JP2014152354A - Thin plate and foil material of magnesium-based alloy, and manufacturing method thereof - Google Patents

Thin plate and foil material of magnesium-based alloy, and manufacturing method thereof Download PDF

Info

Publication number
JP2014152354A
JP2014152354A JP2013021862A JP2013021862A JP2014152354A JP 2014152354 A JP2014152354 A JP 2014152354A JP 2013021862 A JP2013021862 A JP 2013021862A JP 2013021862 A JP2013021862 A JP 2013021862A JP 2014152354 A JP2014152354 A JP 2014152354A
Authority
JP
Japan
Prior art keywords
magnesium alloy
magnesium
mol
strength
foil material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013021862A
Other languages
Japanese (ja)
Other versions
JP6099257B2 (en
Inventor
Hidetoshi Somekawa
英俊 染川
Hideji Kuroda
秀治 黒田
Yasushi Taniuchi
泰志 谷内
Yoshiaki Osawa
嘉昭 大澤
Tadanobu Inoue
忠信 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2013021862A priority Critical patent/JP6099257B2/en
Publication of JP2014152354A publication Critical patent/JP2014152354A/en
Application granted granted Critical
Publication of JP6099257B2 publication Critical patent/JP6099257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin plate material and a foil material of a magnesium alloy having an addition amount of solute elements reduced and excellent in strength and attenuation characteristics, the magnesium alloy being suitable for a member of acoustic devices such as a speaker and a headphone.SOLUTION: A magnesium alloy of the present invention is a Mg-X alloy, wherein the additive element X is one or a plurality of kinds among Ag, Al, Li, Sn, and Zn. The content of the X element meets the expression: 0.001≤Xmol%<0.3, and the balance of the chemical composition is magnesium and inevitable impurities. The additive element is uniformly solid-soluble in a Mg host phase without forming a deposit. The average crystal grain size of a magnesium alloy ranges from 10 μm to 500 μm. A magnesium alloy of an average crystal grain size of 50 μm or less is rolled to 1 mm or less at a temperature between 200 and 400°C and a rolling reduction of 10 to 20% per one roll to manufacture a thin plate material and a foil material of the magnesium alloy.

Description

本発明は、銀やアルミニウム等の溶質元素が少量添加されたマグネシウム基合金に関し、合金素材の厚みが1mm以下であるマグネシウム基合金薄板及び箔材に関する。   The present invention relates to a magnesium-based alloy to which a small amount of a solute element such as silver or aluminum is added, and relates to a magnesium-based alloy thin plate and a foil material in which the thickness of the alloy material is 1 mm or less.

マグネシウム合金は実用金属材料の中で最軽量であり、比強度・比剛性が優れているため、ノートパソコンを始めとする電子機器や、自動車やバイクなどの移動用構造部材の車体軽量化材料として使用されている。また、マグネシウムは、減衰能特性が優れることから、スピーカーやヘッドホンなどの音響関連部品や、リアクトル収納ケースのように、コイルや機械装置などの振動源の振動や騒音の低減用部材として使用されている。   Magnesium alloy is the lightest weight among practical metal materials and has excellent specific strength and rigidity, so it can be used as a weight reduction material for mobile devices such as electronic devices such as laptop computers and automobiles and motorcycles. It is used. Magnesium has excellent attenuation characteristics, so it is used as a member for reducing vibration and noise from vibration sources such as coils and machinery, such as acoustic parts such as speakers and headphones, and reactor storage cases. Yes.

純マグネシウムは、優れた減衰特性を示すが、その強度は他の金属材料と比べて極めて低い。そのため、特許文献1、2で示すように、溶質元素を添加し、高減衰特性を維持したまま素材の高強度化を図っている。例えば、特許文献1に挙げられるように、Mg−(0.5〜9)mass%Ni−(0.2〜3)mass%Ca合金、Mg−(0.2〜10)mass%Cu−(0.1〜3)mass%Ca合金、Mg−(0.05〜0.6)mass%Mn−(0.2〜3)mass%Ca−(0.01〜0.1)mass%Be合金、Mg−(0.05〜0.6)mass%Mn−(0.2〜3)mass%Ca−(0.001〜0.1)mass%Be合金が開発されている。また、特許文献2に示すように、Y、Nd、Srから選択される1種類以上の元素を1元素当たり(0.01〜6)mass%添加し、Al、Ca、Zr、Sn、Mnを実質的に含有しないことで、高強度及び高減衰特性を兼ね備えている。しかし、これらの文献の合金では、振動や騒音の低減を目的としているため、合金素材の形状は鋳造材を始めとする板厚のあるバルク材であって、薄板や箔材を対象としていない。   Pure magnesium exhibits excellent damping properties, but its strength is very low compared to other metal materials. Therefore, as shown in Patent Documents 1 and 2, a solute element is added to increase the strength of the material while maintaining high attenuation characteristics. For example, as listed in Patent Document 1, Mg- (0.5-9) mass% Ni- (0.2-3) mass% Ca alloy, Mg- (0.2-10) mass% Cu- ( 0.1-3) mass% Ca alloy, Mg- (0.05-0.6) mass% Mn- (0.2-3) mass% Ca- (0.01-0.1) mass% Be alloy Mg- (0.05-0.6) mass% Mn- (0.2-3) mass% Ca- (0.001-0.1) mass% Be alloy has been developed. In addition, as shown in Patent Document 2, one or more elements selected from Y, Nd, and Sr are added (0.01 to 6) mass% per element, and Al, Ca, Zr, Sn, and Mn are added. By not containing substantially, it has both high strength and high damping characteristics. However, since the alloys of these documents are intended to reduce vibration and noise, the shape of the alloy material is a bulk material having a plate thickness including a cast material, and is not intended for a thin plate or a foil material.

音響関連部品に適応するためには、素材の厚さを薄くする必要がある。マグネシウムの薄板化や箔片化は、特許文献3〜5で示すように温間圧延により作製するのが一般的である。特許文献3には、Alを(1〜3.5)mass%、Znを(1〜6)mass%、Mnを(0.1〜2)mass%を含有する板厚(0.2〜2)mmからなるマグネシウム合金薄板が開示されている。また、特許文献4には、Alを(1〜11)mass%、Znを(0.1〜2)mass%、Mnを(0.15〜0.5)mass%を含有する板厚(0.02〜0.2)mmのマグネシウム合金薄板が開示されている。特許文献5では、Al、Zn、Mn、Si、Ca、Sr、Y、Cu、Ag、Ce、Sn、Li、Zr、Be及び希土類元素(Y、Ceを除く)から選択される少なくとも1種類の元素を合計7.3mass%以上含有し、厚さが5 mm以下のマグネシウム合金板が開示されている。   In order to adapt to acoustic components, it is necessary to reduce the thickness of the material. Magnesium thinning and foil slicing are generally produced by warm rolling as shown in Patent Documents 3-5. Patent Document 3 discloses a plate thickness (0.2-2) containing Al (1-3.5) mass%, Zn (1-6) mass%, and Mn (0.1-2) mass%. ) Mm magnesium alloy sheet is disclosed. Patent Document 4 discloses a plate thickness (0) containing Al (1-11) mass%, Zn (0.1-2) mass%, and Mn (0.15-0.5) mass%. A 0.02-0.2) mm magnesium alloy sheet is disclosed. In Patent Document 5, at least one kind selected from Al, Zn, Mn, Si, Ca, Sr, Y, Cu, Ag, Ce, Sn, Li, Zr, Be and rare earth elements (excluding Y and Ce) is used. A magnesium alloy plate containing a total of 7.3 mass% of elements and having a thickness of 5 mm or less is disclosed.

ところで、素材の強化機構と減衰挙動の主機構は、転位運動(転位と溶質元素の相互作用)であるが、強度と減衰能を同時に改善することは不可能である。すなわち、溶質元素添加により、転位運動を阻害させることは、素材の高強度化につながるが、逆に減衰特性を低下させる。そのため、溶質元素を多量に添加することは、減衰特性の向上とはならない。   By the way, the main mechanism of material strengthening mechanism and damping behavior is dislocation motion (interaction between dislocation and solute element), but it is impossible to improve the strength and damping ability at the same time. That is, inhibiting the dislocation movement by adding a solute element leads to an increase in strength of the material, but conversely reduces the damping characteristics. Therefore, adding a large amount of a solute element does not improve the damping characteristics.

少量の溶質元素を添加したマグネシウム二元系合金が、特許文献6、7に開示されている。特許文献6には、マグネシウムより原子半径の大きな1種類の溶質原子0.03〜0.54mol%と残部がマグネシウムからなり、マグネシウム母相の平均結晶粒径が1.5μm以下である高強度・高延性マグネシウム合金が開示されている。しかし、このマグネシウム合金のように結晶粒径が微細な場合、結晶粒界が転位運動を阻害するため、減衰特性を低下させるという問題がある。また、特許文献7には、Ce、La、Yを0.01〜0.5mol%添加したマグネシウム合金が開示されている。しかしながら、このマグネシウム合金は、高強度と深絞り性向上を目的とするもので、減衰特性についての記載は全くされていない。   Patent Documents 6 and 7 disclose magnesium binary alloys to which a small amount of solute element is added. Patent Document 6 discloses a high-strength and high-strength structure in which one solute atom having a larger atomic radius than magnesium is 0.03 to 0.54 mol% and the balance is magnesium, and the average crystal grain size of the magnesium matrix is 1.5 μm or less. A highly ductile magnesium alloy is disclosed. However, when the crystal grain size is fine like this magnesium alloy, the crystal grain boundary inhibits the dislocation motion, so that there is a problem that the damping characteristic is lowered. Patent Document 7 discloses a magnesium alloy to which Ce, La, and Y are added in an amount of 0.01 to 0.5 mol%. However, this magnesium alloy is intended to improve high strength and deep drawability, and no description is given about the damping characteristics.

特開2003−113436号公報JP 2003-113436 A 特開2012−087379号公報JP 2012-087379 A 特開2003−328063号公報JP 2003-328063 A 特開2009−120883号公報JP 2009-12083A 特開2012−21182号公報JP2012-21182A 特開2006−16658号公報JP 2006-16658 A 特開2008−214668号公報JP 2008-214668 A

特許文献1や2に記載されているように、高減衰能マグネシウム合金は開発されているものの、これらの合金は全てバルク材に限られ、高強度・高減衰特性を有するマグネシウム合金薄板や箔に関するものではない。これは、マグネシウムの難塑性加工性に起因している。マグネシウム合金の薄板化や箔化は、特許文献3や4で開示されてように、比較的塑性加工しやすいAlとZnを添加した商用マグネシウム合金(AZ系合金)で行われているのみである。一方、多量の溶質元素添加は、前述のように減衰能改善の観点から好ましくない。このため、高強度と高減衰特性の両者を兼ね備えたマグネシウム合金薄板材や箔材は、いまだ開発されていないのが現状である。   As described in Patent Documents 1 and 2, although high damping capacity magnesium alloys have been developed, all of these alloys are limited to bulk materials and relate to magnesium alloy thin plates and foils having high strength and high damping characteristics. It is not a thing. This is due to the hard plastic workability of magnesium. As disclosed in Patent Documents 3 and 4, the magnesium alloy is thinned and made into a foil only by a commercial magnesium alloy (AZ-based alloy) added with Al and Zn, which are relatively easy to plastically process. . On the other hand, addition of a large amount of solute element is not preferable from the viewpoint of improving the damping capacity as described above. For this reason, the present condition is that the magnesium alloy sheet material and foil material which have both high strength and a high damping characteristic have not been developed yet.

発明者らは詳細な試験研究を行った結果、特定の溶質元素を微量添加することにより、高い硬度(強度)特性を維持したまま、減衰特性の改善が可能であることを見出した。室温付近のマグネシウムの転位運動は、底面のみである。しかし、少ないすべり系をうまく活用することで、高い硬度特性を維持したまま、減衰特性の改善が可能であることがわかった。すなわち、硬度特性は、溶質元素による固溶強化で改善し、マグネシウム結晶の主すべり系である底面の配向を変形時の塑性加工の仕方と温度条件を制御することで減衰特性を劣化させない方策を採用した。   As a result of detailed test studies, the inventors have found that by adding a small amount of a specific solute element, it is possible to improve the damping characteristic while maintaining a high hardness (strength) characteristic. The dislocation movement of magnesium near room temperature is only on the bottom surface. However, it was found that the damping characteristics can be improved while maintaining the high hardness characteristics by using the few sliding systems. In other words, the hardness characteristics are improved by solid solution strengthening with solute elements, and measures to prevent degradation of the attenuation characteristics by controlling the orientation of the bottom surface, which is the main slip system of magnesium crystals, and the temperature conditions of plastic processing during deformation. Adopted.

本発明の第1は、Agの含有量が、0.001mol%≦Agmol%<0.3mol%で、残部がMg及び不可避的不純物からなり、AgがMg母相内に析出物を生成することなく均一に固溶し、平均結晶粒径の範囲が10μmから500μmである強度及び減衰能に優れたマグネシウム合金薄板材又は箔材を提供する。   The first aspect of the present invention is that the Ag content is 0.001 mol% ≦ Ag mol% <0.3 mol%, the balance is Mg and inevitable impurities, and Ag forms precipitates in the Mg matrix. There is provided a magnesium alloy thin plate material or foil material that is uniformly solid-solved and has an average crystal grain size ranging from 10 μm to 500 μm and excellent in strength and damping ability.

本発明の第2は、発明1のマグネシウム合金薄板材又は箔材であって、前記固溶したAgの一部あるいは全部が、Al、Li、Sn、Znのうちの1種以上で置換されている強度及び減衰能に優れたマグネシウム合金薄板材又は箔材を提供する。   A second aspect of the present invention is the magnesium alloy thin plate material or foil material according to the first aspect of the present invention, wherein a part or all of the solid solution Ag is substituted with one or more of Al, Li, Sn, and Zn. The present invention provides a magnesium alloy sheet material or foil material excellent in strength and damping capacity.

本発明の第3は、発明1又は2のマグネシウム合金薄板材又は箔材であって、素材の最終厚さが1mm以下である強度及び減衰能に優れたマグネシウム合金薄板材又は箔材を提供する。   A third aspect of the present invention provides a magnesium alloy thin plate material or foil material according to the first or second aspect of the present invention, wherein the final thickness of the raw material is 1 mm or less and excellent in strength and damping capacity. .

本発明の第4は、発明1ないし3のいずれかのマグネシウム合金薄板材又は箔材の製造方法であって、鋳造後の前記マグネシウム合金鋳片に、
450〜525℃の温度範囲で、1〜12時間保持後、水冷にて溶体化熱処理を施し、
200〜450℃の温度範囲で、前記マグネシウム合金鋳片に対し平均結晶粒径が50μm以下になるまで相当塑性ひずみ2以下の塑性変形加工を施し、
200〜400℃の温度範囲で、前記塑性変形マグネシウム合金材に対し1回ごとの圧下率が10〜20%の条件で1mm以下まで圧延加工を施すことにより強度及び減衰能に優れたマグネシウム合金薄板材又は箔材を製造する方法を提供する。
4th of this invention is a manufacturing method of the magnesium alloy thin plate material or foil material in any one of invention 1 thru | or 3, Comprising: In the said magnesium alloy cast piece after casting,
In a temperature range of 450 to 525 ° C., after holding for 1 to 12 hours, solution heat treatment is performed with water cooling,
In a temperature range of 200 to 450 ° C., a plastic deformation process with an equivalent plastic strain of 2 or less is performed on the magnesium alloy slab until an average grain size becomes 50 μm or less,
In a temperature range of 200 to 400 ° C., a magnesium alloy thin film excellent in strength and damping capacity is obtained by rolling the plastic deformation magnesium alloy material to 1 mm or less under the condition that the rolling reduction rate is 10 to 20%. A method for producing a plate material or a foil material is provided.

本発明を得るためには、溶質元素の添加量aが、0.001mol%≦a<0.3mol%、好ましくは0.02mol%≦a≦0.2mol%である。添加量が0.3mol%以上の場合、強度改善の観点からは望ましいが、溶質元素の添加量が多いため、減衰特性向上の点からは好ましくない。逆に、0.001mol%未満では、強度の向上が低く、高硬度と高減衰能の両立を図ることが難しい。また、マグネシウム合金薄板材又は箔材のマグネシウム母相の平均結晶粒径は、10μm以上、より好ましくは20μm以上とする。結晶粒微細化にともない、結晶粒界の割合が増加し、硬度改善に寄与するが、結晶粒界は転位運動を阻害するため、減衰能改善の観点からは結晶粒径は粗大であることが望ましい。また、薄板や箔加工前と加工後の平均結晶粒径を比較し、結晶粒径が微細になるのは、動的再結晶が促進される低温かつ大圧下率の条件で加工した場合であり、圧延加工中に、加工温度が高く圧下率が小さい加工条件下では、結晶粒が粗大化することがあるが、その限界値は本願発明の強度と減衰能を維持するために500μmとする。   In order to obtain the present invention, the addition amount a of the solute element is 0.001 mol% ≦ a <0.3 mol%, preferably 0.02 mol% ≦ a ≦ 0.2 mol%. When the addition amount is 0.3 mol% or more, it is desirable from the viewpoint of improving the strength, but since the addition amount of the solute element is large, it is not preferable from the viewpoint of improving the damping characteristics. On the contrary, if it is less than 0.001 mol%, the improvement in strength is low, and it is difficult to achieve both high hardness and high damping ability. Further, the average crystal grain size of the magnesium matrix of the magnesium alloy thin plate or foil is 10 μm or more, more preferably 20 μm or more. As the grain size becomes finer, the ratio of grain boundaries increases and contributes to the improvement of hardness, but the grain boundaries inhibit dislocation motion, so the crystal grain size may be coarse from the standpoint of improving damping capacity. desirable. The average crystal grain size before and after thin plate and foil processing is compared, and the crystal grain size becomes fine when processed under conditions of low temperature and large rolling reduction that promotes dynamic recrystallization. During the rolling process, the crystal grains may be coarsened under the processing conditions where the processing temperature is high and the rolling reduction is small, but the limit value is 500 μm in order to maintain the strength and damping capacity of the present invention.

本発明では、Ag(原子半径0.144nm、マグネシウムに対する最大固溶量3.8mol%)を添加元素として扱ったが、Li(0.157nm、17mol%)、Al(0.144nm、11.5mol%)、Zn(0.137nm、2.4mol%)、Sn(0.158nm、3.4mol%)から選択される一種類の元素に置き換えることが可能である。その理由として、Agの原子半径は、マグネシウムの原子半径0.160nmより小さく、置換型元素として作用する。上記の代替溶質元素も、マグネシウムの原子半径よりも小さく、Agの原子半径に近いため、同じ挙動を呈する。また、本発明の添加量0.3mol%は、マグネシウムに対するAgの最大固溶量と比べて極めて少ない。そのため、溶質元素はマグネシウム母相内に固溶状態として存在し、強度と減衰能に影響を及ぼす主要因は、個々の固溶溶質元素と転位との相互作用と考えられる。前記の代替元素も、マグネシウムに対して広い固溶限をもつため、マグネシウム母相内ではAgと同じ状態で存在し、同じ振る舞いをするため代替可能であることは明白である。   In the present invention, Ag (atomic radius 0.144 nm, maximum solid solution amount 3.8 mol% with respect to magnesium) was treated as an additive element, but Li (0.157 nm, 17 mol%), Al (0.144 nm, 11.5 mol) %), Zn (0.137 nm, 2.4 mol%), and Sn (0.158 nm, 3.4 mol%). The reason is that the atomic radius of Ag is smaller than the atomic radius of magnesium of 0.160 nm and acts as a substitutional element. The above alternative solute elements also exhibit the same behavior because they are smaller than the atomic radius of magnesium and close to the atomic radius of Ag. Moreover, the addition amount of 0.3 mol% of the present invention is extremely small as compared with the maximum solid solution amount of Ag with respect to magnesium. Therefore, solute elements exist in a solid solution state in the magnesium matrix, and the main factor affecting the strength and damping ability is considered to be the interaction between individual solid solute elements and dislocations. Since the above-mentioned alternative elements also have a wide solid solubility limit with respect to magnesium, it is obvious that they exist in the same state as Ag in the magnesium matrix and can be substituted because they behave in the same manner.

本発明の薄板材や箔材(本発明における箔材とは厚さ0.20mm以下の薄板材と定義)を得るために、次の加工法と手順が挙げられる。始めに、重力鋳造や連続鋳造、ダイキャスト法などを用いて、薄板化や箔化に加工するための鋳塊材料(加工材)を作製する。加工材の初期の平均結晶粒径が粗大であると、薄板や箔への加工中に変形双晶が発生し、しわ、バリや割れが生じ、健全な素材を創製することが難しい。そのため、薄板や箔への加工を行う前に、押出や圧延、鍛造を用いて加工材の平均結晶粒径を50μm以下にしておくことが望ましい。結晶粒径が50μm以下であると、しわやバリ、割れ等の起点となる変形双晶の発生を抑制することができる。その際、強ひずみ加工を行うことが目的ではないので、相当塑性ひずみ2以下、加工温度は200〜450℃であればよい。勿論、加工材の平均結晶粒径が50μm以下であれば、直接、薄板や箔に加工しても構わない。また、強ひずみ加工を行う前に、加工材の鋳造(デンドライト)組織を低減し、溶質元素を固溶させるため、溶体化処理を450〜525℃の温度範囲で、2〜12時間行うことが望ましい。溶体化処理温度について、溶質元素の添加量0.3mol%が固溶する温度範囲内であれば良い。また、保持時間が12時間以上の場合、添加元素が十分に固溶できるため、溶体化処理を長時間行う必要はない。一方、保持時間が2時間以下の場合、溶質元素の拡散が不十分なため、鋳造組織が残っていることが考えられる。   In order to obtain the thin plate material and foil material of the present invention (the foil material in the present invention is defined as a thin plate material having a thickness of 0.20 mm or less), the following processing methods and procedures are exemplified. First, an ingot material (processed material) to be processed into a thin plate or foil is produced using gravity casting, continuous casting, die casting, or the like. If the initial average grain size of the processed material is coarse, deformation twins are generated during processing into a thin plate or foil, and wrinkles, burrs or cracks are generated, making it difficult to create a sound material. Therefore, before processing into a thin plate or foil, it is desirable to set the average crystal grain size of the processed material to 50 μm or less using extrusion, rolling, or forging. Generation | occurrence | production of the deformation | transformation twin which becomes a starting point of a wrinkle, a burr | flash, a crack, etc. can be suppressed as a crystal grain diameter is 50 micrometers or less. At that time, since it is not the purpose to perform high strain processing, the equivalent plastic strain is 2 or less and the processing temperature may be 200 to 450 ° C. Of course, if the average grain size of the processed material is 50 μm or less, it may be processed directly into a thin plate or foil. Moreover, in order to reduce the casting (dendritic) structure | tissue of a processed material and to make a solute element form a solid solution before performing strong strain processing, solution treatment may be performed at a temperature range of 450 to 525 ° C. for 2 to 12 hours. desirable. The solution treatment temperature may be within the temperature range in which the added amount of the solute element is 0.3 mol%. Further, when the holding time is 12 hours or longer, the additive element can be sufficiently dissolved, so that it is not necessary to perform the solution treatment for a long time. On the other hand, when the holding time is 2 hours or less, it is considered that the cast structure remains because the diffusion of the solute element is insufficient.

次に、加工材の薄板化や箔化は、素材を薄く引き延ばすことと、底面の集合組織を制御するため、圧延加工することが望ましい。圧延加工時の温度と圧下率は、200〜400℃、10〜20%であればよい。加工温度が低い場合(200℃より低い温度)や圧下率が大きな場合(20%より大きな圧下率)、図7で示すように試料の端で割れが生じ、健全な素材の製造が難しい。一方で、加工温度が高い場合(400℃以上)、加工中に試料の燃焼が懸念され、作業上危険である。また、加工率が小さい場合(10%以下)、試料の巻き取りが難しく、表面粗さが大きくなり(光沢がなくなり)表面状態が好ましくない。   Next, thinning or foiling of the processed material is desirably performed by rolling in order to thin the material and to control the texture of the bottom surface. The temperature and rolling reduction during rolling may be 200 to 400 ° C. and 10 to 20%. When the processing temperature is low (temperature lower than 200 ° C.) or the rolling reduction is large (rolling ratio larger than 20%), as shown in FIG. 7, cracks occur at the edge of the sample, and it is difficult to manufacture a sound material. On the other hand, when the processing temperature is high (400 ° C. or higher), the sample may be burned during processing, which is dangerous in operation. Moreover, when the processing rate is small (10% or less), it is difficult to wind the sample, the surface roughness becomes large (the gloss is lost), and the surface state is not preferable.

上記発明により、純マグネシウムの硬さと減衰能と比較して、優れた強度・減衰特性を示すようになった。これは、溶質元素添加による固溶強化と温間圧延による底面集合組織の形成と推測する。本発明の合金は、優れた材料特性を有するにも関わらず、溶質元素の添加量が極めて少ないため、著しいコスト増をもたらさない特徴を有する。   By the said invention, compared with the hardness and damping capability of pure magnesium, it came to show the outstanding intensity | strength and damping characteristic. This is presumed to be the formation of a bottom texture by solid solution strengthening by adding solute elements and warm rolling. Although the alloy of the present invention has excellent material properties, the amount of the solute element added is extremely small, so that it does not cause a significant increase in cost.

本実施例の健全なMg−0.03mol%Ag合金箔の外観写真。The external appearance photograph of the sound Mg-0.03 mol% Ag alloy foil of a present Example. 箔加工前のMg−0.05mol%Ag合金の微細組織例。The microstructure example of Mg-0.05 mol% Ag alloy before foil processing. EBSD観察を用いたMg−0.05mol%Ag合金の微細組織例。The example of the fine structure of a Mg-0.05 mol% Ag alloy using EBSD observation. Mg−0.1mol%Ag合金の光学顕微鏡組織観察例。An example of observation of an optical microscope structure of an Mg-0.1 mol% Ag alloy. Mg−0.05mol%Ag合金の底面集合組織形成例。An example of forming a bottom texture of an Mg-0.05 mol% Ag alloy. Agの添加量と内部摩擦比との関係。Relationship between added amount of Ag and internal friction ratio. 加工温度が低く圧下率が大きかったため端部に割れがあるMg−0.1mol%Ag合金箔の外観写真。An appearance photograph of Mg-0.1 mol% Ag alloy foil having cracks at the ends because the processing temperature is low and the rolling reduction is large.

<実施例>
Ag目標含有量が0.02mol%、0.03mol%、0.05mol%、0.1mol%、0.2mol%、0.3mol%である6種類のMg-Ag合金鋳造材を溶製した。Ag目標含有量0.02mol%、0.03mol%、0.05mol%、0.1mol%、0.2mol%は、本発明の範囲内の実施例、Ag目標含有量0.3mol%は、本発明の範囲外の比較例である。目標含有量の銀(Ag)と純マグネシウム(Mg)(純度99.94mass%)を合わせて800g秤量し、アルゴン雰囲気に置換できる溶解炉内に設置し、750℃にて完全に溶解させた後、鉄製鋳型に鋳込んで鋳造材を作製した。Agの含有量は、鋳造材を500℃で、2時間の溶体化処理した後、ICP発光分光分析法により評価した。組成分析の結果は表1に示す。6種類の合金全て、以下に示す手順及び条件にて作製した。
<Example>
Six types of Mg—Ag alloy castings having a target Ag content of 0.02 mol%, 0.03 mol%, 0.05 mol%, 0.1 mol%, 0.2 mol%, and 0.3 mol% were melted. Ag target content 0.02 mol%, 0.03 mol%, 0.05 mol%, 0.1 mol%, 0.2 mol% are examples within the scope of the present invention, Ag target content 0.3 mol% is It is a comparative example outside the scope of the invention. After adding 800 g of silver (Ag) and pure magnesium (Mg) (purity 99.94 mass%) of the target content and placing in a melting furnace that can be replaced with an argon atmosphere, completely melting at 750 ° C. The cast material was produced by casting in an iron mold. The content of Ag was evaluated by ICP emission spectroscopic analysis after solution treatment of the cast material at 500 ° C. for 2 hours. The results of the composition analysis are shown in Table 1. All six types of alloys were prepared according to the following procedures and conditions.

得られた鋳造材を、温度500℃で2時間炉内保持後に水冷する溶体化処理を施した後、機械加工により、直径40mm、高さ50mmの押出加工用円柱ビレットを作製した。前記ビレットを最大450℃まで加熱することが可能な直径190mm、高さ170mmの鉄製コンテナ内に投入し、温度275℃で30分間保持した後、押出比42:1にて押出による温間ひずみ付与加工を行い、厚さ3mm、幅10mmの押出材を作製した。その後、前記押出材に対し、ロール雰囲気を300℃に加熱保持した圧延機を使用し、1回毎の圧下率10%の条件で、圧延加工を繰り返し、最終厚さが23μmのマグネシウム合金箔を作製した。本実施例にて作製した典型的な外観写真を図1に示す。   The obtained cast material was subjected to a solution heat treatment in which water was cooled after being held in a furnace at a temperature of 500 ° C. for 2 hours, and then a cylindrical billet for extrusion having a diameter of 40 mm and a height of 50 mm was produced by machining. The billet is put into an iron container having a diameter of 190 mm and a height of 170 mm that can be heated up to 450 ° C., held at a temperature of 275 ° C. for 30 minutes, and then given a warm strain by extrusion at an extrusion ratio of 42: 1. Processing was performed to produce an extruded material having a thickness of 3 mm and a width of 10 mm. Then, using the rolling machine which heated and maintained the roll atmosphere at 300 degreeC with respect to the said extrusion material, rolling process was repeated on the conditions of the rolling reduction rate of 10% for every time, and the magnesium alloy foil whose final thickness is 23 micrometers is obtained. Produced. A typical appearance photograph produced in this example is shown in FIG.

箔片加工を行う直前の試料、すなわち、溶体化処理を施した後、押出加工を行ったMg−0.1mol%Ag合金試料の微細組織観察例を図2に示す。光学顕微鏡を用いた微細組織観察では、マグネシウム母相の平均結晶粒径は10μmであった。他のMg−Ag合金も平均結晶粒径が25〜10μmの範囲内で50μm以下であった。なお、平均結晶粒径は、切片法を用いて算出した。   FIG. 2 shows an example of microstructure observation of a sample immediately before foil piece processing, that is, an Mg-0.1 mol% Ag alloy sample subjected to extrusion processing after solution treatment. In the fine structure observation using an optical microscope, the average crystal grain size of the magnesium matrix was 10 μm. Other Mg—Ag alloys also had an average crystal grain size of 50 μm or less within a range of 25 to 10 μm. The average crystal grain size was calculated using the intercept method.

箔片化したMg−Ag合金の微細組織は、走査型電子顕微鏡/電子線後方散乱回折(EBSD)及び光学顕微鏡を用いて観察した。その観察例を図3、4に示す。全ての微細組織は圧延面を観察した。図3から、結晶粒界は、方位差15°以上の大角粒界から構成され、大角粒界で囲まれた結晶粒(図中Gと表記)の平均は、80μmであった。各合金の箔片加工後の平均結晶粒径を表1に示す。図4の光学顕微鏡を用いた組織観察から、析出物や介在物の存在は確認できなかった。また、Mg−0.05mol%Ag合金の集合組織形成例を図5に示す。圧延や押出などを用いたマグネシウム合金展伸材では、その結晶構造である六方晶に起因し、加工方向に対して平行に各結晶粒が配向する。本発明合金も、底面(0001)に集積した底面集合組織の形成が確認できる。なお、他のMg−Ag合金も図4〜6に示す微細組織様相と同様であった。   The microstructure of the Mg-Ag alloy separated into foil pieces was observed using a scanning electron microscope / electron beam backscatter diffraction (EBSD) and an optical microscope. Examples of observation are shown in FIGS. All microstructures were observed on the rolling surface. From FIG. 3, the crystal grain boundaries are composed of large-angle grain boundaries with an orientation difference of 15 ° or more, and the average of crystal grains surrounded by the large-angle grain boundaries (denoted as G in the figure) was 80 μm. Table 1 shows the average crystal grain size after processing the foil pieces of each alloy. From the observation of the structure using the optical microscope of FIG. 4, the presence of precipitates and inclusions could not be confirmed. Further, FIG. 5 shows an example of texture formation of an Mg-0.05 mol% Ag alloy. In a magnesium alloy wrought material using rolling or extrusion, each crystal grain is oriented parallel to the processing direction due to the hexagonal crystal structure. The alloy of the present invention can also confirm the formation of the bottom texture accumulated on the bottom surface (0001). The other Mg—Ag alloys were the same as the microstructures shown in FIGS.

素材の硬さは、ビッカース硬度計を用いて評価するのが一般的である。しかし、本発明で作製した試料の厚さが23μmと薄いため、押込み深さをナノメートルオーダーで制御可能なナノインデンテーションを用いて、各試料の硬さを評価した。押込み荷重1 mN、押込み速度1mN/sの条件にてナノインデンテーション試験を行い、インデント毎にOliver−Pharrの式を用いて硬さを求めた。各試料の測定は、ばらつきを低減させるため50回以上行った。表1に平均値を示す。ここで、平均値は、全測定数の上下10%の硬さ値を削除し、残りの80%の測定結果から求めた。例えば、測定数50点の場合、最大値から5点、最小値から5点ずつ測定結果を取り除き、残りの40点の結果で平均値を求めた。表1に示すように、溶質元素の添加及び添加量の増加にともない、硬さの向上が見られた。また、Mg−Ag合金の硬さは、純マグネシウムと比較して大きな値を示したことから高強度化が達成している。   Generally, the hardness of a material is evaluated using a Vickers hardness tester. However, since the thickness of the sample produced by the present invention is as thin as 23 μm, the hardness of each sample was evaluated using nanoindentation in which the indentation depth can be controlled in the nanometer order. A nanoindentation test was performed under the conditions of an indentation load of 1 mN and an indentation speed of 1 mN / s, and the hardness was determined for each indent using the Oliver-Pharr equation. Each sample was measured 50 times or more in order to reduce variation. Table 1 shows the average values. Here, the average value was obtained from the measurement results of the remaining 80% by deleting the hardness values of 10% above and below the total number of measurements. For example, in the case of 50 measurement points, the measurement results were removed from the maximum value by 5 points and from the minimum value by 5 points, and the average value was obtained from the remaining 40 points. As shown in Table 1, as the solute element was added and the amount added was increased, the hardness was improved. Further, since the hardness of the Mg—Ag alloy showed a larger value than that of pure magnesium, an increase in strength has been achieved.

内部摩擦(減衰)特性は、ナノインデンテーション試験中に圧子先端を任意の周波数(1〜300Hz内)で振動させ、Tanδを得ることで評価した。周波数が2、20、200 Hzの3条件にて、押込み荷重1mN一定で、各試料50回以上の測定を行った。硬さと同じ手法にて平均値を求め、表1にその結果を示す。また、図7に溶質元素添加量と内部摩擦比の関係を示す。ここで、内部摩擦比は、純マグネシウムのTanδに対する各合金のTanδの比と定義し、1より大きな値を示した場合は、純マグネシウムの内部摩擦特性と比べて優れていることを示す。また、図中の破線は、純マグネシウムのTanδに対して80%の値を示しているが、この値以下ではマグネシウム合金材料としての減衰特性は劣ると判定した。溶質元素の添加にともない大きな内部摩擦比、すなわち、内部摩擦特性の向上が見られた。しかし、Mg−0.3mol%Ag合金では、3条件とも純マグネシウムの内部摩擦特性の80%以下を示した。以上のことから、強度と減衰能の両特性改善の観点から、溶質元素の添加量は0.3mol%未満が適切であるといえる。   The internal friction (damping) characteristic was evaluated by vibrating the tip of the indenter at an arbitrary frequency (within 1 to 300 Hz) during the nanoindentation test to obtain Tan δ. Each sample was measured 50 times or more at a constant indentation load of 1 mN under three conditions of frequencies of 2, 20, and 200 Hz. The average value is obtained by the same method as the hardness, and the results are shown in Table 1. FIG. 7 shows the relationship between the solute element addition amount and the internal friction ratio. Here, the internal friction ratio is defined as the ratio of Tan δ of each alloy to Tan δ of pure magnesium, and a value larger than 1 indicates that it is superior to the internal friction characteristics of pure magnesium. Moreover, although the broken line in the figure shows a value of 80% with respect to Tanδ of pure magnesium, it was determined that the attenuation characteristic as a magnesium alloy material is inferior below this value. With the addition of solute elements, a large internal friction ratio, that is, an improvement in internal friction characteristics was observed. However, the Mg-0.3 mol% Ag alloy showed 80% or less of the internal friction characteristics of pure magnesium in all three conditions. From the above, it can be said that the addition amount of the solute element is appropriate to be less than 0.3 mol% from the viewpoint of improving both the strength and damping ability.

<比較例1>
純マグネシウム(純度:99.94mass%)を直径40mm、高さ40mmの押出ビレットに加工した後、押出温度を225℃にしたこと以外、実施例と同じ条件にて厚さ23μmの純マグネシウムの箔を作製した。同試料の大角粒界で囲まれた結晶粒の平均は、100μmであった。また、ナノインデンテーション試験から得られた硬さと内部摩擦特性の結果を表1に示す。
<Comparative Example 1>
A pure magnesium foil having a thickness of 23 μm under the same conditions as in the Examples except that pure magnesium (purity: 99.94 mass%) was processed into an extruded billet having a diameter of 40 mm and a height of 40 mm, and the extrusion temperature was 225 ° C. Was made. The average of the crystal grains surrounded by the large-angle grain boundaries of the sample was 100 μm. Table 1 shows the results of hardness and internal friction characteristics obtained from the nanoindentation test.

<比較例2>
商用マグネシウム合金(Mg−3mass%Al−1mass%Zn:AZ31)圧延板を使用し、実施例と同じ条件にて厚さ23μmの純マグネシウムの箔を作製した。同試料の大角粒界で囲まれた結晶粒の平均は、27μmであった。また、ナノインデンテーション試験から得られた硬さと内部摩擦特性の結果を表1に示す。
<Comparative example 2>
A commercial magnesium alloy (Mg-3 mass% Al-1 mass% Zn: AZ31) rolled plate was used, and a pure magnesium foil having a thickness of 23 μm was produced under the same conditions as in the examples. The average of the crystal grains surrounded by the large-angle grain boundaries of the sample was 27 μm. Table 1 shows the results of hardness and internal friction characteristics obtained from the nanoindentation test.

G:大角粒界により囲まれた結晶粒
LAG:小角粒界:隣接する結晶粒同士の方位差が15°未満の結晶粒界
I:結晶方位の集積度合い(数値が大きいほど、集積度合いが高い)
G: Crystal grains surrounded by large-angle grain boundaries LAG: Small-angle grain boundaries: Crystal grain boundaries in which the orientation difference between adjacent crystal grains is less than 15 ° I: The degree of accumulation of crystal orientation (the larger the value, the higher the degree of accumulation) )

本発明のマグネシウム合金箔材を使用すれば、音響関連部材はもちろんのこと、振動やノイズが問題となる構造部位のインサート材としての適応が可能である。また、素材の厚みが薄い特徴を活かし、医療用機器などのデバイス小型化への応用が期待される。   If the magnesium alloy foil material of the present invention is used, it can be applied as an insert material for structural parts where vibration and noise are problematic as well as acoustic related members. In addition, taking advantage of the thinness of the material, it is expected to be applied to miniaturization of devices such as medical equipment.

Claims (4)

Mg−Ag系2元系マグネシウム合金であって、Agの含有量が、0.001mol%≦Agmol%<0.3 mol%で、残部がMg及び不可避的不純物からなり、AgがMg母相内に析出物を生成することなく均一に固溶し、平均結晶粒径の範囲が10μmから500μmであることを特徴とする強度及び減衰能に優れたマグネシウム合金薄板材又は箔材。 Mg-Ag binary magnesium alloy, Ag content is 0.001 mol% ≦ Agmol% <0.3 mol%, the balance is Mg and inevitable impurities, and Ag is in the Mg matrix A magnesium alloy thin plate material or foil material excellent in strength and damping capacity, characterized in that it uniformly dissolves without producing precipitates and has an average crystal grain size range of 10 μm to 500 μm. 請求項1に記載のマグネシウム合金薄板材又は箔材であって、前記固溶したAgの一部あるいは全部が、Al、Li、Sn、Znのうちの1種以上で置換されていることを特徴とする強度及び減衰能に優れたマグネシウム合金薄板材又は箔材。 It is a magnesium alloy thin plate material or foil material of Claim 1, Comprising: Part or all of the said solid solution Ag is substituted by 1 or more types in Al, Li, Sn, Zn. A magnesium alloy sheet or foil material excellent in strength and damping capacity. 請求項1又は2に記載のマグネシウム合金薄板材又は箔材であって、素材の最終厚さが1mm以下であることを特徴とする強度及び減衰能に優れたマグネシウム合金薄板材又は箔材。 The magnesium alloy sheet material or foil material according to claim 1 or 2, wherein the material has a final thickness of 1 mm or less, and is excellent in strength and damping capacity. 請求項1ないし3のいずれかに記載のマグネシウム合金薄板材又は箔材の製造方法であって、
鋳造後の前記マグネシウム合金鋳片に、
450〜525℃の温度範囲で、1〜12時間保持後水冷する溶体化熱処理を施し、
200〜450℃の温度範囲で、前記マグネシウム合金鋳片に対し平均結晶粒径が50μm以下になるまで相当塑性ひずみ2以下の塑性変形加工を施し、
200〜400℃の温度範囲で、前記塑性変形マグネシウム合金材に対し1回ごとの圧下率が10〜20%の条件で1mm以下まで圧延加工を施す
ことを特徴とする強度及び減衰能に優れたマグネシウム合金薄板材又は箔材の製造方法。
A method for producing a magnesium alloy sheet or foil material according to any one of claims 1 to 3,
To the magnesium alloy slab after casting,
In a temperature range of 450 to 525 ° C., a solution heat treatment that is held for 1 to 12 hours and then water-cooled is performed,
In a temperature range of 200 to 450 ° C., a plastic deformation process with an equivalent plastic strain of 2 or less is performed on the magnesium alloy slab until an average grain size becomes 50 μm or less,
In the temperature range of 200-400 ° C., the plastic deformation magnesium alloy material is excellent in strength and damping capacity, characterized by rolling to 1 mm or less under the condition that the rolling reduction rate is 10-20%. A method for producing a magnesium alloy sheet or foil material.
JP2013021862A 2013-02-07 2013-02-07 Magnesium-based alloy thin plate and foil material and method for producing them Active JP6099257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013021862A JP6099257B2 (en) 2013-02-07 2013-02-07 Magnesium-based alloy thin plate and foil material and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013021862A JP6099257B2 (en) 2013-02-07 2013-02-07 Magnesium-based alloy thin plate and foil material and method for producing them

Publications (2)

Publication Number Publication Date
JP2014152354A true JP2014152354A (en) 2014-08-25
JP6099257B2 JP6099257B2 (en) 2017-03-22

Family

ID=51574522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021862A Active JP6099257B2 (en) 2013-02-07 2013-02-07 Magnesium-based alloy thin plate and foil material and method for producing them

Country Status (1)

Country Link
JP (1) JP6099257B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211011A (en) * 2015-04-28 2016-12-15 国立研究開発法人物質・材料研究機構 High toughness magnesium group alloy extension material, and method for producing the same
WO2019098225A1 (en) * 2017-11-16 2019-05-23 Toda株式会社 Acoustic diaphragm and speaker using same
US20200269297A1 (en) * 2017-09-25 2020-08-27 Baoshan Iron & Steel Co., Ltd. Magnesium or magnesium alloy having high formability at room temperature and manufacturing method thereof
CN116024470A (en) * 2022-12-05 2023-04-28 太原理工大学 Magnesium-silver alloy and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257658A (en) * 1988-08-23 1990-02-27 Furukawa Alum Co Ltd High damping material of mg and its manufacture
JP2009161818A (en) * 2008-01-08 2009-07-23 Toyota Motor Corp Damping magnesium alloy sheet and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257658A (en) * 1988-08-23 1990-02-27 Furukawa Alum Co Ltd High damping material of mg and its manufacture
JP2009161818A (en) * 2008-01-08 2009-07-23 Toyota Motor Corp Damping magnesium alloy sheet and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211011A (en) * 2015-04-28 2016-12-15 国立研究開発法人物質・材料研究機構 High toughness magnesium group alloy extension material, and method for producing the same
US20200269297A1 (en) * 2017-09-25 2020-08-27 Baoshan Iron & Steel Co., Ltd. Magnesium or magnesium alloy having high formability at room temperature and manufacturing method thereof
WO2019098225A1 (en) * 2017-11-16 2019-05-23 Toda株式会社 Acoustic diaphragm and speaker using same
JPWO2019098225A1 (en) * 2017-11-16 2021-01-21 Toda株式会社 Acoustic diaphragm and speaker using it
CN116024470A (en) * 2022-12-05 2023-04-28 太原理工大学 Magnesium-silver alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP6099257B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP4189687B2 (en) Magnesium alloy material
JP5648885B2 (en) Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate
JP6278379B2 (en) Magnesium alloy sheet manufacturing method, magnesium alloy sheet and press-molded body using the same
JP2016138336A (en) Magnesium-based alloy for extension application
JP6758383B2 (en) Magnesium alloy plate material and its manufacturing method
JP2008150704A (en) Magnesium alloy material and production thereof
WO2010150651A1 (en) Magnesium alloy plate
US11060173B2 (en) Wrought processed magnesium-based alloy and method for producing same
JP6099257B2 (en) Magnesium-based alloy thin plate and foil material and method for producing them
JP2009120883A (en) Magnesium alloy foil and its manufacturing method
JP6489576B2 (en) Method for producing a magnesium-based alloy extension material
JP2008308703A (en) Magnesium alloy for continuously casting and rolling, and method for producing magnesium alloy material
JPWO2019013226A1 (en) Magnesium-based alloy wrought material and method for producing the same
Wei et al. Effect of heat treatment on microstructures and mechanical properties of extruded-rolled AZ31 Mg alloys
JP4803357B2 (en) Heat-resistant magnesium alloy produced by hot working and method for producing the same
JP2010053386A (en) Magnesium alloy sheet material which is excellent in formability, and producing method therefor
JP4864413B2 (en) High strength magnesium alloy extruded material
JP2011127163A (en) Magnesium alloy sheet material having excellent formability, and method for production thereof
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
JP2019060026A (en) Magnesium-based alloy extension material and manufacturing method therefor
JP2013079436A (en) Magnesium alloy and method for producing the same
JP2012214852A (en) Method for producing magnesium alloy
Noda et al. Texture, microstructure, and mechanical properties of calcium containing flame-resistant magnesium alloy sheets produced by twin-roll casting and sequential warm rolling
JP5348624B2 (en) Magnesium alloy screw
CN110785506A (en) Magnesium alloy sheet material and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6099257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250