JP2014148282A - Craft - Google Patents

Craft Download PDF

Info

Publication number
JP2014148282A
JP2014148282A JP2013019220A JP2013019220A JP2014148282A JP 2014148282 A JP2014148282 A JP 2014148282A JP 2013019220 A JP2013019220 A JP 2013019220A JP 2013019220 A JP2013019220 A JP 2013019220A JP 2014148282 A JP2014148282 A JP 2014148282A
Authority
JP
Japan
Prior art keywords
ship
width direction
structure portion
upper structure
pressure resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013019220A
Other languages
Japanese (ja)
Other versions
JP6144061B2 (en
Inventor
Saburo Iwamoto
三郎 岩本
Kenji Ishikawa
賢治 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Marine and Engineering Co Ltd
Original Assignee
Sumitomo Heavy Industries Marine and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Marine and Engineering Co Ltd filed Critical Sumitomo Heavy Industries Marine and Engineering Co Ltd
Priority to JP2013019220A priority Critical patent/JP6144061B2/en
Publication of JP2014148282A publication Critical patent/JP2014148282A/en
Application granted granted Critical
Publication of JP6144061B2 publication Critical patent/JP6144061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide craft capable of achieving improvement of fuel efficiency of the craft by reducing wind resistance generated in a superstructure.SOLUTION: Craft 1 includes a superstructure 10 that is provided on an upper deck 2. The superstructure 10 has a first structure division 12a, and a second structure division 12b that is arranged adjacently to a stern side with respect to the first structure division 12a. Both side surfaces s3 of the second structure division 12b in a craft width direction are positioned outside with respect to both side surfaces s2 of the first structure division 12a in the craft width direction.

Description

本発明は、船舶に関する。   The present invention relates to a ship.

一般に、船舶の上甲板上には、船橋や居住区などを含む上部構造物が設けられている(特許文献1参照)。上部構造物は、より広範囲において視界を確保するため、上甲板から上方に向けて突出している。加えて、仕様上の居室、公室、船橋、倉庫等を確保するために、比較的大きな容積を有する上部構造物となる。そのため、上部構造物は基本的には直方体形状を呈している。従って、上部構造物が風を受けて、上部構造物に大きな風圧抵抗が生じやすい。   In general, an upper structure including a bridge and a residential area is provided on the upper deck of a ship (see Patent Document 1). The upper structure projects upward from the upper deck in order to secure a field of view in a wider range. In addition, it becomes an upper structure having a relatively large volume in order to secure a specification room, public room, bridge, warehouse, and the like. Therefore, the upper structure basically has a rectangular parallelepiped shape. Accordingly, the upper structure is subject to wind, and a large wind pressure resistance is likely to be generated in the upper structure.

特開平11−029090号公報Japanese Patent Laid-Open No. 11-029090

そのため、本発明の目的は、上部構造物に生ずる風圧抵抗を減じて、船舶の燃費向上を図ることが可能な船舶を提供することにある。   Therefore, an object of the present invention is to provide a ship capable of reducing the wind pressure resistance generated in the superstructure and improving the fuel efficiency of the ship.

本発明の一側面に係る船舶は、上甲板の上に設けられた上部構造物を備え、上部構造物は、第1の構造部と、第1の構造部よりも船尾側に隣接するように配置された第2の構造部とを有し、船幅方向における第2の構造部の両側部は、船幅方向における第1の構造部の両側部よりも外側に位置している。   A ship according to one aspect of the present invention includes an upper structure provided on an upper deck, and the upper structure is adjacent to the stern side of the first structure part and the first structure part. The both side parts of the second structure part in the ship width direction are located outside the both side parts of the first structure part in the ship width direction.

本発明の一側面に係る船舶では、船幅方向における第2の構造部の両側部が、船幅方向における第1の構造部の両側部よりも外側に位置している。この場合、上部構造物の前面投影面積が大きくなるので、上部構造物が受ける風圧抵抗が大きくなるようにも思われる。しかしながら、本発明者らが鋭意研究したところ、上部構造物が上記のように構成されていると、むしろ風圧抵抗が小さくなることを見出だした。この理由は、以下のとおりであると考えられる。船首側から船尾側に向けて相対的に風が流れるに際し、上方から見て、まず第1の構造部が風を受ける。このとき、第1の構造部の船首側で且つ両舷側に位置する側部近傍において、流れの剥離が生じ、風が第1の構造部の両舷側に分かれて流れる。この剥離した流れは、上方から見たときに、船尾に向かうにつれて船幅方向に拡がりつつ船尾側(下流側)に流れる層流と、層流の内側を流れる渦流とを生ずる。ここで、本発明の一側面に係る船舶のように、船幅方向における第2の構造部の両側部が、船幅方向における第1の構造部の両側部よりも外側に位置していると、上記層流が上部構造物の外形に沿って円滑に流れやすくなる。そのため、上部構造物の空気抵抗係数(いわゆるCd値)が小さくなる。このときの空気抵抗係数の改善の度合いは、前面投影面積の増加に比して極めて大きい。従って、前面投影面積と空気抵抗係数との乗算値に比例する風圧抵抗を減ずることができる。以上により、船舶の燃費向上が図られ、省エネルギーに大きく貢献することが可能となる。加えて、上部構造物が第1の構造部よりも幅広の第2の構造部を有することで、上部構造物の容積が大きくなるので、船幅方向における第1構造部の幅をさらに狭くすることや、船首側で且つ両舷側に位置する第1構造部の角部に対して面取りを施すことが可能となり、風圧抵抗をさらに減ずることができる。   In the ship according to one aspect of the present invention, both side portions of the second structure portion in the ship width direction are positioned outside both side portions of the first structure portion in the ship width direction. In this case, since the front projected area of the upper structure is increased, it seems that the wind pressure resistance received by the upper structure is increased. However, as a result of intensive studies by the present inventors, it has been found that the wind pressure resistance is rather reduced when the superstructure is configured as described above. The reason for this is considered as follows. When the wind relatively flows from the bow side toward the stern side, the first structure portion receives the wind when viewed from above. At this time, separation of the flow occurs in the vicinity of the side portion located on the bow side and both sides of the first structure portion, and the wind flows separately on both sides of the first structure portion. When viewed from above, the separated flow generates a laminar flow that flows toward the stern side (downstream side) and spreads in the width direction as it goes toward the stern, and a vortex flow that flows inside the laminar flow. Here, as in the case of a ship according to one aspect of the present invention, both side portions of the second structure portion in the ship width direction are located outside the both side portions of the first structure portion in the ship width direction. The laminar flow can easily flow smoothly along the outer shape of the upper structure. Therefore, the air resistance coefficient (so-called Cd value) of the upper structure is reduced. The degree of improvement of the air resistance coefficient at this time is extremely large compared to the increase of the front projection area. Therefore, it is possible to reduce the wind pressure resistance proportional to the multiplication value of the front projected area and the air resistance coefficient. As described above, the fuel efficiency of the ship can be improved, and it is possible to greatly contribute to energy saving. In addition, since the upper structure has the second structure part that is wider than the first structure part, the volume of the upper structure is increased, so that the width of the first structure part in the ship width direction is further reduced. In addition, it becomes possible to chamfer the corners of the first structure portion located on the bow side and on both sides, and wind pressure resistance can be further reduced.

船長方向における第1の構造部の長さをXとし、船幅方向において、第1の構造部のうち右舷側に位置する側部から、第2の構造部のうち右舷側に位置する側部までの直線距離をYrとし、船幅方向において、第1の構造部のうち左舷側に位置する側部から、第2の構造部のうち左舷側に位置する側部までの直線距離をYlとしたときに、Yr≦0.5X、及び、Yl≦0.5Xを満たしてもよい。この場合、上記剥離点の下流側において生ずる層流と渦流との境界領域に、船幅方向における第2の構造部の両側部が位置しやすくなる。そのため、層流が上部構造物の外形に沿ってより円滑に流れやすくなり、空気抵抗係数がより小さくなる。その結果、風圧抵抗をより減ずることができる。   The length of the first structure part in the ship length direction is X, and in the ship width direction, the side part located on the starboard side in the second structure part from the side part located on the starboard side in the first structure part. Is Yr, and in the ship width direction, the linear distance from the side portion located on the port side of the first structure portion to the side portion located on the port side of the second structure portion is Yl. In this case, Yr ≦ 0.5X and Yl ≦ 0.5X may be satisfied. In this case, both side portions of the second structure portion in the ship width direction are likely to be located in the boundary region between the laminar flow and the vortex generated at the downstream side of the separation point. Therefore, the laminar flow becomes easier to flow along the outer shape of the upper structure, and the air resistance coefficient becomes smaller. As a result, wind pressure resistance can be further reduced.

0.2X≦Yr≦0.35X、及び、0.2X≦Yl≦0.35Xを満たしてもよい。この場合、上記剥離点の下流側において生ずる層流と渦流との境界領域に、船幅方向における第2の構造部の両側部がさらに位置しやすくなる。そのため、層流が上部構造物の外形に沿ってさらに円滑に流れやすくなり、空気抵抗係数がより小さくなる。その結果、風圧抵抗をさらに減ずることができる。   You may satisfy | fill 0.2X <= Yr <= 0.35X and 0.2X <= Yl <= 0.35X. In this case, both side portions of the second structure portion in the ship width direction are more easily located in the boundary region between the laminar flow and the vortex flow generated on the downstream side of the separation point. Therefore, the laminar flow becomes easier to flow along the outer shape of the upper structure, and the air resistance coefficient becomes smaller. As a result, wind pressure resistance can be further reduced.

上部構造物は、船幅方向における第1の構造部の両側方に隣接するように配置された第3の構造部をさらに有し、第3の構造部の高さは、第2の構造部の高さよりも低くてもよい。この場合、側方から見て、船尾に向かうにつれて高くなるように上部構造物が段状を呈するので、船首側から船尾側に向けて上部構造物の上方を流れる風が、上部構造物の外形に沿って円滑に流れやすくなる。そのため、上部構造物の空気抵抗係数がより小さくなる。その結果、風圧抵抗をより減ずることができる。   The upper structure further includes a third structure portion arranged so as to be adjacent to both sides of the first structure portion in the ship width direction, and the height of the third structure portion is the second structure portion. It may be lower than the height. In this case, when viewed from the side, the upper structure is stepped so as to become higher toward the stern, so that the wind that flows above the upper structure from the bow side toward the stern side, It becomes easy to flow smoothly along. Therefore, the air resistance coefficient of the upper structure becomes smaller. As a result, wind pressure resistance can be further reduced.

本発明によれば、上部構造物に生ずる風圧抵抗を減じて、船舶の燃費向上を図ることが可能な船舶を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the ship which can reduce the wind-pressure resistance which arises in a superstructure, and can aim at the fuel consumption improvement of a ship can be provided.

図1は、本実施形態に係る船舶のうち上部構造物を主として示す斜視図である。FIG. 1 is a perspective view mainly showing an upper structure in a ship according to the present embodiment. 図2は、上部構造物を示す上面図である。FIG. 2 is a top view showing the upper structure. 図3は、風洞試験において用いた上部構造物の模型を示す斜視図である。FIG. 3 is a perspective view showing a model of the superstructure used in the wind tunnel test. 図4は、風洞試験において用いた上部構造物の模型を示す斜視図である。FIG. 4 is a perspective view showing a model of the superstructure used in the wind tunnel test. 図5は、風洞試験結果を示す図である。FIG. 5 is a diagram showing a wind tunnel test result.

本発明の実施形態について図面を参照して説明するが、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。   Embodiments of the present invention will be described with reference to the drawings. However, the following embodiments are exemplifications for explaining the present invention and are not intended to limit the present invention to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

本実施形態に係る船舶1は、図1及び図2に示されるように、上甲板2を有する船体3と、上甲板2上に設けられた上部構造物10とを備える。   The ship 1 which concerns on this embodiment is provided with the hull 3 which has the upper deck 2, and the upper structure 10 provided on the upper deck 2, as FIG.1 and FIG.2 shows.

上部構造物10は、居住区12と、船橋14と、ドジャー16と、煙突部18とを有する。居住区12は、船員の居室等として用いられる構造物である。居住区12は、第1の構造部12aと、一対の第2の構造部12bと、一対の第3の構造部12cを含む。   The superstructure 10 includes a residential area 12, a bridge 14, a dodger 16, and a chimney 18. The residential area 12 is a structure used as a sailor's room or the like. The residential area 12 includes a first structure portion 12a, a pair of second structure portions 12b, and a pair of third structure portions 12c.

第1〜第3の構造部12a〜12cは、いずれも直方体形状を呈している。第1の構造部12aと一対の第2の構造部12bとは、第1の構造部12aが船首側に位置し且つ第2の構造部12bが船尾側に位置するように、船長方向(前後方向)に並んでいる。すなわち、第1の構造部12aと一対の第2の構造部12bとは、船長方向において隣接している。一対の第3の構造部は、第1及び第2の構造部12a,12bの両舷側に位置するように、第1の構造部12aの船首側から第2の構造部12bの船尾側にかけて船長方向に延びている。すなわち、第1及び第2の構造部12a,12bと第3の構造部12cとは、船幅方向において隣接している。第1〜第3の構造部12a〜12cは、互いに一体的に構成されている。   Each of the first to third structure portions 12a to 12c has a rectangular parallelepiped shape. The first structure portion 12a and the pair of second structure portions 12b are arranged in the direction of the ship length (front and back) so that the first structure portion 12a is located on the bow side and the second structure portion 12b is located on the stern side. Direction). That is, the first structure portion 12a and the pair of second structure portions 12b are adjacent to each other in the ship length direction. The pair of third structure parts is located on both sides of the first and second structure parts 12a, 12b so that the captain extends from the bow side of the first structure part 12a to the stern side of the second structure part 12b. Extending in the direction. That is, the 1st and 2nd structure parts 12a and 12b and the 3rd structure part 12c are adjacent in the ship width direction. The first to third structure parts 12a to 12c are integrally formed with each other.

第1の構造部12aは、船首側に向かう側面s1と、両舷側に向かう一対の側面s2と、側面s1と側面s2とを接続する一対の角部c1とを含む。そのため、一対の角部c1は、船首側で且つ両舷側に位置している。本実施形態において、角部c1は略直角形状を呈している。なお、角部c1は、平面状又は曲面状に面取りされていてもよい。   The first structure portion 12a includes a side surface s1 that faces the bow side, a pair of side surfaces s2 that faces both sides, and a pair of corner portions c1 that connect the side surfaces s1 and s2. Therefore, a pair of corner | angular part c1 is located in the bow side and both sides. In the present embodiment, the corner portion c1 has a substantially right-angle shape. The corner portion c1 may be chamfered in a flat shape or a curved shape.

一対の第2の構造部12bは、煙突部18が間に位置するように、船幅方向に並んでいる。第2の構造部12bの高さは、本実施形態において第1の構造部12aの高さと同程度に設定されている。第2の構造部12bは、船幅方向において対向する一対の側面s3を含む。これらの両側面s3は、第1の構造物の両側面s2よりも外側に位置している。従って、船長方向において、第1の構造部12aと第2の構造部12bとの境界において、段差が形成されている。   A pair of 2nd structure part 12b is located in a line with the ship width direction so that the chimney part 18 may be located in between. The height of the second structure portion 12b is set to be approximately the same as the height of the first structure portion 12a in the present embodiment. The second structure portion 12b includes a pair of side surfaces s3 that face each other in the ship width direction. These side surfaces s3 are located outside the side surfaces s2 of the first structure. Therefore, a step is formed at the boundary between the first structure portion 12a and the second structure portion 12b in the ship length direction.

本実施形態において、パラメータX、Yr及びYlをそれぞれ、
X:船長方向における第1の構造部12aの長さ
Yr:船幅方向において、第1の構造部12aのうち右舷側に位置する側面s2から、第2の構造部12bのうち右舷側に位置する側面s3までの直線距離
Yl:船幅方向において、前記第1の構造部のうち左舷側に位置する側部から、前記第2の構造部のうち左舷側に位置する側部までの直線距離
としたときに、式(1)及び式(2)を満たしていると好ましく、式(3)及び式(4)を満たしているとより好ましい。
Yr≦0.5X ・・・ (1)
Yl≦0.5X ・・・ (2)
0.2X≦Yr≦0.35X ・・・ (3)
0.2X≦Yl≦0.35X ・・・ (4)
なお、長さXは、船幅方向における第1の構造部の幅Yoとの関係において、式(5)を満たしていてもよい。
X<1.71Yo ・・・ (5)
In this embodiment, parameters X, Yr and Yl are respectively
X: Length of the first structural part 12a in the ship length direction Yr: Positioned on the starboard side of the second structure part 12b from the side surface s2 located on the starboard side of the first structure part 12a in the ship width direction Linear distance to the side surface s3 to be performed Yl: In the ship width direction, a linear distance from a side portion located on the port side of the first structure portion to a side portion located on the port side of the second structure portion , It is preferable that the expressions (1) and (2) are satisfied, and it is more preferable that the expressions (3) and (4) are satisfied.
Yr ≦ 0.5X (1)
Yl ≦ 0.5X (2)
0.2X ≦ Yr ≦ 0.35X (3)
0.2X ≦ Yl ≦ 0.35X (4)
Note that the length X may satisfy Expression (5) in relation to the width Yo of the first structure portion in the ship width direction.
X <1.71 Yo (5)

一対の第3の構造部12cは、第1及び第2の部分12a,12bが間に位置するように、船幅方向に並んでいる。第3の部分12cの高さは、本実施形態において、第1及び第2の部分12a,12bの高さよりも低く設定されている。   The pair of third structure portions 12c are arranged in the ship width direction so that the first and second portions 12a and 12b are located therebetween. The height of the third portion 12c is set to be lower than the height of the first and second portions 12a and 12b in the present embodiment.

船橋14は、操船室を含んでおり、操船に際して前方を広く見渡せるよう第1の構造部12aの上部に位置している。ドジャー16は、船橋14の両舷側から側方に向けて延びており、支持柱16aを介して第3の構造部12cに支持されている。ドジャー16は、接岸時や離岸時の操船に際して、船舶1の両舷側を監視する目的で設けられている。   The bridge 14 includes a maneuvering room, and is positioned above the first structure portion 12a so that the front can be widely viewed during maneuvering. The dodger 16 extends from both sides of the bridge 14 toward the side, and is supported by the third structure portion 12c via a support column 16a. The dodger 16 is provided for the purpose of monitoring both sides of the ship 1 when maneuvering at the time of berthing or leaving the berth.

ところで、本実施形態に係る船舶1においては、船首側から船尾側に向けて相対的に風が流れるに際し、上方から見て、まず第1の構造部12aが風を受ける。このとき、第1の構造部12aの船首側で且つ両舷側に位置する角部c1近傍において、流れの剥離が生じ、風が第1の構造部12aの両舷側に分かれて流れる。この剥離した流れは、上方から見たときに、船尾に向かうにつれて船幅方向に拡がりつつ船尾側(下流側)に流れる層流F1と、層流F1の内側を流れる渦流とを生ずる(図1参照)。   By the way, in the ship 1 which concerns on this embodiment, when a wind flows relatively toward a stern side from a bow side, seeing from upper direction, the 1st structure part 12a receives a wind first. At this time, separation of the flow occurs in the vicinity of the corners c1 located on the bow side and both sides of the first structure portion 12a, and the wind flows separately on both sides of the first structure portion 12a. When viewed from above, the separated flow generates a laminar flow F1 that flows in the stern side (downstream side) while expanding in the width direction as it goes toward the stern, and a vortex flow that flows inside the laminar flow F1 (FIG. 1). reference).

このとき、本実施形態に係る船舶1では、船幅方向における第2の構造部12bの両側面s3が、船幅方向における第1の構造部12aの両側面s2よりも外側に位置しているので、層流F1が上部構造物10の外形に沿って円滑に流れやすくなる。そのため、上部構造物10の空気抵抗係数(いわゆるCd値)が小さくなる。このときの空気抵抗係数の改善の度合いは、前面投影面積の増加に比して極めて大きい。従って、前面投影面積と空気抵抗係数との乗算値に比例する風圧抵抗を減ずることができる。以上により、船舶1の燃費向上が図られ、省エネルギーに大きく貢献することが可能となる。加えて、上部構造物10が第1の構造部12aよりも幅広の第2の構造部12bを有することで、上部構造物10の容積が大きくなるので、船幅方向における第1構造部の幅Yoをさらに狭くすることや、船首側で且つ両舷側に位置する第1構造部の角部c1に対して面取りを施すことが可能となり、風圧抵抗をさらに減ずることができる。   At this time, in the ship 1 according to the present embodiment, both side surfaces s3 of the second structure portion 12b in the ship width direction are positioned outside the both side surfaces s2 of the first structure portion 12a in the ship width direction. Therefore, the laminar flow F <b> 1 can easily flow smoothly along the outer shape of the upper structure 10. Therefore, the air resistance coefficient (so-called Cd value) of the upper structure 10 is reduced. The degree of improvement of the air resistance coefficient at this time is extremely large compared to the increase of the front projection area. Therefore, it is possible to reduce the wind pressure resistance proportional to the multiplication value of the front projected area and the air resistance coefficient. As described above, the fuel efficiency of the ship 1 can be improved, and it can greatly contribute to energy saving. In addition, since the upper structure 10 has the second structure part 12b wider than the first structure part 12a, the volume of the upper structure 10 is increased, so that the width of the first structure part in the ship width direction is increased. It is possible to further narrow Yo, and to chamfer the corner portion c1 of the first structure portion located on the bow side and on both sides, so that the wind pressure resistance can be further reduced.

本実施形態に係る船舶1においては、式(1)及び式(2)を満たしているか、好ましくは式(3)及び式(4)を満たしている。そのため、層流F1が上部構造物10の外形に沿ってより円滑に流れやすくなり、空気抵抗係数がより小さくなる。その結果、風圧抵抗をより減ずることができる。   In the ship 1 which concerns on this embodiment, Formula (1) and Formula (2) are satisfy | filled, Preferably Formula (3) and Formula (4) are satisfy | filled. Therefore, the laminar flow F1 is likely to flow more smoothly along the outer shape of the upper structure 10, and the air resistance coefficient is further reduced. As a result, wind pressure resistance can be further reduced.

本実施形態に係る船舶1においては、上部構造物10は、船幅方向における第1及び第2の構造部12a,12bの両舷側に隣接するように配置された第3の構造部12cをさらに有し、第3の構造部12cの高さが、第1及び第2の構造部12a,12bの高さよりも低くなっている。そのため、側方から見て、船尾に向かうにつれて高くなるように上部構造物10が段状を呈するので、船首側から船尾側に向けて上部構造物10の上方を流れる風F2(図1参照)が、上部構造物10の外形に沿って円滑に流れやすくなる。そのため、上部構造物10の空気抵抗係数がより小さくなる。その結果、風圧抵抗をより減ずることができる。   In the ship 1 according to the present embodiment, the upper structure 10 further includes a third structure portion 12c disposed so as to be adjacent to both sides of the first and second structure portions 12a and 12b in the ship width direction. And the height of the third structure portion 12c is lower than the height of the first and second structure portions 12a and 12b. Therefore, since the upper structure 10 has a stepped shape so as to increase toward the stern when viewed from the side, the wind F2 flowing above the upper structure 10 from the bow side toward the stern side (see FIG. 1). However, it becomes easy to flow smoothly along the outer shape of the upper structure 10. Therefore, the air resistance coefficient of the upper structure 10 becomes smaller. As a result, wind pressure resistance can be further reduced.

ここで、本実施形態に係る船舶1が備える上部構造物10において風圧抵抗が減ずることを確認するための試験を行った。具体的には、上部構造物10の模型A〜Cを用意して風洞試験を行い、風圧抵抗を求めた。模型Aは、図3に示されるように、居住区12、船橋14、ドジャー16及び煙突部18を備えていた。模型Aの居住区12は、第1の構造部12aと、当該第1の構造部12a及び煙突部18の両舷側に隣接配置された第3の構造部12cとを有していた。模型Bの居住区12は、図4に示されるように、第1〜第3の構造部12a〜12cとを有し、船幅方向における第2の構造部12bの両側面が船幅方向における第1の構造部12aの両側面と同一面であり、一対の第3の部分12cが、第1及び第2の構造部12a,12bの両舷側において、第1の構造部12aの船首側から第2の構造部12bの船尾側にかけて延びている以外は、模型Aと同じであった。模型Cは、図1に示されるように、上記した本実施形態に係る船舶1の上部構造物10に対応する形状を有していた。これらの模型A〜Cにおいて、角部c1が略直角形状であるものをタイプ1とし、角部c1を平面状に面取りしたものをタイプ2として、計6つの模型を用いて試験を行った。   Here, a test for confirming that the wind pressure resistance was reduced in the upper structure 10 included in the ship 1 according to the present embodiment was performed. Specifically, models A to C of the upper structure 10 were prepared and a wind tunnel test was performed to determine the wind pressure resistance. As shown in FIG. 3, the model A was provided with a residential area 12, a bridge 14, a dodger 16, and a chimney 18. The residential area 12 of the model A had a first structure part 12a and a third structure part 12c arranged adjacent to both sides of the first structure part 12a and the chimney part 18. As shown in FIG. 4, the residential area 12 of the model B includes first to third structure parts 12 a to 12 c, and both side surfaces of the second structure part 12 b in the ship width direction are in the ship width direction. It is the same surface as the both side surfaces of the first structure portion 12a, and the pair of third portions 12c is located on both sides of the first and second structure portions 12a and 12b from the bow side of the first structure portion 12a. It was the same as the model A except that it extended toward the stern side of the second structure portion 12b. As shown in FIG. 1, the model C had a shape corresponding to the upper structure 10 of the ship 1 according to the above-described embodiment. In these models A to C, the test was performed using a total of six models, with the corner portion c1 having a substantially right-angled shape as type 1 and the corner portion c1 chamfered in a planar shape as type 2.

試験結果を図5に示す。図5においては、抵抗低減率を縦軸とし、この抵抗低減率の大小により試験結果を評価した。抵抗低減率は、タイプ1の模型Aにおいて得られた風圧抵抗を基準として、対象の模型の風圧抵抗の割合を百分率で示したものである。従って、タイプ1の模型Aの抵抗低減率は100%であり、対象の模型の風圧抵抗がタイプ1の模型Aの風圧抵抗よりも小さくなれば、抵抗低減率が100%よりも小さくなる。すなわち、抵抗低減率が小さいほど、上部構造物10に生ずる風圧抵抗が小さくなる。   The test results are shown in FIG. In FIG. 5, the resistance reduction rate is taken as the vertical axis, and the test results were evaluated based on the magnitude of this resistance reduction rate. The resistance reduction rate is a percentage of the wind pressure resistance of the target model based on the wind pressure resistance obtained in the type 1 model A. Therefore, the resistance reduction rate of the type 1 model A is 100%. If the wind pressure resistance of the target model is smaller than the wind pressure resistance of the type 1 model A, the resistance reduction rate becomes smaller than 100%. That is, the smaller the resistance reduction rate, the smaller the wind pressure resistance generated in the upper structure 10.

図5に示されるように、同一のタイプで模型A〜Cを比較した場合、模型Cの抵抗低減率が最も小さかった。従って、本実施形態に係る船舶1が備える上部構造物10において風圧抵抗が小さくなり、本実施形態に係る船舶1の燃費が向上することが確認された。また、タイプ1の模型とタイプ2の模型とを比較した場合、角部c1が面取りされたタイプ2のもう系の方が上部構造物10において風圧抵抗が小さくなり、船舶1の燃費が向上することが確認された。   As shown in FIG. 5, when the models A to C were compared with the same type, the resistance reduction rate of the model C was the smallest. Therefore, it was confirmed that the wind pressure resistance is reduced in the upper structure 10 included in the ship 1 according to the present embodiment, and the fuel efficiency of the ship 1 according to the present embodiment is improved. Further, when the type 1 model and the type 2 model are compared, the wind pressure resistance is lower in the upper structure 10 in the other type 2 type in which the corner c1 is chamfered, and the fuel efficiency of the ship 1 is improved. It was confirmed.

以上、本発明の実施形態について詳細に説明したが、本発明は上記した実施形態に限定されるものではない。例えば、上記実施形態では第1〜第3の構造部12a〜12cが一体的に構成されていたが、これらが所定間隔を有するように分離されていてもよい。   As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to above-described embodiment. For example, although the first to third structure portions 12a to 12c are integrally configured in the above embodiment, they may be separated so as to have a predetermined interval.

上記実施形態では、第2の構造部12bの高さが第1の構造部12aの高さと同程度であったが、第2の構造部12bの高さが第1の構造部12aの高さよりも高くてもよい。第2の構造部12bの高さが第1の構造部12aの高さよりも高い場合、側方から見て、船尾に向かうにつれて高くなるように第1及び第2の構造物12a,12bが段状を呈するので、船首側から船尾側に向けて上部構造物の上方を流れる風が、上部構造物の外形に沿ってより円滑に流れやすくなる。そのため、上部構造物の空気抵抗係数がより小さくなる。その結果、風圧抵抗をより一層減ずることができる。   In the above embodiment, the height of the second structure portion 12b is approximately the same as the height of the first structure portion 12a. However, the height of the second structure portion 12b is higher than the height of the first structure portion 12a. May be higher. When the height of the second structure portion 12b is higher than the height of the first structure portion 12a, the first and second structures 12a and 12b are stepped so as to increase toward the stern when viewed from the side. Therefore, the wind that flows above the upper structure from the bow side toward the stern side becomes easier to flow along the outer shape of the upper structure. Therefore, the air resistance coefficient of the upper structure becomes smaller. As a result, the wind pressure resistance can be further reduced.

1…船舶、10…上部構造物、12…居住区、12a…第1の構造部、12b…第2の構造部、12c…第3の構造部。   DESCRIPTION OF SYMBOLS 1 ... Ship, 10 ... Superstructure, 12 ... Living area, 12a ... 1st structure part, 12b ... 2nd structure part, 12c ... 3rd structure part.

Claims (4)

上甲板の上に設けられた上部構造物を備え、
前記上部構造物は、第1の構造部と、前記第1の構造部よりも船尾側に隣接するように配置された第2の構造部とを有し、
船幅方向における前記第2の構造部の両側部は、船幅方向における前記第1の構造部の両側部よりも外側に位置している、船舶。
It has a superstructure on the upper deck,
The upper structure has a first structure part and a second structure part arranged so as to be adjacent to the stern side of the first structure part,
The ship in which the both sides of the 2nd structure part in the ship width direction are located outside the both sides of the 1st structure part in the ship width direction.
船長方向における前記第1の構造部の長さをXとし、
船幅方向において、前記第1の構造部のうち右舷側に位置する側部から、前記第2の構造部のうち右舷側に位置する側部までの直線距離をYrとし、
船幅方向において、前記第1の構造部のうち左舷側に位置する側部から、前記第2の構造部のうち左舷側に位置する側部までの直線距離をYlとしたときに、
Yr≦0.5X、及び、Yl≦0.5Xを満たす、請求項1に記載の船舶。
The length of the first structure portion in the ship length direction is X,
In the ship width direction, Yr is a linear distance from the side portion located on the starboard side of the first structure portion to the side portion located on the starboard side of the second structure portion,
In the ship width direction, when the linear distance from the side portion located on the port side of the first structure portion to the side portion located on the port side of the second structure portion is Yl,
The ship according to claim 1 satisfying Yr ≦ 0.5X and Yl ≦ 0.5X.
0.2X≦Yr≦0.35X、及び、0.2X≦Yl≦0.35Xを満たす、請求項2に記載の船舶。   The ship according to claim 2 satisfying 0.2X ≦ Yr ≦ 0.35X and 0.2X ≦ Yl ≦ 0.35X. 前記上部構造物は、船幅方向における前記第1の構造部の両側方に隣接するように配置された第3の構造部をさらに有し、
前記第3の構造部の高さは、前記第2の構造部の高さよりも低い、請求項1〜3のいずれか一項に記載の船舶。
The upper structure further includes a third structure portion arranged so as to be adjacent to both sides of the first structure portion in the ship width direction,
The ship according to any one of claims 1 to 3, wherein a height of the third structure portion is lower than a height of the second structure portion.
JP2013019220A 2013-02-04 2013-02-04 Ship Expired - Fee Related JP6144061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019220A JP6144061B2 (en) 2013-02-04 2013-02-04 Ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019220A JP6144061B2 (en) 2013-02-04 2013-02-04 Ship

Publications (2)

Publication Number Publication Date
JP2014148282A true JP2014148282A (en) 2014-08-21
JP6144061B2 JP6144061B2 (en) 2017-06-07

Family

ID=51571637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019220A Expired - Fee Related JP6144061B2 (en) 2013-02-04 2013-02-04 Ship

Country Status (1)

Country Link
JP (1) JP6144061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105775047A (en) * 2014-12-23 2016-07-20 中集船舶海洋工程设计研究院有限公司 Container ship and supporting structures thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416320B2 (en) * 1974-06-10 1979-06-21
JPH1129090A (en) * 1997-07-14 1999-02-02 Nkk Corp Accommodation space shape of ship
JP2007223351A (en) * 2006-02-21 2007-09-06 Hiroshima Univ Living quarter structure of marine vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416320B2 (en) * 1974-06-10 1979-06-21
JPH1129090A (en) * 1997-07-14 1999-02-02 Nkk Corp Accommodation space shape of ship
JP2007223351A (en) * 2006-02-21 2007-09-06 Hiroshima Univ Living quarter structure of marine vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105775047A (en) * 2014-12-23 2016-07-20 中集船舶海洋工程设计研究院有限公司 Container ship and supporting structures thereof

Also Published As

Publication number Publication date
JP6144061B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP5651269B2 (en) Ship
JP2008260445A (en) Vessel
JP2011042360A (en) Hydrofoil for water transportation vessel
JP2017087992A (en) Ship
JP6144061B2 (en) Ship
WO2018025701A1 (en) Ship rudder and ship
JP6041440B2 (en) Fin device and ship
KR20140015922A (en) A rudder for ship
JP5385195B2 (en) Ship
CN104527920A (en) Mixed cross bulkhead structure component and boat comprising same
JP4407959B2 (en) Ship&#39;s residential structure
JP2008247050A (en) Vessel drag reducing device and vessel
JP4934361B2 (en) Ship
JP6361877B2 (en) High-speed ship hull form
JP5042945B2 (en) Bow shape
JP2015074297A (en) Stowage method on container ship
JP4216858B2 (en) Ship
JP6210895B2 (en) Ship
KR102535242B1 (en) Stern plate construction and ship
SE536468C2 (en) Marine hull as well as marine vehicle
JP4639176B2 (en) Stern fin arrangement structure
WO2016158880A1 (en) Vessel
KR101390927B1 (en) Accommodation for vessel
CN205365981U (en) Firm type ship cabin structure
JP4789484B2 (en) Bow valve and ship equipped with the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20151117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170510

R150 Certificate of patent or registration of utility model

Ref document number: 6144061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees