of the chip pocket. I can expect. The composite plating layer shown in FIG. 12A has a narrow abrasive grain width and a high degree of abrasive grain concentration. The composite plating layer shown in FIG. 12B has a wide abrasive grain width and a low degree of abrasive grain concentration. By giving periodicity in the direction perpendicular to the surface, it is possible to change the degree of function by giving different functions to the body layer sandwiched between the grinding wheel side surface 16 and the grinding wheel side surface layer acting on the processing. is there. For example, by changing the concentration of abrasive grains, it is possible to produce an electroformed grinding wheel having a configuration in which the sharpness is given priority on the side of the grinding wheel and the strength of the grinding stone is given priority in the body layer.

1 超音波振動子
1a 超音波振動板
2 反射板
3 めっき基板
4 めっき液
5 微粒子列
5a 微粒子
6 音圧の節
7 音圧の腹
8 音響放射力
9 めっき形成部の中心点
10 音圧の節の周期(間隔)
11 めっき被膜
12 高濃度砥粒層
13 低濃度砥粒層
14 砥石外周部
15 砥石内周部
16 砥石側面
17 砥石回転中心
18 超音波伝搬方向(振動板もしくは反射板の法線方向)
DESCRIPTION OF SYMBOLS 1 Ultrasonic vibrator 1a Ultrasonic vibrating plate 2 Reflector 3 Plating substrate 4 Plating solution 5 Fine particle row 5a Fine particle 6 Sound pressure node 7 Sound pressure antinode 8 Acoustic radiation force 9 Center point of plating forming part 10 Sound pressure node Period (interval)
DESCRIPTION OF SYMBOLS 11 Plating film 12 High concentration abrasive grain layer 13 Low concentration abrasive grain layer 14 Grinding wheel outer peripheral part 15 Grinding wheel inner peripheral part 16 Grinding wheel side face 17 Grinding wheel rotation center 18 Ultrasonic propagation direction (normal direction of a vibration board or a reflecting plate)

Claims (20)

数ナノメートルないし数十マイクロメートルの微粒子が分散した複合めっき被膜において、直線状の微粒子列を有し、その微粒子列が周期的に配置された複合めっき層を有することを特徴とする複合めっき被膜  A composite plating film in which fine particles of several nanometers to several tens of micrometers are dispersed, the composite plating film having a linear fine particle array, and having a composite plating layer in which the fine particle array is periodically arranged 前記微粒子列の周期が0.05ないし2ミリメートルであることを特徴とする請求項1記載の複合めっき被膜  2. The composite plating film according to claim 1, wherein a period of the fine particle row is 0.05 to 2 millimeters. 周期的に配置された微粒子列が2組以上あり、前記複合めっき被膜中の同一平面内にあり、各微粒子列が角度αで配置されていることを特徴とする請求項1または請求項2いずれかに記載の複合めっき被膜  3. Either one of claim 1 or claim 2, wherein there are two or more pairs of fine particles arranged periodically, which are in the same plane in the composite plating film, and each fine particle row is arranged at an angle α. Composite plating film according to 前記微粒子列が周期的に配置された複合めっき層が積層されてなり、各複合めっき層における前記周期が同一であることを特徴とする請求項1ないし請求項3のいずれかに記載の複合めっき被膜  The composite plating layer according to any one of claims 1 to 3, wherein the composite plating layer in which the fine particle rows are periodically arranged is laminated, and the cycle in each composite plating layer is the same. Coating 前記微粒子列が周期的に配置された複合めっき層が積層されてなり、連続する複合めっき層における前記周期が異なることを特徴とする請求項1ないし請求項3のいずれかに記載の複合めっき被膜  The composite plating layer according to any one of claims 1 to 3, wherein the composite plating layer in which the fine particle rows are periodically arranged is laminated, and the period in the continuous composite plating layer is different. 前記微粒子が、ダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子であることを特徴とする請求項1ないし請求項5のいずれかに記載の複合めっき被膜  The composite plating film according to any one of claims 1 to 5, wherein the fine particles are fine particles of either diamond or cubic boron nitride. 前記微粒子が、単層カーボンナノチューブ、多層カーボンナノチューブ、グラフェンのいずれかの微粒子であることを特徴とする請求項1ないし請求項5のいずれかに記載の複合めっき被膜  The composite plating film according to any one of claims 1 to 5, wherein the fine particles are fine particles of single-walled carbon nanotubes, multi-walled carbon nanotubes, or graphene. 前記微粒子が、めっき母相と合金を形成する金属微粒子であることを特徴とする請求項1ないし請求項5のいずれかに記載の複合めっき被膜  6. The composite plating film according to claim 1, wherein the fine particles are metal fine particles that form an alloy with the plating matrix. 前記微粒子が、2種類以上の微粒子であり、ダイヤモンド、立方晶窒化ホウ素、単層カーボンナノチューブ、多層カーボンナノチューブ、グラフェン、金属微粒子から選ばれた微粒子であることを特徴とする請求項1ないし請求項5のいずれかに記載の複合めっき被膜  The fine particles are two or more types of fine particles, and are fine particles selected from diamond, cubic boron nitride, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, and metal fine particles. 5. Composite plating film in any one of 5 前記めっき被膜の母相がニッケル、銅、ニッケル合金、銅合金のいずれかであることを特徴とする請求項1ないし請求項9のいずれかに記載の複合めっき被膜  The composite plating film according to any one of claims 1 to 9, wherein a matrix phase of the plating film is any one of nickel, copper, a nickel alloy, and a copper alloy. 前記微粒子に、少なくともダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子が含まれている請求項1ないし請求項10のいずれかに記載の複合めっき被膜が円板状の台金の側面及び外周面に成膜され、砥石の切れ刃であることを特徴とする電着砥石  The composite plating film according to any one of claims 1 to 10, wherein the fine particles contain at least fine particles of either diamond or cubic boron nitride on the side surface and the outer peripheral surface of the disk-shaped base metal. An electrodeposited grindstone that is formed into a film and is a cutting edge of a grindstone 前記微粒子に、少なくともダイヤモンドまたは立方晶窒化ホウ素のいずれかの微粒子が含まれている請求項1ないし請求項10のいずれかに記載の複合めっき被膜が自立膜であり、砥石の切れ刃であることを特徴とする電鋳砥石  The composite plating film according to any one of claims 1 to 10, wherein the fine particles contain at least fine particles of either diamond or cubic boron nitride, are self-supporting films, and are cutting edges of a grindstone. Electroforming grinding wheel featuring めっき被膜を形成する母材と超音波音源を、前記微粒子を分散させためっき浴に浸漬させ、超音波音源によって母材表面に定在波音場を形成し、周期的に存在する定在波音場の節部に、音響放射力によって前記微粒子を配列させながら、母材表面からめっき被膜を成長させることを特徴とする請求項1ないし請求項10のいずれかに記載の複合めっき被膜の製造方法  A standing wave sound field that exists periodically is formed by immersing a base material for forming a plating film and an ultrasonic sound source in a plating bath in which the fine particles are dispersed, and forming a standing wave sound field on the surface of the base material by the ultrasonic sound source. 11. The method for producing a composite plating film according to claim 1, wherein the plating film is grown from the surface of the base material while the fine particles are arranged on the nodal portion by acoustic radiation force. 前記超音波音源が振動板であり、前記定在波音場が、めっき基板面の上方にある振動板と反射板の組あるいは2つの振動板の組でめっき基板面に形成されるものであり、振動板の振動面、反射板の反射面および母材のめっき基板面が平面であり、めっき形成部の中心点を通る振動面の法線1とめっき基板面のなす交差角度がθであり、振動面と対をなすもう一つの振動面または反射面の法線2とめっき基板面となす交差角度がθであり、法線1と法線2が異なり、法線1と法線2が同一平面上にあり、2つの振動面から励振される平面波または1つの振動面から励振される平面波と平面反射板から反射される平面波によって、めっき基板面上にλ/(2×cosθ)の間隔L(ただし、λ[m]はめっき浴中の超音波の波長であり、超音波の周波数f[Hz]の逆数とめっき浴中の超音波の音速c[m/s]の積で求められる)で、振動面とめっき基板面の交線方向へ直線状の節部を形成し、音響放射力をこの節部に向かわせることにより、節部に微粒子を直線上に配列させながら、母材表面からめっき被膜を形成させることを特徴とする請求項13の複合めっき被膜の製造方法  The ultrasonic sound source is a diaphragm, and the standing wave sound field is formed on the plating substrate surface by a combination of a vibration plate and a reflection plate above the plating substrate surface or a pair of two vibration plates, The vibration surface of the vibration plate, the reflection surface of the reflection plate, and the plating substrate surface of the base material are flat, and the intersection angle between the normal 1 of the vibration surface passing through the center point of the plating forming portion and the plating substrate surface is θ, The intersecting angle between the normal 2 of the other vibration surface or reflection surface paired with the vibration surface and the plating substrate surface is θ, and the normal 1 and the normal 2 are different, and the normal 1 and the normal 2 are the same. An interval L of λ / (2 × cos θ) on the plating substrate surface due to a plane wave that is on a plane and is excited from two vibration planes or a plane wave that is excited from one vibration plane and a plane wave that is reflected from a plane reflector. (However, λ [m] is the wavelength of the ultrasonic wave in the plating bath, and the frequency of the ultrasonic wave. a linear node is formed in the direction of the intersection of the vibration surface and the plating substrate surface by the product of the reciprocal of f [Hz] and the sound velocity c [m / s] of the ultrasonic wave in the plating bath. 14. The method of manufacturing a composite plating film according to claim 13, wherein the plating film is formed from the surface of the base material while directing the radiation force toward the node part so that the fine particles are arranged in a straight line at the node part. 前記交差角度θまたは前記超音波の周波数fを変化させることで、前記直線状の微粒子列の間隔Lを変化させることを特徴とする請求項13または請求項14に記載の複合めっき被膜の製造方法  The method for producing a composite plating film according to claim 13 or 14, wherein an interval L between the linear fine particle rows is changed by changing the crossing angle θ or the frequency f of the ultrasonic waves. 振動面での振動速度を制御して、めっき基板面での音響放射力を調整し、微粒子列の幅を変化させることを特徴とする請求項13ないし請求項15のいずれかに記載の複合めっき被膜の製造方法  The composite plating according to any one of claims 13 to 15, wherein the vibration speed on the vibration surface is controlled to adjust the acoustic radiation force on the surface of the plating substrate to change the width of the fine particle row. Method for producing coating film 前記微粒子がダイヤモンド砥粒であり、前記音響放射力F[pN]がダイヤモンド砥粒の粒径D[μm]に対して、下記(1)式を満足することを特徴とする請求項13ないし請求項16のいずれかに記載の複合めっき被膜の製造方法

≧2.697×D−4.403×D−21.38 ・・・・(1)
The fine particles are diamond abrasive grains, and the acoustic radiation force F R [pN] satisfies the following expression (1) with respect to the particle diameter D [μm] of the diamond abrasive grains. The manufacturing method of the composite plating film in any one of Claim 16
Serial F R ≧ 2.697 × D 2 -4.403 × D-21.38 ···· (1)
2つの振動面または1つの振動面と平面反射板を2組以上用いて、めっき被膜形成面上に角度αで交わる直線状の節部を形成することを特徴とする請求項13ないし請求項17のいずれかに記載の複合めっき被膜の製造方法  18. A straight nodal portion that intersects at an angle α is formed on the plating film forming surface by using two vibration surfaces or two or more pairs of one vibration surface and a plane reflecting plate. A method for producing a composite plating film according to any one of 請求項13ないし請求項18のいずれかに記載の複合めっき被膜の製造方法を用いて、円板状の台金の側面及び外周面に、砥石の切れ刃として複合めっき被膜を形成し、電着砥石を製造することを特徴とする電着砥石の製造方法  A composite plating film is formed as a cutting edge of a grindstone on a side surface and an outer peripheral surface of a disk-shaped base metal using the method for manufacturing a composite plating film according to any one of claims 13 to 18, and electrodeposition A method for producing an electrodeposited grindstone characterized by producing a grindstone 請求項13ないし請求項18のいずれかに記載の複合めっき被膜の製造方法を用いて、基板上に複合めっき被膜を形成し、基板から剥離し、複合めっき被膜のみからなる電鋳砥石を製造することを特徴とする電鋳砥石の製造方法  A composite plating film is formed on a substrate using the method for manufacturing a composite plating film according to any one of claims 13 to 18, and is peeled from the substrate to manufacture an electroformed grinding wheel composed only of the composite plating film. Method for producing an electroformed grinding wheel
JP2013042292A 2013-02-15 2013-02-15 Composite plating film, thin grindstone using the same, and manufacturing method thereof Active JP6171230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042292A JP6171230B2 (en) 2013-02-15 2013-02-15 Composite plating film, thin grindstone using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042292A JP6171230B2 (en) 2013-02-15 2013-02-15 Composite plating film, thin grindstone using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014156650A true JP2014156650A (en) 2014-08-28
JP6171230B2 JP6171230B2 (en) 2017-08-02

Family

ID=51577707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042292A Active JP6171230B2 (en) 2013-02-15 2013-02-15 Composite plating film, thin grindstone using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6171230B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794040A (en) * 2019-11-29 2020-02-14 清华大学 Device and method for testing elastic modulus of hard alloy material
CN113281417A (en) * 2021-06-25 2021-08-20 临海伟星新型建材有限公司 Nondestructive temperature change testing equipment and method for mechanical property of material
CN114324568A (en) * 2021-12-31 2022-04-12 浙江大学 Sound field auxiliary preparation method of guanine peptide nucleic acid self-assembly nanosphere-based photonic crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100689A (en) * 1981-12-08 1983-06-15 Komatsu Ltd Manufacture of electrodeposited grindstone
JP2000094340A (en) * 1998-09-28 2000-04-04 Mitsubishi Materials Corp Inner peripheral blade grinding wheel
JP2012077356A (en) * 2010-10-01 2012-04-19 Yamagata Prefecture Method and device for processing composite plating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100689A (en) * 1981-12-08 1983-06-15 Komatsu Ltd Manufacture of electrodeposited grindstone
JP2000094340A (en) * 1998-09-28 2000-04-04 Mitsubishi Materials Corp Inner peripheral blade grinding wheel
JP2012077356A (en) * 2010-10-01 2012-04-19 Yamagata Prefecture Method and device for processing composite plating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794040A (en) * 2019-11-29 2020-02-14 清华大学 Device and method for testing elastic modulus of hard alloy material
CN113281417A (en) * 2021-06-25 2021-08-20 临海伟星新型建材有限公司 Nondestructive temperature change testing equipment and method for mechanical property of material
CN114324568A (en) * 2021-12-31 2022-04-12 浙江大学 Sound field auxiliary preparation method of guanine peptide nucleic acid self-assembly nanosphere-based photonic crystal

Also Published As

Publication number Publication date
JP6171230B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6282613B2 (en) Dicing blade
JP6171230B2 (en) Composite plating film, thin grindstone using the same, and manufacturing method thereof
Li et al. A sound absorbing metasurface with coupled resonators
TWI393619B (en) Disc cutting tools and cutting devices
Fu et al. Fabrication of silver nanoplate hierarchical turreted ordered array and its application in trace analyses
TW201016387A (en) CMP Pad Dressers with Hybridized abrasive surface and related methods
Qi et al. Growth mechanism of five-fold twinned Ag nanowires from multiscale theory and simulations
JP5629851B2 (en) Composite plating processing method and processing apparatus
Jensen et al. Acoustic streaming enhanced electrodeposition of nickel
JP2017071551A5 (en)
WO2013018534A1 (en) Method for manufacturing group-iii nitride crystal substrate
Tang et al. Analyses of acoustofluidic field in ultrasonic needle–liquid–substrate system for micro-/nanoscale material concentration
JP6303236B2 (en) Manufacturing method of high adhesion plating film by scanning electroplating method
JP2015009325A (en) Fixed abrasive grain wire and wire processing method
Bolmatov et al. Terasonic excitations in 2D gold nanoparticle arrays in a water matrix as revealed by atomistic simulations
JPWO2015029987A1 (en) Dicing blade
Park et al. DNA origami-designed 3D phononic crystals
JP6194600B2 (en) Composite plating film and thin grindstone using the same
Song et al. Development of a novel two-dimensional ultrasonically actuated polishing process
Wang et al. Polishing trajectory planning of three-dimensional vibration assisted finishing the structured surface
JP2017217720A (en) Fine processing method, manufacturing method of mold, and fine processing device
JP2017217720A5 (en)
Li et al. Observation of unidirectional negative refraction in an acoustic metafluid prism
JP6812492B2 (en) Nanostructured substrate
JP5335322B2 (en) Rotary cutting device with an annular cutting blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170614

R150 Certificate of patent or registration of utility model

Ref document number: 6171230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250