JP2014150695A - Permanent magnet motor, sealed compressor and refrigeration cycle device - Google Patents

Permanent magnet motor, sealed compressor and refrigeration cycle device Download PDF

Info

Publication number
JP2014150695A
JP2014150695A JP2013019593A JP2013019593A JP2014150695A JP 2014150695 A JP2014150695 A JP 2014150695A JP 2013019593 A JP2013019593 A JP 2013019593A JP 2013019593 A JP2013019593 A JP 2013019593A JP 2014150695 A JP2014150695 A JP 2014150695A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
magnet
housing
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013019593A
Other languages
Japanese (ja)
Inventor
Kazuo Shibata
一夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2013019593A priority Critical patent/JP2014150695A/en
Priority to CN201310711815.6A priority patent/CN103973060B/en
Publication of JP2014150695A publication Critical patent/JP2014150695A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet motor in which the total length of permanent magnets housed in the magnet housing hole of a rotor is increased, and a portion hard to be magnetized can be reduced, and to provide a sealed compressor and a refrigeration cycle device.SOLUTION: A permanent magnet motor includes a stator having a stator winding, and a rotor 11 housing permanent magnets, respectively, in a plurality of magnet housing holes 14 provided in a rotor core 12. The magnet housing hole 14 has an arcuate housing part 14a where the convex side faces the center O side of the rotor core 12 in the plan view, and linear housing parts 14b, 14c formed on both end sides of the arcuate housing part 14a. An arcuate permanent magnet 16 is housed in the arcuate housing part 14a, and planar permanent magnets 17a, 17b are housed, respectively, in the linear housing parts 14b, 14c.

Description

本発明の実施形態は、永久磁石電動機、密閉型圧縮機および冷凍サイクル装置に関する。   Embodiments described herein relate generally to a permanent magnet motor, a hermetic compressor, and a refrigeration cycle apparatus.

従来より、冷凍サイクル装置では、その密閉型圧縮機の駆動源として永久磁石電動機を用いることが知られている。   Conventionally, in a refrigeration cycle apparatus, it is known to use a permanent magnet motor as a drive source for the hermetic compressor.

一般に、この種の永久磁石電動機は、固定巻線を有する固定子と、回転子鉄心に設けた複数の磁石収容孔内に永久磁石を収容した回転子とを具備している。   In general, this type of permanent magnet motor includes a stator having a fixed winding and a rotor in which permanent magnets are housed in a plurality of magnet housing holes provided in the rotor core.

図9に示すように、従来の永久磁石電動機の回転子1の一例としては、円柱状の回転子鉄心2の図示省略の回転軸が挿入される軸孔3の中心O回りに、平面視ほぼV字状の複数の磁石収容孔4,4,…を軸方向に形成しているものが知られている。これらの各磁石収容孔4内には、磁場配向が共に図10で示す平行磁場配向7である2枚の平板状の永久磁石5,6がそれぞれ収容される。   As shown in FIG. 9, as an example of a rotor 1 of a conventional permanent magnet electric motor, a planar rotor core 2 around a center O of a shaft hole 3 into which a rotation shaft (not shown) is inserted is substantially planar. A plurality of V-shaped magnet housing holes 4, 4,... Are formed in the axial direction. In each of the magnet housing holes 4, two flat permanent magnets 5 and 6 having a parallel magnetic field orientation 7 shown in FIG.

また、他の従来の永久磁石電動機では、回転子鉄心に形成される磁石収容孔を、回転子鉄心の中心側に凸部側が向いた平面視台形状に形成し、これらの各台形状の3辺に、平板状の永久磁石をそれぞれ収容している回転子が知られている(例えば特許文献1参照)。   In another conventional permanent magnet motor, the magnet housing hole formed in the rotor core is formed in a trapezoidal shape in plan view with the convex side facing the center side of the rotor core. There is known a rotor that houses flat plate-like permanent magnets on the sides (see, for example, Patent Document 1).

特開2001−178045号公報JP 2001-178045 A

しかしながら、上記図9で示す従来の回転子では、V字状の各磁石収容孔4内に2枚の平板状の永久磁石5,6を収容しているので、軸孔3の中心O側に向いた磁石収容孔4のV字状尖端部側に、永久磁石5,6が存在しない空間部4aが形成されてしまう課題がある。   However, in the conventional rotor shown in FIG. 9, the two flat permanent magnets 5 and 6 are accommodated in each V-shaped magnet accommodating hole 4, so that the center O side of the shaft hole 3 is located. There is a problem that a space portion 4a in which the permanent magnets 5 and 6 do not exist is formed on the V-shaped pointed end side of the facing magnet housing hole 4.

すなわち、V字状の磁石収容孔4内にそれぞれ収容された平板状の永久磁石5,6は、その幅方向内端側同士が磁石収容孔4のV字状尖端部で相互に当接し、それ以上中心O側へ挿入できないので、ほぼ三角形の空間部4aが形成されてしまう。   That is, the plate-like permanent magnets 5 and 6 respectively accommodated in the V-shaped magnet housing hole 4 are in contact with each other at the V-shaped pointed ends of the magnet housing holes 4 at the inner ends in the width direction. Since it cannot be inserted further to the center O side, a substantially triangular space 4a is formed.

このために、各磁石収容孔4内に収容された2枚の永久磁石5,6の合計の長さが短くなるので、その分、回転子1の磁束量が減少し、永久磁石電動機としての性能の低下を招く。   For this reason, since the total length of the two permanent magnets 5 and 6 accommodated in each magnet accommodation hole 4 is shortened, the amount of magnetic flux of the rotor 1 is reduced accordingly, and the permanent magnet motor Incurs performance degradation.

また、各磁石収容孔4内に、永久磁石5,6として着磁する前の素材、例えばフェライト等の平板状の素材を収容し、回転子1の外周側から、固定子とほぼ同様の構成の着磁機により磁界を与えて着磁する場合には、磁石収容孔4,4,…の上記各空間部4a自体が着磁されないうえに、この空間部4a周辺が軸孔3の中心O側に近い深部に位置し、着磁機から遠くなるために、着磁しにくいという課題がある。   Moreover, in each magnet accommodation hole 4, the raw material before magnetizing as the permanent magnets 5 and 6, for example, flat materials, such as a ferrite, are accommodated, From the outer peripheral side of the rotor 1, it is the structure substantially the same as a stator. When a magnetic field is applied by a magnetizer, the space portions 4a themselves of the magnet housing holes 4, 4,... Are not magnetized, and the periphery of the space portion 4a is the center O of the shaft hole 3. Since it is located in the deep part near the side and is far from the magnetizer, there is a problem that it is difficult to magnetize.

このために、回転子1の磁束量が減少するので、永久磁石電動機として性能の低下を招く。   For this reason, since the magnetic flux amount of the rotor 1 is reduced, the performance of the permanent magnet motor is deteriorated.

また、上記特許文献1記載の回転子も、ほぼ台形状の1つの磁石収容孔内に、その台形の頂辺部とその両側の斜辺部の3箇所に、平板状の永久磁石をそれぞれ収容するので、これら3つの永久磁石同士間に間隙が発生し易い。   Further, the rotor described in Patent Document 1 also accommodates a plate-like permanent magnet in one of the trapezoidal magnet accommodation holes at three locations, that is, the top side of the trapezoid and the oblique sides on both sides thereof. Therefore, a gap is easily generated between these three permanent magnets.

このために、上記V字状磁石収容孔を有する従来例とほぼ同様の課題を有する。   For this reason, it has the subject similar to the prior art example which has the said V-shaped magnet accommodation hole.

本発明が解決しようとする課題は、回転子の磁石収容孔内に収容される永久磁石の合計長さの増大を図ると共に、着磁されにくい部分の低減を図ることができる永久磁石電動機、密閉型圧縮機および冷凍サイクル装置を提供することにある。   The problem to be solved by the present invention is to increase the total length of the permanent magnets accommodated in the magnet accommodation holes of the rotor, and to reduce the number of parts that are difficult to be magnetized, and to seal An object of the present invention is to provide a mold compressor and a refrigeration cycle apparatus.

実施形態の永久磁石電動機は、固定子巻線を有する固定子と、回転子鉄心に設けた複数の磁石収容孔内に永久磁石をそれぞれ収容した回転子と、を具備している。   The permanent magnet motor according to the embodiment includes a stator having a stator winding, and a rotor that houses permanent magnets in a plurality of magnet housing holes provided in the rotor core.

磁石収容孔は、平面視で回転子鉄心の中心側に凸部側が向いた円弧状収容部と、この円弧状収容部の両端側に形成された直線状収容部を有し、上記円弧状収容部内に、円弧状の永久磁石を収容し、上記直線状収容部内に平板状の永久磁石をそれぞれ収容している。   The magnet housing hole has an arcuate housing portion whose convex side faces the center side of the rotor core in a plan view, and linear housing portions formed on both ends of the arcuate housing portion. An arc-shaped permanent magnet is accommodated in the portion, and a plate-shaped permanent magnet is accommodated in the linear accommodating portion.

実施形態の永久磁石電動機の回転子の平面図。The top view of the rotor of the permanent magnet electric motor of an embodiment. (A)は、図1で示す回転子の磁石収容孔の円弧状収容部に収容される円弧状永久磁石のラジアル磁場配向を示す図、(B)は、同,磁石収容孔の直線状収容部にそれぞれ収容される平板状永久磁石の平行磁場配向を示す図。(A) is a figure which shows the radial magnetic field orientation of the arc-shaped permanent magnet accommodated in the arc-shaped accommodation part of the magnet accommodation hole of the rotor shown in FIG. 1, (B) is the linear accommodation of the magnet accommodation hole. The figure which shows the parallel magnetic field orientation of the flat permanent magnet accommodated in each part. (A)は、図1で示す実施形態に係る回転子の着磁時に流れる磁束の解析図、(B)は、同,円弧状の永久磁石とその周辺部の磁束密度を示すグラフ。(A) is the analysis figure of the magnetic flux which flows at the time of magnetization of the rotor which concerns on embodiment shown in FIG. 1, (B) is a graph which shows the magnetic flux density of an arc-shaped permanent magnet and its peripheral part. (A)は、図9で示す従来の回転子の着磁時に流れる磁束の解析図、(B)は、同,V字状尖端部とその周辺部の磁束密度を示すグラフ。(A) is an analysis figure of the magnetic flux which flows at the time of the magnetization of the conventional rotor shown in FIG. 9, (B) is a graph which shows the magnetic flux density of a V-shaped point part and its periphery part. (A)は、図1等で示す実施形態に係る回転子の各磁石収容孔にそれぞれ収容される永久磁石の合計長さを示す図、(B)は、図9で示す従来の回転子の各V字状磁石収容孔にそれぞれ収容される永久磁石の合計長さを示す図。(A) is a figure which shows the total length of the permanent magnet each accommodated in each magnet accommodation hole of the rotor which concerns on embodiment shown in FIG. 1 etc., (B) is a figure of the conventional rotor shown in FIG. The figure which shows the total length of the permanent magnet accommodated in each V-shaped magnet accommodation hole, respectively. 永久磁石電動機の磁極数が6極で、回転子外径がφ65、内径がφ16の場合において、各磁石収容孔に収容される磁石の合計長さを図1等で示す実施形態のものと、図9で示す従来例のものとを比較して示すグラフ。In the case where the number of magnetic poles of the permanent magnet motor is 6, the outer diameter of the rotor is φ65, and the inner diameter is φ16, the total length of the magnets accommodated in each magnet accommodation hole is as shown in FIG. 10 is a graph showing a comparison with the conventional example shown in FIG. 9. 永久磁石電動機の磁極数が4極で、回転子外径がφ65、内径がφ16の場合において、各磁石収容孔に収容される磁石の合計長さを図1等で示す実施形態のものと、図9で示す従来例のものとを比較して示すグラフ。When the number of magnetic poles of the permanent magnet motor is 4, the outer diameter of the rotor is φ65, and the inner diameter is φ16, the total length of the magnets accommodated in each magnet accommodation hole is as shown in FIG. 10 is a graph showing a comparison with the conventional example shown in FIG. 9. 図1等で示す実施形態に係る永久磁石電動機を具備した密閉型圧縮機の一部を断面で示すと共に、この密閉型圧縮機を具備した冷凍サイクル装置の全体構成を示す図。The figure which shows the whole structure of the refrigerating-cycle apparatus provided with this sealed compressor while showing a part of sealed compressor which comprised the permanent magnet electric motor which concerns on embodiment shown in FIG. 従来の永久磁石電動機の回転子の平面図。The top view of the rotor of the conventional permanent magnet electric motor. 図9で示すV字状磁石収容孔内に収容された永久磁石の平行磁場配向を示す図。The figure which shows the parallel magnetic field orientation of the permanent magnet accommodated in the V-shaped magnet accommodation hole shown in FIG.

以下、本実施形態を、図面を参照して説明する。なお、複数の図面中、同一または相当部分には同一符号を付している。   Hereinafter, the present embodiment will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in several drawing.

(第1の実施形態)
第1の実施形態に係る永久磁石電動機は、図1で示す回転子11と、図8で示し、後述する固定子24aとを具備している。
(First embodiment)
The permanent magnet motor according to the first embodiment includes a rotor 11 shown in FIG. 1 and a stator 24a shown in FIG. 8 and described later.

図1に示すように回転子11は、円柱状の回転子鉄心12の図示省略の回転軸が圧入等により挿入されて固定される軸孔13の中心、すなわち、回転子11の中心O回りに、複数の磁石収容孔14,14,…を配設している。   As shown in FIG. 1, the rotor 11 is formed around the center of a shaft hole 13 in which a rotation shaft (not shown) of a cylindrical rotor core 12 is inserted and fixed by press-fitting or the like, that is, around the center O of the rotor 11. A plurality of magnet housing holes 14, 14,.

回転子鉄心12は、電磁鋼板等よりなる複数の円形薄板を軸方向に積層して円柱状に形成されており、図示省略のリベットが挿通される複数のリベット挿通孔15を中心O回りに形成している。   The rotor core 12 is formed in a cylindrical shape by laminating a plurality of thin circular plates made of electromagnetic steel plates or the like in the axial direction, and a plurality of rivet insertion holes 15 through which rivets (not shown) are inserted are formed around the center O. doing.

各磁石収容孔14は、回転子鉄心12の中心O側に、凸部側が向いた所要大の円弧状収容部14aと、この円弧状収容部14aの両端側に形成された所要大の一対の直線状収容部14b,14cとを有し、これら14a〜14cを回転子鉄心12の軸方向ほぼ全長に亘って形成している。   Each magnet housing hole 14 has a required large arcuate housing part 14a facing the convex side on the center O side of the rotor core 12, and a pair of required large formed on both ends of the arcuate housing part 14a. It has the linear accommodating parts 14b and 14c, and these 14a-14c is formed over the axial direction substantially full length of the rotor core 12. As shown in FIG.

円弧状収容部14aは、その凸弧状の内周面を、回転子中心Oの外周の近傍まで深く延在させている。この円弧状収容部14aの中心角は永久磁石電動機の磁極数等に応じて適宜形成される。   The arcuate accommodating portion 14a extends its convex arc-shaped inner peripheral surface deeply to the vicinity of the outer periphery of the rotor center O. The central angle of the arcuate housing portion 14a is appropriately formed according to the number of magnetic poles of the permanent magnet motor.

一対の直線状収容部14b,14cは、円弧状収容部14aの両端から回転子鉄心12の径方向外方へほぼ直線状に延在して、回転子鉄心12の外周壁の手前で終端している。   The pair of linear accommodating portions 14 b and 14 c extend substantially linearly outward from the both ends of the arcuate accommodating portion 14 a in the radial direction of the rotor core 12, and terminate before the outer peripheral wall of the rotor core 12. ing.

そして、各円弧状収容部14a内には、この円弧状収容部14aの平面視形状とほぼ同形で嵌入可能に形成されたフェライト製等の円弧状の永久磁石16が円弧状収容部14aの軸方向のほぼ全長に亘って収容される。   And in each arcuate accommodation part 14a, an arcuate permanent magnet 16 made of ferrite or the like formed so as to be able to be fitted in substantially the same shape as the plan view of the arcuate accommodation part 14a is the axis of the arcuate accommodation part 14a. It is accommodated over almost the entire length of the direction.

また、一対の直線状収容部14b,14c内には、これら直線状収容部14b,14cの平面視形状とほぼ同形で嵌入可能に形成されたフェライト製等の平板状の永久磁石17a,17bが直線状収容部14b,14cの軸方向のほぼ全長に亘って収容される。これら平板状の永久磁石17a,17bと円弧状の永久磁石16との突き合せ端面同士は可及的に密着するように形成されている。このために、各磁石収容孔14内に収容される円弧状の永久磁石16と、一対の平板状の永久磁石17a,17b同士の間隙の低減を図ることができると共に、これら円弧状,平板状の永久磁石16,17a,17bの合計の長さの増大を図ることができる。   Further, in the pair of linear accommodating portions 14b and 14c, flat permanent magnets 17a and 17b made of ferrite or the like are formed so as to be fitted in substantially the same shape as the plan view of the linear accommodating portions 14b and 14c. The linear accommodating portions 14b and 14c are accommodated over substantially the entire length in the axial direction. The abutting end surfaces of the plate-like permanent magnets 17a and 17b and the arc-shaped permanent magnet 16 are formed so as to adhere as much as possible. Therefore, it is possible to reduce the gap between the arc-shaped permanent magnet 16 accommodated in each magnet accommodating hole 14 and the pair of plate-shaped permanent magnets 17a, 17b, and the arc-shaped, plate-shaped The total length of the permanent magnets 16, 17a, 17b can be increased.

図2(A)に示すように各円弧状の永久磁石16は符号16cで示すようにラジアル磁場配向に形成されており、図2(B)で示す各平板状の永久磁石17a,17bは符号17cで示すように平行磁場配向に形成されている。すなわち、1つの磁石収容孔14内に、磁場配向が異なる永久磁石16,17a,17bが収容されている。   As shown in FIG. 2 (A), each arc-shaped permanent magnet 16 is formed in a radial magnetic field orientation as shown by reference numeral 16c, and each flat permanent magnet 17a, 17b shown in FIG. As shown by 17c, it is formed in a parallel magnetic field orientation. That is, permanent magnets 16, 17 a and 17 b having different magnetic field orientations are accommodated in one magnet accommodation hole 14.

図3は上記回転子11の着磁時における回転子鉄心12の中心Oの周辺部の一部の磁束の流れを示している。すなわち、上記円弧状の永久磁石16と一対の平板状の永久磁石17a,17bが永久磁石として着磁される前の素材としてのフェライト等の磁性体を、上記磁石収容孔14内に収容し、この回転子11の固定子とほぼ同様の着磁機(図示省略)等により回転子11の外周側から磁界を与えて着磁する。   FIG. 3 shows the flow of a part of the magnetic flux around the center O of the rotor core 12 when the rotor 11 is magnetized. That is, a magnetic body such as ferrite before the arc-shaped permanent magnet 16 and the pair of plate-shaped permanent magnets 17a and 17b are magnetized as permanent magnets is accommodated in the magnet accommodation hole 14, Magnetization is performed by applying a magnetic field from the outer peripheral side of the rotor 11 by a magnetizer (not shown) that is substantially the same as the stator of the rotor 11.

そして、図3(A)に示すように、円弧状の永久磁石16は、回転子鉄心12の中心Oに近く、着磁機から遠いために、その分、平板状の永久磁石17a,17bの磁束密度よりも低い。   As shown in FIG. 3A, the arc-shaped permanent magnet 16 is close to the center O of the rotor core 12 and far from the magnetizer, and accordingly, the plate-shaped permanent magnets 17a and 17b It is lower than the magnetic flux density.

また、図3(A)中、円弧矢印で示す円弧状の永久磁石16の外周部の磁束密度は、図3(B)に示すように、周方向中間部で最も低く、その両側で急峻に立ち上がるU字状に分布する。磁束密度が最も低い周方向中間部での磁束密度は、例えば約0.8T程度である。   Further, in FIG. 3A, the magnetic flux density at the outer peripheral portion of the arc-shaped permanent magnet 16 indicated by the arc arrow is the lowest at the intermediate portion in the circumferential direction, as shown in FIG. Distributed in a U-shape that rises. For example, the magnetic flux density in the circumferential intermediate portion having the lowest magnetic flux density is about 0.8T.

これに対し、図9等で示す従来のV字状磁石収容孔4内の平板状の永久磁石5,6では、図4(A)に示すように回転子鉄心2の中心O側で、図中ほぼ三角形状の空間部4aが形成される。   On the other hand, in the plate-like permanent magnets 5 and 6 in the conventional V-shaped magnet housing hole 4 shown in FIG. 9 and the like, as shown in FIG. A substantially triangular space 4a is formed.

このために、図4(B)中、太く短い直線矢印で示すように、ほぼ三角形の空間部4aの図中右側斜辺に接する側の平板状の永久磁石6の一端面における板厚方向の磁束密度は、空間部4aの頂角側から、その反対側(つまり、外面側)へ行くに従って漸次低下して行き、最も低い磁束密度は例えば約0.39Tであり、本実施形態のものの約半分以下である。   For this purpose, as shown by a thick and short straight arrow in FIG. 4B, the magnetic flux in the plate thickness direction at one end face of the flat permanent magnet 6 on the side in contact with the oblique side on the right side of the substantially triangular space 4a. The density gradually decreases from the apex side of the space 4a toward the opposite side (that is, the outer surface side), and the lowest magnetic flux density is, for example, about 0.39 T, which is about half that of the present embodiment. It is as follows.

図5は、その(A)で示す本実施形態に係る1つの磁石収容孔14内に収容される円弧状の永久磁石16と一対の平板状の永久磁石17a,17bとの幅方向の合計長さと、図5(B)で示す従来の1つのV字状磁石収容孔4内に収容される平板状の永久磁石5,6の合計長さとをそれぞれ示している。これら永久磁石5,6,16,17a,17bの合計長さは共に板厚方向中心軸上での長さで測定している。なお、本実施形態と従来例では、回転子鉄心2,12の外径及び内径(軸孔)の大きさが同じであり、かつ磁石収容孔4,14の回転子中心O側の先端と軸孔3,13の内周面との間隔aは等しい。   FIG. 5 shows the total length in the width direction of the arc-shaped permanent magnet 16 and the pair of plate-shaped permanent magnets 17a and 17b accommodated in one magnet accommodation hole 14 according to the present embodiment shown in FIG. And the total length of the plate-like permanent magnets 5 and 6 accommodated in one conventional V-shaped magnet accommodation hole 4 shown in FIG. The total length of these permanent magnets 5, 6, 16, 17a and 17b is measured by the length on the central axis in the plate thickness direction. In the present embodiment and the conventional example, the rotor cores 2 and 12 have the same outer diameter and inner diameter (shaft hole), and the tip of the magnet housing holes 4 and 14 on the rotor center O side and the shaft. The distance a between the holes 3 and 13 and the inner peripheral surface is equal.

図6と図7は、図5(A),(B)で示すaの長さをパラメータとしたときの上記永久磁石5と6,16と17a,17bの各々の合計長さを対比しており、図中実線αが本実施形態の長さを示し、破線βが従来例(V字形)の長さを示している。   FIGS. 6 and 7 compare the total lengths of the permanent magnets 5, 6, 16, 17 a, and 17 b when the length of a shown in FIGS. 5A and 5B is used as a parameter. In the figure, the solid line α indicates the length of the present embodiment, and the broken line β indicates the length of the conventional example (V-shaped).

また、図6は磁極数が6極、回転子1,11の外径がφ65(mm)、同,内径がφ16(mm)の永久磁石電動機の場合の永久磁石5と6,16と17a,17bの各々の合計長さを示し、図7は、回転子1,11の内外径が図6の場合と同じだが、磁極数が4極の場合の永久磁石5と6,16と17a,17bの各々の合計長さを示している。   FIG. 6 shows permanent magnets 5, 6, 16 and 17 a in the case of a permanent magnet motor having 6 magnetic poles, rotors 1 and 11 having an outer diameter of φ65 (mm) and an inner diameter of φ16 (mm). 7 shows the total length of each of 17b, and FIG. 7 is the same as the case of FIG. 6 in which the inner and outer diameters of the rotors 1 and 11 are the same, but the permanent magnets 5 and 6, 16 and 17a and 17b when the number of magnetic poles is four. The total length of each is shown.

すなわち、磁極数が4極、6極の場合のいずれにおいても、実線αで示す実施形態に係るU字状配置に係る永久磁石16,17a,17bの合計長さの方が、破線βで示すV字状配置の従来例のものよりも長い。   That is, regardless of whether the number of magnetic poles is 4 or 6, the total length of the permanent magnets 16, 17a, 17b according to the U-shaped arrangement according to the embodiment indicated by the solid line α is indicated by the broken line β. It is longer than that of the conventional example of the V-shaped arrangement.

これにより、本実施形態に係る回転子11を具備した永久磁石電動機の方が磁束量が多く、電動機としての能力の向上を図ることができる。また、本実施形態によれば、円弧状,平板状の永久磁石16,17a,17bの素材(磁性体)として安価なフェライト磁石を用いることができるので、永久磁石電動機としてのコストの低減を図ることができる。   Thereby, the permanent magnet electric motor provided with the rotor 11 according to the present embodiment has a larger amount of magnetic flux and can improve the capacity as an electric motor. Further, according to the present embodiment, an inexpensive ferrite magnet can be used as the material (magnetic material) of the arc-shaped and flat-plate-shaped permanent magnets 16, 17a, 17b, so that the cost of the permanent magnet motor can be reduced. be able to.

(第2,3の実施形態)
図8は上記永久磁石電動機を組み付けた密閉型圧縮機20と、この密閉型圧縮機20を具備した冷凍サイクル装置40の構成を示している。
(Second and third embodiments)
FIG. 8 shows a configuration of a hermetic compressor 20 in which the permanent magnet motor is assembled and a refrigeration cycle apparatus 40 including the hermetic compressor 20.

図8に示すように密閉型圧縮機20は、密閉容器21を有し、この密閉容器21内の下部には圧縮機構部23が設けられ、上部には上記第1の実施形態に係る永久磁石電動機24が設けられる。これら圧縮機構部23と永久磁石電動機24は、回転軸25によって連結される。   As shown in FIG. 8, the hermetic compressor 20 has a hermetic container 21, a compression mechanism 23 is provided in the lower part of the hermetic container 21, and the permanent magnet according to the first embodiment is disposed in the upper part. An electric motor 24 is provided. The compression mechanism unit 23 and the permanent magnet motor 24 are connected by a rotating shaft 25.

上記永久磁石電動機24は、密閉容器21の内周面に圧入や焼嵌めによって固定され、巻線が装着された筒状の固定子24aと、この固定子24aの内側に回転可能に設けられた上記第1の実施形態に係る永久磁石を備えた上記回転子11からなる。   The permanent magnet motor 24 is fixed to the inner peripheral surface of the hermetic container 21 by press-fitting or shrink fitting, and is provided with a cylindrical stator 24a on which windings are mounted, and rotatably provided inside the stator 24a. The rotor 11 includes the permanent magnet according to the first embodiment.

上記圧縮機構部23は、中間仕切り板22を介して、この中間仕切り板22の上面部に第1のシリンダ26Aを備え、下面部に第2のシリンダ26Bを備えている。さらに、第1のシリンダ26Aの上面には主軸受27が取付固定され、第2のシリンダ26Bの下面には副軸受28が取付固定される。   The compression mechanism section 23 includes a first cylinder 26A on the upper surface portion of the intermediate partition plate 22 via the intermediate partition plate 22, and a second cylinder 26B on the lower surface portion. Further, a main bearing 27 is attached and fixed to the upper surface of the first cylinder 26A, and a sub-bearing 28 is attached and fixed to the lower surface of the second cylinder 26B.

上記主軸受27は、回転軸25の主軸部25aを軸支し、副軸受28は回転軸25の副軸部25bを軸支する。上記回転軸25は、第1,第2のシリンダ26A,26B内部を貫通するとともに、略180°の位相差をもって形成される第1の偏心部aと第2の偏心部bを一体に備えている。   The main bearing 27 supports the main shaft portion 25 a of the rotating shaft 25, and the auxiliary bearing 28 supports the auxiliary shaft portion 25 b of the rotating shaft 25. The rotary shaft 25 penetrates through the insides of the first and second cylinders 26A and 26B, and integrally includes a first eccentric portion a and a second eccentric portion b formed with a phase difference of about 180 °. Yes.

第1,第2の偏心部a,bは、互いに同一直径をなし、第1,第2のシリンダ26A,26Bの内径部に位置するように組み立てられる。第1の偏心部aの周面には、第1の偏心ローラ29aが嵌合され、第2の偏心部bの周面には、第2の偏心ローラ29bが嵌合される。   The first and second eccentric parts a and b have the same diameter as each other and are assembled so as to be positioned at the inner diameter parts of the first and second cylinders 26A and 26B. A first eccentric roller 29a is fitted to the peripheral surface of the first eccentric portion a, and a second eccentric roller 29b is fitted to the peripheral surface of the second eccentric portion b.

上記第1のシリンダ26Aの内径部は、主軸受27と中間仕切板22によって囲まれていて、第1のシリンダ室Saが形成される。第2のシリンダ26Bの内径部は、副軸受28と中間仕切板22によって囲まれていて、第2のシリンダ室Sbが形成される。   The inner diameter portion of the first cylinder 26A is surrounded by the main bearing 27 and the intermediate partition plate 22 to form a first cylinder chamber Sa. An inner diameter portion of the second cylinder 26B is surrounded by the auxiliary bearing 28 and the intermediate partition plate 22, and a second cylinder chamber Sb is formed.

各シリンダ室Sa,Sbは互いに同一直径および高さ寸法に形成され、上記偏心ローラ29a,29bの周壁一部が各シリンダ室Sa,Sbの周壁一部に線接触しながら偏心回転自在に収容される。   The cylinder chambers Sa and Sb are formed to have the same diameter and height, and a part of the peripheral wall of the eccentric rollers 29a and 29b is accommodated so as to be eccentrically rotatable while being in line contact with a part of the peripheral wall of the cylinder chambers Sa and Sb. The

特に図示していないが、第1のシリンダ26Aには、第1のシリンダ室Saと連通するベーン室が設けられ、ベーンが移動自在に収容される。第2のシリンダ26Bには、第2のシリンダ室Sbと連通するベーン室が設けられ、ベーンが移動自在に収容される。   Although not particularly illustrated, the first cylinder 26A is provided with a vane chamber communicating with the first cylinder chamber Sa, and the vane is movably accommodated therein. The second cylinder 26B is provided with a vane chamber communicating with the second cylinder chamber Sb, and the vane is movably accommodated therein.

それぞれのベーンの先端部は平面視で半円状に形成されており、対向するシリンダ室Sa,Sbに突出して平面視で円形状の上記第1,第2の偏心ローラ29a,29b周壁に、この回転角度に拘わらず線接触できる。   The tip of each vane is formed in a semicircular shape in plan view, protrudes into the opposing cylinder chambers Sa and Sb, and circularly in the plan view in the first and second eccentric rollers 29a and 29b. Line contact is possible regardless of this rotation angle.

第1のシリンダ26Aのベーン室と、このシリンダ26Aの外周面とを連通する横孔が設けられ、圧縮ばねであるばね部材が収容される。このばね部材はベーンの後端側端面と密閉容器21内周壁との間に介在され、上記ベーンに弾性力(背圧)を付与する。   A lateral hole that communicates the vane chamber of the first cylinder 26A and the outer peripheral surface of the cylinder 26A is provided, and a spring member that is a compression spring is accommodated. This spring member is interposed between the rear end side end face of the vane and the inner peripheral wall of the sealed container 21, and applies an elastic force (back pressure) to the vane.

第2のシリンダ26Bのベーン室と、このシリンダ26Bの外周面とを連通する横孔が設けられ、圧縮ばねであるばね部材が収容される。このばね部材はベーンの後端側端面と密閉容器21内周壁との間に介在され、上記ベーンに弾性力(背圧)を付与する。   A horizontal hole that communicates the vane chamber of the second cylinder 26B and the outer peripheral surface of the cylinder 26B is provided, and a spring member that is a compression spring is accommodated. This spring member is interposed between the rear end side end face of the vane and the inner peripheral wall of the sealed container 21, and applies an elastic force (back pressure) to the vane.

そして、冷凍サイクル装置40は、上記密閉容器21の上端部に冷媒管Pを接続しており、この冷媒管Pには、凝縮器31と、膨張装置32、蒸発器33を介して図示しないアキュムレータを接続している。   In the refrigeration cycle apparatus 40, a refrigerant pipe P is connected to the upper end portion of the sealed container 21, and an accumulator (not shown) is connected to the refrigerant pipe P via a condenser 31, an expansion device 32, and an evaporator 33. Is connected.

さらに、上記アキュムレータから、密閉型圧縮機20の密閉容器21と第1のシリンダ26A側部を貫通して第1のシリンダ室Sa内に直接連通する第1の吸込み冷媒管Paと、密閉容器21と第2のシリンダ26B側部を貫通して第2のシリンダ室Sb内に直接連通する第2の吸込み冷媒管Pbとを具備している。   Furthermore, from the accumulator, the first suction refrigerant pipe Pa passing through the sealed container 21 of the hermetic compressor 20 and the side of the first cylinder 26A and directly communicating with the first cylinder chamber Sa; And a second suction refrigerant pipe Pb that penetrates the side of the second cylinder 26B and communicates directly with the second cylinder chamber Sb.

そして、上記永久磁石電動機24は、回転子24bとして、図1等で示す磁束量の多い回転子11を用いているので、電動機としての能力、つまりパワーの増大を図ることができる。このために、この永久磁石電動機24により駆動される圧縮機構部23を具備している密閉型圧縮機20によれば、圧縮機構部23の冷媒圧縮能力の向上を図ることができる。   Since the permanent magnet motor 24 uses the rotor 11 having a large amount of magnetic flux shown in FIG. 1 or the like as the rotor 24b, the capacity as the motor, that is, the power can be increased. Therefore, according to the hermetic compressor 20 including the compression mechanism unit 23 driven by the permanent magnet motor 24, the refrigerant compression capability of the compression mechanism unit 23 can be improved.

したがって、上記冷凍サイクル装置40によれば、冷媒圧縮能力の高い圧縮機構部23を具備しているので、その分、冷凍能力の向上を図ることができる。   Therefore, according to the refrigeration cycle apparatus 40, since the compression mechanism section 23 having a high refrigerant compression capability is provided, the refrigeration capability can be improved accordingly.

以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、本発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of this invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the scope and gist of the present invention, and are included in the invention described in the claims and the equivalents thereof.

11…回転子、12…回転子鉄心、13…軸孔、14…磁石収容孔、14a…円弧状収容部、14b,14c…直線状収容部、16…円弧状の永久磁石、17a,17b…一対の平板状の永久磁石、20…密閉型圧縮機、21…密閉容器、23…圧縮機構部、24…永久磁石電動機、24a…固定子、24b…回転子、25…回転軸、40…冷凍サイクル装置、O…回転子鉄心の中心。   DESCRIPTION OF SYMBOLS 11 ... Rotor, 12 ... Rotor core, 13 ... Shaft hole, 14 ... Magnet accommodation hole, 14a ... Arc-shaped accommodation part, 14b, 14c ... Linear accommodation part, 16 ... Arc-shaped permanent magnet, 17a, 17b ... A pair of plate-like permanent magnets, 20 ... hermetic compressor, 21 ... hermetic container, 23 ... compression mechanism, 24 ... permanent magnet motor, 24a ... stator, 24b ... rotor, 25 ... rotating shaft, 40 ... freezing Cycle device, O ... Center of the rotor core.

Claims (3)

固定子巻線を有する固定子と、
回転子鉄心に設けた複数の磁石収容孔内に永久磁石をそれぞれ収容した回転子と、
を具備した永久磁石電動機において、
上記磁石収容孔は、平面視で上記回転子鉄心の中心側に凸部側が向いた円弧状収容部と、この円弧状収容部の両端側に形成された直線状収容部を有し、上記円弧状収容部内に円弧状の永久磁石を収容し、上記直線状収容部に平板状の永久磁石をそれぞれ収容していることを特徴とする永久磁石電動機。
A stator having a stator winding;
A rotor containing permanent magnets in a plurality of magnet housing holes provided in the rotor core;
In the permanent magnet motor equipped with
The magnet housing hole has an arcuate housing portion with a convex side facing the center side of the rotor core in a plan view, and linear housing portions formed on both ends of the arcuate housing portion. An arc-shaped permanent magnet is accommodated in the arc-shaped accommodating portion, and a flat permanent magnet is accommodated in each of the linear accommodating portions.
請求項1記載の永久磁石電動機と、この永久磁石電動機の回転軸に連結された圧縮機構部とを密閉容器内に収容したことを特徴とする密閉型圧縮機。 A hermetic compressor in which the permanent magnet motor according to claim 1 and a compression mechanism connected to a rotating shaft of the permanent magnet motor are housed in a hermetic container. 請求項2記載の密閉型圧縮機と、凝縮器と、膨張装置および蒸発器を具備していることを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising the hermetic compressor according to claim 2, a condenser, an expansion device, and an evaporator.
JP2013019593A 2013-02-04 2013-02-04 Permanent magnet motor, sealed compressor and refrigeration cycle device Pending JP2014150695A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013019593A JP2014150695A (en) 2013-02-04 2013-02-04 Permanent magnet motor, sealed compressor and refrigeration cycle device
CN201310711815.6A CN103973060B (en) 2013-02-04 2013-12-20 Permanent magnet electric motor, hermetic type compressor and freezing cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019593A JP2014150695A (en) 2013-02-04 2013-02-04 Permanent magnet motor, sealed compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2014150695A true JP2014150695A (en) 2014-08-21

Family

ID=51242227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019593A Pending JP2014150695A (en) 2013-02-04 2013-02-04 Permanent magnet motor, sealed compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2014150695A (en)
CN (1) CN103973060B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936234A (en) * 2015-12-29 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor and magneto
EP3955428A1 (en) * 2020-08-14 2022-02-16 Siemens Gamesa Renewable Energy A/S Magnet assembly comprising a focused magnetic flux portion and a parallel magnetic flux portion

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576865B (en) * 2014-10-30 2020-03-06 株式会社捷太格特 Magnet-embedded rotor, method and apparatus for manufacturing the same
CN106712342A (en) * 2015-07-31 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 Motor and rotor thereof
CN106469953A (en) * 2015-08-18 2017-03-01 珠海格力节能环保制冷技术研究中心有限公司 A kind of motor and its rotor
CN106357028A (en) * 2016-10-09 2017-01-25 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet synchronous motor rotor and permanent magnet synchronous motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271722A (en) * 1997-03-21 1998-10-09 Matsushita Electric Ind Co Ltd Permanent magnet buried rotor
JP2002078259A (en) * 2000-08-31 2002-03-15 Yamaha Motor Co Ltd Permanent magnet rotor
JP2002354730A (en) * 2001-05-25 2002-12-06 Hitachi Ltd Permanent magnet electric rotating machine
JP2004357468A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Motor
WO2005101614A1 (en) * 2004-04-06 2005-10-27 Hitachi Metals, Ltd. Rotor and process for manufacturing the same
US7932658B2 (en) * 2007-03-15 2011-04-26 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP5337769B2 (en) * 2010-08-25 2013-11-06 日立アプライアンス株式会社 Electric motor, hermetic compressor equipped with the same, and refrigerator equipped with the same
JP2012246819A (en) * 2011-05-27 2012-12-13 Hitachi Appliances Inc Compressor and refrigerating cycle apparatus
CN102769365A (en) * 2011-07-28 2012-11-07 珠海格力电器股份有限公司 Permanent magnet synchronous motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936234A (en) * 2015-12-29 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor and magneto
EP3955428A1 (en) * 2020-08-14 2022-02-16 Siemens Gamesa Renewable Energy A/S Magnet assembly comprising a focused magnetic flux portion and a parallel magnetic flux portion
WO2022033844A1 (en) * 2020-08-14 2022-02-17 Siemens Gamesa Renewable Energy A/S Magnet assembly comprising a focused magnetic flux portion and a parallel magnetic flux portion

Also Published As

Publication number Publication date
CN103973060B (en) 2017-06-20
CN103973060A (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP2014150695A (en) Permanent magnet motor, sealed compressor and refrigeration cycle device
CN108352737B (en) Motor, rotor, compressor, and refrigeration and air-conditioning apparatus
EP3079231B1 (en) Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
WO2018203364A1 (en) Rotor, electric motor, compressor, and air conditioning device
JP5971669B2 (en) Permanent magnet embedded motor and compressor
CN203813550U (en) Permanent magnet buried-type electric motor and compressor
US8803395B2 (en) Rotor
JP6037361B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
CN107431394B (en) Compressor and refrigeration cycle device
JP2009131026A5 (en)
JP6526316B2 (en) Rotor, electric motor, compressor, and refrigeration air conditioner
US10840757B2 (en) Electric motor with permanent magnet and compressor having the same
JP7038827B2 (en) Stator, motor, compressor and air conditioner
JP5120440B2 (en) Rotor
JP4661972B2 (en) Rotor
JP2010144595A (en) Electric pump
JP2020080632A (en) Dc motor and rotary compressor using dc motor
JP6261672B2 (en) Neodymium permanent magnet type motor and hermetic compressor equipped with the neodymium permanent magnet type motor
JP2015002651A (en) Motor and compressor employing the same
KR101918065B1 (en) Electric motor with permanent magnet and compressor having the same
JP2013126267A (en) Rotating electric machine and compressor
WO2017216964A1 (en) Rotor, electric motor, and compressor
JP6080554B2 (en) Neodymium permanent magnet type motor and hermetic compressor equipped with the neodymium permanent magnet type motor
JP4661974B2 (en) Rotor
JP2014011829A (en) Sealed motor-driven compressor