JP6210895B2 - Ship - Google Patents

Ship Download PDF

Info

Publication number
JP6210895B2
JP6210895B2 JP2014020719A JP2014020719A JP6210895B2 JP 6210895 B2 JP6210895 B2 JP 6210895B2 JP 2014020719 A JP2014020719 A JP 2014020719A JP 2014020719 A JP2014020719 A JP 2014020719A JP 6210895 B2 JP6210895 B2 JP 6210895B2
Authority
JP
Japan
Prior art keywords
ship
lpp
width
maximum
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014020719A
Other languages
Japanese (ja)
Other versions
JP2015147476A (en
Inventor
田中 良和
良和 田中
聖始 増田
聖始 増田
岡本 直也
直也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Marine United Corp
Mitsui OSK Techno Trade Ltd
Original Assignee
Japan Marine United Corp
Mitsui OSK Techno Trade Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Marine United Corp, Mitsui OSK Techno Trade Ltd filed Critical Japan Marine United Corp
Priority to JP2014020719A priority Critical patent/JP6210895B2/en
Publication of JP2015147476A publication Critical patent/JP2015147476A/en
Application granted granted Critical
Publication of JP6210895B2 publication Critical patent/JP6210895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は船舶、特に、運航時の抵抗を低減した船型を有する船舶に関する。   The present invention relates to a ship, and more particularly, to a ship having a hull form with reduced resistance during operation.

従来、運航時の推進効率を向上するため、W.L.で静止状態にて浮かんだときに、船体中央の喫水深さにおける第1水平面に対して、船体中央より前では、船体の少なくとも垂線間長の5%以上が、第1水平面よりも下に設けられた船型の船舶が開示されている(例えば、特許文献1参照)。   Conventionally, in order to improve propulsion efficiency during operation, L. When floating in a stationary state, at least 5% of the length between the vertical lines of the hull is provided below the first horizontal plane before the center of the hull with respect to the first horizontal plane at the draft depth in the middle of the hull. A ship-shaped ship is disclosed (for example, see Patent Document 1).

特開2012−180021号公報(第8−9頁、図1)Japanese Patent Laying-Open No. 2012-180021 (page 8-9, FIG. 1)

特許文献1に開示された船舶は、垂線間長が100m以上400m以下の範囲で、計画航海速力が10ノット以上40ノット以下の範囲の貨物又は船客の少なくとも一方を輸送する排水量型の船舶の航行方法において、船体中央より前では、船体中央の喫水深さにおける第1水平面に対して、船体の少なくとも垂線間長の5%以上が前記第1水平面よりも下にある状態で航行する方法であるため、推進効率が良い船首トリム状態と同じような状態で、満載喫水でもまた軽荷喫水でも航行できる。従って、運航時の推進効率を向上でき、燃費を低減できて、二酸化炭素の排出も減少でき、さらに、船体の水面下の深さが深くなるので、船体形状の自由度が増して、水面付近の形状に対する制限が少なくなるとしている。   The ship disclosed in Patent Document 1 is a navigation of a drainage type ship that transports at least one of cargo or passengers with a length between vertical lines of 100 m or more and 400 m or less and a planned navigation speed of 10 knots or more and 40 knots or less. In the method, before the center of the hull, it is a method of navigating in a state in which at least 5% or more of the length between perpendiculars of the hull is below the first horizontal plane with respect to the first horizontal plane at the draft depth at the center of the hull. Therefore, it is possible to navigate in full load draft and light draft draft in the same state as the bow trim state with good propulsion efficiency. Therefore, the propulsion efficiency at the time of operation can be improved, the fuel consumption can be reduced, the carbon dioxide emission can be reduced, and the depth of the hull becomes deeper. It is said that there will be less restrictions on the shape.

しかしながら、特許文献1に開示された船舶は、船尾側の船底が浅くなるように船底を傾斜させているため、以下のような問題があった。
すなわち、船底を傾斜させることで、プロペラ面での流速が速くなり、船底が水平な船舶に比べて伴流利得(プロペラ効率)が悪化する。
However, the ship disclosed in Patent Document 1 has the following problems because the ship bottom is inclined so that the ship bottom on the stern side becomes shallow.
That is, by inclining the ship bottom, the flow velocity on the propeller surface is increased, and the wake gain (propeller efficiency) is deteriorated as compared with a ship having a horizontal ship bottom.

本発明はかかる問題を解決するものであって、伴流利得(プロペラ効率)を悪化させることなく、船体に働く圧力抵抗および摩擦抵抗を減少させることができる船型を有する船舶を提供することを目的とする。   The present invention solves such a problem, and an object of the present invention is to provide a ship having a hull form that can reduce pressure resistance and friction resistance acting on the hull without deteriorating wake gain (propeller efficiency). And

(1)本発明に係る船舶は、船尾垂線から、船尾垂線と船首垂線との間の距離である垂線間長の55〜85%の距離にある船幅最大位置において船幅が最も大きく、船尾から前記垂線間長の25〜42%の距離にある傾斜終了位置と前記船幅最大位置との間において、船尾に近づく程、船幅が直線状に小さくなる船型を有し、
記垂線間長をLpp、Lppの半分以上の完全平行部を持ちその船幅をB、満載喫水をd、排水容積を▽としたときのCb(=▽/(Lpp・B・d))の値が0.8以上である比較船舶に対し、
前記と同一の垂線間長、前記と同一の満載喫水、前記と同一の排水容積を有し、前記船幅最大位置における船幅をBcとしたとき、前記傾斜終了位置と前記船幅最大位置との間における満載喫水における船側が、その傾斜部中点における船体中心線となす角度(θc)は、
θ=a・x+b・x+c
a=0.0124+0.0011・(Lpp/(2・B)−2)
b=−2.0889−0.0922・(Lpp/(2・B)−2)
c=97.344+3.2111・(Lpp/(2・B)−2)
x=Lpp・α
Bc≦(Lpp・0.315)
0.55≦α≦0.85
4≦(Lpp/B)≦8
によって決定される有効傾斜角度(θ)よりも小さい(0<θc<θ)ことを特徴とする。
)また、前記(1)の船舶において、前記傾斜終了位置と前記船幅最大位置との間における満載喫水における船側が、船体中心線となす角度(θc)は、10°以下であることを特徴とする。
)さらに、前記(1)または(2)の船舶において、前記垂線間長が200m以上で、前記Cb値が0.8以上であることを特徴とする。
(1) The ship according to the present invention has the largest ship width at the maximum ship width position at a distance of 55 to 85% of the length between the perpendicular lines, which is the distance between the stern perpendicular line and the bow perpendicular line. in between the inclined end position and the ship width maximum position at a distance of 25 to 42% of the perpendicular line between the length from, the closer to the stern, the ship width is have a small ship in a straight line,
Before SL Lpp the length between perpendiculars, more than half of the breadth has full parallel portion B of the Lpp, load draft of d, Cb when the drainage volume ▽ and (= ▽ / (Lpp · B · d)) For comparative vessels with a value of 0.8 or more,
The same vertical length as above, the same full draft as above, the same drainage volume as above, and when the ship width at the maximum ship width position is Bc, the inclination end position and the maximum ship width position The angle (θc) between the ship side in the full draft during the period and the hull centerline at the midpoint of the inclined part is
θ = a · x 2 + b · x + c
a = 0.1024 + 0.0011 · (Lpp / (2 · B) −2)
b = −2.0889−0.0922 · (Lpp / (2 · B) −2)
c = 97.344 + 3.2111 · (Lpp / (2 · B) −2)
x = Lpp · α
Bc ≦ (Lpp · 0.315)
0.55 ≦ α ≦ 0.85
4 ≦ (Lpp / B) ≦ 8
(0 <θc <θ) smaller than the effective inclination angle (θ) determined by
(2) Further, Oite the vessel (1), hull in full draft between the said ship width maximum position and the inclined end position, angle between the hull center line (.theta.c) is a 10 ° or less It is characterized by being.
(3) Further, in the vessels (1) or (2), wherein between perpendiculars length is more than 200 meters, the Cb value is equal to or less than 0.8.

本発明の船舶は、船幅最大位置と傾斜終了位置との間において、船尾に近づく程、船幅が直線状に小さくなるから、伴流利得(プロペラ効率)を悪化させることなく、船体に働く圧力抵抗および摩擦抵抗を減少させることができる。なお、前記「直線状」とは、厳密な直線に限定されるものではなく、滑らかな曲線を含む略直線も意味している。   The ship of the present invention works on the hull without deteriorating the wake gain (propeller efficiency) because the ship width decreases linearly as it approaches the stern between the maximum ship width position and the end position of inclination. Pressure resistance and frictional resistance can be reduced. The “straight line” is not limited to a strict straight line, but also means a substantially straight line including a smooth curve.

本発明の実施の形態に係る船舶の船型を説明するものであって、満載喫水における水線面形状(左船側のみ)を示す平面図。BRIEF DESCRIPTION OF THE DRAWINGS The top view which shows the hull form of the ship which concerns on embodiment of this invention, Comprising: The waterline surface shape (only the left ship side) in a full load draft. 図1に示す船舶の特性を説明するものであって、図2の(a)は圧力抵抗係数の分布を示す特性図、図2の(b)は圧力抵抗を比較する棒グラフ。FIG. 2A is a characteristic diagram showing a distribution of pressure resistance coefficients, and FIG. 2B is a bar graph for comparing pressure resistances. 図1に示す船舶の特性を説明するものであって、図3の(a)は摩擦抵抗の無次元化係数の分布を示す特性図、図3の(b)は摩擦抵抗を比較する棒グラフ。FIG. 3A is a characteristic diagram illustrating a distribution of a non-dimensional coefficient of frictional resistance, and FIG. 3B is a bar graph for comparing frictional resistances. 図1に示す船舶における最大船幅位置が抵抗減少に及ぼす効果を説明する特性図であって、横軸は最大船幅位置C、縦軸は抵抗減少割合((Rt−Rt0)/Rt0)の値。FIG. 2 is a characteristic diagram for explaining the effect of the maximum ship width position in the ship shown in FIG. 1 on resistance reduction, in which the horizontal axis is the maximum ship width position C, and the vertical axis is the resistance reduction rate ((Rt−Rt0) / Rt0). value. 図1に示す船舶における傾斜角度が抵抗減少に及ぼす効果を説明する特性図(最大船幅距離Lcが船尾から垂線間長Lppの85%の場合)。The characteristic view explaining the effect which the inclination angle in the ship shown in FIG. 1 has on the resistance reduction (when the maximum ship width distance Lc is 85% of the length Lpp between the stern and the perpendicular). 図1に示す船舶における傾斜角度が抵抗減少に及ぼす効果を説明する特性図(最大船幅距離Lcが船尾から垂線間長Lppの70%の場合)。The characteristic view explaining the effect which the inclination angle in the ship shown in FIG. 1 has on the resistance reduction (when the maximum ship width distance Lc is 70% of the length Lpp between the stern and the perpendicular). 図1に示す船舶における傾斜角度が抵抗減少に及ぼす効果を説明する特性図(最大船幅距離Lcが船尾から垂線間長Lppの55%の場合)。The characteristic view explaining the effect which the inclination angle in the ship shown in FIG. 1 has on the resistance reduction (when the maximum ship width distance Lc is 55% of the length Lpp between the stern and the perpendicular). 図1に示す船舶における最大船幅距離および傾斜角度の抵抗減少に及ぼす効果を説明するものであって、横軸は最大船幅距離Lc、縦軸は有効傾斜角度θ。The effect of the maximum ship width distance and the tilt angle on the resistance reduction in the ship shown in FIG. 1 will be described. The horizontal axis represents the maximum ship width distance Lc, and the vertical axis represents the effective tilt angle θ.

[実施の形態]
図1は本発明の実施の形態に係る船舶の船型を説明するものであって、満載喫水における水線面形状(左船側のみ)を示す平面図である。
図1において、X軸が船体中心線(C.L.)10を示し、Y軸が船幅方向を示している。そして、船首垂線FPと船尾垂線AP(舵軸位置)との距離を「垂線間長(Lpp)」とし、船首垂線FPと船尾垂線APから等しい距離にある位置を船体中央位置(M.S.)とする。
船舶100の満載喫水における船型は、船首11に近い位置(以下「最大船幅位置」と称す)Cにおいて、船幅が最も大きく、最大船幅位置Cと、船尾垂線位置(以下「船尾」と称す)15から垂線間長(Lpp)の約1/3だけ船首側に寄った位置(以下「傾斜終了位置」と称す)Dとの間(以下「傾斜部13」と称す)が直線状で、船尾15になるほど、船幅が小さくなっている。なお、船首垂線位置(以下「船首」と称す)11と最大船幅位置Cとの間を「船首範囲12」と、傾斜終了位置Dと船尾15との間を「船尾範囲14」と便宜上称す。
[Embodiment]
FIG. 1 is a plan view illustrating a hull form of a ship according to an embodiment of the present invention and showing a waterline shape (only on the left ship side) in a full draft.
In FIG. 1, the X-axis indicates the hull center line (CL) 10 and the Y-axis indicates the ship width direction. The distance between the bow perpendicular FP and the stern perpendicular AP (the rudder axis position) is “inter-perpendicular length (Lpp)”, and the position at the same distance from the bow perpendicular FP and the stern perpendicular AP is the hull center position (M.S. ).
The hull form in the full draft of the ship 100 has the largest ship width at a position close to the bow 11 (hereinafter referred to as “maximum ship width position”), the maximum ship width position C, and the stern vertical line position (hereinafter referred to as “stern”). Between the position 15 (referred to below as “tilt end position”) D and the position (hereinafter referred to as “tilt end position”) that is approximately 1/3 of the length between the vertical lines (Lpp) from 15 The width of the stern decreases as the stern 15 is reached. It should be noted that the space between the bow normal position (hereinafter referred to as “the bow”) 11 and the maximum ship width position C is referred to as “the bow range 12” and the space between the tilt end position D and the stern 15 is referred to as “stern range 14” for convenience. .

なお、最大船幅位置Cにおける船幅(以下「最大船幅Bc」と称す)の値、船尾15と最大船幅位置Cとの距離(以下「最大船幅距離Lc」と称す)の値、傾斜部13が船体中心線となす角度(以下「傾斜角度θc」と称す)の値については別途詳細に説明する。
船舶100は、基本的に満載喫水線よりも下方の水面下の船型(船側の主要な部分)を規定するものであって、満載喫水線よりも上方の船型を限定するものではないから、満載喫水線以下の喫水毎に、傾斜角度θcの値が満載喫水線以下での値と異なってよい。
すなわち、満載喫水線よりも上方の船側は、水面下形状との連続性を勘案する必要があるが、傾斜部13を有しないものであってもよいし、水面下と同様に傾斜部13(水面下の傾斜角度θcと相違してもよい)を有してもよい。
The value of the ship width at the maximum ship width position C (hereinafter referred to as “maximum ship width Bc”), the value of the distance between the stern 15 and the maximum ship width position C (hereinafter referred to as “maximum ship width distance Lc”), The value of the angle formed by the inclined portion 13 with the hull center line (hereinafter referred to as “inclination angle θc”) will be described in detail separately.
The ship 100 basically defines the hull form below the full load water line (main part on the ship side) and does not limit the hull form above the full water line. For each draft, the value of the inclination angle θc may be different from the value below the full draft line.
That is, the ship side above the full load water line needs to consider the continuity with the shape below the surface of the water, but may not have the inclined portion 13 or may be the inclined portion 13 (water surface as well as below the water surface). It may be different from the lower inclination angle θc).

一方、図1中の破線は、従来の船舶90の船型を示している。すなわち、船首11と位置Afとの間に船首範囲92が、位置Afと位置Aaとの間に平行部93が、位置Aaと船尾15との間に船尾範囲94が、それぞれ形成されている。なお、平行部93は船体中心線10に対して平行であって、平行部93における右船側と左船側との距離は「船幅B」である。
このとき、船舶100の最大船幅Bcは船舶90の船幅Bよりも大きくなっている。すなわち、傾斜部13による排水量減少を補うため、「Bc>B」として、両者の排水量を同じにしている。したがって、傾斜角度θcが大きい程、船首範囲12は船首11の近くまで広い幅になって、排水量が増加して、反対に、船尾範囲14は傾斜部13から船尾15に掛けて幅が狭くなり、排水量が減少することになる。なお、船幅Bに対する最大船幅Bcの割合(Bc/B)を「船幅増加率」と称す。
On the other hand, the broken line in FIG. 1 shows the hull form of the conventional ship 90. That is, a bow range 92 is formed between the bow 11 and the position Af, a parallel portion 93 is formed between the position Af and the position Aa, and a stern range 94 is formed between the position Aa and the stern 15. The parallel portion 93 is parallel to the hull center line 10 and the distance between the right ship side and the left ship side in the parallel portion 93 is “ship width B”.
At this time, the maximum ship width Bc of the ship 100 is larger than the ship width B of the ship 90. That is, in order to compensate for the decrease in the amount of drainage due to the inclined portion 13, both drainage amounts are made the same as “Bc> B”. Therefore, as the inclination angle θc is larger, the bow range 12 becomes wider to the vicinity of the bow 11 and the amount of drainage increases. On the contrary, the stern range 14 extends from the inclined portion 13 to the stern 15 and becomes narrower. The amount of drainage will be reduced. The ratio of the maximum ship width Bc to the ship width B (Bc / B) is referred to as “ship width increase rate”.

(圧力抵抗)
図2は、図1に示す船舶の特性を説明するものであって、図2の(a)は圧力抵抗係数(Cp)の分布を示す特性図、図2の(b)は圧力抵抗(Rp)を比較する棒グラフである。圧力抵抗係数は、圧力抵抗の無次元化係数であり、
「Cp=Rp/(0.5・ρ・u・S)」
で表せる。ただし、ρは流体密度、uは船体速度、Sは浸水面積である。
図2の(a)において、横軸は、船尾15からの船首11方向の距離であって、「0.0」が船尾15を、「1.0」が船首11に対応している。そして、左側の縦軸は、船側の位置を示し、図中の両端が「0.0」である「上に凸の曲線」に対応している。また、右側の縦軸は、圧力抵抗係数(Cp)を示し、図中の両端が上方に増加し、中央範囲で「上に凸になる曲線」に対応している。また、それぞれ、破線が船舶100を、実線が船舶90をそれぞれ示している。
(Pressure resistance)
2 explains the characteristics of the ship shown in FIG. 1. FIG. 2 (a) is a characteristic diagram showing the distribution of the pressure resistance coefficient (Cp), and FIG. 2 (b) is the pressure resistance (Rp). ). The pressure resistance coefficient is a dimensionless coefficient of pressure resistance,
“Cp = Rp / (0.5 · ρ · u 2 · S)”
It can be expressed as Where ρ is the fluid density, u is the hull speed, and S is the flooded area.
In FIG. 2A, the horizontal axis is the distance in the direction of the bow 11 from the stern 15, where “0.0” corresponds to the stern 15 and “1.0” corresponds to the bow 11. The left vertical axis indicates the position on the ship side, and corresponds to a “curve that protrudes upward” in which both ends in the figure are “0.0”. Further, the vertical axis on the right side shows the pressure resistance coefficient (Cp), and both ends in the figure increase upward and correspond to a “curved curve” in the central range. In addition, the broken line indicates the ship 100 and the solid line indicates the ship 90, respectively.

かかる特性図は、理論計算ツール(CFD:Computational Fluid Dynamics)を用いた計算結果であって、船幅増加率(Bc/B)が7.5%、傾斜角度(θc)が1.2°のケースであり、満載喫水(19.2m)の約半分の喫水位置(10.0m)におけるものである。
船舶100および船舶90とも、船尾15に近づく程、圧力抵抗係数が増大し、同様に、船首11に近づく程、圧力抵抗係数が増大し、船体中央位置(M.S.)を含む範囲においては、僅かに上に凸の曲線を呈するものの、さらに、船首11に近づくと、圧力抵抗係数は急激に減少している。すなわち、横軸の値が0.8近傍で、谷状を呈している。
This characteristic diagram is a calculation result using a theoretical calculation tool (CFD: Computational Fluid Dynamics), in which the ship width increase rate (Bc / B) is 7.5% and the inclination angle (θc) is 1.2 °. This is a case, which is at a draft position (10.0 m) which is about half of the full draft (19.2 m).
In both the ship 100 and the ship 90, the pressure resistance coefficient increases as it approaches the stern 15, and similarly, the pressure resistance coefficient increases as it approaches the bow 11, and in a range including the hull center position (MS). Although it has a slightly convex curve, the pressure resistance coefficient decreases rapidly as it approaches the bow 11. That is, the value of the horizontal axis is in the vicinity of 0.8, and a valley shape is exhibited.

図2の(b)において、図2の(a)に示す圧力抵抗係数(Cp)を、全長に渡って積分した値を棒グラフにしている。すなわち、平行部93を有する船舶90の積分値を100%としたとき、傾斜部13を有する船舶100の積分値は約92%になり、約8%減少している。   In FIG. 2B, bar graphs are obtained by integrating the pressure resistance coefficient (Cp) shown in FIG. 2A over the entire length. That is, when the integrated value of the ship 90 having the parallel part 93 is 100%, the integrated value of the ship 100 having the inclined part 13 is about 92%, which is reduced by about 8%.

(摩擦抵抗)
図3は、図1に示す船舶の特性を説明するものであって、図3の(a)は摩擦抵抗の無次元化係数(Cf)の分布を示す特性図、図3の(b)は摩擦抵抗(Rf)を比較する棒グラフである。摩擦抵抗係数は、摩擦抵抗の無次元化係数であり、
「Cf=Rf/(0.5・ρ・u・S)」
で表せる。
図3の(a)において、右側の縦軸は、摩擦抵抗の無次元化係数(Cf)を示し、図中の両端が下方に減少し、船首11に近い範囲で上に凸になる山状の曲線になっている。なお、破線が船舶100を、実線が船舶90をそれぞれ示し、横軸および右側の縦軸は図2の(a)に同じである。
すなわち、摩擦抵抗の無次元化係数(Cf)は、横軸の値が0.85近傍において、船舶100(破線)の方が船舶90(実線)よりも少し大きくなるものの、その他の位置では、船舶100の方が船舶90よりも僅かに小さくなっている。
(Frictional resistance)
FIG. 3 explains the characteristics of the ship shown in FIG. 1. FIG. 3 (a) is a characteristic diagram showing the distribution of the dimensionless coefficient (Cf) of the frictional resistance, and FIG. It is a bar graph which compares friction resistance (Rf). The frictional resistance coefficient is a dimensionless coefficient of frictional resistance,
“Cf = Rf / (0.5 · ρ · u 2 · S)”
It can be expressed as
In FIG. 3A, the vertical axis on the right side shows the dimensionless coefficient (Cf) of the frictional resistance, and both ends in the figure decrease downward, and are mountain-shaped convex upward in the range close to the bow 11. It is a curve. The broken line indicates the ship 100 and the solid line indicates the ship 90, and the horizontal axis and the right vertical axis are the same as those in FIG.
That is, the dimensionless coefficient (Cf) of the frictional resistance is slightly larger for the ship 100 (broken line) than the ship 90 (solid line) when the value on the horizontal axis is around 0.85, but at other positions, The ship 100 is slightly smaller than the ship 90.

図3の(b)において、図3の(a)に示す摩擦抵抗の無次元化係数(Cf)を、全長に渡って積分した値を棒グラフにしている。すなわち、平行部93を有する船舶90の積分値を100%としたとき、傾斜部13を有する船舶100の積分値は約99%になり、約1%減少している。   In FIG. 3B, a bar graph is obtained by integrating the dimensionless coefficient (Cf) of the frictional resistance shown in FIG. 3A over the entire length. That is, when the integrated value of the ship 90 having the parallel part 93 is 100%, the integrated value of the ship 100 having the inclined part 13 is about 99%, which is reduced by about 1%.

(必要馬力)
以上より、船舶100および船舶90の船体抵抗値を基に、必要馬力を計算すると、傾斜部13を有する船舶100の方が、平行部93を有する船舶90よりも、必要馬力が約2%少ないという結果が得られる。
(Required horsepower)
From the above, when the required horsepower is calculated based on the hull resistance values of the ship 100 and the ship 90, the ship 100 having the inclined portion 13 requires approximately 2% less horsepower than the ship 90 having the parallel portion 93. The result is obtained.

(最大船幅位置の効果)
図4は、図1に示す船舶における最大船幅位置が抵抗減少に及ぼす効果を説明する特性図であって、横軸は最大船幅位置C(最大船幅距離Lcに同じ)を、縦軸は、抵抗減少割合((Rt−Rt0)/Rt0)の値を示している。抵抗減少割合((Rt−Rt0)/Rt0)は、船舶90の抵抗(Rt0)に対する船舶100の抵抗(Rt)の減少割合であって、両者が同じである場合を「0.0%」、船舶90の抵抗(Rt)が、船舶100の抵抗(Rt0)の90%である場合を「−10%」としている。
図4において、最大船幅距離Lcが、船尾15から垂線間長Lppの55〜85%の範囲において(Lc=Lpp・α、0.55≦α≦0.85)、抵抗減少割合((Rt−Rt0)/Rt0)の値が、「−10%」を下回っている。
すなわち、最大船幅位置Cを、前記55〜85%の範囲に配置することによって、傾斜部13を有しない(平行部93を有する)船舶90よりも、抵抗を10%以上小さくすることができることが分かる。
(Effect of maximum ship width position)
FIG. 4 is a characteristic diagram for explaining the effect of the maximum ship width position in the ship shown in FIG. 1 on the resistance reduction. The horizontal axis represents the maximum ship width position C (same as the maximum ship width distance Lc), and the vertical axis Indicates the value of the resistance reduction rate ((Rt−Rt0) / Rt0). The resistance reduction rate ((Rt−Rt0) / Rt0) is a reduction rate of the resistance (Rt) of the ship 100 with respect to the resistance (Rt0) of the ship 90, and “0.0%” when both are the same. The case where the resistance (Rt) of the ship 90 is 90% of the resistance (Rt0) of the ship 100 is defined as “−10%”.
In FIG. 4, when the maximum ship width distance Lc is in the range of 55 to 85% of the length Lpp between the stern 15 (Lc = Lpp · α, 0.55 ≦ α ≦ 0.85), the resistance decreasing rate ((Rt The value of −Rt0) / Rt0) is lower than “−10%”.
That is, by arranging the maximum ship width position C in the range of 55 to 85%, the resistance can be made 10% or more smaller than that of the ship 90 not having the inclined portion 13 (having the parallel portion 93). I understand.

(傾斜角度の効果)
図5〜図7は、図1に示す船舶における傾斜角度が抵抗減少に及ぼす効果を説明する特性図であって、それぞれ、最大船幅距離Lcが船尾から垂線間長Lppの85%、70%、55%の場合における抵抗減少割合((Rt−Rt0)/Rt0)である。なお、横軸は傾斜角度(θc[deg])、縦軸は図4に同じであり、パラメータとして、船幅Bに対する垂線間長Lppの割合(以下「船幅船長割合Lpp/B」と称す)が、4、6および8の場合を示している。これらは、理論計算ツール(CFD:Computational Fluid Dynamics)を用いて求めたものである。
(Effect of tilt angle)
5 to 7 are characteristic diagrams for explaining the effect of the inclination angle in the ship shown in FIG. 1 on the resistance reduction, and the maximum ship width distance Lc is 85% and 70% of the length Lpp between the stern and the vertical line, respectively. , 55% resistance reduction rate ((Rt−Rt0) / Rt0). The horizontal axis is the inclination angle (θc [deg]), and the vertical axis is the same as in FIG. 4. As a parameter, the ratio of the length Lpp between perpendiculars to the ship width B (hereinafter referred to as “ship width ship length ratio Lpp / B”). ) Shows the cases of 4, 6 and 8. These are obtained using a theoretical calculation tool (CFD: Computational Fluid Dynamics).

図5において、最大船幅距離Lcが船尾から垂線間長Lppの85%の場合、船幅船長割合L/Bが8のとき、傾斜角度θが10°以下の範囲で抵抗減少の効果が得られ、0°から略5°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略5°近傍から10°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略5°近傍で、最大(約6.5%)の抵抗減少の効果が得られている。
また、船幅船長割合L/Bが6のとき、傾斜角度θが13°以下の範囲で抵抗減少の効果が得られ、0°から略5°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略5°近傍から10°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略5°近傍で、最大(約10.5%)の抵抗減少の効果が得られている。
さらに、船幅船長割合L/Bが4のとき、傾斜角度θが16°以下の範囲で抵抗減少の効果が得られ、0°から略10°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略10°近傍から16°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略10°近傍で、最大(約15.5%)の抵抗減少の効果が得られている。
In FIG. 5, when the maximum ship width distance Lc is 85% of the stern-to-perpendicular length Lpp and the ship width ratio L / B is 8, the effect of reducing the resistance is obtained when the inclination angle θ is 10 ° or less. The absolute value of the resistance decrease rate ((Rt−Rt0) / Rt0) increases as the angle decreases from 0 ° to approximately 5 °, and the resistance decrease rate ((Rt−Rt0) increases from approximately 5 ° to 10 °. ) / Rt0) is smaller in absolute value. Then, the maximum (about 6.5%) resistance reduction effect is obtained in the vicinity of about 5 °.
Further, when the ship width ratio L / B is 6, an effect of decreasing the resistance is obtained when the inclination angle θ is 13 ° or less, and the resistance decreasing ratio ((Rt−Rt0) increases from 0 ° to about 5 °. ) / Rt0) increases, and the absolute value of the resistance reduction rate ((Rt−Rt0) / Rt0) decreases as it approaches 10 ° from about 5 °. The maximum (about 10.5%) resistance reduction effect is obtained in the vicinity of about 5 °.
Further, when the ship length ratio L / B is 4, an effect of reducing the resistance is obtained when the inclination angle θ is 16 ° or less, and the resistance decreasing rate ((Rt−Rt0) increases from 0 ° to about 10 °. ) / Rt0) increases, and the absolute value of the resistance reduction rate ((Rt−Rt0) / Rt0) decreases as it approaches 16 ° from approximately 10 °. The maximum (about 15.5%) resistance reduction effect is obtained in the vicinity of approximately 10 °.

図6において、最大船幅距離Lcが船尾から垂線間長Lppの70%の場合、船幅船長割合L/Bが8のとき、傾斜角度θが12°以下の範囲で抵抗減少の効果が得られ、0°から略7°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略7°近傍から12°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略7°近傍で、最大(約7.0%)の抵抗減少の効果が得られている。
また、船幅船長割合L/Bが6のとき、傾斜角度θが14°以下の範囲で抵抗減少の効果が得られ、0°から略9°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略9°近傍から14°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略9°近傍で、最大(約10.0%)の抵抗減少の効果が得られている。
さらに、船幅船長割合L/Bが4のとき、傾斜角度θが16°以下の範囲で抵抗減少の効果が得られ、0°から略10°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略10°近傍から16°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略12°近傍で、最大(約16.0%)の抵抗減少の効果が得られている。
In FIG. 6, when the maximum ship width distance Lc is 70% of the stern-to-perpendicular length Lpp and the ship width ratio L / B is 8, the effect of reducing the resistance is obtained when the inclination angle θ is 12 ° or less. The absolute value of the resistance decrease rate ((Rt−Rt0) / Rt0) increases as the angle decreases from 0 ° to approximately 7 °, and the resistance decrease rate ((Rt−Rt0) increases from approximately 7 ° to 12 °. ) / Rt0) is smaller in absolute value. The maximum (about 7.0%) resistance reduction effect is obtained in the vicinity of approximately 7 °.
Further, when the ship length ratio L / B is 6, an effect of reducing the resistance is obtained when the inclination angle θ is 14 ° or less, and the resistance decreasing rate ((Rt−Rt0 ) / Rt0) increases, and the absolute value of the resistance reduction rate ((Rt−Rt0) / Rt0) decreases as it approaches 14 ° from approximately 9 °. The maximum (about 10.0%) resistance reduction effect is obtained in the vicinity of about 9 °.
Further, when the ship length ratio L / B is 4, an effect of reducing the resistance is obtained when the inclination angle θ is 16 ° or less, and the resistance decreasing rate ((Rt−Rt0) increases from 0 ° to about 10 °. ) / Rt0) increases, and the absolute value of the resistance reduction rate ((Rt−Rt0) / Rt0) decreases as it approaches 16 ° from approximately 10 °. The maximum (about 16.0%) resistance reduction effect is obtained in the vicinity of approximately 12 °.

図7において、最大船幅距離Lcが船尾から垂線間長Lppの55%の場合、船幅船長割合L/Bが8のとき、傾斜角度θが20°以下の範囲で抵抗減少の効果が得られ、0°から略15°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略15°近傍から20°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略15°近傍で、最大(約7.0%)の抵抗減少の効果が得られている。
また、船幅船長割合L/Bが6のとき、傾斜角度θが21.5°以下の範囲で抵抗減少の効果が得られ、0°から略17°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略17°近傍から21.5°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略17°近傍で、最大(約10.0%)の抵抗減少の効果が得られている。
さらに、船幅船長割合L/Bが4のとき、傾斜角度θが23°以下の範囲で抵抗減少の効果が得られ、0°から略16°になる程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は増大し、略16°近傍から23°に近づく程、抵抗減少割合((Rt−Rt0)/Rt0)の絶対値は小さくなっている。そして、略16°近傍で、最大(約14.0%)の抵抗減少の効果が得られている。
In FIG. 7, when the maximum ship width distance Lc is 55% of the stern-to-perpendicular length Lpp and the ship width ratio L / B is 8, the effect of reducing the resistance is obtained when the inclination angle θ is 20 ° or less. The absolute value of the resistance decrease rate ((Rt−Rt0) / Rt0) increases as the angle decreases from 0 ° to approximately 15 °, and the resistance decrease rate ((Rt−Rt0) increases from approximately 15 ° to 20 °. ) / Rt0) is smaller in absolute value. The maximum (about 7.0%) resistance reduction effect is obtained in the vicinity of about 15 °.
Further, when the ship width ratio L / B is 6, an effect of reducing the resistance is obtained when the inclination angle θ is 21.5 ° or less, and the resistance decreasing rate ((Rt The absolute value of -Rt0) / Rt0) increases, and the absolute value of the resistance reduction rate ((Rt-Rt0) / Rt0) decreases as it approaches 21.5 ° from approximately 17 °. The maximum (about 10.0%) resistance reduction effect is obtained in the vicinity of about 17 °.
Further, when the ship length ratio L / B is 4, an effect of reducing the resistance is obtained when the inclination angle θ is 23 ° or less, and the resistance decreasing rate ((Rt−Rt0 ) / Rt0) increases, and the absolute value of the resistance reduction ratio ((Rt−Rt0) / Rt0) decreases as it approaches 23 ° from approximately 16 °. The maximum (about 14.0%) resistance reduction effect is obtained in the vicinity of approximately 16 °.

(最大船幅位置および傾斜角度の効果)
図8は、図1に示す船舶における最大船幅距離Lcおよび傾斜角度θcの抵抗減少に及ぼす効果を説明するものであって、横軸は最大船幅距離Lc、縦軸は有効傾斜角度θである。
なお、有効傾斜角度θは、図5〜図7において、抵抗低減の効果が得られる最大の傾斜角度、すなわち、抵抗低減割合((Rt−Rt0)/Rt0)を示す曲線がX軸(0.0%)と交差する傾斜角度に同じである。
図8において、船幅船長割合L/Bが大きい程、有効傾斜角度θは小さくなり、また、最大船幅距離Lcが大きい程、有効傾斜角度θは小さくなっている。
したがって、最大船幅距離Lcを垂線間長Lppの55〜85%にして、傾斜角度θcを10°以下にしておけば、船幅船長割合L/Bが4〜8の範囲であれば、何れの船幅船長割合L/Bであっても、抵抗低減効果が得られることになる。
(Effects of maximum ship width position and tilt angle)
FIG. 8 explains the effect of the maximum ship width distance Lc and the inclination angle θc on the resistance reduction in the ship shown in FIG. 1, wherein the horizontal axis is the maximum ship width distance Lc, and the vertical axis is the effective inclination angle θ. is there.
5 to 7, the effective inclination angle θ is the maximum inclination angle at which the effect of reducing the resistance is obtained, that is, the curve indicating the resistance reduction ratio ((Rt−Rt0) / Rt0) is the X axis (0. 0%) and the same angle of inclination.
In FIG. 8, the effective inclination angle θ decreases as the ship width ship length ratio L / B increases, and the effective inclination angle θ decreases as the maximum ship width distance Lc increases.
Therefore, if the maximum ship width distance Lc is 55 to 85% of the perpendicular length Lpp and the inclination angle θc is 10 ° or less, if the ship width ship length ratio L / B is in the range of 4 to 8, Even if the ship width ratio is L / B, a resistance reduction effect can be obtained.

さらに、図8に示された3本の曲線について、回帰式を求めると、以下になる。
θ=a・x+b・x+c
a=0.0124+0.0011・(Lpp/(2・B)−2)
b=−2.0889−0.0922・(Lpp/(2・B)−2)
c=97.344+3.2111・(Lpp/(2・B)−2)
x=Lpp・α
Bc≦(Lpp・0.315)
0.55≦α≦0.85
4≦(Lpp/B)≦8
このとき、船舶100と同一排水量を満たし、且つ、船尾垂線から所定の距離にある船幅を一定とした場合の船幅をBとしている。
したがって、前記式を満足するように「最大船幅距離Lc」および「最大船幅Bc」を選定すると共に、前記式によって決定される有効傾斜角度θよりも小さい傾斜角度θcにしておけば、抵抗低減効果が得られることになる。
なお、以上は、傾斜終了位置Dは、船尾15から船長の約(1/3)だけ船首側に寄った位置にしているが、本発明はこれに限定するものではなく、船尾15から垂線間長Lppの25〜42%の範囲内に位置すれば、前記効果が得られるものである。
また、大型肥大船では各Water Line断面の傾向は略一致していると考えられる。つまり、大型肥大船ではほとんどの断面形状で、求めた回帰式を適用することができると考えられる。
Furthermore, when the regression equation is obtained for the three curves shown in FIG.
θ = a · x 2 + b · x + c
a = 0.1024 + 0.0011 · (Lpp / (2 · B) −2)
b = −2.0889−0.0922 · (Lpp / (2 · B) −2)
c = 97.344 + 3.2111 · (Lpp / (2 · B) −2)
x = Lpp · α
Bc ≦ (Lpp · 0.315)
0.55 ≦ α ≦ 0.85
4 ≦ (Lpp / B) ≦ 8
At this time, the ship width when the same drainage amount as the ship 100 is satisfied and the ship width at a predetermined distance from the stern perpendicular is constant is B.
Therefore, if the “maximum ship width distance Lc” and the “maximum ship width Bc” are selected so as to satisfy the above equation, and the inclination angle θc is smaller than the effective inclination angle θ determined by the above equation, the resistance A reduction effect is obtained.
In the above description, the tilt end position D is set at a position close to the bow side by about (1/3) of the captain from the stern 15, but the present invention is not limited to this, and between the stern 15 and the perpendicular line If it is located within the range of 25 to 42% of the length Lpp, the above effect can be obtained.
Moreover, it is thought that the tendency of each Water Line section is substantially in agreement with a large-sized enlargement ship. In other words, it is considered that the regression equation obtained can be applied to almost all cross-sectional shapes in large-sized enlargement ships.

本発明によれば、前記式を満足するような傾斜部を形成することによって、抵抗低減効果が得られるから、各種用途の一般的な大型商船の船型として、広く利用することができる。   According to the present invention, a resistance reduction effect can be obtained by forming an inclined portion that satisfies the above formula, and therefore, it can be widely used as a general large merchant ship shape for various uses.

10 船体中心線
11 船首
12 船首範囲
13 傾斜部
14 船尾範囲
15 船尾
90 船舶
92 船首範囲
93 平行部
94 船尾範囲
100 船舶
θ 傾斜角度(有効傾斜角度)
θc 傾斜角度
AP 船尾垂線
FP 船首垂線
Aa 位置
Af 位置
B 船幅
Bc 最大船幅
C 最大船幅位置
D 傾斜終了位置
Lc 最大船幅距離
Lpp/B 船幅船長割合
Lpp 垂線間長
10 Hull Center Line 11 Bow 12 Bow Range 13 Slope 14 Stern 15 Stern 90 Ship 92 Ship Span 93 Parallel Part 94 Stern 100 Ship θ Slope (Effective Slope)
θc Inclination angle AP Stern perpendicular FP Bow perpendicular Aa Position Af Position B Ship width Bc Maximum ship width C Maximum ship width position D Inclination end position Lc Maximum ship width distance Lpp / B Ship width length ratio Lpp Length between perpendiculars

Claims (3)

船尾垂線から、船尾垂線と船首垂線との間の距離である垂線間長の55〜85%の距離にある船幅最大位置において船幅が最も大きく、船尾から前記垂線間長の25〜42%の距離にある傾斜終了位置と前記船幅最大位置との間において、船尾に近づく程、船幅が直線状に小さくなる船型を有し、
前記垂線間長をLpp、Lppの半分以上の完全平行部を持ちその船幅をB、満載喫水をd、排水容積を▽としたときのCb(=▽/(Lpp・B・d))の値が0.8以上である比較船舶に対し、
前記と同一の垂線間長、前記と同一の満載喫水、前記と同一の排水容積を有し、前記船幅最大位置における船幅をBcとしたとき、前記傾斜終了位置と前記船幅最大位置との間における満載喫水における船側が、その傾斜部中点における船体中心線となす角度(θc)は、
θ=a・x +b・x+c
a=0.0124+0.0011・(Lpp/(2・B)−2)
b=−2.0889−0.0922・(Lpp/(2・B)−2)
c=97.344+3.2111・(Lpp/(2・B)−2)
x=Lpp・α
Bc≦(Lpp・0.315)
0.55≦α≦0.85
4≦(Lpp/B)≦8
によって決定される有効傾斜角度(θ)よりも小さい(0<θc<θ)ことを特徴とする船舶。
From the stern perpendicular to the stern perpendicular to the bow perpendicular the distance between the perpendiculars is 55 to 85% of the maximum width of the ship, and the width is the largest, and the length from the stern to the perpendicular is 25 to 42%. between the inclined end position in the the distance between the said ship width maximum position, the closer to the stern, the ship width is have a small ship in a straight line,
Cb (= ▽ / (Lpp · B · d)) where the length between the perpendiculars is Lpp, the ship has a completely parallel part that is more than half of Lpp, its ship width is B, its full draft is d, and its drainage volume is ▽ For a comparative vessel with a value of 0.8 or more,
The same vertical length as above, the same full draft as above, the same drainage volume as above, and when the ship width at the maximum ship width position is Bc, the inclination end position and the maximum ship width position The angle (θc) between the ship side in the full draft during the period and the hull centerline at the midpoint of the inclined part is
θ = a · x 2 + b · x + c
a = 0.1024 + 0.0011 · (Lpp / (2 · B) −2)
b = −2.0889−0.0922 · (Lpp / (2 · B) −2)
c = 97.344 + 3.2111 · (Lpp / (2 · B) −2)
x = Lpp · α
Bc ≦ (Lpp · 0.315)
0.55 ≦ α ≦ 0.85
4 ≦ (Lpp / B) ≦ 8
A marine vessel characterized by being smaller than an effective inclination angle (θ) determined by (0 <θc <θ).
前記傾斜終了位置と前記船幅最大位置との間における満載喫水における船側が、船体中心線となす角度(θc)は、10°以下であることを特徴とする請求項1記載の船舶。 The ship's side at load draft between the inclined end position and the ship width maximum position, angle between the hull center line (.theta.c) is claim 1 Symbol placement of the ship, characterized in that 10 ° or less. 請求項1または2に記載の船舶は、前記垂線間長が200m以上で、前記Cb値が0.8以上であることを特徴とする船舶。 Ship according to claim 1 or 2, wherein between perpendiculars length is more than 200 meters, ship you wherein Cb value is 0.8 or more.
JP2014020719A 2014-02-05 2014-02-05 Ship Active JP6210895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014020719A JP6210895B2 (en) 2014-02-05 2014-02-05 Ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020719A JP6210895B2 (en) 2014-02-05 2014-02-05 Ship

Publications (2)

Publication Number Publication Date
JP2015147476A JP2015147476A (en) 2015-08-20
JP6210895B2 true JP6210895B2 (en) 2017-10-11

Family

ID=53891248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020719A Active JP6210895B2 (en) 2014-02-05 2014-02-05 Ship

Country Status (1)

Country Link
JP (1) JP6210895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7536820B2 (en) 2016-11-25 2024-08-20 キヤノン株式会社 Image forming device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108796A (en) * 2017-01-06 2018-07-12 株式会社三井E&Sホールディングス Ship

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147398U (en) * 1974-05-21 1975-12-06
JP4721711B2 (en) * 2005-01-05 2011-07-13 三井造船株式会社 How to design a huge ship
JP5042945B2 (en) * 2008-08-26 2012-10-03 住友重機械マリンエンジニアリング株式会社 Bow shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7536820B2 (en) 2016-11-25 2024-08-20 キヤノン株式会社 Image forming device

Also Published As

Publication number Publication date
JP2015147476A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5412259B2 (en) boat
JP5986856B2 (en) Commercial cargo ship
JP2008260445A (en) Vessel
JP6210895B2 (en) Ship
KR101402485B1 (en) A rudder for ship
JP2002347688A (en) Enlarged ship
US9038559B2 (en) Keel pad, boat hull with a keel pad and retrofit kit
WO2012073614A1 (en) Ship
JP2014028551A (en) Enlarged ship
KR101402376B1 (en) A rudder for ship
KR101939861B1 (en) A rudder for ship
JP5896598B2 (en) Ship
KR20140078272A (en) A ship
JP7049144B2 (en) Stern fins and ships
KR102232569B1 (en) A rudder and a ship having the rudder
KR102331923B1 (en) Ship Keys and Vessels
KR102122480B1 (en) Ship
JP2010052474A (en) Bow shape
KR101402529B1 (en) A rudder for ship
KR102211151B1 (en) A rudder and a ship having the rudder
KR20140067289A (en) Transom structure for ro-ro passenger ship
KR20140008575A (en) A ship
KR101259081B1 (en) Ship having a bulb
KR101358126B1 (en) Ship
JP5143510B2 (en) Hull structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6210895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250