JP2014145565A - Refrigerator and chiller employing the same - Google Patents

Refrigerator and chiller employing the same Download PDF

Info

Publication number
JP2014145565A
JP2014145565A JP2013015732A JP2013015732A JP2014145565A JP 2014145565 A JP2014145565 A JP 2014145565A JP 2013015732 A JP2013015732 A JP 2013015732A JP 2013015732 A JP2013015732 A JP 2013015732A JP 2014145565 A JP2014145565 A JP 2014145565A
Authority
JP
Japan
Prior art keywords
pressure
compressor
evaporator
stopped
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013015732A
Other languages
Japanese (ja)
Other versions
JP6086213B2 (en
Inventor
Katsutoshi Matsunaga
勝利 松永
Hisami Matsuya
久美 松矢
Koji Matsubayashi
浩司 松林
Shinji Horikawa
伸二 堀川
Daisuke Mori
大輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013015732A priority Critical patent/JP6086213B2/en
Priority to CN201310594127.6A priority patent/CN103968588B/en
Publication of JP2014145565A publication Critical patent/JP2014145565A/en
Application granted granted Critical
Publication of JP6086213B2 publication Critical patent/JP6086213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator capable of detecting refrigerant leakage caused by damage of an evaporator easily and at low cost, and a chiller.SOLUTION: A pressure sensor 13 is provided in any location from an outlet of an expansion valve 5 to an inlet of a compressor 3 in a vapor compression type refrigerator 1. On the basis of detection output from the pressure sensor 13 during stop of the compressor 3, the presence/absence of refrigerant leakage caused by damage of an evaporator 6 is monitored. Preferably, at an inlet side of the expansion valve 5, a liquid solenoid valve 10 is provided which is opened/closed while interlocked with start/stop of the compressor 3. The presence/absence of refrigerant leakage is monitored by monitoring whether the state where pressure detected by the pressure sensor 13 is equal to or lower than preset pressure is continued for a preset time or longer in the state where the compressor 3 is stopped and the liquid solenoid valve 10 is closed.

Description

本発明は、蒸気圧縮式の冷凍機と、これを用いたチラーとに関するものである。   The present invention relates to a vapor compression refrigerator and a chiller using the same.

従来、下記特許文献1に開示されるように、蒸気圧縮式の冷凍機を用いたチラーが知られている。この種のチラーにおいて、蒸発器の破損による冷媒漏れが生じた場合、それを容易に安価に検知できることが望ましい。特に、蒸発器において冷媒と水とを熱交換して冷水を製造する場合、蒸発器の破損による冷媒漏れが生じると、冷水に冷媒やそれに溶け込んだ油が混入することになり、冷水の用途によっては衛生上好ましくないので、冷媒漏れを容易に検知できることが望まれる。   Conventionally, as disclosed in Patent Document 1 below, a chiller using a vapor compression refrigerator is known. In this type of chiller, it is desirable that if a refrigerant leak occurs due to the breakage of the evaporator, it can be easily and inexpensively detected. In particular, when producing cold water by exchanging heat between the refrigerant and water in the evaporator, if the refrigerant leaks due to damage to the evaporator, the refrigerant or oil dissolved in it will be mixed in the cold water. Is unfavorable for hygiene, and it is desirable that refrigerant leakage can be easily detected.

特開2009−14298号公報JP 2009-14298 A

本発明が解決しようとする課題は、蒸発器の破損による冷媒漏れを容易に安価に検知することができる冷凍機およびチラーを提供することにある。   The problem to be solved by the present invention is to provide a refrigerator and a chiller that can easily and inexpensively detect refrigerant leakage due to damage to an evaporator.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、蒸気圧縮式冷凍機の膨張弁出口から圧縮機入口までの間のいずれかの箇所に、圧力検出手段が設けられ、圧縮機停止中における前記圧力検出手段による検出圧力に基づき、蒸発器の破損による冷媒漏れの有無を監視することを特徴とする冷凍機である。   The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is characterized in that pressure detection is performed at any point between the expansion valve outlet and the compressor inlet of the vapor compression refrigerator. Means for monitoring the presence or absence of refrigerant leakage due to breakage of the evaporator based on the pressure detected by the pressure detection means while the compressor is stopped.

請求項1に記載の発明によれば、膨張弁出口から圧縮機入口までの間において、圧縮機停止中の圧力を監視することで、蒸発器の破損による冷媒漏れの有無を容易に安価に監視することができる。   According to the first aspect of the present invention, by monitoring the pressure while the compressor is stopped between the expansion valve outlet and the compressor inlet, it is possible to easily and inexpensively monitor the presence or absence of refrigerant leakage due to the breakage of the evaporator. can do.

請求項2に記載の発明は、膨張弁の入口側に、圧縮機の発停と連動して開閉される液電磁弁が設けられ、前記冷媒漏れの有無の監視は、圧縮機を停止すると共に液電磁弁を閉鎖した状態で、前記圧力検出手段による検出圧力が、設定圧力以下の状態を設定時間以上継続するか否かの監視であることを特徴とする請求項1に記載の冷凍機である。   According to a second aspect of the present invention, a liquid electromagnetic valve that is opened and closed in conjunction with the start and stop of the compressor is provided on the inlet side of the expansion valve, and the monitoring of the presence or absence of the refrigerant leakage stops the compressor. 2. The refrigerator according to claim 1, wherein in a state where the liquid electromagnetic valve is closed, monitoring is performed as to whether or not the pressure detected by the pressure detection unit continues a state equal to or lower than a set pressure for a set time or longer. is there.

請求項2に記載の発明によれば、圧縮機停止中、液電磁弁が閉じられることで、液電磁弁から圧縮機までは確実に閉鎖空間となる。従って、圧縮機停止中、その閉鎖空間内の圧力を監視し、その圧力が設定圧力以下の状態を設定時間以上継続するか否かにより、蒸発器の破損による冷媒漏れの有無の監視を容易に確実に行うことができる。   According to the second aspect of the present invention, the liquid electromagnetic valve is closed while the compressor is stopped, so that a closed space is surely formed from the liquid electromagnetic valve to the compressor. Therefore, when the compressor is stopped, the pressure in the closed space is monitored, and it is easy to monitor the presence or absence of refrigerant leakage due to the breakage of the evaporator depending on whether or not the pressure is kept below the set pressure for the set time or longer. It can be done reliably.

請求項3に記載の発明は、蒸発器の出口側に、圧縮機の吸入圧力を調整する吸入圧力調整弁が設けられ、前記圧力検出手段は、膨張弁と吸入圧力調整弁との間に設けられることを特徴とする請求項1または請求項2に記載の冷凍機である。   According to a third aspect of the present invention, a suction pressure adjusting valve for adjusting the suction pressure of the compressor is provided on the outlet side of the evaporator, and the pressure detecting means is provided between the expansion valve and the suction pressure adjusting valve. The refrigerator according to claim 1 or 2, wherein the refrigerator is provided.

請求項3に記載の発明によれば、吸入圧力調整弁が設けられる場合、膨張弁と吸入圧力調整弁との間で圧力を監視することで、蒸発器の破損による冷媒漏れの有無の監視を容易に確実に行うことができる。   According to the third aspect of the present invention, when the suction pressure adjustment valve is provided, the pressure is monitored between the expansion valve and the suction pressure adjustment valve, thereby monitoring the presence or absence of the refrigerant leakage due to the breakage of the evaporator. It can be done easily and reliably.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の冷凍機を備え、蒸発器には、膨張弁からの冷媒が通されると共に、この冷媒と間接熱交換して冷却を図られる被冷却液が通されることを特徴とするチラーである。   A fourth aspect of the invention includes the refrigerator according to any one of the first to third aspects, and the evaporator is supplied with refrigerant from the expansion valve and indirectly exchanges heat with the refrigerant. The chiller is characterized in that the liquid to be cooled is passed through.

請求項4に記載の発明によれば、チラーおいて、蒸発器の破損による冷媒漏れの有無の監視を容易に確実に行うことができる。   According to the fourth aspect of the present invention, in the chiller, it is possible to easily and reliably monitor the presence or absence of refrigerant leakage due to the breakage of the evaporator.

請求項5に記載の発明は、前記被冷却液としての水を貯留する冷水タンクを備え、この冷水タンク内の水は、蒸発器との間で循環可能とされると共に、冷水弁を介して冷水使用設備へ供給可能とされ、圧縮機停止中、前記圧力検出手段による検出圧力が、設定圧力以下の状態を設定時間以上継続すると、蒸発器の破損による冷媒漏れがあると判定して、その旨報知すると共に前記冷水弁を閉鎖することを特徴とする請求項4に記載のチラーである。   The invention according to claim 5 includes a cold water tank for storing water as the liquid to be cooled, and the water in the cold water tank can be circulated between the evaporator and via a cold water valve. When it is possible to supply to cold water use equipment and the compressor is stopped, if the pressure detected by the pressure detection means continues below the set pressure for a set time or more, it is determined that there is a refrigerant leak due to damage to the evaporator. The chiller according to claim 4, wherein the chiller is informed and the cold water valve is closed.

請求項5に記載の発明によれば、ウォータチラーにおいて、蒸発器の破損による冷媒漏れの有無の監視を容易に確実に行うことができる。そして、蒸発器の破損による冷媒漏れが検知されると、その旨報知すると共に冷水弁を閉鎖することで、冷媒や油の混入した冷水が使用されるのを防止することができる。   According to the fifth aspect of the present invention, in the water chiller, it is possible to easily and reliably monitor the presence or absence of refrigerant leakage due to the breakage of the evaporator. And if the refrigerant | coolant leakage by the failure | damage of an evaporator is detected, it can alert | report that and it can prevent that the cold water mixed with the refrigerant | coolant and oil is used by closing a cold water valve.

請求項6に記載の発明は、前記冷水タンクから前記冷水使用設備への冷水路には、前記冷水弁に代えてまたはこれに加えて冷水ポンプが設けられており、圧縮機停止中、前記圧力検出手段による検出圧力が、設定圧力以下の状態を設定時間以上継続すると、蒸発器の破損による冷媒漏れがあると判定して、その旨報知すると共に前記冷水ポンプを停止することを特徴とする請求項5に記載のチラーである。   According to a sixth aspect of the present invention, a chilled water passage from the chilled water tank to the chilled water use facility is provided with a chilled water pump instead of or in addition to the chilled water valve. When the detected pressure by the detecting means continues below the set pressure for a set time or longer, it is determined that there is a refrigerant leak due to breakage of the evaporator, and a notification to that effect is made and the cold water pump is stopped. Item 6. The chiller according to Item 5.

請求項6に記載の発明によれば、蒸発器の破損による冷媒漏れが検知されると、その旨報知すると共に冷水ポンプを停止することで、冷媒や油の混入した冷水が使用されるのを防止することができる。   According to the sixth aspect of the present invention, when refrigerant leakage due to the breakage of the evaporator is detected, the fact is notified and the chilled water pump is stopped so that chilled water mixed with refrigerant or oil is used. Can be prevented.

請求項7に記載の発明は、冷水タンクと蒸発器との間の水の循環は、循環ポンプの発停により切り替えられ、次の(a)〜(d)の内、少なくとも(b)を含むいずれか一以上の場合に、蒸発器の破損による冷媒漏れの有無を判定可能とされたことを特徴とする請求項5または請求項6に記載のチラーである。
(a)圧縮機を停止中であるが循環ポンプを作動中で、且つ圧縮機を停止してから所定時間内に、前記圧力検出手段による検出圧力が、第一設定圧力を規定時間以上継続して超えた後、この第一設定圧力を第一設定時間以上継続して下回った場合。
(b)圧縮機を停止中であるが循環ポンプを作動中で、且つ圧縮機を停止してから所定時間内に、前記圧力検出手段による検出圧力が、第一設定圧力を第二設定時間以上継続して下回った場合。
(c)圧縮機を停止中であるが循環ポンプを作動中で、且つ圧縮機を停止してから所定時間経過後に、前記圧力検出手段による検出圧力が、第二設定圧力を第二設定時間以上継続して下回った場合。
(d)圧縮機および循環ポンプを停止中に、前記圧力検出手段による検出圧力が、第二設定圧力を第二設定時間以上継続して下回った場合。
In the invention according to claim 7, the circulation of water between the cold water tank and the evaporator is switched by the start and stop of the circulation pump, and includes at least (b) among the following (a) to (d): The chiller according to claim 5 or 6, wherein in any one or more cases, it is possible to determine the presence or absence of refrigerant leakage due to damage to the evaporator.
(A) While the compressor is stopped, the circulating pump is operating, and within a predetermined time after the compressor is stopped, the pressure detected by the pressure detecting means continues the first set pressure for a specified time or more. When the pressure drops below the first set pressure for more than the first set time.
(B) While the compressor is stopped, the circulating pump is operating, and within a predetermined time after the compressor is stopped, the pressure detected by the pressure detecting means exceeds the first set pressure by a second set time or more. When continuously below.
(C) The compressor is stopped but the circulating pump is operating, and after a predetermined time has elapsed since the compressor was stopped, the pressure detected by the pressure detecting means exceeds the second set pressure by a second set time or more. When continuously below.
(D) When the pressure detected by the pressure detection means continues to fall below the second set pressure for a second set time or more while the compressor and the circulation pump are stopped.

請求項7に記載の発明によれば、蒸発器の破損の程度、言い換えれば蒸発器からの冷媒の漏れの程度に応じて、最適な監視を行うことができる。   According to the seventh aspect of the invention, optimum monitoring can be performed according to the degree of breakage of the evaporator, in other words, the degree of refrigerant leakage from the evaporator.

さらに、請求項8に記載の発明は、前記第一設定圧力は、前記冷凍機の冷媒の0℃の飽和圧力であることを特徴とする請求項7に記載のチラーである。   The invention according to claim 8 is the chiller according to claim 7, wherein the first set pressure is a saturation pressure of 0 ° C. of the refrigerant of the refrigerator.

請求項8に記載の発明によれば、水が凍結する限度である0℃を基準温度として用いることで、蒸発器の破損による冷媒漏れの判定を、さらに容易に確実に行うことができる。   According to the eighth aspect of the invention, by using 0 ° C., which is the limit of water freezing, as the reference temperature, it is possible to more easily and reliably determine the refrigerant leakage due to the breakage of the evaporator.

本発明によれば、蒸発器の破損による冷媒漏れを容易に安価に検知することができる冷凍機およびチラーを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerator and chiller which can detect the refrigerant | coolant leakage by the damage of an evaporator easily and cheaply are realizable.

本発明の冷凍機およびこれを用いたチラーの一実施例を示す概略図である。It is the schematic which shows one Example of the refrigerator of this invention, and a chiller using the same.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の冷凍機1およびこれを用いたチラー2の一実施例を示す概略図である。本実施例の冷凍機1は、蒸気圧縮式の冷凍機であり、圧縮機3、凝縮器4、膨張弁5および蒸発器6が順次環状に接続されて、冷媒を循環させる。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a refrigerator 1 of the present invention and a chiller 2 using the same. The refrigerator 1 of the present embodiment is a vapor compression refrigerator, and the compressor 3, the condenser 4, the expansion valve 5 and the evaporator 6 are sequentially connected in an annular manner to circulate the refrigerant.

圧縮機3は、ガス冷媒を圧縮して高温高圧にする。圧縮機3からの冷媒は、好ましくは油分離器7を介して、凝縮器4へ送られる。油分離器7は、圧縮機3からの冷媒に含まれる油の分離除去を図る。   The compressor 3 compresses the gas refrigerant to high temperature and pressure. The refrigerant from the compressor 3 is preferably sent to the condenser 4 via the oil separator 7. The oil separator 7 separates and removes oil contained in the refrigerant from the compressor 3.

凝縮器4は、圧縮機3からの冷媒を凝縮液化する。本実施例の凝縮器4は、ファン8を備える空冷式の熱交換器である。凝縮器4からの冷媒は、好ましくは受液器9および液電磁弁10を介して、膨張弁5へ送られる。   The condenser 4 condenses and liquefies the refrigerant from the compressor 3. The condenser 4 of this embodiment is an air-cooled heat exchanger that includes a fan 8. The refrigerant from the condenser 4 is preferably sent to the expansion valve 5 via the liquid receiver 9 and the liquid electromagnetic valve 10.

受液器9は、凝縮器4で液化された冷媒を一次的に貯留する。また、液電磁弁10は、圧縮機3の発停と連動して開閉される弁であり、膨張弁5への冷媒の供給の有無を切り替える。圧縮機3の運転中、液電磁弁10は開放され、圧縮機3の停止中、液電磁弁10は閉鎖される。なお、液電磁弁10は、文字通りの電磁弁に限らず、場合により電動弁により構成されてもよい。   The liquid receiver 9 temporarily stores the refrigerant liquefied by the condenser 4. The liquid electromagnetic valve 10 is a valve that is opened and closed in conjunction with the start and stop of the compressor 3, and switches whether the refrigerant is supplied to the expansion valve 5. During operation of the compressor 3, the liquid electromagnetic valve 10 is opened, and while the compressor 3 is stopped, the liquid electromagnetic valve 10 is closed. The liquid electromagnetic valve 10 is not limited to a literal electromagnetic valve, and may be constituted by an electric valve depending on circumstances.

膨張弁5は、凝縮器4からの冷媒を通過させることで、冷媒の圧力と温度とを低下させる。   The expansion valve 5 reduces the pressure and temperature of the refrigerant by allowing the refrigerant from the condenser 4 to pass therethrough.

蒸発器6は、冷媒の蒸発により、周囲から熱を奪う熱交換器である。冷凍機1は、後述するように本実施例ではチラー2に用いられるが、その場合、蒸発器6は、冷媒と被冷却液(たとえば水またはブライン)との間接熱交換器とされる。つまり、蒸発器6は、冷媒と被冷却液とを混ぜることなく熱交換する熱交換器であり、たとえばプレート式熱交換器から構成される。   The evaporator 6 is a heat exchanger that takes heat from the surroundings by evaporation of the refrigerant. As will be described later, the refrigerator 1 is used in the chiller 2 in this embodiment. In this case, the evaporator 6 is an indirect heat exchanger between the refrigerant and the liquid to be cooled (for example, water or brine). That is, the evaporator 6 is a heat exchanger that exchanges heat without mixing the refrigerant and the liquid to be cooled, and is configured by, for example, a plate heat exchanger.

蒸発器6にて気化された冷媒は、好ましくはアキュムレータ11を介して、圧縮機3へ戻される。蒸発器6とアキュムレータ11との間には、圧縮機3の吸入圧力を調整する吸入圧力調整弁(SPR弁)12を設けるのが好ましい。   The refrigerant vaporized in the evaporator 6 is preferably returned to the compressor 3 via the accumulator 11. A suction pressure adjusting valve (SPR valve) 12 that adjusts the suction pressure of the compressor 3 is preferably provided between the evaporator 6 and the accumulator 11.

さて、蒸発器6の破損による冷媒漏れの有無を監視するために、膨張弁5出口から圧縮機3入口までの間のいずれかの箇所に、冷媒の圧力を検出する圧力検出手段(13)が設けられる。この圧力検出手段は、本実施例では圧力センサ13であるが、場合により圧力スイッチでもよい。なお、蒸発器6と圧縮機3との間に吸入圧力調整弁12を設ける場合、圧力センサ13は、膨張弁5と吸入圧力調整弁12との間、より好ましくは蒸発器6と吸入圧力調整弁12との間に設けられる。   Now, in order to monitor the presence or absence of refrigerant leakage due to breakage of the evaporator 6, pressure detection means (13) for detecting the refrigerant pressure is provided at any location between the expansion valve 5 outlet and the compressor 3 inlet. Provided. The pressure detecting means is the pressure sensor 13 in this embodiment, but may be a pressure switch depending on circumstances. When the suction pressure adjustment valve 12 is provided between the evaporator 6 and the compressor 3, the pressure sensor 13 is provided between the expansion valve 5 and the suction pressure adjustment valve 12, more preferably the evaporator 6 and the suction pressure adjustment. It is provided between the valve 12.

圧縮機3の停止中、制御器(図示省略)は、圧力センサ13による検出圧力に基づき、蒸発器6の破損による冷媒漏れの有無を監視する。仮に、蒸発器6の破損による冷媒漏れがあれば、圧力センサ13の検出圧力が低下するので、蒸発器6の破損による冷媒漏れを検知することができる。   While the compressor 3 is stopped, a controller (not shown) monitors the presence or absence of refrigerant leakage due to breakage of the evaporator 6 based on the pressure detected by the pressure sensor 13. If there is a refrigerant leak due to breakage of the evaporator 6, the detected pressure of the pressure sensor 13 is lowered, so that the refrigerant leak due to breakage of the evaporator 6 can be detected.

特に、冷凍機1が液電磁弁10を備え、圧縮機3の停止中、液電磁弁10を閉じる構成の場合、液電磁弁10から圧縮機3までの区間は確実に閉鎖空間となるので、その閉鎖空間内の圧力を監視し、その圧力が設定圧力以下の状態を設定時間以上継続するか否かにより、蒸発器6の破損による冷媒漏れの有無の検知を容易に確実に行うことができる。   In particular, when the refrigerator 1 includes the liquid electromagnetic valve 10 and the liquid electromagnetic valve 10 is closed while the compressor 3 is stopped, the section from the liquid electromagnetic valve 10 to the compressor 3 is surely a closed space. The pressure in the enclosed space is monitored, and whether or not the refrigerant leaks due to breakage of the evaporator 6 can be easily and reliably detected depending on whether or not the pressure is kept below the set pressure for a set time. .

圧縮機3の停止中、圧力センサ13による検出圧力が設定圧力以下の状態を設定時間以上継続すれば、制御器は、蒸発器6の破損による冷媒漏れがあるとして、その旨ユーザに報知すればよい。たとえば、ブザーを鳴らしたり、画面に表示したりして、ユーザにお知らせすればよい。   When the compressor 3 is stopped, if the pressure detected by the pressure sensor 13 continues below the set pressure for a set time or longer, the controller informs the user that there is a refrigerant leak due to breakage of the evaporator 6. Good. For example, the user may be notified by sounding a buzzer or displaying it on the screen.

以上のような構成の冷凍機1は、各種の用途に用いられるが、本実施例ではチラー2に用いられる。本実施例のチラー2は、蒸発器6において水を冷却するウォータチラーとされる。つまり、蒸発器6における被冷却液は水とされ、蒸発器6は、冷媒流路14と水流路15とが形成された間接熱交換器とされる。そして、冷媒流路14には、膨張弁5からの冷媒が通される一方、水流路15には、冷水タンク16からの水が通される。そのために、蒸発器6の水流路15は、給水路17と戻し路18とを介して、冷水タンク16に接続される。なお、冷水タンク16の容量は、たとえば10トン以上の比較的大容量とされている。   The refrigerator 1 having the above configuration is used for various applications, but is used for the chiller 2 in this embodiment. The chiller 2 of the present embodiment is a water chiller that cools water in the evaporator 6. That is, the liquid to be cooled in the evaporator 6 is water, and the evaporator 6 is an indirect heat exchanger in which the refrigerant flow path 14 and the water flow path 15 are formed. The refrigerant from the expansion valve 5 is passed through the refrigerant flow path 14, while the water from the cold water tank 16 is passed through the water flow path 15. For this purpose, the water flow path 15 of the evaporator 6 is connected to the cold water tank 16 via a water supply path 17 and a return path 18. The capacity of the cold water tank 16 is, for example, a relatively large capacity of 10 tons or more.

給水路17には、循環ポンプ19が設けられている。従って、この循環ポンプ19を作動させることで、冷水タンク16からの水は、給水路17を介して蒸発器6へ供給され、蒸発器6内の水流路15を通った後、戻し路18を介して冷水タンク16へ戻される。このようにして、冷水タンク16内の水は、蒸発器6との間を循環可能である。蒸発器6において冷媒が蒸発する際の気化熱を利用して、循環水の冷却を図ることができる。   A circulation pump 19 is provided in the water supply path 17. Therefore, by operating this circulation pump 19, the water from the cold water tank 16 is supplied to the evaporator 6 through the water supply path 17, passes through the water flow path 15 in the evaporator 6, and then returns to the return path 18. To the cold water tank 16. In this way, the water in the cold water tank 16 can circulate between the evaporator 6. The circulating water can be cooled by utilizing the heat of vaporization when the refrigerant evaporates in the evaporator 6.

循環水の温度を検出するために、水温センサ20が設けられる。本実施例では、水温センサ20は、蒸発器6から冷水タンク16への戻し路18に設けられている。   A water temperature sensor 20 is provided to detect the temperature of the circulating water. In the present embodiment, the water temperature sensor 20 is provided on the return path 18 from the evaporator 6 to the cold water tank 16.

冷水タンク16内の水は、冷水路21を介して、各種の冷水使用設備(冷水使用箇所)へ供給可能とされている。冷水路21には、冷水タンク16の側から冷水ポンプ22と冷水弁23とが設けられており、冷水ポンプ22を作動させた状態で冷水弁23を開けると、冷水タンク16内の冷水を取り出すことができる。なお、本実施例の冷水ポンプ22は、圧力スイッチが内蔵されており、冷水弁23を閉じるとそれに伴い冷水ポンプ22も停止され、冷水弁23を開けるとそれに伴い冷水ポンプ22が作動する。また、冷水タンク16内の水の使用に伴い、ボールタップ(図示省略)などを用いて、冷水タンク16内には適宜給水され、冷水タンク16内の水位は所望に維持される。   The water in the cold water tank 16 can be supplied to various cold water use facilities (cold water use points) via the cold water channel 21. The chilled water passage 21 is provided with a chilled water pump 22 and a chilled water valve 23 from the chilled water tank 16 side. When the chilled water valve 23 is opened while the chilled water pump 22 is operated, the chilled water in the chilled water tank 16 is taken out. be able to. The cold water pump 22 of this embodiment has a built-in pressure switch. When the cold water valve 23 is closed, the cold water pump 22 is stopped accordingly. When the cold water valve 23 is opened, the cold water pump 22 is operated accordingly. Further, as the water in the cold water tank 16 is used, water is appropriately supplied into the cold water tank 16 using a ball tap (not shown) or the like, and the water level in the cold water tank 16 is maintained as desired.

さて、以上のような構成のチラー2は、制御器(図示省略)により、以下のように制御される。つまり、制御器は、圧縮機3、液電磁弁10、循環ポンプ19、冷水弁23の他、圧力センサ13および水温センサ20などに接続されており、これらセンサ13,20の検出信号などに基づき、圧縮機3、液電磁弁10、循環ポンプ19、冷水弁23などを制御する。   Now, the chiller 2 having the above-described configuration is controlled as follows by a controller (not shown). That is, the controller is connected to the pressure sensor 13 and the water temperature sensor 20 in addition to the compressor 3, the liquid electromagnetic valve 10, the circulation pump 19, the cold water valve 23, and the like based on the detection signals of these sensors 13 and 20. The compressor 3, the liquid electromagnetic valve 10, the circulation pump 19, the cold water valve 23, and the like are controlled.

冷水を製造するには、液電磁弁10を開いて圧縮機3を作動すればよい。この間、循環ポンプ19を作動させて、蒸発器6と冷水タンク16との間で水を循環する。この際、水温センサ20の検出温度に基づき、冷水タンク16内の水を所望温度に維持する。たとえば、水温センサ20の検出温度が目標温度(たとえば1℃)になると、圧縮機3を停止する一方、上限温度(たとえば3℃)になると、圧縮機3を再起動する。なお、循環ポンプ19は、通常、圧縮機3の発停に拘わらず常時運転しておくが、圧縮機3の停止中、省エネのために停止しておいてもよい。   In order to manufacture cold water, the liquid electromagnetic valve 10 may be opened and the compressor 3 may be operated. During this time, the circulation pump 19 is operated to circulate water between the evaporator 6 and the cold water tank 16. At this time, the water in the cold water tank 16 is maintained at a desired temperature based on the temperature detected by the water temperature sensor 20. For example, when the detected temperature of the water temperature sensor 20 reaches a target temperature (for example, 1 ° C.), the compressor 3 is stopped, and when the detected temperature reaches an upper limit temperature (for example, 3 ° C.), the compressor 3 is restarted. The circulation pump 19 is normally operated regardless of whether the compressor 3 is started or stopped, but may be stopped for energy saving while the compressor 3 is stopped.

圧縮機3の停止中、圧力センサ13による検出圧力が、設定圧力以下の状態を設定時間以上継続すると、蒸発器6の破損による冷媒漏れがあると判定して、その旨報知すると共に冷水弁23を閉鎖する。これにより、冷媒やそれに含まれる油が混入した冷水が使用されるのを未然に防止することができる。特に冷水タンク16が比較的大容量の場合、冷媒漏れの判定に多少の時間を要しても、汚染水が外部で使用されるのを未然に防止することができる。   While the compressor 3 is stopped, if the pressure detected by the pressure sensor 13 continues below the set pressure for a set time or longer, it is determined that there is a refrigerant leak due to breakage of the evaporator 6, and this is notified and the chilled water valve 23 Close. Thereby, it can prevent beforehand that the cold water which the refrigerant | coolant and the oil contained in it mixed is used. In particular, when the chilled water tank 16 has a relatively large capacity, it is possible to prevent the contaminated water from being used outside even if it takes some time to determine the refrigerant leakage.

より具体的には、本実施例のチラー2は、次の(a)〜(d)の内、少なくともいずれか一以上の場合に、蒸発器6の破損による冷媒漏れの有無を判定可能に構成されている。この際、特に(b)を含むのが好ましい。   More specifically, the chiller 2 of the present embodiment is configured to be able to determine the presence or absence of refrigerant leakage due to breakage of the evaporator 6 in at least one of the following (a) to (d). Has been. In this case, it is particularly preferable to include (b).

(a)圧縮機3を停止中であるが循環ポンプ19を作動中で、且つ圧縮機3を停止してから所定時間内に、圧力センサ13による検出圧力が、第一設定圧力を規定時間以上継続して超えた後、この第一設定圧力を第一設定時間以上継続して下回った場合。   (A) While the compressor 3 is stopped but the circulating pump 19 is operating and the compressor 3 is stopped, the pressure detected by the pressure sensor 13 exceeds the first set pressure within a predetermined time. When continuously exceeding this first set pressure for more than the first set time after exceeding.

(b)圧縮機3を停止中であるが循環ポンプ19を作動中で、且つ圧縮機3を停止してから所定時間内に、圧力センサ13による検出圧力が、第一設定圧力を第二設定時間以上継続して下回った場合。   (B) While the compressor 3 is stopped, the circulating pump 19 is in operation, and within a predetermined time after the compressor 3 is stopped, the pressure detected by the pressure sensor 13 is set to the first set pressure. When continuously below the hour.

(c)圧縮機3を停止中であるが循環ポンプ19を作動中で、且つ圧縮機3を停止してから所定時間経過後に、圧力センサ13による検出圧力が、第二設定圧力を第二設定時間以上継続して下回った場合。   (C) The compressor 3 is stopped but the circulating pump 19 is operating, and after a predetermined time has elapsed since the compressor 3 was stopped, the pressure detected by the pressure sensor 13 is set to the second set pressure. When continuously below the hour.

(d)圧縮機3および循環ポンプ19を停止中に、圧力センサ13による検出圧力が、第二設定圧力を第二設定時間以上継続して下回った場合。   (D) When the pressure detected by the pressure sensor 13 continues below the second set pressure for a second set time or more while the compressor 3 and the circulation pump 19 are stopped.

ここで、各条件中の所定時間、規定時間、第一設定時間および第二設定時間は、適宜に設定されるが、本実施例では、たとえば、所定時間とは2時間、規定時間とは30秒、第一設定時間とは60秒、第二設定時間とは30分とされる。   Here, the predetermined time, the specified time, the first set time, and the second set time in each condition are appropriately set. In this embodiment, for example, the predetermined time is 2 hours and the specified time is 30. Second, the first set time is 60 seconds, and the second set time is 30 minutes.

また、第一設定圧力および第二設定圧力も、適宜に設定されるが、第二設定圧力は第一設定圧力よりも低く設定される。また、第一設定圧力は、冷凍機1動作中の冷媒蒸発圧力(蒸発器6冷媒温度(たとえば−3℃)相当の飽和圧力)よりも高く、水温目標温度(たとえば1℃)相当の冷媒飽和圧力(冷凍機1停止により蒸発器6冷媒温度が水温目標温度(たとえば1℃)まで昇温したときの飽和圧力)よりも低い。さらに、第二設定圧力は、冷凍機1動作中の冷媒蒸発圧力(蒸発器6冷媒温度(たとえば−3℃)相当の飽和圧力)よりも低い(たとえば−15℃相当の冷媒飽和圧力)。   The first set pressure and the second set pressure are also set as appropriate, but the second set pressure is set lower than the first set pressure. The first set pressure is higher than the refrigerant evaporation pressure during operation of the refrigerator 1 (saturation pressure corresponding to the evaporator 6 refrigerant temperature (for example, −3 ° C.)) and the refrigerant saturation corresponding to the water temperature target temperature (for example, 1 ° C.). It is lower than the pressure (saturation pressure when the evaporator 6 refrigerant temperature is raised to the water temperature target temperature (for example, 1 ° C.) by stopping the refrigerator 1). Further, the second set pressure is lower than the refrigerant evaporation pressure during operation of the refrigerator 1 (saturation pressure corresponding to the evaporator 6 refrigerant temperature (for example, −3 ° C.)) (for example, refrigerant saturation pressure corresponding to −15 ° C.).

冷凍機1の動作中、冷媒で水を冷却する関係上、蒸発器6における冷媒温度は水温目標温度(たとえば1℃)よりも低温(たとえば−3℃)である。そして、水温センサ20の検出温度が水温目標温度になると圧縮機3を停止し、水温センサ20の検出温度が上限温度(たとえば3℃)になると再び圧縮機3を作動させる。   During the operation of the refrigerator 1, the refrigerant temperature in the evaporator 6 is lower (for example, −3 ° C.) than the water temperature target temperature (for example, 1 ° C.) because water is cooled by the refrigerant. When the temperature detected by the water temperature sensor 20 reaches the target water temperature, the compressor 3 is stopped, and when the temperature detected by the water temperature sensor 20 reaches the upper limit temperature (for example, 3 ° C.), the compressor 3 is operated again.

さて、蒸発器6に破損がなく冷媒漏れがない場合、水温センサ20の検出温度が水温目標温度になることで圧縮機3を停止すると、この停止中、冷媒は水により逆に加温され、圧力センサ13の検出圧力は第一設定圧力以上に上昇する。   Now, when the evaporator 6 is not damaged and there is no refrigerant leakage, when the compressor 3 is stopped when the detected temperature of the water temperature sensor 20 reaches the water temperature target temperature, during this stop, the refrigerant is heated in reverse by water, The detection pressure of the pressure sensor 13 rises above the first set pressure.

ところが、蒸発器6の破損により冷媒漏れがあると、圧力センサ13の検出圧力は、一旦上昇しても下降する。従って、前記(a)に示すように、圧力センサ13による検出圧力が、第一設定圧力を規定時間以上継続して超えた後、この第一設定圧力を第一設定時間以上継続して下回った場合には、蒸発器6の破損による冷媒漏れがあると判定する。なお、水温は0℃を下回ることはない(0℃以下では凍結する)ので、本実施例のチラー2では、冷媒の0℃の飽和圧力を第一設定圧力としておくと、最も容易で確実に蒸発器6の破損を検知することができる。   However, if there is a refrigerant leak due to breakage of the evaporator 6, the pressure detected by the pressure sensor 13 will decrease even if it once increases. Therefore, as shown in the above (a), after the detected pressure by the pressure sensor 13 has continuously exceeded the first set pressure for a predetermined time or more, the first set pressure has continuously dropped below the first set time. In this case, it is determined that there is a refrigerant leak due to breakage of the evaporator 6. In addition, since the water temperature does not fall below 0 ° C. (freezes below 0 ° C.), in the chiller 2 of this embodiment, setting the saturation pressure at 0 ° C. of the refrigerant as the first set pressure is the easiest and most reliable. Breakage of the evaporator 6 can be detected.

また、蒸発器6からの冷媒漏れが比較的多い場合、圧縮機3の停止後、圧力センサ13の検出圧力は、第一設定圧力まで上昇することなく下降する。従って、前記(b)に示すように、圧力センサ13による検出圧力が、第一設定圧力を第二設定時間以上継続して下回った場合には、蒸発器6の破損による冷媒漏れがあると判定する。   When the refrigerant leaks from the evaporator 6 is relatively large, the detected pressure of the pressure sensor 13 decreases without increasing to the first set pressure after the compressor 3 is stopped. Therefore, as shown in the above (b), when the pressure detected by the pressure sensor 13 is continuously lower than the first set pressure for the second set time or more, it is determined that there is a refrigerant leak due to breakage of the evaporator 6. To do.

また、蒸発器6からの冷媒漏れが微小な場合、その検知に時間を要する場合がある。従って、前記(c)に示すように、圧縮機3を停止してから所定時間経過後に、圧力センサ13による検出圧力が、第二設定圧力を第二設定時間以上継続して下回った場合には、蒸発器6の破損による冷媒漏れがあると判定する。   Moreover, when the refrigerant | coolant leakage from the evaporator 6 is minute, the detection may require time. Therefore, as shown in (c) above, when the pressure detected by the pressure sensor 13 continues to fall below the second set pressure for a second set time after a predetermined time has elapsed since the compressor 3 was stopped. Then, it is determined that there is a refrigerant leak due to breakage of the evaporator 6.

さらに、圧縮機3および循環ポンプ19を停止中に、圧力センサ13による検出圧力が、第二設定圧力を第二設定時間以上継続して下回った場合も、前記(c)と同様に、蒸発器6からの冷媒漏れがあると判定する。   Further, when the compressor 3 and the circulation pump 19 are stopped, the pressure detected by the pressure sensor 13 continues to fall below the second set pressure for the second set time or longer, similarly to the above (c). It is determined that there is a refrigerant leak from 6.

このような制御によれば、蒸発器6の破損の程度、言い換えれば蒸発器6からの冷媒の漏れの程度に応じて、最適な監視を行うことができる。   According to such control, optimal monitoring can be performed in accordance with the degree of breakage of the evaporator 6, in other words, the degree of refrigerant leakage from the evaporator 6.

本発明の冷凍機1およびこれを用いたチラー2は、前記実施例の構成に限らず適宜変更可能である。特に、冷凍サイクルの低圧側に圧力検出手段(13)を設け、冷凍機1停止中の圧力低下を検出する構成であれば、その他の構成は適宜に変更可能である。   The refrigerator 1 and the chiller 2 using the same according to the present invention are not limited to the configuration of the above-described embodiment, and can be appropriately changed. In particular, as long as the pressure detection means (13) is provided on the low pressure side of the refrigeration cycle and the pressure drop while the refrigerator 1 is stopped is detected, other configurations can be changed as appropriate.

たとえば、前記実施例では、蒸発器6において冷媒と水とを熱交換するウォータチラーとしたが、場合により、蒸発器6において冷媒とブラインとを熱交換するようにしてもよい。また、冷凍機1の用途は、チラー2に限らず、これ以外の用途にも適用可能であり、たとえばヒートポンプとしてもよい。いずれの場合も、前記実施例と同様に、膨張弁5出口から圧縮機3入口までの間のいずれかの箇所に圧力センサ13を設け、圧縮機3停止中における圧力センサ13の検出圧力に基づき、蒸発器6の破損による冷媒漏れの有無を検知することができる。   For example, in the above-described embodiment, the water chiller that exchanges heat between the refrigerant and the water is used in the evaporator 6. However, in some cases, the refrigerant and the brine may be exchanged in the evaporator 6. Moreover, the use of the refrigerator 1 is not limited to the chiller 2 but can be applied to other uses, for example, a heat pump. In any case, similarly to the above embodiment, the pressure sensor 13 is provided at any location between the outlet of the expansion valve 5 and the inlet of the compressor 3, and based on the detected pressure of the pressure sensor 13 when the compressor 3 is stopped. The presence or absence of refrigerant leakage due to damage to the evaporator 6 can be detected.

また、前記実施例では、冷水タンク16からの冷水路21に、冷水ポンプ22と冷水弁23を設け、蒸発器6の破損による冷媒漏れがあると判定すると、冷水弁23を閉じ(これに伴い冷水ポンプ22を停止)したが、冷水ポンプ22と冷水弁23との内、一方の設置を省略してもよい。冷水路21に冷水ポンプ22のみが設置される場合(冷水弁23の設置が省略される場合)、蒸発器6の破損による冷媒漏れがあると判定すると、冷水ポンプ22を停止させればよい。   Moreover, in the said Example, when it determines with the cold water pump 22 and the cold water valve 23 being provided in the cold water channel 21 from the cold water tank 16 and there exists a refrigerant | coolant leak by the failure | damage of the evaporator 6, the cold water valve 23 will be closed (according to this) Although the cold water pump 22 is stopped), installation of one of the cold water pump 22 and the cold water valve 23 may be omitted. When only the cold water pump 22 is installed in the cold water channel 21 (when the installation of the cold water valve 23 is omitted), if it is determined that there is a refrigerant leak due to damage to the evaporator 6, the cold water pump 22 may be stopped.

1 冷凍機
2 チラー
3 圧縮機
4 凝縮器
5 膨張弁
6 蒸発器
7 油分離器
8 ファン
9 受液器
10 液電磁弁
11 アキュムレータ
12 吸入圧力調整弁(SPR弁)
13 圧力センサ(圧力検出手段)
14 冷媒流路
15 水流路
16 冷水タンク
17 給水路
18 戻し路
19 循環ポンプ
20 水温センサ
21 冷水路
22 冷水ポンプ
23 冷水弁
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Chiller 3 Compressor 4 Condenser 5 Expansion valve 6 Evaporator 7 Oil separator 8 Fan 9 Liquid receiver 10 Liquid electromagnetic valve 11 Accumulator 12 Suction pressure adjustment valve (SPR valve)
13 Pressure sensor (pressure detection means)
DESCRIPTION OF SYMBOLS 14 Refrigerant flow path 15 Water flow path 16 Chilled water tank 17 Water supply path 18 Return path 19 Circulation pump 20 Water temperature sensor 21 Cold water path 22 Chilled water pump 23 Chilled water valve

Claims (8)

蒸気圧縮式冷凍機の膨張弁出口から圧縮機入口までの間のいずれかの箇所に、圧力検出手段が設けられ、
圧縮機停止中における前記圧力検出手段による検出圧力に基づき、蒸発器の破損による冷媒漏れの有無を監視する
ことを特徴とする冷凍機。
Pressure detection means is provided at any point between the expansion valve outlet of the vapor compression refrigerator and the compressor inlet,
A refrigerator that monitors the presence or absence of refrigerant leakage due to breakage of an evaporator based on the pressure detected by the pressure detection means while the compressor is stopped.
膨張弁の入口側に、圧縮機の発停と連動して開閉される液電磁弁が設けられ、
前記冷媒漏れの有無の監視は、圧縮機を停止すると共に液電磁弁を閉鎖した状態で、前記圧力検出手段による検出圧力が、設定圧力以下の状態を設定時間以上継続するか否かの監視である
ことを特徴とする請求項1に記載の冷凍機。
On the inlet side of the expansion valve, a liquid electromagnetic valve that is opened and closed in conjunction with the start and stop of the compressor is provided.
Whether or not the refrigerant leaks is monitored by monitoring whether or not the pressure detected by the pressure detecting means continues for a set time or longer in a state where the compressor is stopped and the liquid electromagnetic valve is closed. The refrigerator according to claim 1, wherein the refrigerator is provided.
蒸発器の出口側に、圧縮機の吸入圧力を調整する吸入圧力調整弁が設けられ、
前記圧力検出手段は、膨張弁と吸入圧力調整弁との間に設けられる
ことを特徴とする請求項1または請求項2に記載の冷凍機。
A suction pressure adjusting valve for adjusting the suction pressure of the compressor is provided on the outlet side of the evaporator,
The refrigerator according to claim 1 or 2, wherein the pressure detection means is provided between an expansion valve and a suction pressure adjustment valve.
請求項1〜3のいずれか1項に記載の冷凍機を備え、
蒸発器には、膨張弁からの冷媒が通されると共に、この冷媒と間接熱交換して冷却を図られる被冷却液が通される
ことを特徴とするチラー。
Comprising the refrigerator according to any one of claims 1 to 3,
A chiller characterized in that a refrigerant from an expansion valve is passed through the evaporator, and a liquid to be cooled that is cooled by indirect heat exchange with the refrigerant.
前記被冷却液としての水を貯留する冷水タンクを備え、
この冷水タンク内の水は、蒸発器との間で循環可能とされると共に、冷水弁を介して冷水使用設備へ供給可能とされ、
圧縮機停止中、前記圧力検出手段による検出圧力が、設定圧力以下の状態を設定時間以上継続すると、蒸発器の破損による冷媒漏れがあると判定して、その旨報知すると共に前記冷水弁を閉鎖する
ことを特徴とする請求項4に記載のチラー。
A cold water tank for storing water as the liquid to be cooled;
The water in the cold water tank can be circulated with the evaporator and can be supplied to the cold water use facility through the cold water valve.
While the compressor is stopped, if the pressure detected by the pressure detecting means continues below the set pressure for a set time or longer, it is determined that there is a refrigerant leak due to damage to the evaporator, and this is notified and the chilled water valve is closed. The chiller according to claim 4, wherein:
前記冷水タンクから前記冷水使用設備への冷水路には、前記冷水弁に代えてまたはこれに加えて冷水ポンプが設けられており、
圧縮機停止中、前記圧力検出手段による検出圧力が、設定圧力以下の状態を設定時間以上継続すると、蒸発器の破損による冷媒漏れがあると判定して、その旨報知すると共に前記冷水ポンプを停止する
ことを特徴とする請求項5に記載のチラー。
In the cold water path from the cold water tank to the cold water use facility, a cold water pump is provided instead of or in addition to the cold water valve,
While the compressor is stopped, if the pressure detected by the pressure detection means continues below the set pressure for a set time or longer, it is determined that there is a refrigerant leak due to the evaporator being broken, and that is notified and the cold water pump is stopped The chiller according to claim 5, wherein:
冷水タンクと蒸発器との間の水の循環は、循環ポンプの発停により切り替えられ、
次の(a)〜(d)の内、少なくとも(b)を含むいずれか一以上の場合に、蒸発器の破損による冷媒漏れの有無を判定可能とされた
ことを特徴とする請求項5または請求項6に記載のチラー。
(a)圧縮機を停止中であるが循環ポンプを作動中で、且つ圧縮機を停止してから所定時間内に、前記圧力検出手段による検出圧力が、第一設定圧力を規定時間以上継続して超えた後、この第一設定圧力を第一設定時間以上継続して下回った場合。
(b)圧縮機を停止中であるが循環ポンプを作動中で、且つ圧縮機を停止してから所定時間内に、前記圧力検出手段による検出圧力が、第一設定圧力を第二設定時間以上継続して下回った場合。
(c)圧縮機を停止中であるが循環ポンプを作動中で、且つ圧縮機を停止してから所定時間経過後に、前記圧力検出手段による検出圧力が、第二設定圧力を第二設定時間以上継続して下回った場合。
(d)圧縮機および循環ポンプを停止中に、前記圧力検出手段による検出圧力が、第二設定圧力を第二設定時間以上継続して下回った場合。
The circulation of water between the cold water tank and the evaporator is switched by the on / off of the circulation pump,
6. The presence or absence of refrigerant leakage due to damage to an evaporator can be determined when at least one of the following (a) to (d) includes at least (b): The chiller according to claim 6.
(A) While the compressor is stopped, the circulating pump is operating, and within a predetermined time after the compressor is stopped, the pressure detected by the pressure detecting means continues the first set pressure for a specified time or more. When the pressure drops below the first set pressure for more than the first set time.
(B) While the compressor is stopped, the circulating pump is operating, and within a predetermined time after the compressor is stopped, the pressure detected by the pressure detecting means exceeds the first set pressure by a second set time or more. When continuously below.
(C) The compressor is stopped but the circulating pump is operating, and after a predetermined time has elapsed since the compressor was stopped, the pressure detected by the pressure detecting means exceeds the second set pressure by a second set time or more. When continuously below.
(D) When the pressure detected by the pressure detection means continues to fall below the second set pressure for a second set time or more while the compressor and the circulation pump are stopped.
前記第一設定圧力は、前記冷凍機の冷媒の0℃の飽和圧力である
ことを特徴とする請求項7に記載のチラー。
The chiller according to claim 7, wherein the first set pressure is a saturation pressure of 0 ° C. of the refrigerant of the refrigerator.
JP2013015732A 2013-01-30 2013-01-30 Chiller using refrigerator Active JP6086213B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013015732A JP6086213B2 (en) 2013-01-30 2013-01-30 Chiller using refrigerator
CN201310594127.6A CN103968588B (en) 2013-01-30 2013-11-21 Refrigeration machine and the refrigeration plant using the refrigeration machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015732A JP6086213B2 (en) 2013-01-30 2013-01-30 Chiller using refrigerator

Publications (2)

Publication Number Publication Date
JP2014145565A true JP2014145565A (en) 2014-08-14
JP6086213B2 JP6086213B2 (en) 2017-03-01

Family

ID=51238401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015732A Active JP6086213B2 (en) 2013-01-30 2013-01-30 Chiller using refrigerator

Country Status (2)

Country Link
JP (1) JP6086213B2 (en)
CN (1) CN103968588B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087078A (en) * 2013-11-01 2015-05-07 三浦工業株式会社 Food machine with vacuum cooling function
CN109442866A (en) * 2018-12-25 2019-03-08 山东河马信息技术有限公司 It is a kind of with the interior water refrigeration system being circularly set
WO2020008624A1 (en) * 2018-07-06 2020-01-09 三菱電機株式会社 Refrigeration cycle device
EP4105573A1 (en) * 2021-06-18 2022-12-21 Lennox Industries Inc. Hvac system leak detection

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105987548B (en) * 2015-02-03 2019-06-07 Tcl空调器(中山)有限公司 Refrigeration system method for detecting operation state and device
CN105402936B (en) * 2015-12-22 2019-02-01 Tcl空调器(中山)有限公司 Air conditioner water heating machine and its coolant leakage detection method and device
JP6278094B1 (en) * 2016-10-28 2018-02-14 ダイキン工業株式会社 Air conditioner
JP6433968B2 (en) * 2016-12-06 2018-12-05 伸和コントロールズ株式会社 Refrigeration equipment
JP7002227B2 (en) * 2017-06-14 2022-01-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2019021346A1 (en) * 2017-07-24 2019-01-31 三菱電機株式会社 Refrigeration device
CN111412693B (en) * 2020-03-30 2021-04-09 浙江大学 New energy battery heat pump air conditioner heat exchanger and processing equipment thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122061U (en) * 1980-02-18 1981-09-17
JPH05288438A (en) * 1992-04-08 1993-11-02 Daikin Ind Ltd Refrigerant filled amount detector of refrigerating plant
JPH10213365A (en) * 1997-01-30 1998-08-11 Denso Corp Air conditioner
JPH11230648A (en) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd Refrigerant leakage alarm for freezing apparatus using combustible refrigerant
JP2007163105A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner
JP2009014298A (en) * 2007-07-06 2009-01-22 Miura Co Ltd Refrigerator and chiller using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178361A (en) * 2001-12-07 2003-06-27 Sanden Corp Automatic vending machine
JP5249821B2 (en) * 2009-03-06 2013-07-31 三菱重工業株式会社 Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122061U (en) * 1980-02-18 1981-09-17
JPH05288438A (en) * 1992-04-08 1993-11-02 Daikin Ind Ltd Refrigerant filled amount detector of refrigerating plant
JPH10213365A (en) * 1997-01-30 1998-08-11 Denso Corp Air conditioner
JPH11230648A (en) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd Refrigerant leakage alarm for freezing apparatus using combustible refrigerant
JP2007163105A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner
JP2009014298A (en) * 2007-07-06 2009-01-22 Miura Co Ltd Refrigerator and chiller using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087078A (en) * 2013-11-01 2015-05-07 三浦工業株式会社 Food machine with vacuum cooling function
WO2020008624A1 (en) * 2018-07-06 2020-01-09 三菱電機株式会社 Refrigeration cycle device
JPWO2020008624A1 (en) * 2018-07-06 2021-04-22 三菱電機株式会社 Refrigeration cycle equipment
EP3819565A4 (en) * 2018-07-06 2021-06-23 Mitsubishi Electric Corporation Refrigeration cycle device
JP7112051B2 (en) 2018-07-06 2022-08-03 三菱電機株式会社 refrigeration cycle equipment
CN109442866A (en) * 2018-12-25 2019-03-08 山东河马信息技术有限公司 It is a kind of with the interior water refrigeration system being circularly set
EP4105573A1 (en) * 2021-06-18 2022-12-21 Lennox Industries Inc. Hvac system leak detection
US11578887B2 (en) 2021-06-18 2023-02-14 Lennox Industries Inc. HVAC system leak detection
US11898764B2 (en) 2021-06-18 2024-02-13 Lennox Industries Inc. HVAC system leak detection

Also Published As

Publication number Publication date
CN103968588B (en) 2017-08-04
CN103968588A (en) 2014-08-06
JP6086213B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6086213B2 (en) Chiller using refrigerator
JP5595245B2 (en) Refrigeration equipment
JP5098472B2 (en) Chiller using refrigerator
JP5854751B2 (en) Cooling system
JP2010210098A (en) Refrigerating device and method of detecting leakage of refrigerant in the refrigerating device
JP2013228130A (en) Freezer
JP2013104606A (en) Refrigeration cycle apparatus and hot water producing apparatus
WO2016148078A1 (en) Heat pump
JP2012093054A (en) Refrigerating apparatus
JP2016156557A (en) Refrigeration cycle device
JP2014085078A (en) Air conditioner
JP2013053813A (en) Cooling apparatus
JP5316973B2 (en) Cooling and defrosting system using carbon dioxide refrigerant, and operation method thereof
JP2012026590A (en) Refrigerating apparatus
JP2005201532A (en) Freezing-refrigerating unit and refrigerator
JP2006010126A (en) Freezing and refrigerating unit and refrigerator
JP2013053801A (en) Refrigerator
JP2012215309A (en) Cooling device, and refrigerating cycle apparatus
JP2012013286A (en) Refrigerating device
JP2015028423A (en) Chiller and refrigerating cycle device
JP2019124369A (en) Cold water production system
JP6273439B2 (en) Temperature control device
JP2014070829A (en) Refrigerator
JP2012013291A (en) Refrigerating device
JP2013019559A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R150 Certificate of patent or registration of utility model

Ref document number: 6086213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250