JP2009120883A - Magnesium alloy foil and its manufacturing method - Google Patents

Magnesium alloy foil and its manufacturing method Download PDF

Info

Publication number
JP2009120883A
JP2009120883A JP2007294091A JP2007294091A JP2009120883A JP 2009120883 A JP2009120883 A JP 2009120883A JP 2007294091 A JP2007294091 A JP 2007294091A JP 2007294091 A JP2007294091 A JP 2007294091A JP 2009120883 A JP2009120883 A JP 2009120883A
Authority
JP
Japan
Prior art keywords
magnesium alloy
compound
less
foil
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007294091A
Other languages
Japanese (ja)
Inventor
Jo Sugimoto
丈 杉本
Sukenori Nakaura
祐典 中浦
Masayuki Nakamoto
将之 中本
Akira Watabe
晶 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2007294091A priority Critical patent/JP2009120883A/en
Publication of JP2009120883A publication Critical patent/JP2009120883A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium alloy foil and its manufacturing method. <P>SOLUTION: A molten magnesium alloy, having a composition which consists of, by mass, 1 to 11.0% Al, 0.1 to 2.0% Zn, 0.15 to 0.5% Mn and the balance Mg with inevitable impurities and further contains, if necessary, 0.05 to 2% of one or more elements among Ca, Sr and RE and in which, among the inevitable impurities, the contents of Fe, Ni, Co and Cu are restricted to <50 ppm, respectively, and also the content of Cl is restricted to <20 ppm is used. The molten magnesium alloy is subjected, preferably, to continuous casting and rolling and worked into a strip-like magnesium alloy sheet. The sheet is used as a base material and formed into a magnesium alloy foil whose thickness is reduced to a foil thickness of 0.02 to <0.2 mm by plastic working such as rolling. In this way, the magnesium alloy foil in which the size of an Al-Mn compound is preferably <10 μm can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、マグネシウム合金箔とその製造方法に関するものである。   The present invention relates to a magnesium alloy foil and a method for producing the same.

マグネシウムは比重がアルミニウム合金の2/3、鉄の1/4と小さく、しかも比強度が高く、リサイクル性にも優れることから、構造用製品の軽量化に効果的である。最近では、マグネシウム熱伝導性、減衰性能、電磁波シールドを生かし、マグネシウム合金箔材が音響効果用の部品として使用されている。減衰性能とは物体に衝撃が加わったときに、材料内部でその衝撃を減衰させる性質のことで、スピーカーの振動板の場合は減衰率が大きいと広帯域で残響が少なく良質な音質が得られる。
ただし、既存のマグネシウム製品の多くはダイカストやチクソなどの鋳造法により製造されたものが大部分であり、鋳造法の場合、複雑形状の物を容易に得ることができるものの、表面品質に問題があり、製品表面に研磨やパテ埋めなどを施すための補修工程が必要となると共に、製品の薄肉化や大型化への対応が困難である。それに対し、マグネシウム合金展伸材を使用した場合は、表面性状に優れ、歩留り向上や薄肉化、大型化への適用が可能となることが期待される。
一般に普及しているマグネシウム合金箔は、強度向上、耐食性向上などのためにAl、Mnを適量含有する組成に調整されたマグネシウム合金を用いて、スラブ、押出材を板に圧延して得ているのが通常である。この他に、双ロール法で直接薄肉の板材を作製し、それを同様に圧延し合金板とする方法も知られている(例えば特許文献1、2参照)。
これらのマグネシウム合金箔は、製造時の歩留りやプレス成形性が十分なものとは言えず、耐食性にも難があり表面処理を施すことが必要とされている。
特開2006−144043号公報 特開2006−144059号公報
Magnesium has a specific gravity as small as 2/3 that of an aluminum alloy and 1/4 that of iron, has a high specific strength, and is excellent in recyclability. Therefore, it is effective in reducing the weight of structural products. Recently, magnesium alloy foil materials have been used as components for acoustic effects, taking advantage of magnesium thermal conductivity, attenuation performance, and electromagnetic shielding. Attenuation performance is the property of attenuating the impact inside the material when an impact is applied to the object. In the case of a speaker diaphragm, a large attenuation rate results in low-band reverberation and good sound quality.
However, most of the existing magnesium products are manufactured by casting methods such as die casting and thixo, and in the case of casting methods, complicated shapes can be easily obtained, but there is a problem in surface quality. In addition, a repairing process for polishing or filling the surface of the product is required, and it is difficult to cope with the reduction in thickness and size of the product. On the other hand, when a magnesium alloy wrought material is used, it is expected that it has excellent surface properties and can be applied to yield improvement, thinning, and enlargement.
Commonly used magnesium alloy foil is obtained by rolling a slab and an extruded material into a plate using a magnesium alloy adjusted to a composition containing appropriate amounts of Al and Mn in order to improve strength and corrosion resistance. It is normal. In addition, a method is also known in which a thin plate material is directly produced by a twin roll method and is rolled in the same manner to obtain an alloy plate (see, for example, Patent Documents 1 and 2).
These magnesium alloy foils cannot be said to have sufficient yield and press formability at the time of production, have difficulty in corrosion resistance, and are required to be subjected to surface treatment.
JP 2006-144043 A JP 2006-144059 A

従来のスラブ、押出材を基板に圧延した箔厚0.02〜0.2mm未満のマグネシウム合金箔には点状の穴(ピンホール)が観察されやすい他、プレス成形時に割れが発生しやすく、結果、製品歩留りを下げてしまうという問題点がある。   Conventional slabs, magnesium alloy foils with a thickness of 0.02 to less than 0.2 mm rolled onto a substrate, are easily observed with dotted holes (pinholes), and cracks are easily generated during press molding. As a result, there is a problem that the product yield is lowered.

本発明は、上記事情を背景としてなされたものであり、ピンホールが観察されず、プレス成形時に割れ等の不具合を生じにくいため、製品歩留りを向上できるマグネシウム合金箔を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and it is an object of the present invention to provide a magnesium alloy foil that can improve product yield because pinholes are not observed and defects such as cracking are less likely to occur during press molding. .

本願発明者らは、マグネシウム合金箔に観察されるピンホールやプレス成形時における不具合について調査研究したところ、マグネシウム合金箔中に形成されている粗大なAl−Mn化合物が、抜け落ちることでピンホールが発生しており、さらにプレス成形時に破断の起点となっているという現象を見出した。   The inventors of the present application investigated and studied pinholes observed in the magnesium alloy foil and defects during press molding. As a result, the coarse Al-Mn compound formed in the magnesium alloy foil dropped out, causing pinholes. It was found that the phenomenon occurred and that it was the starting point of fracture during press molding.

一般に普及しているAZ系(Mg−Al−Zn)、AM系(Mg−Al)などのマグネシウム合金箔はスラブや押出材を基板に圧延したものであり、その場合、圧延板のミクロ組織中にはサイズにして10μmを超える粗大なサイズのAl−Mn化合物が点在している。それら、化合物は箔厚0.02〜0.2mm未満まで薄肉化された材料の表面性状やプレス成形性に悪影響を及ぼす。   Magnesium alloy foils such as AZ (Mg—Al—Zn) and AM (Mg—Al) that are widely used are rolled slabs or extruded materials on a substrate, and in that case, in the microstructure of the rolled plate Are dotted with coarse Al-Mn compounds having a size exceeding 10 μm. These compounds adversely affect the surface properties and press moldability of the material thinned to a foil thickness of 0.02 to less than 0.2 mm.

すなわち、ファセット状に粗大化したAl−Mn系化合物は、箔厚0.02〜0.2mm未満と薄肉化された材料において粗大な化合物の占める体積が大きいため、表層に顔を出しやすく、その結果、粗大な化合物が抜け落ちてしまうとその部分が空洞になりピンホールとなってしまう。さらにプレス成形時には割れ発生の起点となり、最悪の場合、化合物を起点に割れが伝播し、破断に至る。Al−Mn化合物は硬度が高く、圧延等で破砕し微細化することは不可能であるため、薄肉化しても材料中に残留する。   That is, the Al-Mn compound coarsened in a facet shape has a large volume occupied by the coarse compound in the thinned material with a foil thickness of less than 0.02 to 0.2 mm. As a result, when a coarse compound falls off, the portion becomes a cavity and becomes a pinhole. Furthermore, it becomes a starting point of crack generation at the time of press molding, and in the worst case, the crack propagates from the compound as a starting point and leads to fracture. Since the Al—Mn compound has high hardness and cannot be crushed and refined by rolling or the like, it remains in the material even if it is thinned.

一方で、Mnは熱処理時の粒成長を抑制する効果があるとともに、材料に耐食性を付与する上で、悪影響を及ぼすFe量を低減するために必要不可欠な添加元素である。従って、粗大なAl−Mn系化合物を生じさせない方法が必要となるが、その方法として双ロール法が挙げられる。双ロール法で鋳造圧延したものは、連続鋳造圧延時のロールへの抜熱による急冷凝固のためにAl−Mn化合物の晶出、成長を抑制でき、分散微細化することができる。   On the other hand, Mn is an additive element indispensable for reducing the amount of Fe that has an adverse effect on imparting corrosion resistance to a material as well as suppressing grain growth during heat treatment. Therefore, a method that does not produce a coarse Al—Mn compound is required, and an example thereof is a twin roll method. Casting and rolling by the twin roll method can suppress crystallization and growth of the Al—Mn compound and can be dispersed and refined due to rapid solidification by heat removal from the roll during continuous casting and rolling.

ここでいう双ロール法とは、装置の原理図を図1に示すように、溶解炉1から桶2を通してノズル3から供給されたマグネシウム合金の溶湯5が、上下に配置された鋳造ロール4A、4Bからなる双ロール4の間に導入され、水冷されている双ロール4の間で凝固したのち圧延されて鋳造圧延板5aとする製造方法である。こうして得られた鋳造圧延板5aは、シャーにより一定長さに切断してシート状とするか、コイルとして巻き取られる。   As used herein, the twin roll method is a casting roll 4A in which a molten magnesium alloy 5 supplied from a nozzle 3 through a slag 2 from a melting furnace 1 is vertically arranged as shown in FIG. In this manufacturing method, the steel sheet is introduced between the twin rolls 4B and solidified between the water-cooled twin rolls 4 and then rolled into a cast and rolled plate 5a. The cast and rolled plate 5a thus obtained is cut into a sheet by cutting to a certain length with a shear or wound up as a coil.

しかし、双ロール法においても、鋳造時の溶解炉内の溶湯温度が650℃未満になるとAl−Mn化合物が晶出し始め、その低温のまま保持されると晶出した化合物が凝集成長し粗大化してしまう。さらに、溶解炉からロールに供給される過程においても同様に、溶湯温度が650℃を下回るとAl−Mn化合物が晶出、粗大化する。連続鋳造圧延時にそれら粗大な化合物が鋳造板中に混入すると、圧延等により箔厚0.02〜0.2mm未満まで薄肉化した際に上述のようにピンホールを形成し、外観上の欠陥となりやすい。プレス成形時においても、プレス中に粗大なAl−Mn化合物が割れの起点となって破断を生じることがある。鋳造時に発生した10μm以上のAl−Mn化合物は、後工程の圧延においても破砕できないため、鋳造時に10μm未満に制御する必要がある。そこで本願発明者らは、Al−Mn化合物のサイズを10μm未満に抑制することによりピンホールの発生を抑制でき、プレス成形時にも割れを発生しにくいマグネシウム箔を得ることができるとの知見を得て、本発明を完成するに至ったのである。   However, even in the twin roll method, the Al—Mn compound starts to crystallize when the molten metal temperature in the melting furnace during casting becomes less than 650 ° C., and the crystallized compound agglomerates and grows coarse when held at the low temperature. End up. Further, in the process of supplying the roll from the melting furnace, similarly, when the molten metal temperature falls below 650 ° C., the Al—Mn compound crystallizes and coarsens. If these coarse compounds are mixed in the cast plate during continuous casting and rolling, pinholes are formed as described above when the foil thickness is reduced to less than 0.02 to 0.2 mm by rolling or the like, resulting in defects in appearance. Cheap. Even at the time of press molding, a coarse Al-Mn compound may be a starting point of cracking during the pressing and cause fracture. An Al—Mn compound having a size of 10 μm or more generated during casting cannot be crushed even in the subsequent rolling process, and therefore needs to be controlled to be less than 10 μm during casting. Therefore, the inventors of the present application have obtained the knowledge that by suppressing the size of the Al—Mn compound to less than 10 μm, it is possible to suppress the generation of pinholes and to obtain a magnesium foil that is difficult to crack even during press molding. Thus, the present invention has been completed.

すなわち、本発明のうち、第1の本発明のマグネシウム合金箔は、箔厚が0.02〜0.2mm未満であって、質量%でAl:1〜11%、Mn:0.15〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有することを特徴とする。   That is, among the present inventions, the magnesium alloy foil of the first present invention has a foil thickness of less than 0.02 to 0.2 mm, and by mass%, Al: 1 to 11%, Mn: 0.15 to 0 .5%, and the balance is composed of Mg and inevitable impurities.

第2の本発明のマグネシウム合金箔は、前記第1の本発明において、前記組成に、さらに質量%でZn:0.1〜2.0%を含有することを特徴とする。   The magnesium alloy foil of the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the composition further contains Zn: 0.1 to 2.0% by mass.

第3の本発明のマグネシウム合金箔は、前記第1または第2の本発明において、前記組成に、さたに質量%で、Ca、Sr、REの1種類以上を0.05〜2%を含有することを特徴とする。   In the first or second aspect of the present invention, the magnesium alloy foil of the third aspect of the present invention may further contain 0.05% to 2% of one or more of Ca, Sr, and RE in the composition by mass%. It is characterized by containing.

第4の本発明のマグネシウム合金箔は、前記第1〜第3の本発明のいずれかにおいて、前記組成の不可避不純物中、Fe、Ni、Co、Cuをそれぞれ50ppm未満、Clを20ppm未満に規制することを特徴とする。より好ましくはFe<40ppm、Cu、Ni、Co、Cl<20ppmに規制されていることが望ましい。   In the magnesium alloy foil of the fourth invention according to any one of the first to third inventions, Fe, Ni, Co and Cu are regulated to less than 50 ppm and Cl to less than 20 ppm, respectively, in the inevitable impurities having the above composition. It is characterized by doing. More preferably, the Fe content is regulated to Fe <40 ppm, Cu, Ni, Co, Cl <20 ppm.

第5の本発明のマグネシウム合金箔は、前記第1〜第4の本発明のいずれかにおいて、Al−Mn化合物の最大サイズが10μm未満であることを特徴とする。   The magnesium alloy foil of the fifth aspect of the present invention is characterized in that, in any of the first to fourth aspects of the present invention, the maximum size of the Al—Mn compound is less than 10 μm.

第6の本発明のマグネシウム合金箔を得るための製造方法は、前記第1〜第5の本発明のいずれかのマグネシウム合金箔を製造する方法であって、双ロール法で板を製造する際、炉からロールまでの間において溶湯温度を常に650〜800℃に保持した状態とし、650〜800℃の溶湯温度で該溶湯をロール間に送り込み、ロールによる板材の冷却速度が100〜600℃/秒となるように連続鋳造することを特徴とする。より好ましくは680〜780℃が望ましい。   The manufacturing method for obtaining the magnesium alloy foil of the sixth aspect of the present invention is a method of manufacturing the magnesium alloy foil of any one of the first to fifth aspects of the present invention. The molten metal temperature is always maintained at 650 to 800 ° C. from the furnace to the roll, the molten metal is fed between the rolls at a molten metal temperature of 650 to 800 ° C., and the cooling rate of the plate material by the roll is 100 to 600 ° C. / It is characterized by continuous casting so as to be seconds. More preferably, 680-780 degreeC is desirable.

尚、鋳造前のマグネシウム合金溶湯のアルゴンガスによる脱ガス処理において、1kgのマグネシウム合金溶湯に対するアルゴンガス総吹込み量(g)を0.5〜3.0とし、その後5分間以上の溶湯沈静化を行い、溶湯表面に発生したドロスを除去した溶湯を用いて鋳造することが好ましい。   In addition, in the degassing treatment of the magnesium alloy melt before casting with argon gas, the total amount (g) of argon gas blown into 1 kg of the magnesium alloy melt is set to 0.5 to 3.0, and then the melt is settled for 5 minutes or more. It is preferable to perform casting using a molten metal from which dross generated on the molten metal surface is removed.

尚、素材の耐食性の面からAl−Mn化合物の占有面積率が1.0%以上になると、Al−Mn化合物のサイズが粗大でなくてもAl−Mn化合物とマトリックスとの間で局部電池を形成する絶対量が増加するため、腐食が進行し、糸錆を発生し易くなる。このため、板厚表層部におけるAl−Mn化合物の占有面積率は1.0%未満であるのが望ましい。なお、板厚表層部のAl−Mn化合物の占有面積率は、Al−Mn化合物が占有する領域の単位面積あたりの割合、具体的にはマグネシウム合金板材の表層断面部をEPMA面分析したときにAl、Mn元素が検出される領域の単位面積あたりの割合を測定することにより評価できる。   In addition, when the occupied area ratio of the Al-Mn compound is 1.0% or more from the viewpoint of the corrosion resistance of the material, a local battery is formed between the Al-Mn compound and the matrix even if the size of the Al-Mn compound is not coarse. Since the absolute amount to be formed increases, corrosion proceeds and yarn rust is likely to occur. For this reason, it is desirable that the occupied area ratio of the Al—Mn compound in the plate thickness surface layer portion is less than 1.0%. In addition, the occupation area ratio of the Al-Mn compound in the plate thickness surface layer portion is the ratio per unit area of the region occupied by the Al-Mn compound, specifically, when the surface layer cross-sectional portion of the magnesium alloy plate material is subjected to EPMA surface analysis. It can be evaluated by measuring the ratio per unit area of the region where Al and Mn elements are detected.

以下に、本発明で規定する組成や製造方法等について説明する。なお、以下の成分量はいずれも質量%で示される。   Below, the composition, manufacturing method, etc. prescribed | regulated by this invention are demonstrated. In addition, all the following component amounts are shown by the mass%.

Al:1〜11%
Alは、鋳造性、強度等の機械的性質および耐食性の向上を目的として添加される。ただし、Al添加量が1%未満では、十分な鋳造性、強度および耐食性が得られない。一方、Alの添加量が11%を超えると、強度増加は飽和する。また、Al添加量が6%を超えると圧延工程における加工性が徐々に低下し、11%を超えると圧延が困難になる。これらの理由によりAlの含有量範囲を上記に定める。なお、強度増加の目的では、下限を3%とするのが望ましく、加工性の点から上限を9%とするのが望ましい。
Al: 1 to 11%
Al is added for the purpose of improving mechanical properties such as castability and strength, and corrosion resistance. However, if the Al addition amount is less than 1%, sufficient castability, strength and corrosion resistance cannot be obtained. On the other hand, when the addition amount of Al exceeds 11%, the strength increase is saturated. On the other hand, if the Al content exceeds 6%, the workability in the rolling process gradually decreases, and if it exceeds 11%, rolling becomes difficult. For these reasons, the content range of Al is defined above. For the purpose of increasing strength, the lower limit is desirably 3%, and the upper limit is desirably 9% from the viewpoint of workability.

Mn:0.15〜0.5%
Mnは耐食性を低下させる元素の影響を緩和する効果を有するものであるので、積極的に添加する。すなわち、Mnを添加することによって、耐食性を低下させる不純物元素であるFeの影響を緩和することができる。0.15%以上の含有により、この効果を効果的に得ることができる。ただし、0.5%を超えて含有すると製造時に粗大な金属間化合物が生成し、圧延性が悪化するので、Mnの含有量を0.15〜0.5%に定める。
Mn: 0.15 to 0.5%
Since Mn has an effect of mitigating the influence of elements that lower the corrosion resistance, it is positively added. That is, by adding Mn, the influence of Fe, which is an impurity element that lowers corrosion resistance, can be mitigated. By containing 0.15% or more, this effect can be effectively obtained. However, if the content exceeds 0.5%, a coarse intermetallic compound is produced during production and the rollability deteriorates, so the Mn content is set to 0.15 to 0.5%.

Zn:0.1〜2.0%
Znは、Alと同様に、鋳造性と強度等の機械的性質の向上に寄与するので、所望により含有させる。0.1%以上の含有により、この効果を得ることができる。但し、0.1%未満を不純物として含み得る。Znの添加量が2.0%を超えると、鋳造性が低下するので上限を2.0%とする。
Zn: 0.1 to 2.0%
Zn, like Al, contributes to improvement of mechanical properties such as castability and strength, and is thus contained as desired. This effect can be acquired by containing 0.1% or more. However, it may contain less than 0.1% as impurities. If the added amount of Zn exceeds 2.0%, the castability deteriorates, so the upper limit is made 2.0%.

所望によりCa、Sr、REの1種類以上を0.05〜2%を含有しても良い:
Ca、Sr、REは難燃性、耐熱性の向上に寄与するので、所望により1種類以上を含有させることができる。各元素はそれぞれ0.05〜2%の含有により、この効果を得ることができる。RE(希土類元素)としては、例えばイットリウム、ネオジウム、ランタン、セリウム、ミッシュメタル(例えば、La:15%、Ce:60%、Nd:15%、Pr+Sm:10%)などを用いることができる。
If desired, one or more of Ca, Sr, RE may contain 0.05-2%:
Since Ca, Sr, and RE contribute to the improvement of flame retardancy and heat resistance, one or more kinds can be contained as desired. This effect can be obtained by containing 0.05 to 2% of each element. As RE (rare earth element), for example, yttrium, neodymium, lanthanum, cerium, misch metal (for example, La: 15%, Ce: 60%, Nd: 15%, Pr + Sm: 10%) can be used.

不可避不純物中のFe、Ni、Co、Cu<各50ppm未満、Cl<20ppm未満
マグネシウム合金の耐食性にはFe、Ni、Co、Cu、Clが悪影響を及ぼす。従って、これらの元素を耐食性に害がないとされる濃度に規制するのが望ましい。Fe、Ni、Co、Cuは50ppm未満に、Clは20ppm未満に規制するのが望ましい。より好ましくはFe<40ppm、Cu、Ni、Co、Cl<各20ppmに規制されていることが望ましい。
Fe, Ni, Co, Cu in unavoidable impurities <50 ppm each, Cl <20 ppm or less Fe, Ni, Co, Cu, Cl adversely affects the corrosion resistance of magnesium alloys. Therefore, it is desirable to regulate these elements to concentrations that are not harmful to corrosion resistance. Desirably, Fe, Ni, Co, and Cu are restricted to less than 50 ppm, and Cl is restricted to less than 20 ppm. More preferably, it is desirable that Fe <40 ppm, Cu, Ni, Co, Cl <20 ppm each.

Al−Mn化合物:最大サイズ10μm未満
最大サイズ10μm以上のAl−Mn化合物が形成されていると、ピンホールが発生し、表面性状が低下し、またプレス成形時に割れの起点になりやすいため、Al−Mn化合物の最大サイズを10μm未満に規制するのが望ましい。好適には5μm未満が望ましい。なお、Al−Mn化合物のサイズは、光学顕微鏡での板厚方向断面部のミクロ組織観察により評価することができる。
Al—Mn compound: Less than 10 μm in maximum size When an Al—Mn compound with a maximum size of 10 μm or more is formed, pinholes are generated, surface properties are lowered, and cracks are likely to occur during press molding. It is desirable to limit the maximum size of the Mn compound to less than 10 μm. Preferably it is less than 5 μm. Note that the size of the Al—Mn compound can be evaluated by observing the microstructure of the cross section in the thickness direction with an optical microscope.

双ロール法で板を製造する際、炉からロールまでの間において溶湯温度を常に650〜800℃に保持した状態とし、650〜800℃の溶湯温度で溶湯をロール間に送り込む:
双ロール法においても、鋳造時の溶解炉内の溶湯温度が650℃未満になるとAl−Mn化合物が晶出し始め、その低温のまま保持されると晶出した化合物が凝集成長し粗大化してしまう。さらに、溶解炉からロールに供給される過程においても同様に、溶湯温度が650℃を下回るとAl−Mn化合物が晶出し、凝集粗大化する。溶湯温度が800℃を超えると鋳造時に湯漏れを生じてしまい、健全な鋳造圧延板を得ることができない。より好ましくは680〜780℃が望ましい。
When producing a plate by the twin roll method, the molten metal temperature is always kept at 650 to 800 ° C. from the furnace to the roll, and the molten metal is fed between the rolls at a molten metal temperature of 650 to 800 ° C .:
Even in the twin roll method, the Al—Mn compound begins to crystallize when the molten metal temperature in the melting furnace during casting becomes less than 650 ° C., and the crystallized compound agglomerates and becomes coarse when held at the low temperature. . Further, in the process of supplying the roll from the melting furnace, similarly, when the molten metal temperature falls below 650 ° C., the Al—Mn compound crystallizes and aggregates and becomes coarse. If the molten metal temperature exceeds 800 ° C., a molten metal leaks during casting, and a sound cast and rolled sheet cannot be obtained. More preferably, 680-780 degreeC is desirable.

ロールによる板材の冷却速度:100〜600℃/秒:
上記記載の溶湯温度を保持したまま、溶湯がロールに供給される際、ロールによる板材の冷却速度が100℃/秒を下回ると溶湯が凝固完了するまでの時間が長くなり、Al−Mn化合物が粗大化してしまう。また、冷却速度の上限は特に規定しないが、現状の設備や実際の製造条件を考慮すると600℃/秒を上回る冷却速度を得ることは難しい。好適には300〜600℃/秒とする。なお、冷却速度は連続鋳造圧延で作製した板材の板厚方向表層断面部の二次デンドライトアーム間隔(DAS)から算出した。二次デンドライトアーム間隔d(μm)と推定冷却速度V(℃/s)との関係は次式(1)で表される。
d=35.5V−0.31 …(1)
Cooling rate of plate material by roll: 100 to 600 ° C./second:
When the molten metal is supplied to the roll while maintaining the molten metal temperature described above, if the cooling rate of the plate material by the roll is less than 100 ° C./second, the time until the molten metal is solidified becomes long, and the Al—Mn compound is It becomes coarse. Moreover, although the upper limit of a cooling rate is not specified in particular, it is difficult to obtain a cooling rate exceeding 600 ° C./second in consideration of current facilities and actual manufacturing conditions. Preferably, it is 300 to 600 ° C./second. The cooling rate was calculated from the secondary dendrite arm spacing (DAS) at the cross-sectional surface in the thickness direction of the plate produced by continuous casting and rolling. The relationship between the secondary dendrite arm interval d (μm) and the estimated cooling rate V (° C./s) is expressed by the following equation (1).
d = 35.5V− 0.31 (1)

鋳造前のマグネシウム合金溶湯のアルゴンガスによる脱ガス処理において、1kgの溶湯に対するアルゴンガス総吹込み量(g)を0.5〜3.0とし、その後5分間以上の溶湯沈静化を行い、溶湯表面に発生したドロスを除去した溶湯を用いて鋳造する:
鋳造前のマグネシウム合金溶湯のアルゴンガスによる脱ガス処理は、介在物を除去し、溶湯を清浄化する作用を有する。1kgのマグネシウム合金溶湯に対するアルゴンガス総吹込み量が0.5以上でその効果が現れ、3.0より大きくなるとその効果が飽和する。アルゴンガス吹込み後は5分間以上の溶湯沈静化を行うが、5分未満では溶湯が沈静化しておらず、介在物の除去効果が小さくなってしまうため、5分以上の沈静化を行い介在物が溶湯表面に浮上するのを待つ。溶湯表面に浮上したドロス(介在物)は、予め乾燥させた柄杓等の治具により除去する。
In the degassing treatment of the magnesium alloy melt before casting with argon gas, the total argon gas blowing amount (g) with respect to 1 kg of molten metal is set to 0.5 to 3.0, and then the molten metal is calmed for 5 minutes or more. Cast using molten metal from which dross generated on the surface is removed:
The degassing treatment of the molten magnesium alloy before casting with argon gas has an action of removing inclusions and cleaning the molten metal. The effect appears when the total amount of argon gas blown into the molten magnesium alloy of 1 kg is 0.5 or more, and the effect is saturated when it exceeds 3.0. After the argon gas is blown, the molten metal is calmed for 5 minutes or more. However, the molten metal is not calmed for less than 5 minutes, and the effect of removing inclusions is reduced. Wait for objects to rise to the surface of the melt. The dross (inclusions) floating on the surface of the molten metal is removed with a jig such as a handle that has been dried in advance.

以上説明したように、本発明のマグネシウム合金箔は、質量%で、Al:1〜11%、Mn:0.15〜0.5%、Zn:0.1〜2.0%を含有し、さらに所望によりCa、Sr、REの1種類以上を0.05〜2%を含有し、残部がMgおよび不可避不純物からなる組成を有するので、箔厚0.02〜0.2mm未満まで薄肉化した際に10μmを超える粗大なAl−Mn化合物に起因するピンホールの発生やプレス成形時の不具合が回避される効果が得られる。   As described above, the magnesium alloy foil of the present invention contains, in mass%, Al: 1 to 11%, Mn: 0.15 to 0.5%, Zn: 0.1 to 2.0%, Further, if desired, it contains 0.05 to 2% of one or more of Ca, Sr and RE, and the balance is composed of Mg and inevitable impurities, so the foil thickness is reduced to less than 0.02 to 0.2 mm. In this case, the effect of avoiding the occurrence of pinholes due to coarse Al—Mn compounds exceeding 10 μm and the problems during press molding can be obtained.

以下に、本発明の一実施形態を説明する。
質量%で、Al:1〜11%、Mn:0.15〜0.5%を含有し、所望によりZn:0.01〜2.0%を含有し、さらに所望によりCa、Sr、REの1種類以上を0.05〜2%を含有し、残部がMgおよび不可避不純物からなるマグネシウム合金を用意し、該マグネシウム合金を溶解し、好適には冷却速度300℃/s以上の連続鋳造圧延によりマグネシウム合金板を製造する。双ロール法などの連続鋳造圧延によって作製したマグネシウム合金板は、ロールへの抜熱などによる急冷凝固のためにAl−Mn化合物の成長を抑制できる。そのため、ピンホールの発生やプレス成形時の不具合等の悪影響を抑制することが可能となる。さらに、連続鋳造圧延の際、炉からロールまでの間においても溶湯温度を管理する必要があり、Al−Mn化合物が晶出し始めない650℃以上の溶湯温度で溶湯をロール間に送り込むことで、Al−Mn化合物が晶出、凝集粗大化を抑制することが可能となる。
Hereinafter, an embodiment of the present invention will be described.
In mass%, Al: 1 to 11%, Mn: 0.15 to 0.5%, optionally Zn: 0.01 to 2.0%, and optionally Ca, Sr, RE Prepare a magnesium alloy containing 0.05 to 2% of one or more types, the balance being Mg and inevitable impurities, melting the magnesium alloy, and preferably by continuous casting and rolling at a cooling rate of 300 ° C./s or more Manufacture magnesium alloy sheets. A magnesium alloy sheet produced by continuous casting and rolling such as a twin roll method can suppress the growth of the Al-Mn compound due to rapid solidification by heat removal from the roll. Therefore, it is possible to suppress adverse effects such as occurrence of pinholes and defects during press molding. Furthermore, during continuous casting and rolling, it is necessary to control the molten metal temperature from the furnace to the roll, and by feeding the molten metal between the rolls at a molten metal temperature of 650 ° C. or higher at which the Al—Mn compound does not start to crystallize, The Al—Mn compound can be crystallized and aggregation coarsening can be suppressed.

上記マグネシウム合金板材は、さらに圧延工程により製品箔厚にまで圧延することができる。該製品箔厚としては、0.02mm〜0.2mm未満の箔材が想定される。なお、製品箔厚とする加工法は、圧延工程に限定されず、その他の塑性加工によるものであってもよい。上記連続鋳造圧延板を基板に圧延工程などによって薄肉化したマグネシウム合金箔は、Al−Mn化合物のサイズを10μm未満にすることができる。
上記圧延工程前または圧延工程における熱間圧延後、温間圧延前に、均質化処理を行うことができる。均質化処理は、例えば370〜470℃で1時間以上加熱することにより行うことができる。該均質化処理により、急冷凝固されたマグネシウム合金板材における溶質元素のデンドライト・セル境界および板厚中心部での高濃度の偏析を解消することができ、その後の圧延性に優れたマグネシウム合金箔材を得ることができる。
The magnesium alloy sheet can be further rolled to a product foil thickness by a rolling process. As the product foil thickness, a foil material of 0.02 mm to less than 0.2 mm is assumed. In addition, the processing method used as product foil thickness is not limited to a rolling process, You may be based on other plastic processing. The magnesium alloy foil obtained by thinning the continuous cast rolled plate to the substrate by a rolling process or the like can make the size of the Al—Mn compound less than 10 μm.
A homogenization treatment can be performed before the rolling step or after hot rolling in the rolling step and before warm rolling. A homogenization process can be performed by heating at 370-470 degreeC for 1 hour or more, for example. This homogenization treatment can eliminate high-concentration segregation at the dendrite cell boundary and the center of the plate thickness of the solute elements in the rapidly solidified magnesium alloy plate, and the magnesium alloy foil with excellent rolling properties thereafter Can be obtained.

圧延工程は、温間圧延または、熱間圧延と温間圧延とを行う工程により行うことができる。上記圧延工程では、中間焼鈍を介在させることができる。該中間焼鈍は、熱間圧延工程と温間圧延工程の間で行ったり、温間圧延の途中に行ったりすることができ、温間圧延の途中で行う場合には温間圧延の圧下率が80%を超える場合に、好ましく設けられる。
中間焼鈍は、例えば200〜350℃、1時間の加熱により行うことができる。
A rolling process can be performed by the process of performing warm rolling or hot rolling and warm rolling. In the rolling step, intermediate annealing can be interposed. The intermediate annealing can be performed between the hot rolling process and the warm rolling process, or can be performed in the middle of the warm rolling. When it exceeds 80%, it is preferably provided.
The intermediate annealing can be performed, for example, by heating at 200 to 350 ° C. for 1 hour.

最終箔厚のマグネシウム合金箔は、プレコートなどの表面処理を行うことができる。なお、本発明としては表面処理などの条件が特に制限されるものではなく、既知の条件によって行うこともできる。   The final foil thickness of the magnesium alloy foil can be subjected to a surface treatment such as pre-coating. In the present invention, the conditions such as the surface treatment are not particularly limited, and can be performed under known conditions.

以下に、本発明の実施例を比較例と比較しつつ説明する。
表1に示す組成(残部Mgおよび不可避不純物)のマグネシウム合金を溶解して、双ロール法による連続鋳造圧延をして、鋳造圧延板(基板)を得た。この圧延板に、400℃×20時間の均質化処理を実施した後、熱間圧延、温間圧延により厚さ0.05mm(50μm))の箔とし、発明材および比較材を得た。尚、発明材および比較材は鋳造前のマグネシウム合金溶湯において、アルゴンガスによる脱ガス処理を行なった。脱ガス処理は1kgのマグネシウム合金溶湯に対するアルゴンガス総吹込み量(g)を0.5〜3.0とし、その後10分間の溶湯沈静化を行い、溶湯表面に発生したドロスを除去した。
Examples of the present invention will be described below in comparison with comparative examples.
A magnesium alloy having the composition shown in Table 1 (remainder Mg and inevitable impurities) was melted and subjected to continuous casting and rolling by a twin roll method to obtain a cast and rolled plate (substrate). The rolled plate was subjected to a homogenization treatment at 400 ° C. for 20 hours, and then made into a foil having a thickness of 0.05 mm (50 μm) by hot rolling and warm rolling to obtain an inventive material and a comparative material. The inventive material and the comparative material were degassed with argon gas in the magnesium alloy melt before casting. In the degassing treatment, the total amount (g) of argon gas blown into 1 kg of molten magnesium alloy was set to 0.5 to 3.0, and then the molten metal was calmed for 10 minutes to remove dross generated on the surface of the molten metal.

なお、各供試材の上記連続鋳造時にロールまでの間の溶湯温度を測定し、その結果を表1に示した。ロール間に送り込む溶湯温度はノズル先端部から90mm後方の位置でノズル内を流れる溶湯温度を測定し、その値とした。   In addition, the molten metal temperature until a roll was measured at the time of the said continuous casting of each test material, and the result was shown in Table 1. The melt temperature fed between the rolls was determined by measuring the temperature of the melt flowing through the nozzle at a position 90 mm behind the nozzle tip.

得られた各供試材のミクロ組織観察を行った。板断面の板厚表層部を、光学顕微鏡を用いて観察したAl−Mn化合物の最大サイズを評価した。その結果を表1に示すが、不純物元素であるFe、Ni、Co、Cuが50ppm未満、Clが20ppm未満に規制されている比較材20でAl−Mn化合物の最大サイズが12.2μmであるのに対して、本発明材は、Al−Mn化合物の最大サイズが5μm以下であった。比較材21に関してはAl−Mn化合物の最大サイズは2.5μmであるが、不純物元素Feが50ppmを超えている。   The microstructure of each obtained specimen was observed. The maximum size of the Al-Mn compound observed using an optical microscope was evaluated for the plate thickness surface layer portion of the plate cross section. The results are shown in Table 1, and the maximum size of the Al—Mn compound is 12.2 μm in the comparative material 20 in which the impurity elements Fe, Ni, Co, and Cu are restricted to less than 50 ppm and Cl is less than 20 ppm. On the other hand, as for this invention material, the maximum size of the Al-Mn compound was 5 micrometers or less. Regarding the comparative material 21, the maximum size of the Al—Mn compound is 2.5 μm, but the impurity element Fe exceeds 50 ppm.

また、上記各供試材に対し、200mm角の箔に観察されたピンホールの数を測定した。ピンホールの数の測定は、試料を暗室内に設置した状態で赤外線を材料表面に照射し、貫通した光の数で評価した。Al−Mn化合物の最大サイズが5μm未満の試料では5個以内であるが、10μmを超える比較材No.20ではその発生数が多くなっていた。   In addition, the number of pinholes observed on a 200 mm square foil was measured for each of the above test materials. Measurement of the number of pinholes was performed by irradiating the material surface with infrared light in a state where the sample was placed in a dark room, and evaluating the number of penetrating lights. Although the maximum size of the Al—Mn compound is less than 5 for the sample of less than 5 μm, the comparative material No. In 20, the number of occurrences increased.

次に、各供試材の成形性評価を行った。成形性評価は温間プレスによるマグネシウム合金箔の深絞り後、張出し成形という二段階プロセスにより成形した。成形試験結果を表1に示す。尚、表中の記号は、○:良好、△:たまに割れ発生、×:頻繁に割れ発生、を示す。Al−Mn化合物の最大サイズが5μm未満の試料では良好な成形結果が得られている。   Next, the moldability of each test material was evaluated. Formability evaluation was performed by a two-stage process called stretch forming after deep drawing of the magnesium alloy foil by warm pressing. The molding test results are shown in Table 1. In addition, the symbol in a table | surface shows (circle): favorable, (triangle | delta): Occurrence of a crack occasionally, and x: Frequent crack generation. Good molding results have been obtained with samples whose maximum size of the Al—Mn compound is less than 5 μm.

さらに各供試材に対し、5%NaCl溶液による24時間の塩水噴射試験を行い、腐食速度を測定し、その結果を表1に示した。本発明材は腐食速度が小さく耐食性に優れていた。一方、比較材は腐食速度が大きく耐食性に劣っていた。   Further, each specimen was subjected to a salt water injection test for 24 hours with a 5% NaCl solution, and the corrosion rate was measured. The results are shown in Table 1. The inventive material had a low corrosion rate and excellent corrosion resistance. On the other hand, the comparative material had a high corrosion rate and was inferior in corrosion resistance.

次に、各供試材のEPMA面分析による観察面1視野(195μm×195μm)におけるMnの占有面積率の評価を行った。MnはAlとのみ化合物を形成するため、Mnの占有面積率の分析により、Al−Mn化合物の占有面積率が同面積率であると推定される。分析箇所は板厚方向断面部から150μmの範囲内でランダムに行った。評価結果を表1に示した。発明材は、いずれも1.0%未満の占有面積率であった。発明材No.16〜19は、比較材よりは耐食性に優れているが、発明材の中では耐食性が低くなっていた。   Next, the occupied area ratio of Mn in one visual field (195 μm × 195 μm) of the observation surface by EPMA surface analysis of each test material was evaluated. Since Mn forms a compound only with Al, it is estimated from the analysis of the occupied area ratio of Mn that the occupied area ratio of the Al—Mn compound is the same area ratio. The analysis location was randomly performed within a range of 150 μm from the cross section in the thickness direction. The evaluation results are shown in Table 1. The inventive materials all had an occupied area ratio of less than 1.0%. Invention No. Nos. 16 to 19 have better corrosion resistance than the comparative material, but the corrosion resistance was low among the inventive materials.

Figure 2009120883
Figure 2009120883

双ロール法の原理を示す図である。It is a figure which shows the principle of a twin roll method.

符号の説明Explanation of symbols

1 溶解炉
2 桶
3 ノズル
4 双ロール
5 マグネシウム合金の溶湯
5a 鋳造圧延板
1 Melting furnace 2 桶 3 Nozzle 4 Twin roll 5 Magnesium alloy melt 5a Cast and rolled plate

Claims (6)

箔厚が0.02〜0.2mm未満のマグネシウム合金箔であって、質量%で、Al:1〜11%、Mn:0.15〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有することを特徴とするマグネシウム合金箔。   Magnesium alloy foil having a foil thickness of less than 0.02 to 0.2 mm and containing, by mass%, Al: 1 to 11%, Mn: 0.15 to 0.5%, with the balance being Mg and inevitable impurities A magnesium alloy foil having a composition comprising: 前記組成に、さらに質量%で、Zn:0.1〜2.0%を含有することを特徴とする請求項1に記載のマグネシウム合金箔。   The magnesium alloy foil according to claim 1, wherein the composition further contains Zn: 0.1 to 2.0% by mass. 前記組成に、さらに、質量%で、Ca、Sr、REの1種類以上を0.05〜2%含有することを特徴とする請求項1または2に記載のマグネシウム合金箔。   The magnesium alloy foil according to claim 1 or 2, further comprising 0.05 to 2% of one or more of Ca, Sr, and RE by mass% in the composition. 前記組成の不可避不純物中、Fe、Ni、Co、Cuをそれぞれ50ppm未満、Clを20ppm未満に規制することを特徴とする請求項1〜3のいずれかに記載のマグネシウム合金箔。   The magnesium alloy foil according to any one of claims 1 to 3, wherein Fe, Ni, Co, and Cu are each controlled to be less than 50 ppm and Cl is less than 20 ppm in the inevitable impurities having the composition. Al−Mn化合物の最大サイズが10μm未満であることを特徴とする請求項1〜4のいずれかに記載のマグネシウム合金箔。   The magnesium alloy foil according to claim 1, wherein the maximum size of the Al—Mn compound is less than 10 μm. 請求項1〜5のいずれかに記載のマグネシウム合金箔を製造する方法であって、マグネシウム合金溶湯より双ロール法によりマグネシウム合金板を製造する際、前記溶湯の温度を常に650〜800℃に保持した状態とし、650〜800℃の溶湯温度で該溶湯をロール間に送り込み、前記ロールによる冷却速度が100〜600℃/秒となるようにマグネシウム合金板を連続鋳造することを特徴とするマグネシウム合金箔の製造方法。   A method for producing a magnesium alloy foil according to any one of claims 1 to 5, wherein when producing a magnesium alloy sheet from a molten magnesium alloy by a twin roll method, the temperature of the molten metal is always maintained at 650 to 800 ° C. The magnesium alloy is characterized in that the molten alloy is fed between rolls at a melt temperature of 650 to 800 ° C., and a magnesium alloy plate is continuously cast so that the cooling rate by the roll is 100 to 600 ° C./second. Foil manufacturing method.
JP2007294091A 2007-11-13 2007-11-13 Magnesium alloy foil and its manufacturing method Pending JP2009120883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294091A JP2009120883A (en) 2007-11-13 2007-11-13 Magnesium alloy foil and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294091A JP2009120883A (en) 2007-11-13 2007-11-13 Magnesium alloy foil and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009120883A true JP2009120883A (en) 2009-06-04

Family

ID=40813355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294091A Pending JP2009120883A (en) 2007-11-13 2007-11-13 Magnesium alloy foil and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009120883A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150651A1 (en) * 2009-06-26 2010-12-29 住友電気工業株式会社 Magnesium alloy plate
WO2011004672A1 (en) * 2009-07-07 2011-01-13 住友電気工業株式会社 Magnesium alloy plate
JP2011021274A (en) * 2009-06-17 2011-02-03 Toyota Central R&D Labs Inc Recycled magnesium alloy, method for producing the same and magnesium alloy
CN104313438A (en) * 2014-11-04 2015-01-28 山西八达镁业有限公司 High-ductility rare earth wrought magnesium alloy
KR20150065418A (en) * 2013-12-05 2015-06-15 주식회사 포스코 magnesium-alloy plate and manufacturing method of it
WO2018159394A1 (en) * 2017-02-28 2018-09-07 国立研究開発法人物質・材料研究機構 Magnesium alloy and method for manufacturing magnesium alloy
JP2018141234A (en) * 2017-02-28 2018-09-13 国立研究開発法人物質・材料研究機構 Magnesium alloy and method for producing magnesium alloy
WO2018228059A1 (en) * 2017-06-15 2018-12-20 比亚迪股份有限公司 High thermal conductivity magnesium alloy, inverter housing, inverter and automobile
KR20190078258A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
CN112708813A (en) * 2020-12-10 2021-04-27 北京科技大学 Soluble magnesium alloy material for oil and gas exploitation tool and preparation method thereof
CN114540687A (en) * 2021-12-16 2022-05-27 中信戴卡股份有限公司 Magnesium alloy, preparation method thereof and process for preparing wheel by using magnesium alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159093A (en) * 1982-03-16 1983-09-21 Onkyo Corp Acoustic oscillating material
JPS623944A (en) * 1985-06-29 1987-01-09 古河電気工業株式会社 Composite material of magnesium
JPS623599A (en) * 1985-06-29 1987-01-09 Furukawa Electric Co Ltd:The Vibration material for acoustic equipment
JP2003328065A (en) * 2002-05-10 2003-11-19 Toyo Kohan Co Ltd Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP2005068550A (en) * 2003-08-06 2005-03-17 Aisin Seiki Co Ltd Inexpensive heat resistant magnesium alloy for casting having excellent heat resistance and casting property
JP2005072641A (en) * 2003-08-22 2005-03-17 Pioneer Electronic Corp Magnesium diaphragm, manufacturing method thereof, and speaker device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159093A (en) * 1982-03-16 1983-09-21 Onkyo Corp Acoustic oscillating material
JPS623944A (en) * 1985-06-29 1987-01-09 古河電気工業株式会社 Composite material of magnesium
JPS623599A (en) * 1985-06-29 1987-01-09 Furukawa Electric Co Ltd:The Vibration material for acoustic equipment
JP2003328065A (en) * 2002-05-10 2003-11-19 Toyo Kohan Co Ltd Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP2005068550A (en) * 2003-08-06 2005-03-17 Aisin Seiki Co Ltd Inexpensive heat resistant magnesium alloy for casting having excellent heat resistance and casting property
JP2005072641A (en) * 2003-08-22 2005-03-17 Pioneer Electronic Corp Magnesium diaphragm, manufacturing method thereof, and speaker device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012039673; 田村洋介、他3名: 'AZ91マグネシウム合金におけるMn-Al化合物の晶出温度' 日本学術会議材料研究連合講演会講演論文集 Vol.46th, 20020918, Page.266-267 *
JPN6012056921; 古閑伸裕、他4名: '双ロールキャスタにより作製したマグネシウム合金板の深絞り成形性' 軽金属 Vol.57 No.4, 20070430, Page.141-145 *
JPN6012056922; 古閑伸裕、他2名: 'マグネシウム合金箔のプレス成形' 塑性と加工 Vol.47 No.546, 20060729, Page.627-631 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010002575B4 (en) * 2009-06-17 2018-02-22 Toyota Jidosha Kabushiki Kaisha Recycled magnesium alloy, process for improving the corrosion resistance of a recycled magnesium alloy and magnesium alloy
JP2011021274A (en) * 2009-06-17 2011-02-03 Toyota Central R&D Labs Inc Recycled magnesium alloy, method for producing the same and magnesium alloy
US9169542B2 (en) 2009-06-17 2015-10-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Recycled magnesium alloy, process for producing the same, and magnesium alloy
JP2011006754A (en) * 2009-06-26 2011-01-13 Sumitomo Electric Ind Ltd Magnesium alloy sheet
WO2010150651A1 (en) * 2009-06-26 2010-12-29 住友電気工業株式会社 Magnesium alloy plate
WO2011004672A1 (en) * 2009-07-07 2011-01-13 住友電気工業株式会社 Magnesium alloy plate
JP2011017041A (en) * 2009-07-07 2011-01-27 Sumitomo Electric Ind Ltd Magnesium alloy sheet
US9334554B2 (en) 2009-07-07 2016-05-10 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
KR101785121B1 (en) 2009-07-07 2017-10-12 스미토모덴키고교가부시키가이샤 Magnesium alloy sheet
KR20150065418A (en) * 2013-12-05 2015-06-15 주식회사 포스코 magnesium-alloy plate and manufacturing method of it
KR101626820B1 (en) 2013-12-05 2016-06-02 주식회사 포스코 magnesium-alloy plate and manufacturing method of it
CN104313438A (en) * 2014-11-04 2015-01-28 山西八达镁业有限公司 High-ductility rare earth wrought magnesium alloy
WO2018159394A1 (en) * 2017-02-28 2018-09-07 国立研究開発法人物質・材料研究機構 Magnesium alloy and method for manufacturing magnesium alloy
JP2018141234A (en) * 2017-02-28 2018-09-13 国立研究開発法人物質・材料研究機構 Magnesium alloy and method for producing magnesium alloy
JP7116394B2 (en) 2017-02-28 2022-08-10 国立研究開発法人物質・材料研究機構 Magnesium alloy and method for producing magnesium alloy
WO2018228059A1 (en) * 2017-06-15 2018-12-20 比亚迪股份有限公司 High thermal conductivity magnesium alloy, inverter housing, inverter and automobile
KR20190078258A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
KR102043287B1 (en) 2017-12-26 2019-11-11 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
CN112708813A (en) * 2020-12-10 2021-04-27 北京科技大学 Soluble magnesium alloy material for oil and gas exploitation tool and preparation method thereof
CN114540687A (en) * 2021-12-16 2022-05-27 中信戴卡股份有限公司 Magnesium alloy, preparation method thereof and process for preparing wheel by using magnesium alloy
CN114540687B (en) * 2021-12-16 2022-11-25 中信戴卡股份有限公司 Magnesium alloy, preparation method thereof and process for preparing wheel by using magnesium alloy

Similar Documents

Publication Publication Date Title
JP2009120883A (en) Magnesium alloy foil and its manufacturing method
JP5158675B2 (en) Magnesium alloy sheet material excellent in corrosion resistance and surface treatment and method for producing the same
JP2010156007A (en) Magnesium-alloy sheet excellent in corrosion resistance and surface treatability, and method for producing the same
JP5880811B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
TWI557234B (en) Aluminum alloy fin sheet for heat exchangers with excellent weldability and sag resistance and its manufacturing method
JP5648885B2 (en) Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate
JP6465338B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
CN102888540B (en) Aluminum foil for air conditioner having high heat exchange efficiency and manufacturing method thereof
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP2008308703A (en) Magnesium alloy for continuously casting and rolling, and method for producing magnesium alloy material
JP2009221566A (en) Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance
JP2017160542A (en) Magnesium alloy casting material, magnesium alloy cast coil material, wrought magnesium alloy material, magnesium alloy member, magnesium alloy joint material, and method for producing magnesium alloy casting material
JP2009108409A (en) Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF
JP5945370B2 (en) Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains
KR20150099025A (en) Magnesium alloy sheet and method for the same
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
JP5233568B2 (en) Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
JP6094867B2 (en) Method for producing cast material of Mg alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130313