JP2014145801A - 変倍光学系、光学装置、及び、変倍光学系の製造方法 - Google Patents

変倍光学系、光学装置、及び、変倍光学系の製造方法 Download PDF

Info

Publication number
JP2014145801A
JP2014145801A JP2013012752A JP2013012752A JP2014145801A JP 2014145801 A JP2014145801 A JP 2014145801A JP 2013012752 A JP2013012752 A JP 2013012752A JP 2013012752 A JP2013012752 A JP 2013012752A JP 2014145801 A JP2014145801 A JP 2014145801A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
focal length
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013012752A
Other languages
English (en)
Other versions
JP6108075B2 (ja
Inventor
Tomoki Ito
智希 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013012752A priority Critical patent/JP6108075B2/ja
Priority to PCT/JP2014/000396 priority patent/WO2014115565A1/ja
Priority to CN201810303730.7A priority patent/CN108627888B/zh
Priority to CN201480006342.2A priority patent/CN104956248B/zh
Publication of JP2014145801A publication Critical patent/JP2014145801A/ja
Priority to US14/809,242 priority patent/US10459207B2/en
Application granted granted Critical
Publication of JP6108075B2 publication Critical patent/JP6108075B2/ja
Priority to US16/656,117 priority patent/US11221469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Lenses (AREA)

Abstract

【課題】変倍時の収差変動を良好に抑えた変倍光学系、光学装置、変倍光学系の製造方法を提供する。
【解決手段】カメラ1等の光学装置に用いられる変倍光学系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有し、変倍に際し、第2レンズ群G2が像面に対して固定されている。
【選択図】図1

Description

本発明は、変倍光学系、光学装置、及び、変倍光学系の製造方法に関する。
従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。
特開2009−180844号公報
しかしながら従来の変倍光学系は、変倍時の収差変動が大きいという課題があった。
本発明はこのような課題に鑑みてなされたものであり、変倍時の収差変動を良好に抑えた変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。
前記課題を解決するために、本発明に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有し、変倍に際し、第2レンズ群が像面に対して固定され、次式の条件を満足することを特徴とする。
2.0 < f1/(−f2) < 6.1
1.3 < f1/(−f4) < 3.0
1.9 < f1/f5 < 3.2
但し、
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
f4:第4レンズ群の焦点距離
f5:第5レンズ群の焦点距離
また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.8 < (−f4)/f5 < 1.8
但し、
f4:第4レンズ群の焦点距離
f5:第5レンズ群の焦点距離
また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.3 < (−f2)/f5 < 0.8
但し、
f2:第2レンズ群の焦点距離
f5:第5レンズ群の焦点距離
また、このような変倍光学系は、第2レンズ群よりも像側に開口絞りを有することが好ましい。
また、このような変倍光学系において、開口絞りは、第3レンズ群から第5レンズ群の間に配置されていることが好ましい。
また、このような変倍光学系において、開口絞りは、第3レンズ群と第4レンズ群との間に配置されていることが好ましい。
また、このような変倍光学系は、合焦に際し、第3レンズ群の少なくとも一部を光軸に沿って移動させることが好ましい。
また、このような変倍光学系は、第2レンズ群から第5レンズ群の少なくとも一部を光軸と直交方向の成分を含むように移動させることが好ましい。
また、このような変倍光学系は、第2レンズ群の少なくとも一部を光軸と直交方向の成分を含むように移動させることが好ましい。
また、このような変倍光学系は、全てのレンズ面が球面で構成されていることが好ましい。
また、本発明に係る光学装置は、物体の像を所定の像面上に結像させる上述の変倍光学系のいずれかを有することを特徴とする。
また、本発明に係る変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、変倍に際し、第2レンズ群が像面に対して固定されるように配置し、次式の条件を満足するように配置することを特徴とする。
2.0 < f1/(−f2) < 6.1
1.3 < f1/(−f4) < 3.0
1.9 < f1/f5 < 3.2
但し、
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
f4:第4レンズ群の焦点距離
f5:第5レンズ群の焦点距離
本発明によれば、変倍時の収差変動を良好に抑えた変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。
第1実施例に係る変倍光学系のレンズ構成を示す断面図である。 第1実施例に係る変倍光学系の広角端状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第1実施例に係る変倍光学系の中間焦点距離状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第1実施例に係る変倍光学系の望遠端状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第2実施例に係る変倍光学系のレンズ構成を示す断面図である。 第2実施例に係る変倍光学系の広角端状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第2実施例に係る変倍光学系の中間焦点距離状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第2実施例に係る変倍光学系の望遠端状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第3実施例に係る変倍光学系のレンズ構成を示す断面図である。 第3実施例に係る変倍光学系の広角端状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第3実施例に係る変倍光学系の中間焦点距離状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第3実施例に係る変倍光学系の望遠端状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第4実施例に係る変倍光学系のレンズ構成を示す断面図である。 第4実施例に係る変倍光学系の広角端状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第4実施例に係る変倍光学系の中間焦点距離状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 第4実施例に係る変倍光学系の望遠端状態における諸収差図であって、(a)は無限遠合焦状態の諸収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。 上記変倍光学系を搭載するカメラの断面図を示す。 上記変倍光学系の製造方法を説明するためのフローチャートである。
以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る変倍光学系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有して構成されている。また、この変倍光学系ZLは、変倍に際し、第2レンズ群G2が像面に対して固定されていることが望ましい。この構成により、変倍における各レンズ群の移動量を減らすことができる。また、第2レンズ群G2を固定することにより、製造誤差による偏心の影響を小さくすることができる。
それでは、このような変倍光学系ZLを構成するための条件について説明する。まず、この変倍光学系ZLは、以下に示す条件式(1)を満足することが望ましい。
2.0 < f1/(−f2) < 6.1 (1)
但し、
f1:第1レンズ群G1の焦点距離
f2:第2レンズ群G2の焦点距離
条件式(1)は第2レンズ群G2の焦点距離に対する、適正な第1レンズ群G1の焦点距離を規定するものである。条件式(1)を満足することにより、望遠端状態における球面収差と色収差を良好に補正することができる。この条件式(1)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、望遠端状態における球面収差と色収差の補正が困難となるため好ましくない。なお、条件式(1)の下限値を3.0とすると、本願の効果を確実なものとすることができる。反対に、条件式(1)の上限値を上回ると、第1レンズ群G1の屈折力が小さくなり、全長の増大を招いてしまうため好ましくない。なお、条件式(1)の上限値を6.0とすると、本願の効果を確実なものとすることができる。
また、この変倍光学系ZLは、以下に示す条件式(2)を満足することが望ましい。
1.3 < f1/(−f4) < 3.0 (2)
但し、
f1:第1レンズ群G1の焦点距離
f4:第4レンズ群G4の焦点距離
条件式(2)は第4レンズ群G4の焦点距離に対する、適正な第1レンズ群G1の焦点距離を規定するものである。条件式(2)を満足することにより、望遠端状態における球面収差と色収差を良好に補正することができる。この条件式(2)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、望遠端状態における球面収差と色収差の補正が困難となるため好ましくない。なお、条件式(2)の下限値を1.4とすると、本願の効果を確実なものとすることができる。反対に、条件式(2)の上限値を上回ると、第1レンズ群G1の屈折力が小さくなり、全長の増大を招いてしまうため好ましくない。なお、条件式(2)の上限値を2.8とすると、本願の効果を確実なものとすることができる。
また、この変倍光学系ZLは、以下に示す条件式(3)を満足することが望ましい。
1.9 < f1/f5 < 3.2 (3)
但し、
f1:第1レンズ群G1の焦点距離
f5:第5レンズ群G5の焦点距離
条件式(3)は第5レンズ群G5の焦点距離に対する、適正な第1レンズ群G1の焦点距離を規定するものである。条件式(3)を満足することにより、望遠端状態における球面収差と色収差を良好に補正することができる。この条件式(3)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、望遠端状態における球面収差と色収差の補正が困難となるため好ましくない。なお、条件式(3)の下限値を2.0とすると、本願の効果を確実なものとすることができる。反対に、条件式(3)の上限値を上回ると、第5レンズ群G5の屈折力が大きくなり、広角端における像面湾曲と歪曲収差の補正が困難となるため好ましくない。なお、条件式(3)の上限値を3.0とすると、本願の効果を確実なものとすることができる。
また、この変倍光学系ZLは、以下に示す条件式(4)を満足することが望ましい。
0.8 < (−f4)/f5 < 1.8 (4)
但し、
f4:第4レンズ群G4の焦点距離
f5:第5レンズ群G5の焦点距離
条件式(4)は第5レンズ群G5の焦点距離に対する、適正な第4レンズ群G4の焦点距離を規定するものである。条件式(4)を満足することにより、広角端状態における像面湾曲と歪曲収差を良好に補正することができる。この条件式(4)の下限値を下回ると、第4レンズ群G4の屈折力が大きくなり、望遠端状態における色収差の補正が困難となるため好ましくない。なお、条件式(4)の下限値を0.9とすると、本願の効果を確実なものとすることができる。反対に、条件式(4)の上限値を上回ると、第5レンズ群G5の屈折力が大きくなり、広角端状態における像面湾曲と歪曲収差の補正が困難となるため好ましくない。なお、条件式(4)の上限値を1.6とすると、本願の効果を確実なものとすることができる。
また、この変倍光学系ZLは、以下に示す条件式(5)を満足することが望ましい。
0.3 < (−f2)/f5 < 0.8 (5)
但し、
f2:第2レンズ群G2の焦点距離
f5:第5レンズ群G5の焦点距離
条件式(5)は第5レンズ群G5の焦点距離に対する、適正な第2レンズ群G2の焦点距離を規定するものである。条件式(5)を満足することにより、広角端状態における像面湾曲と歪曲収差を良好に補正することができる。この条件式(5)の下限値を下回ると、第2レンズ群G2の屈折力が大きくなり、広角端状態におけるコマ収差の補正が困難となるため好ましくない。なお、条件式(5)の下限値を0.4とすると、本願の効果を確実なものとすることができる。反対に、条件式(5)の上限値を上回ると、第5レンズ群G5の屈折力が大きくなり、広角端状態における像面湾曲と歪曲収差の補正が困難となるため好ましくない。なお、条件式(5)の上限値を0.7とすると、本願の効果を確実なものとすることができる。また、条件式(5)上限値を0.6とすると、本願の効果をさらに確実なものとすることができる。
また、この変倍光学系ZLは、第2レンズ群G2よりも像側に開口絞りSを有することが望ましい。このとき、第3レンズ群G3と第5レンズ群G5との間に開口絞りSを有することが望ましい。さらには、第3レンズ群G3と第4レンズ群G4との間に開口絞りSを有することが望ましい。この構成により、コマ収差と像面湾曲を良好に補正することができる。
また、この変倍光学系ZLは、合焦に際し、第3レンズ群G3の少なくとも一部を光軸に沿って移動させることが望ましい。この構成により、迅速な合焦を行うことができ、また合焦時の画角変動と球面収差の変動を小さくすることができる。
また、この変倍光学系ZLは、第2レンズ群G2から第5レンズ群G5の少なくとも一部(複数のレンズ群、若しくは、いずれか一つのレンズ群であっても良いし、いずれかのレンズ群を構成するレンズの一部であっても良い)を光軸と直交方向の成分を含むように移動させることが望ましい。このとき、第2レンズ群G2の少なくとも一部を光軸と直交方向の成分を含むように移動させることがさらに望ましい。この構成により、径の小さいレンズで手ぶれ補正を行うことができるため、鏡筒の小型化を図ることができる。
また、この変倍光学系ZLは、全てのレンズ面が球面で構成されていることが好ましい。この構成により、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
次に、本実施形態に係る変倍光学系ZLを備えた光学装置であるカメラを図17に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る変倍光学系ZLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
本実施形態では、5群及び6群構成の変倍光学系ZLを示したが、以上の構成条件等は、7群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、前述のように第3レンズ群G3の少なくとも一部を合焦レンズ群とするのが好ましい。
また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としてもよい。特に、前述のように、第2レンズ群G2の少なくとも一部を防振レンズ群とするのが好ましい。
また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、前述したように、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしても良い。
開口絞りSは、前述のように、第3レンズ群G3と第5レンズ群G5との間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
また、本実施形態の変倍光学系ZLは、変倍比が3.0〜7.0程度である。
以下、本実施形態に係る変倍光学系ZLの製造方法の概略を、図18を参照して説明する。まず、各レンズを配置してレンズ群G1〜G5をそれぞれ準備する(ステップS100)。また、変倍に際し、第2レンズ群G2が像面Iに対して固定されるように配置する(ステップS200)。さらにまた、各レンズ群G1〜G5が、前述の条件式(1)〜(3)を満足するように配置する(ステップS300)。
具体的には、本実施形態では、例えば図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、両凸レンズL21と両凹レンズL22とを接合した接合レンズ、両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合レンズ、及び、両凹レンズL25を配置して第2レンズ群G2とし、両凸レンズL31、及び、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33とを接合した接合レンズを配置して第3レンズ群G3とし、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42とを接合した接合レンズを配置して第4レンズ群G4とし、両凸レンズL51、物体側に凸面を向けた平凸レンズL52と像側に凹面を向けた平凹レンズL53と物体側に凸面を向けた平凸レンズL54とを接合した接合レンズ、両凸レンズL55と物体側に凹面を向けた平凹レンズL56とを接合した接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL57を配置して第5レンズ群G5とする。このように準備した各レンズ群を上述の手順で配置して変倍光学系ZLを製造する。
以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図5、図9及び図13は、各実施例に係る変倍光学系ZL(ZL1〜ZL4)の構成及び屈折力配分を示す断面図である。また、これの変倍光学系ZL1〜ZL4の断面図の下部には、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群G1〜G5又はG6の光軸に沿った移動方向が矢印で示されている。いずれの実施例においても、変倍に際し、第2レンズ群G2が像面Iに対して固定されている。
[第1実施例]
図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1に示す変倍光学系ZL1は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、から構成されている。また、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、両凸レンズL21と両凹レンズL22とを接合した接合レンズ、両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合レンズ、及び、両凹レンズL25から構成されている。また、第3レンズ群G3は、物体側から順に、両凸レンズL31、及び、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33とを接合した接合レンズから構成されている。また、第4レンズ群G4は、物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42とを接合した接合レンズで構成されている。また、第5レンズ群G5は、物体側から順に、両凸レンズL51、物体側に凸面を向けた平凸レンズL52と像側に凹面を向けた平凹レンズL53と物体側に凸面を向けた平凸レンズL54とを接合した接合レンズ、両凸レンズL55と物体側に凹面を向けた平凹レンズL56とを接合した接合レンズ、及び、物体側に凹面を向けた負メニスカスレンズL57から構成されている。
この第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5が光軸上を物体方向に移動し、第2レンズ群G2及び第4レンズ群G4が像面Iに対して光軸方向に固定されている。また、開口絞りSは第5レンズ群G5の物体側に配置されており、変倍に際して第5レンズ群G5とともに移動する。
また、無限遠から近距離物体への合焦は、第3レンズ群G3を像側に移動させることにより行う。
また、像ぶれ補正(防振)は、第2レンズ群G2の両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合レンズを防振レンズ群とし、この防振レンズ群を光軸と直交する方向の成分を含むように移動させることにより行う。なお、全系の焦点距離がfで、防振係数(像ぶれ補正での防振レンズ群VLの移動量に対する結像面での像移動量の比)がKのレンズで角度θの回転ぶれを補正するには、ぶれ補正用の防振レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい(以降の実施例においても同様である)。この第1実施例の広角端状態においては、防振係数は−0.767であり、焦点距離は81.6(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.371(mm)である。また、この第1実施例の中間焦点距離状態においては、防振係数は−1.348であり、焦点距離は200.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.518(mm)である。また、この第1実施例の望遠端状態においては、防振係数は−2.103であり、焦点距離は392.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.651(mm)である。
以下の表1に、第1実施例の諸元の値を掲げる。この表1において、全体諸元におけるβは変倍比、fは全系の焦点距離、FNOはFナンバー、2ωは画角、Yは像高、及び、TLは全長をそれぞれ表している。ここで、全長TLは、無限遠合焦時のレンズ面の第1面から像面Iまでの光軸上の距離を表している。また、レンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄νd及び第5欄ndは、d線(λ=587.6nm)に対するアッベ数及び屈折率を示している。また、曲率半径0.000は平面を示し、空気の屈折率1.00000は省略してある。なお、表1に示す面番号1〜33は、図1に示す番号1〜33に対応している。また、レンズ群焦点距離は第1〜第5レンズ群G1〜G5の各々の始面と焦点距離を示している。ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。
(表1)
[全体諸元]
β=4.8
広角端状態 中間焦点距離状態 望遠端状態
f = 81.6 〜 200.0 〜 392.0
FNO= 4.56 〜 5.38 〜 5.85
2ω = 29.6 〜 12.1 〜 6.2
Y = 21.6 〜 21.6 〜 21.6
TL = 246.4 〜 283.4 〜 302.5

[レンズデータ]
m r d νd nd
1 182.816 2.500 35.7 1.90265
2 92.566 10.000 82.6 1.49782
3 -707.416 0.100
4 83.365 9.200 95.0 1.43700
5 1420.361 D1
6 117.082 6.400 34.9 1.80100
7 -117.044 2.200 82.6 1.49782
8 61.183 5.810
9 -265.081 2.000 46.6 1.81600
10 30.785 4.600 25.5 1.80518
11 92.264 6.200
12 -56.342 2.000 42.7 1.83481
13 158.965 D2
14 112.252 4.600 67.9 1.59319
15 -78.685 0.100
16 67.612 1.800 31.3 1.90366
17 35.499 6.400 67.9 1.59319
18 -238.177 D3
19 -58.467 1.600 54.6 1.72916
20 38.999 3.600 35.7 1.90265
21 146.900 D4
22 0.000 2.000 開口絞りS
23 124.142 3.400 44.8 1.74400
24 -124.142 0.100
25 26.615 6.800 70.3 1.48749
26 0.000 2.000 29.4 1.95000
27 26.437 4.800 52.2 1.51742
28 0.000 17.600
29 176.178 6.000 33.7 1.64769
30 -19.703 1.600 65.4 1.60300
31 0.000 11.270
32 -22.131 1.600 42.7 1.83481
33 -33.748 BF

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 161.714
第2レンズ群 6 -32.531
第3レンズ群 14 50.816
第4レンズ群 19 -70.030
第5レンズ群 23 59.673
この第1実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔D2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D3、第4レンズ群G4と第5レンズ群G5とともに移動する開口絞りSとの軸上空気間隔D4、及び、バックフォーカスBFは、変倍に際して変化する。次の表2に、無限遠合焦時の広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔D1〜D4及びバックフォーカスBFの値を示す。なお、バックフォーカスBFは、最も像側のレンズ面(図1における第33面)から像面Iまでの光軸上の距離を表している。この説明は以降の実施例においても同様である。
(表2)
[可変間隔データ]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
D1 8.225 〜 45.191 〜 64.292
D2 27.059 〜 15.341 〜 3.056
D3 5.388 〜 17.106 〜 29.391
D4 26.684 〜 11.153 〜 2.382
BF 52.8 〜 68.3 〜 77.1
次の表3に、この第1実施例における各条件式対応値を示す。なおこの表3において、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f4は第4レンズ群G4の焦点距離を、f5は第5レンズ群G5の焦点距離を、それぞれ表している。以上の符号の説明は以降の実施例においても同様である。
(表3)
(1)f1/(−f2)=5.0
(2)f1/(−f4)=2.3
(3)f1/f5 =2.7
(4)(−f4)/f5=1.2
(5)(−f2)/f5=0.6
このように、この第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(5)を全て満足している。
この第1実施例の広角端状態での無限遠合焦状態の収差図を図2(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図3(a)に示し、望遠端状態での無限遠合焦状態の収差図を図4(a)に示す。また、第1実施例の広角端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.371)を行ったときのコマ収差図を図2(b)に示し、中間焦点距離状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.518)を行ったときのコマ収差図を図3(b)に示し、望遠端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.651)を行った時のコマ収差図を図4(b)に示す。各収差図において、FNOはFナンバーを、Aは半画角を、dはd線(λ=587.6nm)を、gはg線(λ=435.6nm)を、それぞれ示している。また、非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。この収差図の説明は以降の実施例においても同様である。各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正されており、優れた結像性能を有することがわかる。
[第2実施例]
図5は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図5に示す変倍光学系ZL2は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、から構成されている。また、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合レンズ、及び、両凸レンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL21と両凹レンズL22とを接合した接合レンズ、両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合レンズ、及び、両凹レンズL25から構成されている。また、第3レンズ群G3は、物体側から順に、両凸レンズL31、及び、両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33とを接合した接合レンズから構成されている。また、第4レンズ群G4は、物体側から順に、両凹レンズL41と両凸レンズL42とを接合した接合レンズで構成されている。また、第5レンズ群G5は、物体側から順に、両凸レンズL51、及び、両凸レンズL52と物体側に凹面を向けた負メニスカスレンズL53とを接合した接合レンズで構成されている。また、第6レンズ群G6は、物体側から順に、両凸レンズL61と両凹レンズL62とを接合した接合レンズで構成されている。
この第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1、第3レンズ群G3、第5レンズ群G5及び第6レンズ群G6が光軸上を物体方向に移動し、第2レンズ群G2及び第4レンズ群G4が像面Iに対して光軸方向に固定されている。また、開口絞りSは第5レンズ群G5の物体側に配置されており、変倍に際して第5レンズ群G5とともに移動する。
また、無限遠から近距離物体への合焦は、第3レンズ群G3を像側に移動させることにより行う。
また、像ぶれ補正(防振)は、第2レンズ群G2の両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合レンズを防振レンズ群とし、この防振レンズ群を光軸と直交する方向の成分を含むように移動させることにより行う。この第2実施例の広角端状態においては、防振係数は−0.637であり、焦点距離は72.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.395(mm)である。また、この第2実施例の中間焦点距離状態においては、防振係数は−1.158であり、焦点距離は200.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.603(mm)である。また、この第2実施例の望遠端状態においては、防振係数は−1.763であり、焦点距離は390.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.772(mm)である。
以下の表4に、第2実施例の諸元の値を掲げる。なお、表4に示す面番号1〜30は、図5に示す番号1〜30に対応している。また、レンズ群焦点距離は第1〜第6レンズ群G1〜G6の各々の始面と焦点距離を示している。
(表4)
[全体諸元]
β=5.4
広角端状態 中間焦点距離状態 望遠端状態
f = 72.0 〜 200.0 〜 390.0
FNO= 4.54 〜 5.44 〜 5.88
2ω = 33.7 〜 12.0 〜 6.2
Y = 21.6 〜 21.6 〜 21.6
TL = 244.3 〜 290.3 〜 309.3

[レンズデータ]
m r d νd nd
1 218.093 1.800 40.7 1.88300
2 94.341 10.098 82.6 1.49782
3 -579.376 0.100
4 90.320 9.392 82.6 1.49782
5 -1839.350 D1
6 -1407.394 4.344 25.5 1.80518
7 -80.390 2.000 67.9 1.59319
8 128.565 4.528
9 -287.557 1.900 42.7 1.83481
10 40.640 3.951 23.8 1.84666
11 116.253 5.759
12 -69.042 1.800 42.7 1.83481
13 177.936 D2
14 102.836 4.827 60.2 1.64000
15 -70.986 0.100
16 85.954 5.583 61.2 1.58913
17 -58.889 2.000 23.8 1.84666
18 -910.681 D3
19 -57.570 1.800 47.4 1.78800
20 50.018 3.583 23.8 1.84666
21 -2308.874 D4
22 0.000 2.000 開口絞りS
23 1105.472 3.337 50.3 1.71999
24 -60.251 0.100
25 53.693 5.265 70.3 1.48749
26 -61.018 2.000 23.8 1.84666
27 -839.528 D5
28 43.363 5.139 28.4 1.72825
29 -106.243 1.500 40.7 1.88300
30 33.800 BF

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 151.809
第2レンズ群 6 -32.015
第3レンズ群 14 53.583
第4レンズ群 19 -82.521
第5レンズ群 23 58.368
第6レンズ群 28 -110.027
この第2実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔D2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D3、第4レンズ群G4と第5レンズ群G5とともに移動する開口絞りSとの軸上空気間隔D4、第5レンズ群G5と第6レンズ群G6との軸上空気間隔D5、及び、バックフォーカスBFは、変倍に際して変化する。次の表5に、無限遠合焦時の広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔D1〜D5及びバックフォーカスBFの値を示す。
(表5)
[可変間隔データ]
広角端状態 中間焦点距離状態 望遠端状態
f 72.0 〜 200.0 〜 390.0
D1 2.000 〜 47.946 〜 67.000
D2 28.700 〜 17.520 〜 3.000
D3 15.940 〜 29.759 〜 42.880
D4 29.040 〜 8.875 〜 2.000
D5 30.005 〜 22.265 〜 23.642
BF 55.7 〜 81.0 〜 87.9
次の表6に、この第2実施例における各条件式対応値を示す。
(表6)
(1)f1/(−f2)=4.7
(2)f1/(−f4)=1.8
(3)f1/f5 =2.6
(4)(−f4)/f5=1.4
(5)(−f2)/f5=0.6
このように、この第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(5)を全て満足している。
この第2実施例の広角端状態での無限遠合焦状態の収差図を図6(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図7(a)に示し、望遠端状態での無限遠合焦状態の収差図を図8(a)に示す。また、第2実施例の広角端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.395)を行ったときのコマ収差図を図6(b)に示し、中間焦点距離状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.603)を行ったときのコマ収差図を図7(b)に示し、望遠端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.772)を行った時のコマ収差図を図8(b)に示す。各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正されており、優れた結像性能を有することがわかる。
[第3実施例]
図9は、第3実施例に係る変倍光学系ZL3の構成を示す図である。この図9に示す変倍光学系ZL3は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、から構成されている。また、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合レンズ、及び、両凸レンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、両凸レンズL21と両凹レンズL22とを接合した接合レンズ、物体側に凹面を向けた正メニスカスレンズL23と両凹レンズL24とを接合した接合レンズ、及び、両凹レンズL25から構成されている。また、第3レンズ群G3は、物体側から順に、両凸レンズL31、及び、両凸レンズL32と両凹レンズL33とを接合した接合レンズから構成されている。また、第4レンズ群G4は、物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42とを接合した接合レンズで構成されている。また、第5レンズ群G5は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL51と両凸レンズL52とを接合した接合レンズ、及び、両凸レンズL53と物体側に凹面を向けた負メニスカスレンズL54とを接合した接合レンズで構成されている。また、第6レンズ群G6は、物体側から順に、両凸レンズL61と両凹レンズL62とを接合した接合レンズで構成されている。
この第3実施例に係る変倍光学系ZL3は、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1、第3レンズ群G3、第5レンズ群G5及び第6レンズ群G6が光軸上を物体方向に移動し、第2レンズ群G2及び第4レンズ群G4が像面Iに対して光軸方向に固定されている。また、開口絞りSは第5レンズ群G5の物体側に配置されており、変倍に際して第5レンズ群G5とともに移動する。
また、無限遠から近距離物体への合焦は、第3レンズ群G3を像側に移動させることにより行う。
また、像ぶれ補正(防振)は、第2レンズ群G2全体を防振レンズ群とし、この防振レンズ群を光軸と直交する方向の成分を含むように移動させることにより行う。この第3実施例の広角端状態においては、防振係数は−1.972であり、焦点距離は72.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.127(mm)である。また、この第3実施例の中間焦点距離状態においては、防振係数は−3.534であり、焦点距離は200.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.198(mm)である。また、この第3実施例の望遠端状態においては、防振係数は−5.379であり、焦点距離は390.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.253(mm)である。
以下の表7に、第3実施例の諸元の値を掲げる。なお、表7に示す面番号1〜31は、図9に示す番号1〜31に対応している。また、レンズ群焦点距離は第1〜第6レンズ群G1〜G6の各々の始面と焦点距離を示している。
(表7)
[全体諸元]
β=5.4
広角端状態 中間焦点距離状態 望遠端状態
f = 72.0 〜 200.0 〜 390.0
FNO= 4.52 〜 5.34 〜 5.78
2ω = 34.0 〜 12.1 〜 6.2
Y = 21.6 〜 21.6 〜 21.6
TL = 239.3 〜 285.8 〜 304.3

[レンズデータ]
m r d νd nd
1 235.129 2.000 40.7 1.88300
2 85.937 10.435 82.6 1.49782
3 -492.987 0.100
4 81.734 9.789 82.6 1.49782
5 -2477.191 D1
6 94.480 3.279 28.7 1.79504
7 -1045.056 2.000 67.9 1.59319
8 57.468 3.373
9 -137.861 3.251 28.7 1.79504
10 -48.070 2.000 67.9 1.59319
11 69.776 3.889
12 -56.313 1.800 49.6 1.77250
13 135.256 D2
14 220.803 5.100 67.9 1.59319
15 -51.295 0.100
16 48.045 5.380 67.9 1.59319
17 -156.768 2.000 31.3 1.90366
18 209.257 D3
19 -51.770 1.500 54.6 1.72916
20 41.489 3.613 34.9 1.80100
21 331.492 D4
22 0.000 2.000 開口絞りS
23 86.564 2.000 40.7 1.88300
24 47.702 5.771 52.2 1.51742
25 -52.610 0.100
26 60.874 4.753 82.6 1.49782
27 -65.980 2.000 23.8 1.84666
28 -423.943 D5
29 43.795 3.743 27.6 1.75520
30 -80.630 1.500 40.7 1.88300
31 36.787 BF

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 151.723
第2レンズ群 6 -31.512
第3レンズ群 14 48.052
第4レンズ群 19 -67.397
第5レンズ群 23 58.111
第6レンズ群 29 -140.788
この第3実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔D2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D3、第4レンズ群G4と第5レンズ群G5とともに移動する開口絞りSとの軸上空気間隔D4、第5レンズ群G5と第6レンズ群G6との軸上空気間隔D5、及び、バックフォーカスBFは、変倍に際して変化する。次の表8に、無限遠合焦時の広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔D1〜D5及びバックフォーカスBFの値を示す。
(表8)
[可変間隔データ]
広角端状態 中間焦点距離状態 望遠端状態
f 72.0 〜 200.0 〜 390.0
D1 2.000 〜 48.459 〜 67.000
D2 25.107 〜 13.069 〜 2.000
D3 6.466 〜 18.504 〜 29.573
D4 29.312 〜 12.120 〜 2.428
D5 32.947 〜 32.202 〜 30.353
BF 55.1 〜 73.0 〜 84.5
次の表9に、この第3実施例における各条件式対応値を示す。
(表9)
(1)f1/(−f2)=4.8
(2)f1/(−f4)=2.3
(3)f1/f5 =2.6
(4)(−f4)/f5=1.2
(5)(−f2)/f5=0.5
このように、この第3実施例に係る変倍光学系ZL3は、上記条件式(1)〜(5)を全て満足している。
この第3実施例の広角端状態での無限遠合焦状態の収差図を図10(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図11(a)に示し、望遠端状態での無限遠合焦状態の収差図を図12(a)に示す。また、第3実施例の広角端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.127)を行ったときのコマ収差図を図10(b)に示し、中間焦点距離状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.198)を行ったときのコマ収差図を図11(b)に示し、望遠端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.253)を行った時のコマ収差図を図12(b)に示す。各収差図から明らかなように、第3実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正されており、優れた結像性能を有することがわかる。
[第4実施例]
図13は、第4実施例に係る変倍光学系ZL4の構成を示す図である。この図13に示す変倍光学系ZL4は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、から構成されている。また、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合レンズ、及び、両凸レンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、両凸レンズL21と両凹レンズL22とを接合した接合レンズ、両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合レンズ、及び、両凹レンズL25から構成されている。また、第3レンズ群G3は、物体側から順に、両凸レンズL31、及び、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33とを接合した接合レンズから構成されている。また、第4レンズ群G4は、物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42とを接合した接合レンズで構成されている。また、第5レンズ群G5は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL51と両凸レンズL52とを接合した接合レンズ、及び、両凸レンズL53と物体側に凹面を向けた負メニスカスレンズL54とを接合した接合レンズで構成されている。また、第6レンズ群G6は、物体側から順に、両凸レンズL61と両凹レンズL62とを接合した接合レンズで構成されている。
この第4実施例に係る変倍光学系ZL4は、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1、第3レンズ群G3、第5レンズ群G5及び第6レンズ群G6が光軸上を物体方向に移動し、第2レンズ群G2及び第4レンズ群G4が像面Iに対して光軸方向に固定されている。また、開口絞りSは第5レンズ群G5の物体側に配置されており、変倍に際して第5レンズ群G5とともに移動する。
また、無限遠から近距離物体への合焦は、第3レンズ群G3を像側に移動させることにより行う。
また、像ぶれ補正(防振)は、第2レンズ群G2の両凹レンズL23と物体側に凸面を向けた正メニスカスレンズL24とを接合した接合レンズを防振レンズ群とし、この防振レンズ群を光軸と直交する方向の成分を含むように移動させることにより行う。この第4実施例の広角端状態においては、防振係数は−0.888であり、焦点距離は82.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.322(mm)である。また、この第4実施例の中間焦点距離状態においては、防振係数は−1.454であり、焦点距離は200.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.480(mm)である。また、この第4実施例の望遠端状態においては、防振係数は−2.176であり、焦点距離は390.0(mm)であるので、0.2°の回転ぶれを補正するための防振レンズ群の移動量は−0.626(mm)である。
以下の表10に、第4実施例の諸元の値を掲げる。なお、表10に示す面番号1〜31は、図13に示す番号1〜31に対応している。また、レンズ群焦点距離は第1〜第6レンズ群G1〜G6の各々の始面と焦点距離を示している。
(表10)
[全体諸元]
β=4.8
広角端状態 中間焦点距離状態 望遠端状態
f = 82.0 〜 200.0 〜 390.0
FNO= 5.05 〜 5.61 〜 5.82
2ω = 29.7 〜 12.0 〜 6.2
Y = 21.6 〜 21.6 〜 21.6
TL = 241.3 〜 283.3 〜 303.3

[レンズデータ]
m r d νd nd
1 227.795 2.000 40.7 1.88300
2 84.747 10.413 82.6 1.49782
3 -538.594 0.100
4 82.998 9.958 82.6 1.49782
5 -1048.042 D1
6 170.969 6.158 34.9 1.80100
7 -66.891 2.000 65.4 1.60300
8 82.527 5.163
9 -168.234 2.000 47.4 1.78800
10 41.763 3.001 23.8 1.84666
11 88.369 6.493
12 -43.051 1.800 46.6 1.81600
13 411.913 D2
14 137.043 4.617 63.3 1.61800
15 -72.111 0.100
16 62.009 2.000 31.3 1.90366
17 34.150 6.473 63.3 1.61800
18 -167.969 D3
19 -50.276 1.500 50.3 1.71999
20 34.293 4.000 28.7 1.79504
21 221.433 D4
22 0.000 2.000 開口絞りS
23 178.755 2.000 23.8 1.84666
24 75.314 5.063 63.9 1.51680
25 -50.146 0.107
26 72.928 4.620 58.8 1.51823
27 -62.568 2.000 23.8 1.84666
28 -197.918 D5
29 42.990 4.937 29.6 1.71736
30 -55.338 1.500 42.7 1.83481
31 37.334 BF

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 148.584
第2レンズ群 6 -29.113
第3レンズ群 14 44.313
第4レンズ群 19 -63.143
第5レンズ群 23 59.877
第6レンズ群 29 -157.384
この第4実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔D1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔D2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔D3、第4レンズ群G4と第5レンズ群G5とともに移動する開口絞りSとの軸上空気間隔D4、第5レンズ群G5と第6レンズ群G6との軸上空気間隔D5、及び、バックフォーカスBFは、変倍に際して変化する。次の表11に、無限遠合焦時の広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔D1〜D5及びバックフォーカスBFの値を示す。
(表11)
[可変間隔データ]
広角端状態 中間焦点距離状態 望遠端状態
f 82.0 〜 200.0 〜 390.0
D1 2.299 〜 44.305 〜 64.299
D2 24.152 〜 13.739 〜 2.000
D3 7.126 〜 17.538 〜 29.278
D4 17.672 〜 6.713 〜 2.399
D5 32.546 〜 31.055 〜 23.798
BF 58.1 〜 70.5 〜 82.1
次の表12に、この第4実施例における各条件式対応値を示す。
(表12)
(1)f1/(−f2)=5.1
(2)f1/(−f4)=2.4
(3)f1/f5 =2.5
(4)(−f4)/f5=1.1
(5)(−f2)/f5=0.5
このように、この第4実施例に係る変倍光学系ZL4は、上記条件式(1)〜(5)を全て満足している。
この第4実施例の広角端状態での無限遠合焦状態の収差図を図14(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図15(a)に示し、望遠端状態での無限遠合焦状態の収差図を図16(a)に示す。また、第3実施例の広角端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.322)を行ったときのコマ収差図を図14(b)に示し、中間焦点距離状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.480)を行ったときのコマ収差図を図15(b)に示し、望遠端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群のシフト量=−0.626)を行った時のコマ収差図を図16(b)に示す。各収差図から明らかなように、第4実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正されており、優れた結像性能を有することがわかる。
ZL(ZL1〜ZL4) 変倍光学系
G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群
G4 第4レンズ群 G5 第5レンズ群 S 開口絞り
1 カメラ(光学装置)

Claims (12)

  1. 物体側から順に、
    正の屈折力を有する第1レンズ群と、
    負の屈折力を有する第2レンズ群と、
    正の屈折力を有する第3レンズ群と、
    負の屈折力を有する第4レンズ群と、
    正の屈折力を有する第5レンズ群と、を有し、
    変倍に際し、前記第2レンズ群が像面に対して固定され、
    次式の条件を満足することを特徴とする変倍光学系。
    2.0 < f1/(−f2) < 6.1
    1.3 < f1/(−f4) < 3.0
    1.9 < f1/f5 < 3.2
    但し、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
    f4:前記第4レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
  2. 次式の条件を満足することを特徴とする請求項1に記載の変倍光学系。
    0.8 < (−f4)/f5 < 1.8
    但し、
    f4:前記第4レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
  3. 次式の条件を満足することを特徴とする請求項1または2に記載の変倍光学系。
    0.3 < (−f2)/f5 < 0.8
    但し、
    f2:前記第2レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
  4. 前記第2レンズ群よりも像側に開口絞りを有することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。
  5. 前記開口絞りは、前記第3レンズ群から前記第5レンズ群の間に配置されていることを特徴とする請求項4に記載の変倍光学系。
  6. 前記開口絞りは、前記第3レンズ群と前記第4レンズ群との間に配置されていることを特徴とする請求項5に記載の変倍光学系。
  7. 合焦に際し、前記第3レンズ群の少なくとも一部を光軸に沿って移動させることを特徴とする請求項1〜6のいずれか一項に記載の変倍光学系。
  8. 前記第2レンズ群から前記第5レンズ群の少なくとも一部を光軸と直交方向の成分を含むように移動させることを特徴とする請求項1〜7のいずれか一項に記載の変倍光学系。
  9. 前記第2レンズ群の少なくとも一部を光軸と直交方向の成分を含むように移動させることを特徴とする請求項8に記載の変倍光学系。
  10. 全てのレンズ面が球面で構成されていることを特徴とする請求項1〜9のいずれか一項に記載の変倍光学系。
  11. 物体の像を所定の像面上に結像させる請求項1〜10のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。
  12. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、
    変倍に際し、前記第2レンズ群が像面に対して固定されるように配置し、
    次式の条件を満足するように配置することを特徴とする変倍光学系。
    2.0 < f1/(−f2) < 6.1
    1.3 < f1/(−f4) < 3.0
    1.9 < f1/f5 < 3.2
    但し、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
    f4:前記第4レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
JP2013012752A 2013-01-28 2013-01-28 変倍光学系、光学装置、及び、変倍光学系の製造方法 Active JP6108075B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013012752A JP6108075B2 (ja) 2013-01-28 2013-01-28 変倍光学系、光学装置、及び、変倍光学系の製造方法
PCT/JP2014/000396 WO2014115565A1 (ja) 2013-01-28 2014-01-27 変倍光学系、光学装置、及び、変倍光学系の製造方法
CN201810303730.7A CN108627888B (zh) 2013-01-28 2014-01-27 变倍光学系统和光学装置
CN201480006342.2A CN104956248B (zh) 2013-01-28 2014-01-27 变倍光学系统、光学装置和变倍光学系统的制造方法
US14/809,242 US10459207B2 (en) 2013-01-28 2015-07-26 Zooming optical system, optical apparatus, and manufacturing method for the zooming optical system
US16/656,117 US11221469B2 (en) 2013-01-28 2019-10-17 Zooming optical system, optical apparatus, and manufacturing method for the zooming optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012752A JP6108075B2 (ja) 2013-01-28 2013-01-28 変倍光学系、光学装置、及び、変倍光学系の製造方法

Publications (2)

Publication Number Publication Date
JP2014145801A true JP2014145801A (ja) 2014-08-14
JP6108075B2 JP6108075B2 (ja) 2017-04-05

Family

ID=51426130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012752A Active JP6108075B2 (ja) 2013-01-28 2013-01-28 変倍光学系、光学装置、及び、変倍光学系の製造方法

Country Status (1)

Country Link
JP (1) JP6108075B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080824A (ja) * 2014-10-15 2016-05-16 株式会社シグマ 防振機能を備えた変倍結像光学系
JP7029611B1 (ja) 2021-02-17 2022-03-04 パナソニックIpマネジメント株式会社 ズームレンズ系とそれを備える撮像装置および交換レンズ装置
JP7400483B2 (ja) 2019-03-18 2023-12-19 株式会社リコー ズームレンズ系、レンズ鏡筒及び撮像装置
US11906717B2 (en) 2021-02-17 2024-02-20 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, and image capture device and interchangeable lens unit including the zoom lens system
US11953662B2 (en) 2020-02-28 2024-04-09 Ricoh Company, Ltd. Zoom lens, lens barrel, and image-capturing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147314A (ja) * 1983-02-12 1984-08-23 Minolta Camera Co Ltd ズ−ムレンズ系
JPH04186211A (ja) * 1990-11-20 1992-07-03 Canon Inc 高変倍ズームレンズ
JPH04186212A (ja) * 1990-11-20 1992-07-03 Canon Inc 高変倍ズームレンズ
JPH04186213A (ja) * 1990-11-20 1992-07-03 Canon Inc 高変倍ズームレンズ
JP2013092554A (ja) * 2011-10-24 2013-05-16 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014106424A (ja) * 2012-11-28 2014-06-09 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147314A (ja) * 1983-02-12 1984-08-23 Minolta Camera Co Ltd ズ−ムレンズ系
JPH04186211A (ja) * 1990-11-20 1992-07-03 Canon Inc 高変倍ズームレンズ
JPH04186212A (ja) * 1990-11-20 1992-07-03 Canon Inc 高変倍ズームレンズ
JPH04186213A (ja) * 1990-11-20 1992-07-03 Canon Inc 高変倍ズームレンズ
JP2013092554A (ja) * 2011-10-24 2013-05-16 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014106424A (ja) * 2012-11-28 2014-06-09 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080824A (ja) * 2014-10-15 2016-05-16 株式会社シグマ 防振機能を備えた変倍結像光学系
JP7400483B2 (ja) 2019-03-18 2023-12-19 株式会社リコー ズームレンズ系、レンズ鏡筒及び撮像装置
US11953662B2 (en) 2020-02-28 2024-04-09 Ricoh Company, Ltd. Zoom lens, lens barrel, and image-capturing device
JP7029611B1 (ja) 2021-02-17 2022-03-04 パナソニックIpマネジメント株式会社 ズームレンズ系とそれを備える撮像装置および交換レンズ装置
JP2022125453A (ja) * 2021-02-17 2022-08-29 パナソニックIpマネジメント株式会社 ズームレンズ系とそれを備える撮像装置および交換レンズ装置
US11906717B2 (en) 2021-02-17 2024-02-20 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, and image capture device and interchangeable lens unit including the zoom lens system

Also Published As

Publication number Publication date
JP6108075B2 (ja) 2017-04-05

Similar Documents

Publication Publication Date Title
JP2016126278A (ja) ズームレンズ及び撮像装置
JP6108075B2 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JPWO2017057662A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JPWO2018074413A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6354257B2 (ja) 変倍光学系及び撮像装置
JP5958018B2 (ja) ズームレンズ、撮像装置
JP5885026B2 (ja) 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法
JPWO2016104742A1 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP2017068116A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6146020B2 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP6281200B2 (ja) 変倍光学系及び光学装置
JP6620998B2 (ja) 変倍光学系及び光学装置
JP5540513B2 (ja) 変倍光学系、及び、この変倍光学系を有する光学機器
JP2015191060A (ja) 変倍光学系、撮像装置及び変倍光学系の製造方法
JP6198099B2 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP6108076B2 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP6198098B2 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP6232806B2 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP6232805B2 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP6171358B2 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP5871163B2 (ja) 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法
JP6601471B2 (ja) 変倍光学系及び光学装置
JPWO2016194811A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP2017156429A (ja) 光学系、光学機器および光学系の製造方法
JP2016156902A (ja) ズームレンズ、光学機器及びズームレンズの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170221

R150 Certificate of patent or registration of utility model

Ref document number: 6108075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250