JPH08336248A - Rotor with permanent magnet - Google Patents

Rotor with permanent magnet

Info

Publication number
JPH08336248A
JPH08336248A JP7142129A JP14212995A JPH08336248A JP H08336248 A JPH08336248 A JP H08336248A JP 7142129 A JP7142129 A JP 7142129A JP 14212995 A JP14212995 A JP 14212995A JP H08336248 A JPH08336248 A JP H08336248A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
peripheral side
permanent magnets
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7142129A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakami
浩 村上
Yukio Honda
幸夫 本田
Kazunari Narasaki
和成 楢崎
Masayuki Shindo
正行 神藤
Hiroshi Ito
浩 伊藤
Yoshinari Asano
能成 浅野
Naoyuki Sumiya
直之 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7142129A priority Critical patent/JPH08336248A/en
Priority to EP96108636A priority patent/EP0746079B1/en
Priority to DE69629419T priority patent/DE69629419T2/en
Priority to MYPI96002094A priority patent/MY155225A/en
Priority to CN96110043A priority patent/CN1127191C/en
Priority to CNB031548806A priority patent/CN100525010C/en
Publication of JPH08336248A publication Critical patent/JPH08336248A/en
Priority to US08/928,086 priority patent/US5945760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE: To obtain a rotor buried with permanent magnets of two layer structure in which the magnet torque can be utilized effectively by backing up the permanent magnets on the outer circumferential side sufficiently. CONSTITUTION: The rotor 3 comprises a rotor body 3a made of a material having high permeability buried with a plurality of sets of permanent magnets 8a, 8b at an interval of two layers per pole in the radial direction of the rotor. Each of the permanent magnets 8a, 8b has arcuate shape projecting in the centripetal direction of the rotor. Thickness of the permanent magnet 8b located on the inner circumferential side of rotor is set thicker by 3% or more than that of the permanent magnet 8a located on the outer circumferential side of rotor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内外2層に配置された
複数組の永久磁石をロータ本体に埋設してなる永久磁石
付ロータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor with a permanent magnet, in which a plurality of sets of permanent magnets arranged in two layers inside and outside are embedded in a rotor body.

【0002】[0002]

【従来の技術】従来から鉄などの高透磁率材からなるロ
ータ本体に、永久磁石を埋設したロータが知られてい
る。
2. Description of the Related Art Conventionally, a rotor having a permanent magnet embedded in a rotor body made of a high magnetic permeability material such as iron has been known.

【0003】図3はリラクタンストルクを有効に利用す
るため、本発明者らが開発した、2層構造の永久磁石付
ロータを示している(特願平7−134023号)。こ
の先行発明に係るロータ3は、鉄製ロータ本体3aに、
ロータ半径方向に1極当り2層に間隔を置いて配置され
た4組の永久磁石8a、8b・・・を埋設してなり、各
組の永久磁石8a、8bはS極、N極が交互となるよう
に隣接して配置され、かつ2層関係にある永久磁石8
a、8bはその外周側の極性が同一となるように構成さ
れている。外側の永久磁石8a、・・・及び内側の永久
磁石8b、・・・はいずれも、ロータの求心方向へ凸形
をなす円弧形状に形成され、2層関係にある外側の永久
磁石8aと内側の永久磁石8bとは並行するように配置
され、両者の間隔は一定となっている。
FIG. 3 shows a rotor with a two-layer structure, which is developed by the present inventors to effectively utilize reluctance torque (Japanese Patent Application No. 7-134023). The rotor 3 according to this prior invention includes an iron rotor body 3a,
4 sets of permanent magnets 8a, 8b, etc., which are arranged in two layers per pole in the rotor radial direction with a space, are embedded, and the permanent magnets 8a, 8b of each set have S poles and N poles alternately. Permanent magnets 8 arranged adjacent to each other and in a two-layer relationship
The a and 8b are configured so that the polarities on the outer peripheral side are the same. Each of the outer permanent magnets 8a, ... And the inner permanent magnets 8b, ... Is formed in an arc shape that is convex in the centripetal direction of the rotor, and has an outer permanent magnet 8a and an inner side that are in a two-layer relationship. The permanent magnets 8b are arranged in parallel with each other, and the distance between them is constant.

【0004】また、上記各永久磁石8a、8bは同一の
磁性材料で半径方向の厚みを同じくして形成されてい
る。
The permanent magnets 8a and 8b are made of the same magnetic material and have the same radial thickness.

【0005】このように、ロータ外周側に位置する永久
磁石8aとロータ内周側に位置する永久磁石8bが間隔
を置いて2層に埋設されたロータ3は、ステータ2側の
巻線10群によって生ずる回転磁界と永久磁石8の磁界
との関係に発生するマグネットトルク及び、前記回転磁
界による磁路がロータ本体3aの表面側や内外永久磁石
8b、8aの間隔部分に形成されることにより発生する
リラクタンストルクとの合成トルクでR方向に回転して
いる。
As described above, the rotor 3 in which the permanent magnets 8a located on the outer peripheral side of the rotor and the permanent magnets 8b located on the inner peripheral side of the rotor are embedded in two layers with a space therebetween, is the winding 10 group on the stator 2 side. Generated by the magnetic torque generated by the relationship between the rotating magnetic field generated by the magnetic field of the permanent magnet 8 and the magnetic field of the permanent magnet 8 and the magnetic path formed by the rotating magnetic field being formed on the surface side of the rotor body 3a or in the space between the inner and outer permanent magnets 8b, 8a. It rotates in the R direction by the combined torque with the reluctance torque.

【0006】そして、2層関係にある永久磁石8のう
ち、外周側の永久磁石8aのマグネットトルクに寄与す
る磁束は、内周側の永久磁石8bの磁束のバックアップ
を受けている。図4は永久磁石8による磁場解析の結果
を示すもので、ループ状に磁路が形成されている。
Among the permanent magnets 8 having a two-layer relationship, the magnetic flux that contributes to the magnet torque of the permanent magnet 8a on the outer peripheral side is backed up by the magnetic flux of the permanent magnet 8b on the inner peripheral side. FIG. 4 shows the result of magnetic field analysis by the permanent magnet 8, in which a magnetic path is formed in a loop.

【0007】[0007]

【発明が解決しようとする課題】上記先行発明の構成に
おいては、リラクタンストルクの有効利用を考慮して、
2層関係にある永久磁石8a、8b間に磁束が通過する
ための間隔が設けられているため、図4に示すように、
内周側の永久磁石8bの両端部から出る磁束が、外周側
の永久磁石8aに入らず、ステータ2側に直接流れてし
まい、外周側の永久磁石8aの端部をバックアップしな
い現象がみられる。
In the structure of the above-mentioned prior invention, in consideration of effective use of reluctance torque,
Since there is a gap for the magnetic flux to pass between the permanent magnets 8a and 8b having a two-layer relationship, as shown in FIG.
There is a phenomenon in which magnetic flux emitted from both ends of the inner peripheral side permanent magnet 8b does not enter the outer peripheral side permanent magnet 8a but flows directly to the stator 2 side and does not back up the outer peripheral side permanent magnet 8a. .

【0008】このため、内周側の永久磁石8bの外周側
の永久磁石8aに対するバックアップが、全体としても
減少して、外周側の永久磁石8aに生ずるマグネットト
ルクに寄与する磁束量が減少してしまい、マグネットト
ルクが減少するという問題を有していた。
Therefore, the backup of the permanent magnet 8b on the inner peripheral side to the permanent magnet 8a on the outer peripheral side is reduced as a whole, and the amount of magnetic flux contributing to the magnet torque generated in the permanent magnet 8a on the outer peripheral side is reduced. Therefore, there is a problem that the magnet torque is reduced.

【0009】[0009]

【課題を解決するための手段】本願第1発明は上記先行
発明の問題点を解決するため、高透磁率材からなるロー
タ本体に、ロータ半径方向に1極当り2層に間隔を置い
て配置された複数組の永久磁石を埋設してなるロータに
おいて、前記各永久磁石がロータの求心方向へ凸形をな
す円弧形状を成し、2層構造をとる永久磁石のロータ内
周側に位置する永久磁石の厚みが、ロータ外周側に位置
する永久磁石の3%増以上の厚みで形成されていること
を特徴とする。
In order to solve the above-mentioned problems of the prior invention, the first invention of the present application arranges two layers per pole in the rotor body made of a high magnetic permeability material in the radial direction of the rotor. A plurality of sets of permanent magnets embedded in the rotor, each of the permanent magnets has an arc shape that is convex in the centripetal direction of the rotor, and is located on the rotor inner peripheral side of the permanent magnet having a two-layer structure. It is characterized in that the thickness of the permanent magnet is 3% or more of that of the permanent magnet located on the outer peripheral side of the rotor.

【0010】本願第2発明は上記先行発明の問題点を解
決するため、高透磁率材からなるロータ本体に、ロータ
半径方向に1極当り2層に間隔を置いて配置された複数
組の永久磁石を埋設してなるロータにおいて、前記各永
久磁石がロータの求心方向へ凸形をなす円弧形状を成
し、2層構造をとる永久磁石のロータ内周側に位置する
永久磁石が、ロータ外周側に位置する永久磁石に対し、
残留磁束密度が3%増以上の磁性材料で形成されている
ことを特徴とする。
In order to solve the above-mentioned problems of the prior invention, the second invention of the present application has a plurality of sets of permanent magnets, which are arranged in the rotor main body made of a high magnetic permeability material, in two layers per pole in the rotor radial direction. In a rotor in which magnets are embedded, each of the permanent magnets has an arcuate shape that is convex in the centripetal direction of the rotor, and the permanent magnets located on the rotor inner circumference side of the permanent magnet having a two-layer structure are Side permanent magnets,
It is characterized by being made of a magnetic material having a residual magnetic flux density of 3% or more.

【0011】[0011]

【作用】本願第1発明は上記構成によって、次のような
作用を営むことができる。すなわち、上記各永久磁石が
ロータの求心方向へ凸形をなす円弧形状を成し、2層構
造をとる永久磁石のロータ内周側に位置する永久磁石の
厚みが、ロータ外周側に位置する永久磁石の3%増以上
の厚みで形成されているため、その厚みの差はバックア
ップ側の永久磁石の磁束密度を決定する動作点を上げる
ことになり、先行発明に比較し、内周側の永久磁石から
出る磁束密度を増大させることができる。従って内周側
の永久磁石の外周側の永久磁石に対するバックアップを
両端部においても十分になすことができる結果、先行発
明の問題点であったマグネットトルクが減少するという
問題点を解決することができる。
The first aspect of the present invention having the above-described configuration can perform the following actions. That is, each of the permanent magnets has an arcuate shape that is convex in the centripetal direction of the rotor, and the thickness of the permanent magnet located on the rotor inner peripheral side of the permanent magnet having a two-layer structure is equal to that of the permanent magnet located on the rotor outer peripheral side. Since the magnet is formed with a thickness of 3% or more, the difference in the thickness raises the operating point that determines the magnetic flux density of the permanent magnet on the backup side. The magnetic flux density emitted from the magnet can be increased. Therefore, as a result of being able to sufficiently back up the permanent magnets on the outer peripheral side of the inner peripheral side even at both ends, it is possible to solve the problem that the magnet torque is reduced, which is a problem of the prior invention. .

【0012】本願第2発明は上記構成によって、次のよ
うな作用を営むことができる。すなわち、上記2層構造
をとる永久磁石が3%以上残留磁束密度の異なる磁性材
で形成され、残留磁束密度の大きい磁性材からなる永久
磁石の方をバックアップ側(内周側)に配しているの
で、先行発明に比較し、バックアップ側の永久磁石から
出る磁束密度を増大させることができる結果、上記第1
発明の作用と同様の作用を営むことができる。
The second aspect of the invention of the present application can perform the following actions with the above configuration. That is, the permanent magnet having the above-mentioned two-layer structure is made of magnetic materials having different residual magnetic flux densities of 3% or more, and the permanent magnet made of magnetic material having a large residual magnetic flux density is arranged on the backup side (inner circumferential side). Therefore, as compared with the prior invention, the magnetic flux density emitted from the permanent magnet on the backup side can be increased.
The same operation as that of the invention can be performed.

【0013】本願第1発明、第2発明において、外周側
の永久磁石に対する内周側の永久磁石における厚みが3
%増未満の場合や、内周側の永久磁石が外周側の永久磁
石に対し残留磁束密度が3%増未満の場合には、上記バ
ックアップの効果が不十分となる。
In the first invention and the second invention of the present application, the thickness of the permanent magnet on the inner peripheral side is 3 with respect to that of the permanent magnet on the outer peripheral side.
If the residual magnetic flux density of the inner peripheral side permanent magnet is less than 3% relative to the outer peripheral side permanent magnet, the backup effect becomes insufficient.

【0014】[0014]

【実施例】以下本発明の実施例について、図面を参照し
ながら詳細に説明する。図1は本発明の第1実施例を示
す断面図である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of the present invention.

【0015】ロータ3は、鉄製ロータ本体3aに、ロー
タ半径方向に1極当り2層に間隔を置いて配置された4
組の永久磁石8a、8b・・・を埋設してなり、各組の
永久磁石8a、8bはS極、N極が交互となるように隣
接して配置され、かつ2層関係にある永久磁石8a、8
bはその外周側の極性が同一となるように構成されてい
る。外側の永久磁石8a、・・・及び内側の永久磁石8
b、・・・はいずれも、ロータ3の求心方向へ凸形をな
す円弧形状に形成され、2層関係にある外側の永久磁石
8aと内側の永久磁石8bとは並行するように配置さ
れ、両者の間隔は一定となっている。
The rotor 3 is arranged on the iron rotor main body 3a with two layers per pole in the radial direction of the rotor with a space therebetween.
.. are embedded, and the permanent magnets 8a, 8b of each set are adjacently arranged so that the S poles and the N poles are alternated, and have a two-layer relationship. 8a, 8
b has the same polarity on the outer peripheral side. The outer permanent magnets 8a, ... And the inner permanent magnet 8
Each of b, ... Is formed in an arc shape that is convex in the centripetal direction of the rotor 3, and the outer permanent magnet 8a and the inner permanent magnet 8b that are in a two-layer relationship are arranged in parallel. The distance between them is constant.

【0016】また、内周側の永久磁石8bはロータ3の
半径方向に図のWbで示す厚みを有し、外周側の永久磁
石8aの厚みWaよりも5%厚く形成されている。
The inner peripheral permanent magnet 8b has a thickness Wb shown in the drawing in the radial direction of the rotor 3, and is formed 5% thicker than the outer peripheral permanent magnet 8a.

【0017】一方、ステータ2側には、複数のティース
4が設けられ、これらティース4間に巻線10が配され
ていて、この巻線10に交流電流が与えられることで回
転磁界を発生している。
On the other hand, a plurality of teeth 4 are provided on the stator 2 side, and a winding 10 is arranged between these teeth 4. When an alternating current is applied to the winding 10, a rotating magnetic field is generated. ing.

【0018】図2はH(磁界)−B(磁束密度)特性グ
ラフを示すもので、縦軸は磁束密度B、横軸は磁界Hで
ある。ここで、すべての永久磁石8a,8bは図の11
で示す減磁曲線を有するネオジウム鉄磁石を材料として
いる。図の残留磁束密度Brと保磁力Hcとを結ぶ線上
に、外周側の永久磁石8aの図のK1で示す動作点が存
在している。また、内周側の永久磁石8bは外周側の永
久磁石8aと比較して厚みが大に形成されているため、
動作点はK2で示す位置へ上昇することになる。
FIG. 2 is a characteristic graph of H (magnetic field) -B (magnetic flux density), where the vertical axis is the magnetic flux density B and the horizontal axis is the magnetic field H. Here, all the permanent magnets 8a and 8b are shown in FIG.
The material is a neodymium iron magnet having a demagnetization curve shown by. On the line connecting the residual magnetic flux density Br and the coercive force Hc in the figure, the operating point indicated by K1 in the figure of the permanent magnet 8a on the outer peripheral side exists. Further, since the permanent magnet 8b on the inner peripheral side is formed to be thicker than the permanent magnet 8a on the outer peripheral side,
The operating point will rise to the position indicated by K2.

【0019】ここで図のK1とK2の差Pは磁束密度B
の差として表れている。第1実施例においてはK2はK
1に比較して約4%増となっている。
Here, the difference P between K1 and K2 in the figure is the magnetic flux density B
It shows as the difference of. In the first embodiment, K2 is K
It has increased by about 4% compared to 1.

【0020】上記のように内周側の永久磁石8bは外周
側の永久磁石8aと比較して磁束密度が約4%増となっ
ているため、その一部が洩れたとしても十分に外周側の
永久磁石8aに磁束が供給され、外周側の永久磁石8a
を十分にバックアップすることができる。
As described above, the permanent magnet 8b on the inner peripheral side has a magnetic flux density of about 4% higher than that of the permanent magnet 8a on the outer peripheral side. Magnetic flux is supplied to the permanent magnet 8a of the
Can be fully backed up.

【0021】次に、本発明の第2実施例を説明する。Next, a second embodiment of the present invention will be described.

【0022】第2実施例は内外の永久磁石8b、8aを
同一厚み形状に形成しており、形状のみから見れば図3
に示す先行発明と同様であるが、外周側の永久磁石8a
をフェライト磁石で形成し、内周側の永久磁石8bをネ
オジウム鉄磁石で形成している点に特徴がある。
In the second embodiment, the inner and outer permanent magnets 8b, 8a are formed to have the same thickness shape, and when viewed only from the shape, FIG.
The same as the prior invention shown in FIG. 2, but with the outer peripheral permanent magnet 8a.
Is formed of a ferrite magnet, and the permanent magnet 8b on the inner peripheral side is formed of a neodymium iron magnet.

【0023】図2において、11、12は夫々ネオジウ
ム鉄磁石(永久磁石8b)と、フェライト磁石(永久磁
石8a)のH(磁束)−B(磁束密度)特性を示してい
る。この図2に示すように、ネオジウム鉄磁石11の残
留磁束密度Brはフェライト磁石12の残留磁束密度B
r’に対し、約3倍となっている。そして外周側の永久
磁石8aは図2のK3で示す動作点で決まる磁束密度を
有し、内周側の永久磁石8bは図2のK1で示す動作点
で決まる磁束密度を有している。
In FIG. 2, 11 and 12 respectively show H (magnetic flux) -B (magnetic flux density) characteristics of the neodymium iron magnet (permanent magnet 8b) and the ferrite magnet (permanent magnet 8a). As shown in FIG. 2, the residual magnetic flux density Br of the neodymium iron magnet 11 is equal to the residual magnetic flux density B of the ferrite magnet 12.
It is about 3 times that of r '. The outer permanent magnet 8a has a magnetic flux density determined by the operating point K3 in FIG. 2, and the inner permanent magnet 8b has a magnetic flux density determined by the operating point K1 in FIG.

【0024】前記K1とK3の差Qが内外永久磁石8
b、8aの磁束密度の差として現れ、内周側の永久磁石
8bは外周側の永久磁石8aに対し約2倍以上となって
いる。以上のように内外永久磁石8b、8aが同一厚さ
形状のものであっても、残留磁束密度の大きい磁性材の
方をバックアップ側(内周側)に配することで、第1実
施例と同様に、外周側の永久磁石8aに対するバックア
ップを十分になすことができる。
The difference Q between K1 and K3 is the inner / outer permanent magnet 8
It appears as a difference in magnetic flux densities of b and 8a, and the permanent magnet 8b on the inner peripheral side is about twice or more as large as the permanent magnet 8a on the outer peripheral side. As described above, even if the inner and outer permanent magnets 8b and 8a have the same thickness shape, the magnetic material having the larger residual magnetic flux density is arranged on the backup side (inner peripheral side), so that Similarly, it is possible to sufficiently back up the permanent magnet 8a on the outer peripheral side.

【0025】なお、上記第1、第2実施例では4極の永
久磁石8を用いた例を示したが、それ以外の極数のもの
であってもかまわない。また、第2実施例において、残
留磁束密度の異なる磁性材料を、フェライト磁石12と
ネオジウム鉄磁石11で構成したが、他のコバルト磁石
やアルニコ磁石などとの組合せであってもかまわない
し、同一系の磁石で残留磁束密度の異なるものの組合わ
せであってもよい。また上記実施例では各永久磁石8
a、8bはその端部に至るまですべて永久磁石で構成し
ているが、前記端部を空隙部(空気層)や合成樹脂層で
構成してもよい。さらに、第1実施例の特徴点と第2実
施例の特徴点とを組み合わすことも可能である。すなわ
ち本発明は上記実施例に限定されるものではなく、本発
明の趣旨に基づき種々の変形が可能であり、これらを本
発明の範囲から排除するものではない。
In the above first and second embodiments, the example in which the four-pole permanent magnet 8 is used has been shown, but other numbers of poles may be used. Further, in the second embodiment, the magnetic materials having different residual magnetic flux densities are composed of the ferrite magnets 12 and the neodymium iron magnets 11. However, they may be combined with other cobalt magnets or alnico magnets, and the same system may be used. The combination of magnets having different residual magnetic flux densities may be used. Further, in the above embodiment, each permanent magnet 8
Although a and 8b are made of permanent magnets all the way to the ends, the ends may be made of voids (air layers) or synthetic resin layers. Furthermore, it is possible to combine the feature points of the first embodiment and the feature points of the second embodiment. That is, the present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0026】[0026]

【発明の効果】本発明によれば、磁束密度の高い方の永
久磁石をバックアップ側に配し、ロータ外周側に配され
た永久磁石のバックアップを十分になすことによって、
マグネットトルクを有効に利用できる高効率の永久磁石
付ロータを提供することができる。
According to the present invention, the permanent magnet having the higher magnetic flux density is arranged on the backup side, and the permanent magnets arranged on the outer peripheral side of the rotor are sufficiently backed up.
It is possible to provide a highly efficient rotor with a permanent magnet that can effectively utilize magnet torque.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】永久磁石のH−B特性を示すグラフ。FIG. 2 is a graph showing H-B characteristics of a permanent magnet.

【図3】先行発明を示す断面図。FIG. 3 is a sectional view showing a prior invention.

【図4】その磁場解析を示す断面図。FIG. 4 is a sectional view showing the magnetic field analysis.

【符号の説明】[Explanation of symbols]

3 ロータ 3a ロータ本体 8 永久磁石 8a ロータ外周側の永久磁石 8b ロータ内周側の永久磁石 3 rotor 3a rotor body 8 permanent magnet 8a permanent magnet on outer rotor side 8b permanent magnet on inner rotor side

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神藤 正行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 伊藤 浩 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 浅野 能成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 角谷 直之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayuki Jinto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hiroshi Ito 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 72) Inventor Yoshinari Asano 1006 Kadoma, Kadoma City, Osaka Prefecture, Matsushita Electric Industrial Co., Ltd. (72) Naoyuki Sumiya, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高透磁率材からなるロータ本体に、ロー
タ半径方向に1極当り2層に間隔を置いて配置された複
数組の永久磁石を埋設してなるロータにおいて、 前記各永久磁石がロータの求心方向へ凸形をなす円弧形
状を成し、 2層構造をとる永久磁石のロータ内周側に位置する永久
磁石の厚みが、ロータ外周側に位置する永久磁石の3%
増以上の厚みで形成されていることを特徴とする永久磁
石付ロータ。
1. A rotor comprising a rotor body made of a material having a high magnetic permeability, and a plurality of sets of permanent magnets arranged at two layers per pole in the rotor radial direction with a gap therebetween. The thickness of the permanent magnet located on the rotor inner peripheral side of the permanent magnet having a two-layer structure and having a circular arc shape that is convex in the centripetal direction of the rotor is 3% of that of the permanent magnet located on the rotor outer peripheral side.
A rotor with a permanent magnet, characterized in that it is formed with a thickness not less than the above.
【請求項2】 高透磁率材からなるロータ本体に、ロー
タ半径方向に1極当り2層に間隔を置いて配置された複
数組の永久磁石を埋設してなるロータにおいて、 前記各永久磁石がロータの求心方向へ凸形をなす円弧形
状を成し、 2層構造をとる永久磁石のロータ内周側に位置する永久
磁石が、ロータ外周側に位置する永久磁石に対し、残留
磁束密度が3%増以上となる磁性材料で形成されている
ことを特徴とする永久磁石付ロータ。
2. A rotor comprising a rotor main body made of a high magnetic permeability material, and a plurality of sets of permanent magnets embedded in the rotor main body in a radial direction of the rotor and spaced at two layers per pole. A permanent magnet located on the rotor inner circumference side of a permanent magnet having a two-layer structure and having a circular arc shape convex in the centripetal direction of the rotor has a residual magnetic flux density of 3 relative to the permanent magnet located on the rotor outer circumference side. A rotor with a permanent magnet, which is characterized by being formed of a magnetic material having an increase of at least%.
JP7142129A 1995-05-31 1995-06-08 Rotor with permanent magnet Pending JPH08336248A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7142129A JPH08336248A (en) 1995-06-08 1995-06-08 Rotor with permanent magnet
EP96108636A EP0746079B1 (en) 1995-05-31 1996-05-30 Motor with built-in permanent magnets
DE69629419T DE69629419T2 (en) 1995-05-31 1996-05-30 Motor with built-in permanent magnets
MYPI96002094A MY155225A (en) 1995-05-31 1996-05-30 Motor with built-in permanent magnets
CN96110043A CN1127191C (en) 1995-05-31 1996-05-31 Motor with internally mounted permanent magnet
CNB031548806A CN100525010C (en) 1995-05-31 1996-05-31 Motor with built-in permanent magnets
US08/928,086 US5945760A (en) 1995-05-31 1997-09-12 Motor with built-in permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7142129A JPH08336248A (en) 1995-06-08 1995-06-08 Rotor with permanent magnet

Publications (1)

Publication Number Publication Date
JPH08336248A true JPH08336248A (en) 1996-12-17

Family

ID=15308057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7142129A Pending JPH08336248A (en) 1995-05-31 1995-06-08 Rotor with permanent magnet

Country Status (1)

Country Link
JP (1) JPH08336248A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003079516A1 (en) * 2002-03-20 2005-07-21 ダイキン工業株式会社 Permanent magnet type electric motor and compressor using the same
KR100677526B1 (en) * 2005-07-29 2007-02-02 엘지전자 주식회사 Rotary compressor and airconditioner with this
JP2010226848A (en) * 2009-03-23 2010-10-07 Toshiba Corp Permanent magnet motor, motor control system, and washing machine
WO2013158059A1 (en) * 2012-04-16 2013-10-24 Otis Elevator Company Permanent magnet electric machine
CN107181337A (en) * 2017-06-14 2017-09-19 珠海格力节能环保制冷技术研究中心有限公司 Asymmetric rotor structure, method to set up and the synchronous magnetic resistance motor of motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003079516A1 (en) * 2002-03-20 2005-07-21 ダイキン工業株式会社 Permanent magnet type electric motor and compressor using the same
KR100677526B1 (en) * 2005-07-29 2007-02-02 엘지전자 주식회사 Rotary compressor and airconditioner with this
JP2010226848A (en) * 2009-03-23 2010-10-07 Toshiba Corp Permanent magnet motor, motor control system, and washing machine
WO2013158059A1 (en) * 2012-04-16 2013-10-24 Otis Elevator Company Permanent magnet electric machine
CN107181337A (en) * 2017-06-14 2017-09-19 珠海格力节能环保制冷技术研究中心有限公司 Asymmetric rotor structure, method to set up and the synchronous magnetic resistance motor of motor
CN107181337B (en) * 2017-06-14 2023-06-30 珠海格力节能环保制冷技术研究中心有限公司 Asymmetric rotor structure of motor, setting method and synchronous reluctance motor

Similar Documents

Publication Publication Date Title
JPH10271722A (en) Permanent magnet buried rotor
US4237396A (en) Electromagnetic machines with permanent magnet excitation
JP2799209B2 (en) Electric machine
EP0746079A2 (en) Motor with built-in permanent magnets
RU2321143C2 (en) Electric motor with constant magnets
KR19990030111A (en) Permanent Magnet Motor
JP2000308287A (en) Permanent magnet embedded reluctance motor
JP4984347B2 (en) Electric motor
JP2003164085A (en) Rotating electric machine
JPH08336246A (en) Rotor with permanent magnet
JPH08336248A (en) Rotor with permanent magnet
JPH08331783A (en) Permanent magnet buried motor
JP3681459B2 (en) Synchronous motor
JPH1189134A (en) Permanent magnet type motor
JPH09308198A (en) Permanent magnet motor
JPS58207853A (en) Brushless motor
JP4405000B2 (en) motor
JP2777338B2 (en) Permanent magnet embedded motor
JPH07231589A (en) Rotor for permanent magnet electric rotating machine
JPH1080079A (en) Reluctance motor
JP2005039909A (en) Permanent magnet embedded type motor
JP2008187802A (en) Rotor for rotary electrical machine, and electric machine
JP3914293B2 (en) Permanent magnet motor
JP3367304B2 (en) Permanent magnet motor
JPH09331661A (en) Reluctance motor