JP2006010126A - Freezing and refrigerating unit and refrigerator - Google Patents

Freezing and refrigerating unit and refrigerator Download PDF

Info

Publication number
JP2006010126A
JP2006010126A JP2004184752A JP2004184752A JP2006010126A JP 2006010126 A JP2006010126 A JP 2006010126A JP 2004184752 A JP2004184752 A JP 2004184752A JP 2004184752 A JP2004184752 A JP 2004184752A JP 2006010126 A JP2006010126 A JP 2006010126A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature sensor
temperature
evaporator
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004184752A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakai
寿和 境
Makoto Oyamada
真 小山田
Tsuyoki Hirai
剛樹 平井
Hidenao Tanaka
秀尚 田中
Naritaka Kanatsu
成登 金津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004184752A priority Critical patent/JP2006010126A/en
Publication of JP2006010126A publication Critical patent/JP2006010126A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezing and refrigerating unit that can avoid such a failure as to cause a sudden stop of cooling as much as possible by detecting the leakage of a refrigerant before the load of a compressor increases after air flows in even if piping is damaged at a low-pressure side, such as the connection section to an evaporator 22, and can secure high safety by using a flammable refrigerant having a small global warming coefficient and a refrigerator using the same. <P>SOLUTION: R290 or a mixed refrigerant with R290 as a main constituent is used as a refrigerant, and an evaporation temperature sensor 23 for detecting the piping temperature of the evaporator 22 is provided, thus determining that the refrigerant has leaked when the detection temperature of the evaporator temperature sensor is equal to or smaller than the boiling point of the refrigerant, and hence shifting to control corresponding to the leakage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、架台上部に冷却システムの圧縮機や凝縮器を設置し、架台下部に蒸発器を設置する冷凍冷蔵ユニットと、本体上部に前記冷凍冷蔵ユニットを設けた業務用の大型冷凍冷蔵庫に関するものである。   The present invention relates to a refrigeration unit in which a compressor and a condenser of a cooling system are installed at the upper part of the gantry and an evaporator is installed in the lower part of the gantry, and a large commercial refrigerator / freezer having the refrigeration unit at the upper part of the main body. It is.

従来、500Lを越える業務用の大型冷凍冷蔵庫では、300W以上の高能力の圧縮機を用いた冷凍冷蔵ユニットが用いられている。また、特に冷凍室を冷却するシステムでは、蒸発温度が低くても高い冷凍能力が出せるR22やR404A等の低沸点冷媒を用いている。   Conventionally, in a commercial large-sized refrigerator-freezer exceeding 500 L, a refrigerator-freezer unit using a high-capacity compressor of 300 W or more is used. In particular, in the system for cooling the freezer compartment, a low boiling point refrigerant such as R22 or R404A that can provide a high refrigerating capacity even when the evaporation temperature is low is used.

しかしながら、近年、地球温暖化防止の観点から温暖化係数の高いR22やR404A等のフロン系冷媒からR290やR600a等の自然冷媒への転換が望まれるとともに、二酸化炭素の排出量削減のために消費電力量の大きい業務用の大型冷凍冷蔵庫についても、早急に省エネルギー化を図ることが望まれている。   However, in recent years, from the viewpoint of preventing global warming, it has been desired to switch from chlorofluorocarbon refrigerants such as R22 and R404A, which have a high global warming potential, to natural refrigerants such as R290 and R600a, and to reduce CO2 emissions. For large-sized freezer refrigerators for business use with a large amount of electric power, it is desired to save energy as soon as possible.

ここで、業務用の大型冷凍冷蔵庫は、冷媒封入量が多く、かつ周辺の厨房環境に着火源となる火気が多いことから、可燃性の自然冷媒の適用について慎重に検討が進められている。また、家庭用冷蔵庫においては、冷媒配管が損傷して可燃性の自然冷媒が漏洩した場合に、漏洩を検知する手法が検討されている(例えば、特許文献1参照)。   Here, commercial large-sized refrigerator-freezers have a large amount of refrigerant enclosed, and because there is a lot of fire as an ignition source in the surrounding kitchen environment, careful consideration is being given to the application of flammable natural refrigerants. . In home refrigerators, a technique for detecting leakage when refrigerant piping is damaged and flammable natural refrigerant leaks has been studied (for example, see Patent Document 1).

以下、図面を参照しながら上記従来の冷蔵庫を説明する。   Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図4は特許文献1に記載された従来の冷蔵庫の断面図である。   FIG. 4 is a cross-sectional view of a conventional refrigerator described in Patent Document 1.

図4に示すように、冷凍室1と、扉2と、キャビネット3とから構成されている。キャビネット3の上部には、冷凍冷蔵ユニット4を固定するユニットベース5と、冷凍室1を冷却する冷却室6が設置される。   As shown in FIG. 4, it is composed of a freezer compartment 1, a door 2, and a cabinet 3. In the upper part of the cabinet 3, a unit base 5 for fixing the freezing / refrigeration unit 4 and a cooling room 6 for cooling the freezing room 1 are installed.

冷凍冷蔵ユニット4は、レシプロ型の圧縮機構を有する圧縮機7、凝縮器8、減圧手段であるキャピラリ9、蒸発器10、圧縮機7の吸入管11、凝縮用ファン12、蒸発用ファン13からなる。また、キャビネット3の背面には冷却室6内の除霜水を排出するドレイン14が埋設されている。   The refrigeration unit 4 includes a compressor 7 having a reciprocating type compression mechanism, a condenser 8, a capillary 9 as a decompression means, an evaporator 10, a suction pipe 11 of the compressor 7, a condensing fan 12, and an evaporating fan 13. Become. A drain 14 for discharging the defrost water in the cooling chamber 6 is embedded in the back surface of the cabinet 3.

また、蒸発器10の下部に取り付けられたラジアントヒーター15と、蒸発器10の冷媒配管(図示せず)に取り付けられた蒸発温度センサー16と、蒸発器10の上部に取り付けられた出口温度センサー17と、冷凍室1の上部に取り付けられた室内温度センサー18とが設置されている。   Further, a radiant heater 15 attached to the lower part of the evaporator 10, an evaporation temperature sensor 16 attached to a refrigerant pipe (not shown) of the evaporator 10, and an outlet temperature sensor 17 attached to the upper part of the evaporator 10. And the indoor temperature sensor 18 attached to the upper part of the freezer compartment 1 is installed.

次に冷凍冷蔵ユニット4の動作を説明する。冷媒は低沸点冷媒であるR600aを用いる。冷媒R600aは圧縮機7で圧縮され、凝縮器8で凝縮された後、キャピラリ9で減圧されて、蒸発器10へ送られる。そして、蒸発器10で蒸発された後、吸入管11を通って圧縮機7へ還流する。このとき、キャピラリ9と吸入管11は熱交換されて、圧縮機7へ還流する冷媒の冷廃熱が回収される。   Next, the operation of the refrigeration unit 4 will be described. R600a which is a low boiling point refrigerant is used as the refrigerant. The refrigerant R <b> 600 a is compressed by the compressor 7, condensed by the condenser 8, depressurized by the capillary 9, and sent to the evaporator 10. Then, after being evaporated by the evaporator 10, it is refluxed to the compressor 7 through the suction pipe 11. At this time, the capillary 9 and the suction pipe 11 are subjected to heat exchange, and the cold and waste heat of the refrigerant returning to the compressor 7 is recovered.

このとき、周囲温度30℃、冷凍室1の室内温度センサー18の指示値(以下室内温度という)−20℃の通常運転中における、冷媒R600aの凝縮温度は約40℃(約5.3気圧)、蒸発温度は約−30℃(約0.5気圧)である。   At this time, the condensation temperature of the refrigerant R600a is about 40 ° C. (about 5.3 atm) during normal operation at an ambient temperature of 30 ° C. and an indicated value of the indoor temperature sensor 18 in the freezer compartment 1 (hereinafter referred to as the room temperature) −20 ° C. The evaporation temperature is about −30 ° C. (about 0.5 atm).

そして、起動あるいは除霜後の経過時間を積算して、積算時間が約10時間を越える毎に、圧縮機7を停止するとともにラジアントヒーター15に通電され蒸発器10が除霜される。このとき、出口温度センサー17が約5℃を検知すると、除霜完了と判断されラジアントヒーター15の通電が停止する。   Then, the elapsed time after activation or defrosting is accumulated, and whenever the accumulated time exceeds about 10 hours, the compressor 7 is stopped and the radiant heater 15 is energized to defrost the evaporator 10. At this time, when the outlet temperature sensor 17 detects about 5 ° C., it is determined that the defrosting is completed, and energization of the radiant heater 15 is stopped.

さらに、蒸発温度センサー16と出口温度センサー17の指示値の差が5℃より大きくなった場合、例えば、室内温度−20℃、蒸発温度センサー16の指示値−30℃において、出口温度センサー17の指示値が−25℃より高くなった時、冷媒の漏洩と判断され、圧縮機7を停止するとともに、冷媒の漏洩が発生したことを報知する。   Further, when the difference between the indication values of the evaporation temperature sensor 16 and the outlet temperature sensor 17 becomes larger than 5 ° C., for example, at the indoor temperature −20 ° C. and the indication value −30 ° C. of the evaporation temperature sensor 16, When the indicated value is higher than −25 ° C., it is determined that the refrigerant has leaked, and the compressor 7 is stopped, and the fact that the refrigerant has leaked is notified.

冷媒が外部に漏洩した場合、冷却能力が低下して鈍冷傾向になるとともに、蒸発器10の出口では完全に気化して、過熱蒸気となり蒸発器10に流入する室内空気の温度近くまで温度上昇する。すなわち、蒸発温度センサー16と出口温度センサー17の指示値の差が所定値の5℃より大きくなったことを基準に冷媒の漏洩を検知すると、鈍冷傾向が発生する比較的初期の段階で冷媒の漏洩が発生したことを報知することができる。   When the refrigerant leaks to the outside, the cooling capacity is reduced and the cooling tendency tends to be slow. At the outlet of the evaporator 10, the refrigerant is completely vaporized, and the temperature rises to near the temperature of the indoor air flowing into the evaporator 10 as superheated steam. To do. That is, when refrigerant leakage is detected based on the difference between the indication values of the evaporation temperature sensor 16 and the outlet temperature sensor 17 being larger than a predetermined value of 5 ° C., the refrigerant is detected at a relatively early stage in which a slow cooling tendency occurs. It is possible to notify that a leak has occurred.

この結果、使用者が冷媒の漏洩を確認して、火気の使用を停止したり、サービスコールをかけることで早期に対応することができ、安全性が向上できる。
特開平9−14811号公報
As a result, the user can confirm the leakage of the refrigerant, stop using the fire, or make a service call so that the user can respond quickly and improve safety.
JP-A-9-14811

しかしながら、上記従来の冷蔵庫は、冷却能力が低下して蒸発器10の出口で冷媒が過熱蒸気となることを前提として冷媒の漏洩を検知するものであるが、業務用の大型冷蔵庫では使用時の扉開閉の頻度が高いため、使用時に冷媒漏洩が発生すると着霜により蒸発器10の蒸発能力が低下して、蒸発器10の出口で冷媒が過熱蒸気になりにくいという問題が発生する。   However, the above conventional refrigerator detects refrigerant leakage on the premise that the cooling capacity is reduced and the refrigerant becomes superheated steam at the outlet of the evaporator 10, but in a commercial large refrigerator, Since the frequency of door opening and closing is high, if refrigerant leakage occurs during use, the evaporation capacity of the evaporator 10 is reduced due to frost formation, causing a problem that the refrigerant hardly becomes superheated steam at the outlet of the evaporator 10.

また、上記従来の冷蔵庫は、高沸点冷媒であるR600aを使用しているため、低圧圧力が大気圧よりも低く、蒸発器10の接続部で配管の損傷が生じると冷媒が漏洩する前に空気が流入して、高圧圧力が上昇して冷却能力が低下するとともに、最悪の場合、空気圧縮により過負荷が生じて圧縮機7が停止して再起動せず、不冷となる可能性がある。   Further, since the conventional refrigerator uses R600a which is a high boiling point refrigerant, the low pressure is lower than the atmospheric pressure, and if the pipe is damaged at the connection part of the evaporator 10, the air is not leaked before the refrigerant leaks. Flows in, the high pressure rises and the cooling capacity decreases, and in the worst case, an overload occurs due to air compression, and the compressor 7 stops and does not restart and may become uncooled. .

すなわち、高沸点冷媒であるR600aを使用した場合、蒸発器10の接続部などの低圧側で配管が損傷すると、空気圧縮により圧縮機7が停止したまま再起動できずに配管の損傷部から冷媒が漏洩し続ける可能性があり、蒸発温度センサー16と出口温度センサー17の指示値の差を基準にするだけでは、冷媒の漏洩を検知することができないという問題が発生する。そこで、高沸点冷媒であるR600aを使用した場合、圧縮機7の過負荷が継続した時や、過負荷で起動停止を繰り返した時にも冷媒が漏洩したと判断する施策が提案されている。   That is, when R600a, which is a high boiling point refrigerant, is used, if the pipe is damaged on the low pressure side such as the connection part of the evaporator 10, the compressor 7 is stopped due to air compression and cannot be restarted, and the refrigerant is discharged from the damaged part of the pipe. There is a possibility that the refrigerant will continue to leak, and the refrigerant leakage cannot be detected only by using the difference between the indication values of the evaporation temperature sensor 16 and the outlet temperature sensor 17 as a reference. Therefore, when R600a which is a high boiling point refrigerant is used, a measure for determining that the refrigerant has leaked when the overload of the compressor 7 continues or when the start and stop are repeated due to the overload has been proposed.

一方、業務用の大型冷蔵庫では、家庭用冷蔵庫に比べて負荷が大きくより高い冷却能力が求められるとともに、故障発生時にも最低限の冷却運転の継続が求められる。すなわち、空気圧縮により過負荷が生じて圧縮機7が停止して再起動せずに突然不冷となるような故障は極力避けなければならない。   On the other hand, a large commercial refrigerator is required to have a higher cooling capacity and a higher load than a household refrigerator, and to continue a minimum cooling operation even when a failure occurs. That is, it is necessary to avoid as much as possible a failure in which overload occurs due to air compression and the compressor 7 stops and does not restart and suddenly becomes uncooled.

ここで、業務用冷蔵庫の周囲温度30℃の一般的な運転状態である凝縮温度40℃、蒸発温度−30℃、過冷却0℃、吸入ガス温度32℃における圧縮比、高圧圧力、低圧圧力、および理論効率と体積能力の相対値を高沸点冷媒であるR600aと他の冷媒と比較した結果を(表1)に示す。   Here, the compression ratio, the high pressure pressure, the low pressure pressure at a condensation temperature of 40 ° C., an evaporation temperature of −30 ° C., a supercooling of 0 ° C., and an intake gas temperature of 32 ° C., which are general operating conditions of a commercial refrigerator ambient temperature of 30 ° C. Table 1 shows the results of comparing the relative values of theoretical efficiency and volume capacity with R600a, which is a high boiling point refrigerant, and other refrigerants.

Figure 2006010126
Figure 2006010126

(表1)に示したように、高沸点冷媒R134a、R600aに比べて低沸点冷媒であるR22、R290、R404Aは、理論効率が低い反面、圧縮比が低く体積能力が高く、かつ蒸発圧力が大気圧より高いことがわかる。すなわち、低沸点冷媒であるR22、R290、R404Aは、蒸発器10の接続部などの低圧側で配管が損傷した場合でも直ぐに空気が流入して空気圧縮が生じることはないが、運転中や蒸発器10の除霜中に冷媒が大量に漏洩した後に蒸発温度が低下して空気が流入する可能性がある。   As shown in Table 1, R22, R290, and R404A, which are low-boiling refrigerants compared to the high-boiling refrigerants R134a and R600a, have low theoretical efficiency, but have a low compression ratio and a high volume capacity, and an evaporation pressure. It can be seen that it is higher than atmospheric pressure. That is, R22, R290, and R404A, which are low-boiling refrigerants, do not cause air compression immediately when the piping is damaged on the low-pressure side such as the connection portion of the evaporator 10, but air compression does not occur. There is a possibility that the evaporating temperature is lowered and air flows in after a large amount of refrigerant leaks during defrosting of the vessel 10.

そこで、業務用の大型冷蔵庫では、低沸点冷媒であるR22、R290、R404Aを使用するとともに、早期に冷媒の漏洩を検知して報知することや冷媒の漏洩を抑制することで、故障発生時にも最低限の冷却運転を継続することが期待されている。   Therefore, in large refrigerators for business use, R22, R290, and R404A, which are low boiling point refrigerants, are used, and early detection and notification of refrigerant leaks and suppression of refrigerant leaks can also be used. It is expected to continue the minimum cooling operation.

本発明は、上記従来の課題を解決するもので、蒸発器の接続部などの低圧側で配管が損傷した場合でも、空気圧縮により過負荷が生じて圧縮機が停止して再起動せずに突然不冷となるような故障を極力回避する冷凍冷蔵ユニットおよび冷蔵庫を提供するものである。   The present invention solves the above-described conventional problems, and even when a pipe is damaged on the low pressure side such as a connection portion of an evaporator, an overload occurs due to air compression, and the compressor stops and does not restart. It is an object of the present invention to provide a freezer / refrigeration unit and a refrigerator that avoid a failure that suddenly becomes uncooled as much as possible.

上記従来の課題を解決するために、本発明の冷凍冷蔵ユニットおよび冷蔵庫は、冷媒として体積能力が大きく、かつ沸点が約−40℃と通常運転時の蒸発温度−30℃よりも10℃程度低いR290あるいはR290を主成分とする混合冷媒を用いるとともに、蒸発器の配管温度を検知する蒸発温度センサーを備え、前記蒸発温度センサーの検知温度が冷媒の沸点近傍以下になると冷媒漏洩と判断して、漏洩対応制御に移行するものである。   In order to solve the above conventional problems, the refrigeration unit and refrigerator of the present invention have a large volume capacity as a refrigerant and a boiling point of about -40 ° C, which is about 10 ° C lower than the evaporation temperature of -30 ° C during normal operation. R290 or a mixed refrigerant mainly composed of R290 is used, and an evaporation temperature sensor that detects the piping temperature of the evaporator is provided. When the detected temperature of the evaporation temperature sensor is below the boiling point of the refrigerant, it is determined that the refrigerant leaks, It shifts to leakage countermeasure control.

これによって、高い冷却能力が出せるとともに、使用中に着霜が著しくなり蒸発器の蒸発能力が低下した時に蒸発器の接続部などの低圧側で配管が損傷した場合でも、R290の蒸発圧力が負圧となる沸点近傍の蒸発温度を基準に漏洩を判定することにより、空気が流入して圧縮機の負荷が増大する前に、通常運転時の蒸発温度−30℃よりも大幅に蒸発温度が低下したことで冷媒の漏洩を検知することができる。   As a result, a high cooling capacity can be obtained, and even if the piping is damaged on the low pressure side such as the connection part of the evaporator when frosting becomes remarkable during use and the evaporation capacity of the evaporator is reduced, the evaporation pressure of R290 is negative. By determining leakage based on the evaporation temperature in the vicinity of the boiling point that becomes the pressure, the evaporation temperature is significantly lower than the evaporation temperature of -30 ° C during normal operation before air flows in and the load on the compressor increases. As a result, the leakage of the refrigerant can be detected.

本発明の冷凍冷蔵ユニットおよび冷蔵庫は、使用中に着霜が著しくなり蒸発器の蒸発能力が低下した時に蒸発器の接続部などの低圧側で配管が損傷した場合でも、空気が流入して圧縮機の負荷が増大する前に、冷媒の漏洩を検知することができるので、空気圧縮により過負荷が生じて圧縮機が停止して再起動せずに突然不冷となるような故障を極力回避することができるとともに、地球温暖化係数の小さい可燃性冷媒を用いながら高い安全性が確保できる。   The refrigeration unit and refrigerator of the present invention are compressed by inflowing air even when piping is damaged on the low-pressure side such as the connection part of the evaporator when frost formation becomes remarkable during use and the evaporation capacity of the evaporator decreases. Since refrigerant leakage can be detected before the load on the machine increases, it is possible to avoid as much as possible the trouble that causes overload due to air compression and the compressor stops and does not restart and suddenly becomes cold. In addition, it is possible to ensure high safety while using a flammable refrigerant with a small global warming potential.

本発明の請求項1に記載の発明は、冷媒としてR290あるいはR290を主成分とする混合冷媒を用いるとともに、蒸発器の配管温度を検知する蒸発温度センサーを備え、前記蒸発温度センサーの検知温度が冷媒の沸点近傍以下になると冷媒漏洩と判断して、漏洩対応制御に移行するものであり、高い冷却能力が出せるとともに、使用中に蒸発器の接続部などの低圧側で配管が損傷した場合でも、R290の蒸発圧力が負圧となる沸点近傍の蒸発温度を基準に漏洩を判定することにより、空気が流入して圧縮機の負荷が増大する前に冷媒の漏洩を検知することができる。   The invention according to claim 1 of the present invention uses a refrigerant mixture mainly composed of R290 or R290 as a refrigerant, and further includes an evaporation temperature sensor for detecting the pipe temperature of the evaporator, and the detected temperature of the evaporation temperature sensor is When the temperature is below the boiling point of the refrigerant, it is judged that the refrigerant is leaking, and the control shifts to leakage countermeasures.It can provide high cooling capacity, and even if the piping is damaged on the low pressure side such as the evaporator connection during use. By determining leakage based on the evaporation temperature near the boiling point at which the evaporation pressure of R290 becomes negative, leakage of the refrigerant can be detected before the air flows in and the load on the compressor increases.

請求項2に記載の発明は、請求項1の発明に、さらに、蒸発器の配管温度を検知する蒸発温度センサーと、蒸発器周囲を通過する冷気の温度を検知する冷気温度センサーとを備え、前記蒸発温度センサーと前記冷気温度センサーとの温度差が所定値より大きく、かつ前記蒸発温度センサーの検知温度が冷媒の沸点近傍以下になると冷媒漏洩と判断して、漏洩対応制御に移行するものであり、蒸発温度センサーと冷気温度センサーの温度指示値を比較することで異常着霜が発生したことを検知することができるので、異常着霜によって蒸発温度が低下して冷媒漏洩を誤検知することを防止できる。   The invention according to claim 2 further comprises an evaporation temperature sensor for detecting the piping temperature of the evaporator and a cold air temperature sensor for detecting the temperature of the cold air passing around the evaporator, in the invention of claim 1, When the temperature difference between the evaporating temperature sensor and the cold air temperature sensor is larger than a predetermined value and the detected temperature of the evaporating temperature sensor is below the boiling point of the refrigerant, it is determined that the refrigerant is leaking, and the control shifts to leakage countermeasure control. Yes, it is possible to detect the occurrence of abnormal frosting by comparing the temperature indication values of the evaporation temperature sensor and the cold air temperature sensor. Can be prevented.

請求項3に記載の発明は、請求項1または請求項2に記載の発明に、さらに、冷媒漏洩が発生したことを報知する漏洩対応制御を行うものであり、使用者が冷媒の漏洩を確認して、火気の使用を停止したり、サービスコールをかけることで早期に対応することができ、突然不冷となるような故障を極力回避することができるとともに、高い安全性が確保できる。   The invention according to claim 3 further performs leakage countermeasure control for notifying that the refrigerant leakage has occurred in addition to the invention according to claim 1 or 2, and the user confirms the leakage of the refrigerant. Thus, it is possible to respond quickly by stopping the use of fire or making a service call, and it is possible to avoid failures that suddenly become uncooled as much as possible and to ensure high safety.

請求項4に記載の発明は、請求項1から請求項3のいずれかの発明にさらに、通常制御よりも除霜間隔を延ばす漏洩対応制御を行うものであり、蒸発器の接続部などの低圧側で配管が損傷した場合に、除霜時に高圧となってさらに冷媒の漏洩速度が増加することを抑制できる。   The invention according to claim 4 further performs leakage countermeasure control that extends the defrosting interval as compared with the normal control in addition to any one of the inventions according to claims 1 to 3, and the low pressure of the connection part of the evaporator or the like. When piping is damaged on the side, it is possible to suppress an increase in the leakage rate of the refrigerant due to a high pressure during defrosting.

請求項5に記載の発明は、請求項1から請求項4のいずれかの発明にさらに、能力可変型圧縮機と、外気温度を検知する外気温度センサーとを備え、外気温度と庫内の設定温度に応じた所定能力で連続運転する漏洩対応制御を行うものであり、外気温度センサーの指示値から推算される必要最低限の冷却能力で能力可変型圧縮機を駆動させて、蒸発圧力を極力高く維持することにより、蒸発器の接続部などの低圧側で配管が損傷した場合に、運転中に負圧となって空気が流入することを抑制できる。   The invention according to claim 5 further includes a variable capacity compressor and an outside air temperature sensor that detects the outside air temperature in addition to any one of the inventions according to claim 1 to claim 4, and the outside air temperature and the setting in the cabinet are provided. Leakage control is performed for continuous operation at a predetermined capacity according to the temperature, and the variable pressure compressor is driven with the minimum required cooling capacity estimated from the indicated value of the outside air temperature sensor to reduce the evaporation pressure as much as possible. By keeping it high, it is possible to suppress the inflow of air due to a negative pressure during operation when the piping is damaged on the low pressure side such as the connection portion of the evaporator.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1による冷蔵庫の断面図である。図2は同実施の形態による冷蔵庫に用いられる蒸発器の模式図である。図3は冷媒の蒸発温度と蒸発圧力の相関図である。なお、従来と同一の構成については、同一番号を付して詳細な説明は省略する。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram of an evaporator used in the refrigerator according to the embodiment. FIG. 3 is a correlation diagram between the evaporation temperature of the refrigerant and the evaporation pressure. In addition, about the same structure as the past, the same number is attached | subjected and detailed description is abbreviate | omitted.

図1に示すように、冷凍室1、扉2、キャビネット3から構成されている。キャビネット3の上部には、冷凍冷蔵ユニット20を固定するユニットベース5と、冷凍室1を冷却する冷却室6が設置される。冷媒は低沸点冷媒であるR290を用いる。   As shown in FIG. 1, it is composed of a freezer compartment 1, a door 2 and a cabinet 3. In the upper part of the cabinet 3, a unit base 5 for fixing the freezing / refrigeration unit 20 and a cooling chamber 6 for cooling the freezing chamber 1 are installed. As the refrigerant, R290, which is a low boiling point refrigerant, is used.

冷凍冷蔵ユニット20は、レシプロ型の圧縮機構を有し回転数が30〜80rpsに可変できる能力可変型圧縮機21、凝縮器8、減圧手段であるキャピラリ9、蒸発器22、能力可変型圧縮機21の吸入管11、凝縮用ファン12、蒸発用ファン13、蒸発温度センサー23、冷気温度センサー24からなる。また、キャビネット3の背面には冷却室6内の除霜水を排出するドレイン14が埋設されている。   The refrigerating / refrigeration unit 20 has a reciprocating type compression mechanism and a variable capacity compressor 21 having a variable rotation speed of 30 to 80 rps, a condenser 8, a capillary 9 as a decompression means, an evaporator 22, and a variable capacity compressor. 21 includes a suction pipe 11, a condensing fan 12, an evaporating fan 13, an evaporating temperature sensor 23, and a cold air temperature sensor 24. A drain 14 for discharging the defrost water in the cooling chamber 6 is embedded in the back surface of the cabinet 3.

図2に示すように、蒸発器22は冷媒配管22、フィン31、シーズヒーター32から構成されている。シーズヒーター32は、蒸発器22の除霜時に通電されて蒸発器22を加温するものである。そして、フィン31の風上側の一部を切り欠いて、蒸発温度センサー23が金属ホルダー25によって冷媒配管30に取り付けられるとともに、冷気温度センサー24が樹脂ホルダー26によって冷媒配管30に取り付けられている。   As shown in FIG. 2, the evaporator 22 includes a refrigerant pipe 22, fins 31, and a sheathed heater 32. The sheathed heater 32 is energized when the evaporator 22 is defrosted to heat the evaporator 22. The evaporating temperature sensor 23 is attached to the refrigerant pipe 30 by the metal holder 25 and the cold air temperature sensor 24 is attached to the refrigerant pipe 30 by the resin holder 26 by cutting out a part of the windward side of the fin 31.

蒸発温度センサー23は熱伝導性の高い金属ホルダー25で固定されることで、冷媒配管30の温度、すなわち冷媒の蒸発温度を検知するものである。また、冷気温度センサー24は熱伝導性の低い樹脂ホルダー26で固定され、冷凍室1内から流入する通風大気に触れることで、冷凍室1内の冷気温度に近い温度を検知するものである。そして、蒸発器22に異常に多い着霜が発生した場合、蒸発温度センサー23および冷気温度センサー24の周辺は、霜や塊状の氷に覆いつくされて一体となり、ともに冷媒の蒸発温度に近い温度を検知するものである。   The evaporation temperature sensor 23 is fixed by a metal holder 25 having high thermal conductivity, and detects the temperature of the refrigerant pipe 30, that is, the evaporation temperature of the refrigerant. Further, the cold air temperature sensor 24 is fixed by a resin holder 26 having low thermal conductivity, and detects a temperature close to the cold air temperature in the freezer compartment 1 by touching the ventilated air flowing in from the freezer compartment 1. When an abnormally large amount of frost is generated in the evaporator 22, the periphery of the evaporation temperature sensor 23 and the cold air temperature sensor 24 is covered with frost and lump ice, and both are close to the evaporation temperature of the refrigerant. Is detected.

なお、厨房環境に設置される業務用冷蔵庫においては、空気中の埃や飛沫状油分が凝縮器8に付着して目詰まりを起こしやすいことから、凝縮器8の間口寸法を十分大きく確保して、目詰まりの影響を小さくするとともに、凝縮器8の間口にフィルター(図示せず)を装着する。また、能力可変型圧縮機21の耐久性を維持するため、過酷な条件で高能力を出し続けることがないように、冷凍室1内の温度を検知する冷凍室温度センサー(図示せず)や、冷蔵庫の周囲温度を検知する外気温度センサー(図示せず)や、凝縮器8の冷媒の凝縮温度を検知する凝縮温度センサー(図示せず)が設置され、これらの温度に基づいて能力可変型圧縮機21の回転数が決定される。   In a commercial refrigerator installed in a kitchen environment, dust and splashed oil in the air tends to adhere to the condenser 8 and cause clogging. In addition to reducing the influence of clogging, a filter (not shown) is attached to the front of the condenser 8. Further, in order to maintain the durability of the variable capacity compressor 21, a freezer temperature sensor (not shown) that detects the temperature in the freezer 1 so as not to continue to provide high capacity under severe conditions, An outside air temperature sensor (not shown) for detecting the ambient temperature of the refrigerator and a condensation temperature sensor (not shown) for detecting the condensation temperature of the refrigerant in the condenser 8 are installed, and the capacity variable type based on these temperatures The rotation speed of the compressor 21 is determined.

次に冷凍冷蔵ユニット20の動作を説明する。   Next, the operation of the refrigeration unit 20 will be described.

ドア開閉が頻繁に行われて冷凍室1の室内温度が大きく上昇した場合、能力可変型圧縮機21は80rpsで駆動され、冷媒R290が能力可変型圧縮機21で圧縮され、凝縮器8で凝縮された後、キャピラリ9で減圧されて、蒸発器22へ送られる。そして、蒸発器22で蒸発された後、吸入管11を通って能力可変型圧縮機21へ還流する。このとき、キャピラリ9と吸入管11は熱交換されて、能力可変型圧縮機21へ還流する冷媒の冷廃熱が回収される。   When the door is frequently opened and closed and the room temperature of the freezer compartment 1 rises greatly, the variable capacity compressor 21 is driven at 80 rps, and the refrigerant R290 is compressed by the variable capacity compressor 21 and condensed by the condenser 8. Then, the pressure is reduced by the capillary 9 and sent to the evaporator 22. Then, after being evaporated by the evaporator 22, it is returned to the variable capacity compressor 21 through the suction pipe 11. At this time, the capillary 9 and the suction pipe 11 are subjected to heat exchange, and the cold and waste heat of the refrigerant returning to the variable capacity compressor 21 is recovered.

ここで、能力可変型圧縮機21の気筒容積は、高沸点冷媒であるR600aを使用した従来の冷蔵庫の圧縮機の約1/3に設計されており、R600aの3倍の体積能力であるR290を用いた本実施例において、従来同等の冷却能力が発揮できる。   Here, the cylinder capacity of the variable capacity compressor 21 is designed to be about 1/3 that of a conventional refrigerator compressor using R600a which is a high boiling point refrigerant, and R290 which is three times the volume capacity of R600a. In the present embodiment using the above, it is possible to exhibit the same cooling capacity as before.

そして、冷凍室1の室内温度が低下して設定温度−20℃の+1.5℃以下に下がると、所定時間毎に能力可変型圧縮機21の回転数を80rpsから30rpsまで順次低下させる。さらに、冷凍室1の室内温度が低下して設定温度−20℃の−2℃以下に下がると、能力可変型圧縮機21の運転を停止させる。   And if the room temperature of the freezer compartment 1 falls and falls below +1.5 degreeC of setting temperature-20 degreeC, the rotation speed of the capacity variable type compressor 21 will be reduced one by one from 80 rps to 30 rps every predetermined time. Furthermore, when the room temperature of the freezer compartment 1 falls and falls below −2 ° C. of the set temperature −20 ° C., the operation of the variable capacity compressor 21 is stopped.

このとき、周囲温度30℃、冷凍室1の室内温度−20℃の通常運転中における、冷媒R290を用いた本実施例の冷蔵庫の凝縮温度は約40℃(約14気圧)、蒸発温度は約−30℃(約1.7気圧)であるのに対して、冷媒R600aを用いた従来の冷蔵庫の凝縮温度は約40℃(約5.3気圧)、蒸発温度は約−30℃(約0.5気圧)である。従って、蒸発器22の接続部などの低圧側で配管が損傷した場合、冷媒R600aを用いた従来の冷蔵庫では通常運転中の圧力が負圧であるためすぐに空気が流入するのに対して、本実施例の冷蔵庫では通常運転中の圧力が正圧であるためすぐに空気が流入せず、運転中や蒸発器22の除霜時に冷媒が流出して蒸発温度が低下した時や、異常に着霜して蒸発温度が低下した時にはじめて空気が流入する。   At this time, the condensing temperature of the refrigerator of this embodiment using the refrigerant R290 during the normal operation at the ambient temperature of 30 ° C. and the indoor temperature of the freezing chamber −20 ° C. is about 40 ° C. (about 14 atm), and the evaporation temperature is about Whereas it is −30 ° C. (about 1.7 atm), the condensation temperature of the conventional refrigerator using the refrigerant R600a is about 40 ° C. (about 5.3 atm), and the evaporation temperature is about −30 ° C. (about 0 atm). .5 atm). Therefore, when the piping is damaged on the low pressure side such as the connection part of the evaporator 22, the conventional refrigerator using the refrigerant R600a immediately flows in air because the pressure during normal operation is negative. In the refrigerator of this embodiment, since the pressure during normal operation is positive, air does not flow in immediately, and when the refrigerant flows out during operation or when the evaporator 22 is defrosted and the evaporation temperature decreases, Air flows in only when the evaporating temperature is reduced due to frost formation.

なお、本実施例においては、冷却運転中の凝縮器ファン12と冷却器ファン13の風量一定としたが、冷却能力の低下とともに、凝縮器ファン12と冷却器ファン13の風量を低下してもよい。凝縮器ファン12と冷却器ファン13の風量を低下することで、ファン入力の省エネルギー化が図れる。   In the present embodiment, the air flow rate of the condenser fan 12 and the cooler fan 13 during the cooling operation is constant. However, even if the air flow rate of the condenser fan 12 and the cooler fan 13 is reduced as the cooling capacity is lowered, Good. By reducing the air volume of the condenser fan 12 and the cooler fan 13, energy saving of the fan input can be achieved.

また、本実施例においては、能力可変型圧縮機21の最低回転数を30rpsとしたが、冷凍室1の設定温度が低く周囲温度が高い場合は冷却負荷が大きく冷凍室1の室内温度が低下しにくいことから、周囲温度や設定温度により最低回転数を決定することが望ましい。   In this embodiment, the minimum rotation speed of the variable capacity compressor 21 is set to 30 rps. However, when the set temperature of the freezer compartment 1 is low and the ambient temperature is high, the cooling load is large and the indoor temperature of the freezer compartment 1 is lowered. Therefore, it is desirable to determine the minimum number of revolutions based on the ambient temperature and the set temperature.

次に、通常運転中に冷媒漏洩が発生した場合の蒸発温度センサー23と冷気温度センサー24の働きについて説明する。   Next, the functions of the evaporation temperature sensor 23 and the cold air temperature sensor 24 when refrigerant leakage occurs during normal operation will be described.

図3の実線は冷媒R290の蒸発温度と蒸発圧力の相関を示したものであり、点線は冷媒R600aの蒸発温度と蒸発圧力の相関を示したものである。周囲温度30℃、冷凍室1の室内温度−20℃の通常運転中における冷媒の蒸発温度は約−30℃である。このときの冷媒R290の状態は図3のA点であり、蒸発圧力は約170kPaを示す。   The solid line in FIG. 3 shows the correlation between the evaporation temperature and the evaporation pressure of the refrigerant R290, and the dotted line shows the correlation between the evaporation temperature and the evaporation pressure of the refrigerant R600a. The refrigerant evaporating temperature is about −30 ° C. during normal operation at an ambient temperature of 30 ° C. and the freezer compartment 1 indoor temperature of −20 ° C. The state of the refrigerant R290 at this time is point A in FIG. 3, and the evaporation pressure is about 170 kPa.

一方、蒸発温度センサー23の検出温度は約−30℃、冷気温度センサー24の検出温度は約−25℃である。蒸発温度センサー23は冷媒の蒸発温度とほぼ同一であるが、冷気温度センサー24は冷媒の蒸発温度と蒸発器22に流入する冷気の温度約−20℃のほぼ中間の値を示す。   On the other hand, the detection temperature of the evaporation temperature sensor 23 is about −30 ° C., and the detection temperature of the cold air temperature sensor 24 is about −25 ° C. The evaporating temperature sensor 23 is substantially the same as the evaporating temperature of the refrigerant, but the cold air temperature sensor 24 shows a value approximately in the middle of the evaporating temperature of the refrigerant and the temperature of the cold air flowing into the evaporator 22.

ここで、蒸発器22の接続部などの低圧側で配管が損傷した場合、冷媒の一部が漏洩して冷却能力が低下するとともに、蒸発圧力が低下していく。このとき、低下した冷却能力を補うため、すなわち冷凍室1の室内温度の上昇を抑制するため、能力可変型圧縮機21の回転数が増加して、さらに蒸発圧力が低下する。結果として、図3のB点で示す状態、蒸発圧力約100kPa(大気圧)まで圧力が降下していく。このときの冷媒R290の蒸発温度は約−42℃である。   Here, when the piping is damaged on the low pressure side such as the connection portion of the evaporator 22, a part of the refrigerant leaks, the cooling capacity is lowered, and the evaporation pressure is lowered. At this time, in order to compensate for the reduced cooling capacity, that is, to suppress the increase in the room temperature of the freezer compartment 1, the rotation speed of the variable capacity compressor 21 increases and the evaporation pressure further decreases. As a result, the pressure decreases to the state indicated by point B in FIG. 3 and the evaporation pressure of about 100 kPa (atmospheric pressure). The evaporation temperature of the refrigerant R290 at this time is about −42 ° C.

そして、蒸発温度センサー23の検出温度は冷媒の蒸発温度とともに低下して約−42℃を示し、冷気温度センサー24の検出温度も同様に冷媒の蒸発温度とともに低下して約−30℃を示す。冷気温度センサー24の温度低下が小さいのは、蒸発器22に流入する冷気の温度が約−20℃と大きく変わらないためである。仮に、冷凍室1の冷却負荷が同時に増大して、能力可変型圧縮機21の回転数増加で対応しきれなくなると、冷凍室1の室内温度が上昇して冷気温度センサー24の指示値はさらに大きくなる。   The detected temperature of the evaporating temperature sensor 23 decreases with the evaporating temperature of the refrigerant to indicate about −42 ° C., and the detected temperature of the cool air temperature sensor 24 also decreases with the evaporating temperature of the refrigerant to indicate about −30 ° C. The reason why the temperature drop of the cold air temperature sensor 24 is small is that the temperature of the cold air flowing into the evaporator 22 is not greatly changed to about −20 ° C. If the cooling load of the freezer compartment 1 increases at the same time and cannot cope with the increase in the rotational speed of the variable capacity compressor 21, the indoor temperature of the freezer compartment 1 rises, and the indicated value of the cold air temperature sensor 24 further increases. growing.

このとき、蒸発温度センサー23の指示値が冷媒R290の沸点、すなわち大気圧の蒸発温度の近傍に低下し、かつ、蒸発温度センサー23と冷気温度センサー24の指示値の差が通常運転時の5℃よりも大きいことから、冷媒が漏洩したことを検知して漏洩対応制御に移行する。   At this time, the indicated value of the evaporation temperature sensor 23 decreases to the boiling point of the refrigerant R290, that is, near the evaporation temperature of atmospheric pressure, and the difference between the indicated values of the evaporation temperature sensor 23 and the cold air temperature sensor 24 is 5 in the normal operation. Since it is higher than ° C., it is detected that the refrigerant has leaked, and the control shifts to leak handling control.

漏洩対応制御として、警報ランプや警報ブザー、エラー表示などの報知を行うとともに、除霜間隔を延ばすこと、能力可変型圧縮機21の回転数を低減することが望ましい。報知することにより、使用者が冷媒の漏洩を確認して、火気の使用を停止したり、サービスコールをかけることで早期に対応して危険を回避することができ高い安全性を確保することができる。また、蒸発器22の圧力が増加する除霜の回数を低減することで、冷媒の漏洩速度を抑制することができる。また、能力可変型圧縮機21を当該外気温度における通常運転可能な最低限の回転数で駆動することにより、蒸発圧力がさらに低下して負圧となり、空気を吸入して過負荷が生じて能力可変型圧縮機21が停止して再起動できなくなる最悪の事態を回避することができる。   As leakage countermeasure control, it is desirable to notify a warning lamp, a warning buzzer, an error display, etc., extend the defrosting interval, and reduce the rotation speed of the variable capacity compressor 21. By notifying, the user can confirm the leakage of the refrigerant, stop using the fire, or make a service call to respond quickly and avoid danger, ensuring high safety it can. Moreover, the refrigerant | coolant leakage speed can be suppressed by reducing the frequency | count of the defrost which the pressure of the evaporator 22 increases. In addition, by driving the variable capacity compressor 21 at the minimum number of rotations at which the normal operation is possible at the outside air temperature, the evaporation pressure is further reduced to a negative pressure, and air is sucked to cause overload. The worst situation in which the variable compressor 21 is stopped and cannot be restarted can be avoided.

なお、比較例として冷媒R600aを用いて、蒸発器22の接続部などの低圧側で配管が損傷した場合は、損傷した時点から空気の吸入が開始されて能力可変型圧縮機21の負荷が増大していく。これは、図3のC点示したように冷媒R600aでは通常運転中でも蒸発圧力が負圧(約46kPa)となるためである。また、この場合、能力可変型圧縮機21が停止しない限り、冷媒はほとんど漏洩せず、蒸発温度センサー23や冷気温度センサー24、さらに蒸発器22の出口温度はほとんど変化しないので、異常を検知することは困難である。そして、能力可変型圧縮機21の負荷が限界を超えると停止し、再起動不可能な状態に陥る。この結果、不冷となり、能力可変型圧縮機21が停止したまま冷凍室1の室内温度が上昇し、図3のD点(約−11℃)を越えた時点から冷媒が漏洩し続けることになる。   As a comparative example, when the refrigerant R600a is used and the piping is damaged on the low pressure side such as the connection portion of the evaporator 22, the intake of air is started from the point of damage and the load of the variable capacity compressor 21 increases. I will do it. This is because, as indicated by point C in FIG. 3, the refrigerant R600a has a negative pressure (about 46 kPa) even during normal operation. Further, in this case, unless the capacity variable compressor 21 is stopped, the refrigerant hardly leaks, and the evaporating temperature sensor 23, the cold air temperature sensor 24, and the outlet temperature of the evaporator 22 hardly change, so that an abnormality is detected. It is difficult. When the load of the variable capacity compressor 21 exceeds the limit, the compressor 21 stops and enters a state where it cannot be restarted. As a result, it becomes non-cooled, the room temperature of the freezer compartment 1 rises while the capacity variable compressor 21 is stopped, and the refrigerant continues to leak from the point of exceeding point D (about −11 ° C.) in FIG. Become.

次に、異常着霜が発生した場合の蒸発温度センサー23と冷気温度センサー24の働きについて説明する。   Next, functions of the evaporation temperature sensor 23 and the cold air temperature sensor 24 when abnormal frosting occurs will be described.

通常運転中に扉開閉が特に頻繁であった場合や、扉の閉塞が不十分で長時間運転された場合、蒸発器22の風上側に異常に多量の霜が付着する。また、このような場合、冷凍室1の室内が高湿度になるため、付着した霜が塊状の氷になる。   If the door is opened and closed frequently during normal operation, or if the door is closed for a long time and is operated for a long time, an abnormally large amount of frost adheres to the windward side of the evaporator 22. Moreover, in such a case, since the room | chamber interior of the freezer compartment 1 becomes high humidity, the adhering frost turns into blocky ice.

このとき、蒸発器22の蒸発能力が低下して、冷媒の蒸発温度が低下していく。同時に蒸発温度センサー23と冷気温度センサー24が低下して、ほぼ同一の温度を示すようになる。これは、蒸発温度センサー23と冷気温度センサー24の周辺が密度の高い塊状の氷で覆い尽くされるためである。   At this time, the evaporation capability of the evaporator 22 decreases, and the evaporation temperature of the refrigerant decreases. At the same time, the evaporating temperature sensor 23 and the cold air temperature sensor 24 are lowered to show substantially the same temperature. This is because the periphery of the evaporation temperature sensor 23 and the cold air temperature sensor 24 is covered with high-density lump ice.

この結果、蒸発温度センサー23の指示値が冷媒R290の沸点、すなわち大気圧の蒸発温度の近傍に低下しても、蒸発温度センサー23と冷気温度センサー24の指示値の差が通常運転時の5℃よりも小さくなることから、冷媒が漏洩したとは判定しない。従って、蒸発温度センサー23の指示値が冷媒R290の沸点、すなわち大気圧の蒸発温度の近傍に低下したことのみを判定基準に冷媒が漏洩したことを検知した場合に発生する誤検知を防止することができる。   As a result, even if the indicated value of the evaporation temperature sensor 23 decreases to the boiling point of the refrigerant R290, that is, near the evaporation temperature of atmospheric pressure, the difference between the indicated values of the evaporation temperature sensor 23 and the cold air temperature sensor 24 is 5 Since it becomes smaller than ° C., it is not determined that the refrigerant has leaked. Accordingly, it is possible to prevent a false detection that occurs when it is detected that the refrigerant has leaked based only on the fact that the indication value of the evaporation temperature sensor 23 has dropped to the boiling point of the refrigerant R290, that is, the vicinity of the evaporation temperature at atmospheric pressure. Can do.

以上のように、冷媒としてR290あるいはR290を主成分とする混合冷媒を用いるとともに、蒸発器の配管温度を検知する蒸発温度センサーと蒸発器周囲を通過する冷気の温度を検知する冷気温度センサーを備え、前記蒸発温度センサーと前記冷気温度センサーとの温度差が通常時より大きく、かつ前記蒸発温度センサーの検知温度が冷媒の沸点近傍以下になると冷媒漏洩と判断して、漏洩対応制御に移行することで、蒸発器の接続部などの低圧側で配管が損傷した場合でも、空気が流入して圧縮機の負荷が増大する前に、冷媒の漏洩を検知して突然不冷となるような故障を極力回避するとともに、地球温暖化係数の小さい可燃性冷媒を用いながら高い安全性が確保できる。   As described above, R290 or a mixed refrigerant mainly composed of R290 is used as the refrigerant, and the evaporating temperature sensor for detecting the piping temperature of the evaporator and the cold air temperature sensor for detecting the temperature of the cold air passing around the evaporator are provided. When the temperature difference between the evaporating temperature sensor and the cold air temperature sensor is larger than normal, and when the detected temperature of the evaporating temperature sensor is below the boiling point of the refrigerant, it is determined that the refrigerant is leaking and the control is shifted to the leakage control. Therefore, even if the piping is damaged on the low pressure side such as the connection part of the evaporator, before the air flows in and the load on the compressor increases, it is possible to detect a refrigerant leak and suddenly become cold. While avoiding as much as possible, high safety can be secured while using a flammable refrigerant with a low global warming potential.

なお、本実施例では通常−15℃〜−25℃に設定される冷凍室1を対象としたが、5℃以上に設定される貯蔵室、たとえば冷蔵室を冷却する場合でも同様の効果が得られる。この場合、通常運転時の蒸発温度が−10℃〜−15℃であり、本実施例に比べて15℃〜20℃上昇するので、冷媒R290を主成分として例えば高沸点冷媒であるR600aなどを混合した沸点−30℃程度の混合冷媒を用いることが望ましい。通常運転時の蒸発温度と沸点の差が大きすぎると、検知するまでに漏洩する冷媒量が増加するため、安全上好ましくない。   In the present embodiment, the freezer compartment 1 that is normally set to −15 ° C. to −25 ° C. is targeted, but the same effect can be obtained even when a storage room set at 5 ° C. or higher, for example, a refrigerator compartment is cooled. It is done. In this case, the evaporation temperature during normal operation is −10 ° C. to −15 ° C. and increases by 15 ° C. to 20 ° C. compared to the present embodiment. Therefore, for example, R600a, which is a high boiling point refrigerant, is used as the main component. It is desirable to use a mixed refrigerant having a mixed boiling point of about -30 ° C. If the difference between the evaporation temperature and the boiling point during normal operation is too large, the amount of refrigerant leaking before detection increases, which is not preferable for safety.

なお、本実施例では異常着霜を検知して、冷媒の漏洩判定を否定したが、蒸発温度センサーと冷気温度センサーの指示値が略同一で、かつ通常運転時の蒸発温度よりも大きく低下した場合は異常着霜と判定して、蒸発器の除霜を行うことが望ましい。異常着霜と冷媒漏洩が同時に発生した場合に、冷媒の漏洩判定が遅れることが回避できる。   In this example, abnormal frost formation was detected and the refrigerant leakage determination was denied, but the indication values of the evaporation temperature sensor and the cold air temperature sensor were substantially the same and greatly decreased than the evaporation temperature during normal operation. In such a case, it is desirable to determine the abnormal frost formation and to defrost the evaporator. When abnormal frost formation and refrigerant leakage occur at the same time, it is possible to avoid delaying the refrigerant leakage determination.

なお、本実施例では蒸発温度センサーと冷気温度センサーを蒸発器の風上側上部に個別に設置したが、1個のホルダーを用いて同一配管に設置してもよい。また、蒸発温度センサーあるいは冷気温度センサーを用いて、通常バイメタルなどで実施される蒸発器の除霜終了の検知を行ってもよい。   In this embodiment, the evaporating temperature sensor and the cold air temperature sensor are individually installed on the upper windward side of the evaporator, but may be installed on the same pipe using one holder. Moreover, you may detect the completion | finish of defrosting of the evaporator normally implemented with a bimetal etc. using an evaporation temperature sensor or a cold temperature sensor.

本発明にかかる冷凍冷蔵ユニットおよび冷蔵庫は、R290を冷媒として用いることで冷媒が漏洩した場合でも地球温暖化係数が小さく、かつ体積能力が大きく高能力が実現できるとともに、運転中に冷媒が漏洩したことをいち早く検知することで安全性を高めることができるので、高能力が必要であり、かつ厨房などの火気が周囲で使用されている可能性が高い業務用大型冷蔵庫やショーケースなどの業務用機器の冷却システムとして適用できる。   The refrigerator-freezer unit and refrigerator according to the present invention have a low global warming potential and a high volumetric capacity even when the refrigerant leaks by using R290 as the refrigerant, and the refrigerant leaked during operation. Because it is possible to improve safety by detecting this quickly, it is necessary for high-capacity use, and there is a high possibility that fires such as kitchens are used in the surroundings. It can be applied as a cooling system for equipment.

本発明による冷蔵庫の断面図Sectional view of a refrigerator according to the invention 本発明による冷蔵庫の蒸発器の模式図Schematic diagram of refrigerator evaporator according to the present invention 冷媒の蒸発温度と蒸発圧力の相関図Correlation diagram of refrigerant evaporation temperature and evaporation pressure 従来の冷蔵庫の断面図Cross-sectional view of a conventional refrigerator

符号の説明Explanation of symbols

1 冷凍室
5 ユニットベース
20 冷凍冷蔵ユニット
21 能力可変型圧縮機
22 蒸発器
23 蒸発温度センサー
24 冷気温度センサー
DESCRIPTION OF SYMBOLS 1 Freezer compartment 5 Unit base 20 Refrigeration / refrigeration unit 21 Variable capacity compressor 22 Evaporator 23 Evaporation temperature sensor 24 Cold air temperature sensor

Claims (5)

冷媒としてR290あるいはR290を主成分とする混合冷媒を用いるとともに、蒸発器の配管温度を検知する蒸発温度センサーを備え、前記蒸発温度センサーの検知温度が冷媒の沸点近傍以下になると冷媒漏洩と判断して、漏洩対応制御に移行することを特徴とする冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。   R290 or a mixed refrigerant containing R290 as a main component is used as a refrigerant, and an evaporation temperature sensor for detecting the temperature of the piping of the evaporator is provided. If the detected temperature of the evaporation temperature sensor is below the boiling point of the refrigerant, it is determined that the refrigerant is leaking. And a refrigerator using the refrigerator-freezer unit, wherein the refrigerator-freezer unit is shifted to leakage countermeasure control. 蒸発器の配管温度を検知する蒸発温度センサーと、蒸発器周囲を通過する冷気の温度を検知する冷気温度センサーとを備え、前記蒸発温度センサーと前記冷気温度センサーとの温度差が所定値より大きく、かつ前記蒸発温度センサーの検知温度が冷媒の沸点近傍以下になると冷媒漏洩と判断して、漏洩対応制御に移行することを特徴とする請求項1記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。   An evaporation temperature sensor for detecting the piping temperature of the evaporator and a cold air temperature sensor for detecting the temperature of the cold air passing around the evaporator are provided, and a temperature difference between the evaporation temperature sensor and the cold air temperature sensor is larger than a predetermined value. 2. The refrigeration unit and the refrigeration unit according to claim 1, wherein when the detected temperature of the evaporating temperature sensor is equal to or lower than the boiling point of the refrigerant, it is determined that the refrigerant is leaking, and the control is shifted to leakage countermeasure control. Fridge. 冷媒漏洩が発生したことを報知する漏洩対応制御を行うことを特徴とする請求項1または請求項2記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。   The refrigerating / refrigeration unit according to claim 1 or 2, and a refrigerator using the refrigerating / refrigeration unit, wherein leakage control is performed to notify that a refrigerant leak has occurred. 通常制御よりも除霜間隔を延ばす漏洩対応制御を行うことを特徴とする請求項1〜3いずれか一項記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。   The refrigerator using the refrigeration unit according to any one of claims 1 to 3, and the refrigerator using the refrigeration unit, wherein leakage countermeasure control is performed to extend a defrosting interval as compared with normal control. 能力可変型圧縮機と、外気温度を検知する外気温度センサーとを備え、外気温度と庫内の設定温度に応じた所定能力で連続運転する漏洩対応制御を行うことを特徴とする請求項1〜4いずれか一項記載の冷蔵庫。   The apparatus according to claim 1, further comprising a variable capacity compressor and an outside air temperature sensor that detects outside air temperature, and performing leakage countermeasure control that continuously operates at a predetermined capacity according to the outside air temperature and a set temperature in the refrigerator. 4. The refrigerator as described in any one of 4.
JP2004184752A 2004-06-23 2004-06-23 Freezing and refrigerating unit and refrigerator Pending JP2006010126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184752A JP2006010126A (en) 2004-06-23 2004-06-23 Freezing and refrigerating unit and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184752A JP2006010126A (en) 2004-06-23 2004-06-23 Freezing and refrigerating unit and refrigerator

Publications (1)

Publication Number Publication Date
JP2006010126A true JP2006010126A (en) 2006-01-12

Family

ID=35777574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184752A Pending JP2006010126A (en) 2004-06-23 2004-06-23 Freezing and refrigerating unit and refrigerator

Country Status (1)

Country Link
JP (1) JP2006010126A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121979A (en) * 2006-11-13 2008-05-29 Toshiba Corp Refrigerator
JP2009228966A (en) * 2008-03-21 2009-10-08 Toshiba Corp Refrigerator
JP2011021851A (en) * 2009-07-17 2011-02-03 Toshiba Carrier Corp Refrigerating cycle
JP2012251767A (en) * 2012-07-30 2012-12-20 Mitsubishi Electric Corp Mixed refrigerant and refrigerating cycle device using the same
JP2016125673A (en) * 2014-12-26 2016-07-11 東芝キヤリア株式会社 Refrigeration cycle device
WO2019142324A1 (en) * 2018-01-19 2019-07-25 三菱電機株式会社 Showcase
JP2021131208A (en) * 2020-02-21 2021-09-09 三菱電機株式会社 Dehumidifier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121979A (en) * 2006-11-13 2008-05-29 Toshiba Corp Refrigerator
JP2009228966A (en) * 2008-03-21 2009-10-08 Toshiba Corp Refrigerator
JP2011021851A (en) * 2009-07-17 2011-02-03 Toshiba Carrier Corp Refrigerating cycle
JP2012251767A (en) * 2012-07-30 2012-12-20 Mitsubishi Electric Corp Mixed refrigerant and refrigerating cycle device using the same
JP2016125673A (en) * 2014-12-26 2016-07-11 東芝キヤリア株式会社 Refrigeration cycle device
WO2019142324A1 (en) * 2018-01-19 2019-07-25 三菱電機株式会社 Showcase
JPWO2019142324A1 (en) * 2018-01-19 2020-09-17 三菱電機株式会社 Showcase
JP2021131208A (en) * 2020-02-21 2021-09-09 三菱電機株式会社 Dehumidifier
JP7279664B2 (en) 2020-02-21 2023-05-23 三菱電機株式会社 dehumidifier

Similar Documents

Publication Publication Date Title
JP5249821B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
US10788256B2 (en) Cooling device
CN105627496A (en) Low-temperature refrigerating control method of air conditioner and air conditioner
JP6086213B2 (en) Chiller using refrigerator
JP2013228130A (en) Freezer
JP2004156858A (en) Refrigerating cycle device and control method thereof
TW574493B (en) Refrigerator
JP2010164295A (en) Refrigerating device
CN105135772A (en) Water cooling device and control method for preventing cold water from freezing
JP2005016874A (en) Freezing and refrigerating unit and refrigerator
JP2006010126A (en) Freezing and refrigerating unit and refrigerator
JP4476946B2 (en) Refrigeration equipment
JP4096862B2 (en) Refrigeration unit and refrigerator
JP2005201532A (en) Freezing-refrigerating unit and refrigerator
JP2014085078A (en) Air conditioner
JP2012251706A (en) Refrigerating cycle device
JP2011169475A (en) Refrigerator and refrigerating device connected with the same
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JP2005226864A (en) Freezing/refrigerating unit and refrigerator
CN100516710C (en) Cold-storage unit and refrigerator
WO2013099200A1 (en) Refrigeration device and method for detecting filling of wrong refrigerant
JP3317222B2 (en) Refrigeration equipment
JP3036519B2 (en) Refrigeration equipment
JP6685472B2 (en) Refrigeration equipment
JP2005172304A (en) Freezing/refrigerating unit and refrigerator