JPH10271722A - Permanent magnet buried rotor - Google Patents

Permanent magnet buried rotor

Info

Publication number
JPH10271722A
JPH10271722A JP9067657A JP6765797A JPH10271722A JP H10271722 A JPH10271722 A JP H10271722A JP 9067657 A JP9067657 A JP 9067657A JP 6765797 A JP6765797 A JP 6765797A JP H10271722 A JPH10271722 A JP H10271722A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
coercive force
permanent magnets
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9067657A
Other languages
Japanese (ja)
Inventor
Haruhiko Sumi
治彦 角
Hiroshi Ito
浩 伊藤
Yukio Honda
幸夫 本田
Hiroshi Murakami
浩 村上
Naoyuki Sumiya
直之 角谷
和成 ▲楢▼崎
Kazunari Narasaki
Yoshinari Asano
能成 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9067657A priority Critical patent/JPH10271722A/en
Publication of JPH10271722A publication Critical patent/JPH10271722A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the demagnetization hard to occur in a rotor with a permanent magnet rotor. SOLUTION: This rotor has a rotor body 13a comprising material with high permeability. The rotor body 13a includes a plurality of sets of buried permanent magnets 18 and 19 put radially at intervals in a laminated state for each pole. Each permanent magnet 18 or 19 has an arc shape projected toward the center of the rotor 13. In addition, only part of the rotor body 13a, which inner magnetic flux density is increased when a counter field is applied, is made of magnetic material with high coercive force. As a result, demagnetization is hardly caused and a decrease in characteristics can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内外多層に配置さ
れた複数組の永久磁石をロータ本体に埋設してなる永久
磁石埋め込みロータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet embedded rotor in which a plurality of sets of permanent magnets arranged in inner and outer layers are embedded in a rotor body.

【0002】[0002]

【従来の技術】従来から電動機に使用されるロータに
は、鉄などの高透磁率材からなるロータ本体に、永久磁
石を埋設したものが知られている。
2. Description of the Related Art Conventionally, as a rotor used for an electric motor, a rotor in which a permanent magnet is embedded in a rotor body made of a material having high magnetic permeability such as iron is known.

【0003】図5は従来の2層構造の永久磁石付き電動
機のロータを示している(特願平7−134023
号)。この従来のロータ3は、鉄製ロータ本体3aに、
ロータ半径方向に1極当り2層に間隔を置いて配置され
た4組の永久磁石8,9を埋設してなり、各組の永久磁
石8,9はS極,N極が交互となるように隣接して配置
され、かつ2層関係にある永久磁石8,9はその外周側
の極性が同一となるように構成されている。外周側の永
久磁石8、及び内周側の永久磁石9はいずれも、ロータ
の求心方向へ凸型をなす円弧形状に形成され、2層関係
にある外周側の永久磁石8と内周側の永久磁石9とは並
行するように配置され、両者の間隔は一定となってい
る。
FIG. 5 shows a rotor of a conventional motor with a permanent magnet having a two-layer structure (Japanese Patent Application No. 7-134023).
issue). This conventional rotor 3 includes an iron rotor body 3a,
Four sets of permanent magnets 8 and 9 arranged at intervals in two layers per pole in the radial direction of the rotor are embedded, and each set of permanent magnets 8 and 9 has S poles and N poles alternated. The permanent magnets 8 and 9 which are arranged adjacent to each other and have a two-layer relationship are configured so that the polarities on the outer peripheral side are the same. Each of the outer peripheral side permanent magnet 8 and the inner peripheral side permanent magnet 9 is formed in an arc shape that is convex in the centripetal direction of the rotor, and has a two-layer relationship between the outer peripheral side permanent magnet 8 and the inner peripheral side. The permanent magnets 9 are arranged so as to be parallel to each other, and the interval between them is constant.

【0004】また、上記各永久磁石8,9は同一の磁性
材料で半径方向の厚みを同じくして形成されている。
The permanent magnets 8 and 9 are made of the same magnetic material and have the same thickness in the radial direction.

【0005】このように、ロータ外周側に位置する永久
磁石8とロータ内周側に位置する永久磁石9が間隔を置
いて2層に埋設されたロータ3は、ステータ2側の巻線
10群によって生ずる回転磁界と永久磁石8,9の磁界
との関係に発生するマグネットトルク及び、前記回転磁
界による磁路がロータ本体3aの表面側や内外永久磁石
8,9の間隔部分に形成されることにより発生するリラ
クタンストルクとの合成トルクでR方向に回転してい
る。
[0005] As described above, the rotor 3 in which the permanent magnets 8 located on the outer peripheral side of the rotor and the permanent magnets 9 located on the inner peripheral side of the rotor are buried in two layers with a space therebetween, is composed of a group of windings 10 on the stator 2 side. The magnet torque generated in the relationship between the rotating magnetic field generated by the rotating magnetic field and the magnetic fields of the permanent magnets 8 and 9 and the magnetic path formed by the rotating magnetic field are formed on the surface side of the rotor body 3a and at the space between the inner and outer permanent magnets 8 and 9. It rotates in the R direction with a combined torque with the reluctance torque generated by the rotation.

【0006】図4はステータ2よりロータ3に逆磁界が
加わった場合の磁場解析の結果を示すものである。図に
おいて、(1)内周側の永久磁石9に比べ、外周側の永
久磁石8の磁束密度が高くなっている。(2)各層、各
極1枚毎の永久磁石8,9において、磁石円弧状断面の
両端部の磁束密度が中央部の磁束密度よりも高くなって
いる。(3)各層、各極1枚毎の永久磁石8,9におい
て、ロータ外周側の磁石表面の磁束密度が、磁石内周側
の磁石表面の磁束密度より高くなっている。
FIG. 4 shows the result of a magnetic field analysis when a reverse magnetic field is applied to the rotor 3 from the stator 2. In the figure, (1) the magnetic flux density of the outer permanent magnet 8 is higher than that of the inner permanent magnet 9. (2) In the permanent magnets 8 and 9 for each layer and each pole, the magnetic flux density at both ends of the magnet arc-shaped cross section is higher than the magnetic flux density at the center. (3) In the permanent magnets 8 and 9 for each layer and each pole, the magnetic flux density on the magnet surface on the outer peripheral side of the rotor is higher than the magnetic flux density on the magnet surface on the inner peripheral side of the magnet.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の構成において、ステータ2よりロータ3に逆磁界が
加わった場合、図4の解析結果において前述したよう
に、(1)内周側の永久磁石9に比べ、外周側の永久磁
石8の磁束密度が高くなっている。(2)各層、各極1
枚毎の永久磁石8,9において、磁石円弧状断面の両端
部の磁束密度が中央部の磁束密度よりも高くなってい
る。(3)各層、各極1枚毎の永久磁石8,9におい
て、ロータ外周側の磁石表面の磁束密度が、磁石内周側
の磁石表面の磁束密度より高くなっている。
However, when a reverse magnetic field is applied from the stator 2 to the rotor 3 in the above-described conventional configuration, as described above in the analysis result of FIG. 9, the magnetic flux density of the permanent magnet 8 on the outer peripheral side is higher. (2) Each layer, each pole 1
In the permanent magnets 8 and 9 for each sheet, the magnetic flux density at both ends of the magnet arc-shaped cross section is higher than the magnetic flux density at the center. (3) In the permanent magnets 8 and 9 for each layer and each pole, the magnetic flux density on the magnet surface on the outer peripheral side of the rotor is higher than the magnetic flux density on the magnet surface on the inner peripheral side of the magnet.

【0008】このため、多層構造をとる永久磁石のロー
タ外周側に位置する永久磁石8をロータ内周側の永久磁
石9と同一の磁性材料で構成した場合、また、各層各極
1枚毎の永久磁石8,9においても磁性材料の構成を変
えない構造とした場合、減磁が起こりやすくなるという
課題を有していた。
For this reason, when the permanent magnet 8 located on the outer peripheral side of the rotor of the permanent magnet having the multilayer structure is made of the same magnetic material as the permanent magnet 9 on the inner peripheral side of the rotor, If the permanent magnets 8 and 9 have a structure in which the configuration of the magnetic material is not changed, there is a problem that demagnetization is likely to occur.

【0009】本課題を解決する手段として、永久磁石
8,9を保磁力の高い磁性材料にて構成することが考え
られるが、単純に磁石全体を保磁力の高い磁性材料にて
構成すると、一般的な永久磁石、たとえばフェライト磁
石では、磁石の保磁力を高くすると残留磁束密度が低下
するため電動機の特性も低下することとなってしまう。
As a means for solving this problem, it is conceivable that the permanent magnets 8 and 9 are made of a magnetic material having a high coercive force. In a typical permanent magnet, for example, a ferrite magnet, when the coercive force of the magnet is increased, the residual magnetic flux density is reduced, so that the characteristics of the electric motor are also reduced.

【0010】本発明は上記課題を解決するものであり、
減磁の起こりにくく、かつ、特性低下の少ない永久磁石
埋め込みロータを提供するものである。
[0010] The present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a permanent magnet embedded rotor in which demagnetization is less likely to occur and characteristics are less reduced.

【0011】[0011]

【課題を解決するための手段】本発明の永久磁石埋め込
みロータは、ロータ半径方向に1極当たり2層以上多層
に間隔を置いて配置された複数組の永久磁石を埋設して
なるロータにおいて、前記各永久磁石がロータの求心方
向へ凸型をなす形状を成し、多層構造をとる永久磁石の
ロータ外周側に位置する永久磁石の保磁力をロータ内周
側に位置する永久磁石の保磁力より大きくした構成であ
り、減磁作用が起こりにくい。
According to the present invention, there is provided a rotor having a permanent magnet embedded therein, wherein a plurality of sets of permanent magnets are buried at intervals of two or more layers per pole in a radial direction of the rotor. Each of the permanent magnets forms a convex shape in the centripetal direction of the rotor, and the coercive force of the permanent magnet located on the outer peripheral side of the rotor of the permanent magnet having a multilayer structure is the coercive force of the permanent magnet located on the inner peripheral side of the rotor. The configuration is made larger, and the demagnetization effect is less likely to occur.

【0012】[0012]

【発明の実施の形態】本発明は、ロータ半径方向に1極
当たり2層以上多層に間隔を置いて配置された複数組の
永久磁石を埋設してなるロータにおいて、各永久磁石が
ロータの求心方向へ凸型をなす形状を成し、2層構造を
とる永久磁石のロータ外周側に位置する永久磁石の保磁
力をロータ内周側に位置する永久磁石の保磁力より大き
くしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotor having a plurality of sets of permanent magnets buried at intervals of two or more layers per pole in the radial direction of the rotor. The coercive force of the permanent magnet located on the outer peripheral side of the rotor is larger than that of the permanent magnet located on the inner peripheral side of the rotor.

【0013】本発明は、ロータ半径方向に1極当たり1
層以上多層に間隔を置いて配置された複数組の永久磁石
を埋設してなるロータにおいて、各永久磁石がロータの
求心方向へ凸型をなす形状を成し、各永久磁石のロータ
外周側の磁石表面の保磁力をロータ内周側の磁石表面の
保磁力より大きくしたものである。
According to the present invention, one pole is provided in the radial direction of the rotor.
In a rotor in which a plurality of sets of permanent magnets arranged at intervals in layers or more are embedded, each of the permanent magnets has a convex shape in a centripetal direction of the rotor, and each of the permanent magnets has a rotor outer peripheral side. The coercive force of the magnet surface is made larger than the coercive force of the magnet surface on the inner circumferential side of the rotor.

【0014】本発明は、ロータ半径方向に1極当たり1
層以上多層に間隔を置いて配置された複数組の永久磁石
を埋設してなるロータにおいて、各永久磁石がロータの
求心方向へ凸型をなす形状を成し、各永久磁石の両端部
の保磁力を中央部の保磁力より大きくしたものである。
According to the present invention, one pole is provided in the radial direction of the rotor.
In a rotor in which a plurality of sets of permanent magnets are buried at a distance of more than one layer, each permanent magnet has a convex shape in the centripetal direction of the rotor, and both ends of each permanent magnet are protected. The magnetic force is larger than the coercive force at the center.

【0015】本発明は、ロータ半径方向に1極当たり2
層以上多層に間隔を置いて配置された複数組の永久磁石
を埋設してなるロータにおいて、各永久磁石がロータの
求心方向へ凸型をなす形状を成し、各永久磁石の両端部
の保磁力を中央部の保磁力より大きくして、かつ、多層
構造をとる永久磁石のロータ外周側に位置する永久磁石
の保磁力をロータ内周側に位置する永久磁石の保磁力よ
り大きくしたものである。
According to the present invention, two poles are provided per pole in the radial direction of the rotor.
In a rotor in which a plurality of sets of permanent magnets are buried at a distance of more than one layer, each permanent magnet has a convex shape in the centripetal direction of the rotor, and both ends of each permanent magnet are protected. The magnetic force is larger than the coercive force of the central part, and the coercive force of the permanent magnet located on the outer peripheral side of the rotor of the multilayered permanent magnet is larger than the coercive force of the permanent magnet located on the inner peripheral side of the rotor. is there.

【0016】このような構成により本発明は、ステータ
よりロータに逆磁界が加わった場合、各永久磁石の磁束
密度の高い部分を保磁力の高い磁性材料にて構成するた
め、減磁の起こりにくく、かつ、永久磁石の減磁磁束密
度の高い部分についてのみ保磁力の高い磁性材料を使用
するため特性低下の少ない永久磁石埋め込みロータが得
られる。
With this configuration, according to the present invention, when a reverse magnetic field is applied to the rotor from the stator, a portion of each permanent magnet having a high magnetic flux density is made of a magnetic material having a high coercive force, so that demagnetization hardly occurs. In addition, since a magnetic material having a high coercive force is used only in a portion of the permanent magnet where the demagnetizing magnetic flux density is high, a permanent magnet embedded rotor with less characteristic deterioration can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例について図面により説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】(実施例1)図1,図2により実施例1を
示す。
(Embodiment 1) An embodiment 1 is shown in FIGS.

【0019】ロータ13は、鉄製ロータ本体13aに、
ロータ半径方向に1極当たり2層に間隔を置いて配置さ
れた4組の永久磁石18,19を埋設してなり、各組の
永久磁石18,19はS極,N極が交互となるように隣
接して配置され、かつ2層関係にある永久磁石18,1
9はその外周側の極性が同一となるように構成されてい
る。外側の永久磁石18、及び内側の永久磁石19はい
ずれも、ロータ13の求心方向へ凸型をなす円弧形状に
形成され、2層関係にある外周側の永久磁石18と内周
側の永久磁石19とは並行するように配置され、両者の
間隔は一定となっている。
The rotor 13 includes an iron rotor body 13a,
Four sets of permanent magnets 18 and 19 arranged at intervals in two layers per pole in the radial direction of the rotor are embedded, and each set of permanent magnets 18 and 19 has S poles and N poles alternated. Permanent magnets 18 and 1 arranged adjacent to each other and in a two-layer relationship.
Reference numeral 9 denotes a configuration in which the outer periphery has the same polarity. Each of the outer permanent magnet 18 and the inner permanent magnet 19 is formed in an arc shape that is convex in the centripetal direction of the rotor 13, and has a two-layer relationship between the outer peripheral permanent magnet 18 and the inner peripheral permanent magnet 18. 19 are arranged in parallel, and the interval between them is constant.

【0020】また各極、各層1枚毎の永久磁石は永久磁
石円弧状断面の両端部18c,19cが円弧状断面中央
部18d,19dより保磁力の高い磁性材料により形成
され、かつ、各極の外周側の永久磁石18bは内周側の
永久磁石19bよりも保磁力の高い磁性材料にて形成さ
れている。
The permanent magnet of each pole and each layer is formed of a magnetic material having a coercive force higher at both ends 18c and 19c of the permanent magnet arc-shaped cross section than at the center of the arc-shaped cross section 18d and 19d. Is formed of a magnetic material having a higher coercive force than the inner permanent magnet 19b.

【0021】一方、ステータ12側には、複数のティー
スが設けられ、これらティース14間に巻線20が配置
されていて、この巻線20に交流電流が与えられること
で回転磁界を発生している。
On the other hand, a plurality of teeth are provided on the stator 12 side, and a winding 20 is arranged between the teeth 14. When an alternating current is applied to the winding 20, a rotating magnetic field is generated. I have.

【0022】図4は前述したようにステータ2側より、
ロータ3に逆磁界が加わった場合のある1点での磁場解
析の結果を示したものである。図4において、ステータ
2のティース4より発生する磁束はロータ3の外周部よ
り入り、ロータ内部にて外周側永久磁石8、内周側永久
磁石9、ロータ内径のヨーク部の順に通り、再び内周側
永久磁石9、外周側永久磁石8よりステータ2へと戻っ
ていく。この際図より明らかなように(1)内周側の永
久磁石9に比べ、外周側の永久磁石8の磁束密度が高く
なっている。(2)各層、各極1枚毎の永久磁石8,9
において、磁石円弧状断面の両端部8c,9cの磁束密
度が中央部8d,9dの磁束密度よりも高くなっている
ことがわかる。
FIG. 4 shows that, as described above,
It shows the result of a magnetic field analysis at a certain point when a reverse magnetic field is applied to the rotor 3. In FIG. 4, the magnetic flux generated from the teeth 4 of the stator 2 enters from the outer peripheral portion of the rotor 3 and passes through the outer peripheral permanent magnet 8, the inner peripheral permanent magnet 9, and the yoke portion of the rotor inner diameter in the order of the rotor. The circumferential permanent magnet 9 and the outer circumferential permanent magnet 8 return to the stator 2. At this time, as apparent from the figure, (1) the magnetic flux density of the outer peripheral side permanent magnet 8 is higher than that of the inner peripheral side permanent magnet 9. (2) Permanent magnets 8 and 9 for each layer and each pole
It can be seen that the magnetic flux density at both ends 8c and 9c of the magnet arc-shaped cross section is higher than the magnetic flux density at the central portions 8d and 9d.

【0023】よって、従来例のように外周側の永久磁石
8を内周側の永久磁石9と同一の磁性材料で構成した場
合、また、各層各極1枚毎の永久磁石においても磁性材
料の構成を変えない構造とした場合、減磁作用が起こり
やすいということになる。
Therefore, when the outer peripheral permanent magnet 8 is made of the same magnetic material as the inner peripheral permanent magnet 9 as in the conventional example, the magnetic material is also used in the permanent magnet for each pole of each layer. If the structure is not changed, the demagnetization effect is likely to occur.

【0024】本発明では、前述したように各極、各層1
枚毎の永久磁石は永久磁石円弧状断面の両端部18c,
19cが円弧状断面中央部18d,19dより保磁力の
高い磁性材料により形成され、かつ、各極の外周側の永
久磁石18bは内周側の永久磁石19bよりも保磁力の
高い磁性材料にて形成されているので、減磁の起こりに
くい永久磁石埋め込みロータを提供することができる。
In the present invention, as described above, each pole and each layer 1
The permanent magnets for each sheet are the both ends 18c of the permanent magnet arc-shaped cross section.
19c is formed of a magnetic material having a higher coercive force than the center portions 18d and 19d of the arc-shaped cross section, and the outer peripheral permanent magnet 18b of each pole is made of a magnetic material having a higher coercive force than the inner peripheral permanent magnet 19b. Since it is formed, it is possible to provide a permanent magnet embedded rotor in which demagnetization hardly occurs.

【0025】また、保磁力の高い磁性材料を減磁磁束密
度の高い部分についてのみ使用するため特性低下も少な
くなる。
Further, since a magnetic material having a high coercive force is used only for a portion having a high demagnetizing magnetic flux density, the deterioration of characteristics is reduced.

【0026】(実施例2)図4において、各層、各極1
枚毎の永久磁石を見た場合、ロータ外周側の磁石表面
8,9の磁束密度が、磁石内周側の磁石表面8,9の磁
束密度より高くなっていることもわかる。このことよ
り、図3のように、各層、各極1枚毎の永久磁石におい
て、外周側の磁石表面部38e,39eを内周側の磁石
表面部38f,39fより保磁力の高い構成とした場合
においても、減磁作用の起こりにくく、かつ、特性低下
も少ない永久磁石埋め込みロータを提供することができ
る。
(Embodiment 2) In FIG.
When looking at the permanent magnets of each sheet, it can be seen that the magnetic flux density of the magnet surfaces 8, 9 on the outer peripheral side of the rotor is higher than the magnetic flux density of the magnet surfaces 8, 9 on the inner peripheral side of the magnet. As a result, as shown in FIG. 3, in the permanent magnet for each layer and each pole, the outer magnet surface portions 38e and 39e have a higher coercive force than the inner magnet surface portions 38f and 39f. Even in this case, it is possible to provide a permanent magnet embedded rotor in which the demagnetizing effect is less likely to occur and the characteristics are less reduced.

【0027】[0027]

【発明の効果】以上のように本願請求項1記載の発明に
よれば、各永久磁石においてステータより逆磁界が加わ
った場合、外側の永久磁石の保磁力は高い磁性材料を使
用するため、減磁作用が起こりにくくなるという有利な
効果が得られる。また、保磁力の高い磁性材料を減磁磁
束密度の高い部分について使用するため、特性低下も少
なくなる。
As described above, according to the first aspect of the present invention, when a reverse magnetic field is applied to each of the permanent magnets from the stator, the coercive force of the outer permanent magnets is reduced because a high magnetic material is used. An advantageous effect that the magnetic action is less likely to occur is obtained. In addition, since a magnetic material having a high coercive force is used for a portion having a high demagnetizing magnetic flux density, deterioration in characteristics is reduced.

【0028】また、請求項2記載の発明は永久磁石表面
の外側を高い磁性材料を使用するため減磁作用が起こり
にくい。
In the second aspect of the invention, since a high magnetic material is used outside the surface of the permanent magnet, the demagnetizing effect is less likely to occur.

【0029】また、請求項3記載の発明は円弧状の両端
部を高い磁性材料を使用するため、減磁作用が起こりに
くい。
Further, in the third aspect of the present invention, since the arc-shaped both ends are made of a high magnetic material, the demagnetizing effect hardly occurs.

【0030】また、請求項4記載の発明は、埋め込んだ
外側の磁石の磁力が大きく、さらに磁石の両端部の磁力
が大きいので、減磁作用が起こりにくい。
Further, in the invention according to claim 4, since the magnetic force of the embedded outer magnet is large and the magnetic force of both ends of the magnet is large, the demagnetizing effect hardly occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を示す断面図FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】同部分断面図FIG. 2 is a partial sectional view of the same.

【図3】本発明の実施例2を示す部分断面図FIG. 3 is a partial sectional view showing a second embodiment of the present invention.

【図4】永久磁石埋め込みロータの磁場解析を示す断面
FIG. 4 is a cross-sectional view showing a magnetic field analysis of a permanent magnet embedded rotor.

【図5】従来の電動機の断面図FIG. 5 is a sectional view of a conventional electric motor.

【符号の説明】[Explanation of symbols]

13 ロータ 13a ロータ本体 18 永久磁石 19 永久磁石 13 rotor 13a rotor body 18 permanent magnet 19 permanent magnet

フロントページの続き (72)発明者 村上 浩 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 角谷 直之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 ▲楢▼崎 和成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 浅野 能成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continuing on the front page (72) Inventor Hiroshi Murakami 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. ▲ Nara ▼ Kazunari Saki 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ロータ半径方向に1極当たり2層以上多層
に間隔を置いて配置された複数組の永久磁石を埋設して
なるロータにおいて、前記各永久磁石がロータの求心方
向へ凸型をなす形状を成し、多層構造をとる永久磁石の
ロータ外周側に位置する永久磁石の保磁力をロータ内周
側に位置する永久磁石の保磁力より大きくしたことを特
徴とする永久磁石埋め込みロータ。
1. A rotor comprising a plurality of sets of permanent magnets buried at intervals of two or more layers per pole in a radial direction of the rotor, wherein each of the permanent magnets has a convex shape in the centripetal direction of the rotor. A permanent magnet embedded rotor, wherein a coercive force of a permanent magnet located on the outer peripheral side of the rotor of a permanent magnet having a multilayered structure is made larger than a coercive force of a permanent magnet located on an inner peripheral side of the rotor.
【請求項2】ロータ半径方向に1極当たり1層以上多層
に間隔を置いて配置された複数組の永久磁石を埋設して
なるロータにおいて、前記各永久磁石がロータの求心方
向へ凸型をなす形状を成し、各永久磁石のロータ外周側
の磁石表面の保磁力をロータ内周側の磁石表面の保磁力
より大きくしたことを特徴とする永久磁石埋め込みロー
タ。
2. A rotor comprising a plurality of sets of permanent magnets buried at intervals of one or more layers per pole in a radial direction of the rotor, wherein each of the permanent magnets has a convex shape in the centripetal direction of the rotor. A permanent magnet-embedded rotor, wherein each permanent magnet has a coercive force on a magnet surface on an outer peripheral side of the rotor that is larger than a coercive force on a magnet surface on an inner peripheral side of the rotor.
【請求項3】ロータ半径方向に1極当たり1層以上多層
に間隔を置いて配置された複数組の永久磁石を埋設して
なるロータにおいて、前記各永久磁石がロータの求心方
向へ凸型をなす形状を成し、各永久磁石の両端部の保磁
力を中央部の保磁力より大きくしたことを特徴とする永
久磁石埋め込みロータ。
3. A rotor comprising a plurality of sets of permanent magnets buried at intervals of one or more layers per pole in a radial direction of the rotor, wherein each of the permanent magnets has a convex shape in the centripetal direction of the rotor. A permanent-magnet embedded rotor, wherein the permanent magnet has a shape formed therein, and a coercive force at both ends of each permanent magnet is larger than a coercive force at a central portion.
【請求項4】ロータ半径方向に1極当たり2層以上多層
に間隔を置いて配置された複数組の永久磁石を埋設して
なるロータにおいて、前記各永久磁石がロータの求心方
向へ凸型をなす形状を成し、各永久磁石の両端部の保磁
力を中央部の保磁力より大きくして、かつ、多層構造を
とる永久磁石のロータ外周側に位置する永久磁石の保磁
力をロータ内周側に位置する永久磁石の保磁力より大き
くしたことを特徴とする永久磁石埋め込みロータ。
4. A rotor comprising a plurality of sets of permanent magnets buried at intervals of two or more layers per pole in the radial direction of the rotor, wherein each of the permanent magnets has a convex shape in the centripetal direction of the rotor. The coercive force at both ends of each permanent magnet is made larger than the coercive force at the central portion, and the coercive force of the permanent magnets located on the outer peripheral side of the rotor of the permanent magnet having a multilayer structure is formed on the inner periphery of the rotor. A permanent magnet embedded rotor having a coercive force larger than a coercive force of a permanent magnet located on the side.
【請求項5】埋設した永久磁石の形状が円弧をなす請求
項1〜4のいずれか1項に記載の永久磁石埋め込みロー
タ。
5. The permanent magnet embedded rotor according to claim 1, wherein the embedded permanent magnet has an arc shape.
JP9067657A 1997-03-21 1997-03-21 Permanent magnet buried rotor Pending JPH10271722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9067657A JPH10271722A (en) 1997-03-21 1997-03-21 Permanent magnet buried rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9067657A JPH10271722A (en) 1997-03-21 1997-03-21 Permanent magnet buried rotor

Publications (1)

Publication Number Publication Date
JPH10271722A true JPH10271722A (en) 1998-10-09

Family

ID=13351315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9067657A Pending JPH10271722A (en) 1997-03-21 1997-03-21 Permanent magnet buried rotor

Country Status (1)

Country Link
JP (1) JPH10271722A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184956A1 (en) * 2000-08-31 2002-03-06 Yamaha Hatsudoki Kabushiki Kaisha Permanent magnet rotor
US6630762B2 (en) 2000-06-16 2003-10-07 Yamaha Hatsudoki Kabushiki Kaisha Permanent magnet rotor and method of making the same
US6826824B2 (en) 2000-07-27 2004-12-07 Yamaha Hatsudoki Kabushiki Kaisha Embedded magnet type rotor and filling of the same
JP2006261433A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Compound magnet, method for manufacturing the same and motor
WO2007146208A1 (en) * 2006-06-12 2007-12-21 Remy International, Inc. Magnet for a dynamoelectric machine, dynamoelectric machine and method
JP2008061333A (en) * 2006-08-30 2008-03-13 Shin Etsu Chem Co Ltd Permanent magnet rotating machine
JP2009165349A (en) * 2009-04-03 2009-07-23 Shin Etsu Chem Co Ltd Permanent magnet rotating machine, and manufacturing method of permanent magnet segment for permanent magnet rotating machine
US20100171386A1 (en) * 2007-05-28 2010-07-08 Toyota Jidosha Kabushiki Kaisha Rotor for magnet-embedded motor and magnet-embedded motor
US7847461B2 (en) 2007-06-06 2010-12-07 Gm Global Technology Operations, Inc. Multi-layer magnet arrangement in a permanent magnet machine for a motorized vehicle
CN102624181A (en) * 2012-03-30 2012-08-01 岳群生 Optimal design method for permanent magnetic synchronous motor
WO2014047748A1 (en) * 2012-09-29 2014-04-03 Emerson Electric Co. Rotors with segmented magnet configurations and related dynamoelectric machines and compressors
CN103973060A (en) * 2013-02-04 2014-08-06 东芝开利株式会社 Permanent magnet motor, hermetic compressor and refrigeration cycle device
CN104753212A (en) * 2013-12-25 2015-07-01 联合汽车电子有限公司 Hybrid magnetic steel rotor and permanent magnet synchronous motor provided with rotor
JP2015133839A (en) * 2014-01-14 2015-07-23 株式会社ジェイテクト Magnet-embedded rotor
CN106537741A (en) * 2014-09-17 2017-03-22 松下知识产权经营株式会社 Electric motor and electrical apparatus comprising same
EP3151386A1 (en) * 2015-10-02 2017-04-05 Kabushiki Kaisha Toshiba Permanent magnet rotor and permanent magnet rotating electrical machine
EP3185402A1 (en) * 2015-12-23 2017-06-28 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Permanent magnet rotor of an electric machine
KR20170132217A (en) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
JP2017229192A (en) * 2016-06-24 2017-12-28 三菱電機株式会社 Rotary electric machine and manufacturing method for rotary electric machine
ES2683891A1 (en) * 2017-03-28 2018-09-28 Universidad De Burgos ROTOR OF PERMANENT MAGNETS FOR THREE-PHASE SYNCHRONOUS ENGINE (Machine-translation by Google Translate, not legally binding)
CN113224875A (en) * 2020-02-05 2021-08-06 本田技研工业株式会社 Rotor of rotating electric machine and method for manufacturing arc magnet
CN113410933A (en) * 2021-06-28 2021-09-17 珠海格力节能环保制冷技术研究中心有限公司 Design method of motor rotor, motor rotor and double-winding motor
WO2022065109A1 (en) 2020-09-25 2022-03-31 ダイキン工業株式会社 Rotating machine

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630762B2 (en) 2000-06-16 2003-10-07 Yamaha Hatsudoki Kabushiki Kaisha Permanent magnet rotor and method of making the same
US6826824B2 (en) 2000-07-27 2004-12-07 Yamaha Hatsudoki Kabushiki Kaisha Embedded magnet type rotor and filling of the same
US6555940B2 (en) 2000-08-31 2003-04-29 Yamaha Hatsudoki Kabushiki Kaisha Permanent magnet rotor
EP1361641A1 (en) * 2000-08-31 2003-11-12 Yamaha Hatsudoki Kabushiki Kaisha Permanent magnet rotor
US6741003B2 (en) 2000-08-31 2004-05-25 Yamaha Hatsudoki Kabushiki Kaisa Permanent magnet rotor
EP1184956A1 (en) * 2000-08-31 2002-03-06 Yamaha Hatsudoki Kabushiki Kaisha Permanent magnet rotor
JP4581770B2 (en) * 2005-03-17 2010-11-17 トヨタ自動車株式会社 COMPOUND MAGNET, MOTOR, AND MANUFACTURING METHOD
JP2006261433A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Compound magnet, method for manufacturing the same and motor
WO2007146208A1 (en) * 2006-06-12 2007-12-21 Remy International, Inc. Magnet for a dynamoelectric machine, dynamoelectric machine and method
JP2008061333A (en) * 2006-08-30 2008-03-13 Shin Etsu Chem Co Ltd Permanent magnet rotating machine
KR101224253B1 (en) * 2006-08-30 2013-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 Permanent magnet rotating machine
US20100171386A1 (en) * 2007-05-28 2010-07-08 Toyota Jidosha Kabushiki Kaisha Rotor for magnet-embedded motor and magnet-embedded motor
US7847461B2 (en) 2007-06-06 2010-12-07 Gm Global Technology Operations, Inc. Multi-layer magnet arrangement in a permanent magnet machine for a motorized vehicle
JP2009165349A (en) * 2009-04-03 2009-07-23 Shin Etsu Chem Co Ltd Permanent magnet rotating machine, and manufacturing method of permanent magnet segment for permanent magnet rotating machine
CN102624181A (en) * 2012-03-30 2012-08-01 岳群生 Optimal design method for permanent magnetic synchronous motor
WO2014047748A1 (en) * 2012-09-29 2014-04-03 Emerson Electric Co. Rotors with segmented magnet configurations and related dynamoelectric machines and compressors
CN104685763A (en) * 2012-09-29 2015-06-03 艾默生电气公司 Rotors with segmented magnet configurations and related dynamoelectric machines and compressors
US9906083B2 (en) 2012-09-29 2018-02-27 Emerson Electric Co. Rotors with segmented magnet configurations and related dynamoelectric machines and compressors
CN103973060A (en) * 2013-02-04 2014-08-06 东芝开利株式会社 Permanent magnet motor, hermetic compressor and refrigeration cycle device
CN104753212A (en) * 2013-12-25 2015-07-01 联合汽车电子有限公司 Hybrid magnetic steel rotor and permanent magnet synchronous motor provided with rotor
JP2015133839A (en) * 2014-01-14 2015-07-23 株式会社ジェイテクト Magnet-embedded rotor
CN106537741A (en) * 2014-09-17 2017-03-22 松下知识产权经营株式会社 Electric motor and electrical apparatus comprising same
US11101707B2 (en) 2015-03-24 2021-08-24 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
KR20170132217A (en) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
EP3151386A1 (en) * 2015-10-02 2017-04-05 Kabushiki Kaisha Toshiba Permanent magnet rotor and permanent magnet rotating electrical machine
JP2017070170A (en) * 2015-10-02 2017-04-06 東芝三菱電機産業システム株式会社 Permanent magnet type rotor and permanent magnet type rotary electric machine
CN106560983A (en) * 2015-10-02 2017-04-12 东芝三菱电机产业系统株式会社 Permanent Magnet Rotor And Permanent Magnet Rotating Electrical Machine
KR101877126B1 (en) * 2015-10-02 2018-07-10 가부시끼가이샤 도시바 Permanent magnet rotor and permanent magnet rotating electrical machine
EP3185402A1 (en) * 2015-12-23 2017-06-28 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Permanent magnet rotor of an electric machine
CN106911239B (en) * 2015-12-23 2020-04-28 博泽沃尔兹堡汽车零部件有限公司 Electric machine
CN106911239A (en) * 2015-12-23 2017-06-30 博泽沃尔兹堡汽车零部件有限公司 Motor
US11128185B2 (en) 2015-12-23 2021-09-21 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Electric machine, method of manufacturing the electric machine, rotor and adjustment device
JP2017229192A (en) * 2016-06-24 2017-12-28 三菱電機株式会社 Rotary electric machine and manufacturing method for rotary electric machine
ES2683891A1 (en) * 2017-03-28 2018-09-28 Universidad De Burgos ROTOR OF PERMANENT MAGNETS FOR THREE-PHASE SYNCHRONOUS ENGINE (Machine-translation by Google Translate, not legally binding)
CN113224875A (en) * 2020-02-05 2021-08-06 本田技研工业株式会社 Rotor of rotating electric machine and method for manufacturing arc magnet
JP2021125968A (en) * 2020-02-05 2021-08-30 本田技研工業株式会社 Rotor for rotary electric machine and arcuate magnet manufacturing method
WO2022065109A1 (en) 2020-09-25 2022-03-31 ダイキン工業株式会社 Rotating machine
JP2022053898A (en) * 2020-09-25 2022-04-06 ダイキン工業株式会社 Rotary machine
CN113410933A (en) * 2021-06-28 2021-09-17 珠海格力节能环保制冷技术研究中心有限公司 Design method of motor rotor, motor rotor and double-winding motor

Similar Documents

Publication Publication Date Title
JPH10271722A (en) Permanent magnet buried rotor
JP4432616B2 (en) Axial gap type rotating electrical machine
US6340857B2 (en) Motor having a rotor with interior split-permanent-magnet
JP5259927B2 (en) Permanent magnet rotating electric machine
WO2002031947A1 (en) Electric motor
JP2000308287A (en) Permanent magnet embedded reluctance motor
JP4984347B2 (en) Electric motor
JPH09308195A (en) Rotor of rotating electric machine
JPH0279738A (en) Rotor for synchronous type ac servomotor
JPH08331783A (en) Permanent magnet buried motor
JPH0833246A (en) Rotor for permanent magnet synchronous electric rotating machine
JPH0479741A (en) Permanent magnet rotor
JP2000188837A (en) Permanent magnet rotor and its manufacture
JP2747436B2 (en) Rotor with permanent magnet
JP3681459B2 (en) Synchronous motor
JPH1189134A (en) Permanent magnet type motor
JP3832540B2 (en) Permanent magnet motor
JPH11285186A (en) Permanent-magnet motor
JPH09308198A (en) Permanent magnet motor
JP2000050543A (en) Permanent magnet embedded motor
JP5904188B2 (en) Multi-gap rotating electric machine
JP3552847B2 (en) Reluctance motor
JP2008187802A (en) Rotor for rotary electrical machine, and electric machine
JP2005039909A (en) Permanent magnet embedded type motor
JPH08336248A (en) Rotor with permanent magnet