JP2014140156A - オートレンジ温度センサのためのシステム及び方法 - Google Patents

オートレンジ温度センサのためのシステム及び方法 Download PDF

Info

Publication number
JP2014140156A
JP2014140156A JP2013236715A JP2013236715A JP2014140156A JP 2014140156 A JP2014140156 A JP 2014140156A JP 2013236715 A JP2013236715 A JP 2013236715A JP 2013236715 A JP2013236715 A JP 2013236715A JP 2014140156 A JP2014140156 A JP 2014140156A
Authority
JP
Japan
Prior art keywords
analog
signal
converter
amplified
analog signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013236715A
Other languages
English (en)
Inventor
Lance Leroy Sundstrom
ランス・リロイ・サンドストロム
Michael Kirkpatrick Shane
シェーン・マイケル・カークパトリック
Darryl I Parmet
ダリル・アイ・パーメット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2014140156A publication Critical patent/JP2014140156A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2219/00Thermometers with dedicated analog to digital converters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Amplifiers (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

【課題】オートレンジ温度センサのためのシステム及び方法を提供する。
【解決手段】温度を検知及び計測するためのシステム100であり、バイアスされたサーミスタ回路154と較正回路156の少なくとも一方からのアナログ信号152に基づいて増幅アナログ信号出力116を生成する少なくとも1つのアナログ信号増幅器110と、前記少なくとも1つのアナログ信号増幅器への入力としてアナログオフセット信号161を生成するデジタル−アナログ変換器であって、前記アナログオフセット信号は、前記増幅アナログ信号がアナログ−デジタル変換器130の入力動作レンジの限界に等しい又はそれより大きい場合に、前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジ内にシフトさせる、デジタル−アナログ変換器160と、を備え、前記アナログオフセット信号を、前記増幅アナログ信号の大きさに基づいて決定する。
【選択図】図1

Description

<連邦政府によって支援された研究又は開発に関する陳述>
[0001] 本発明は、空軍研究所によって与えられた契約FA9453−08−C−0162の下で政府の支援を受けて行われた。政府は、本発明に一定の権利を有することができる。
[0002] サーミスタは、その抵抗率が固有の精密で再現性のある抵抗対温度の関係によって温度と共に変化する抵抗器である。それ故に、サーミスタは、温度検知及び計測システムに頻繁に実装されている。温度を検知するために、サーミスタは、一般的に電圧又は電流でバイアスされて温度に依存するアナログ信号を発生し、このアナログ信号は、アナログ−デジタル(A/D)変換器によって(バイナリ値を持つ)デジタル信号に変換される。A/D変換器からの変換された温度依存アナログ信号は、次いで、サーミスタの抵抗値を決定すべく処理され、次にこの抵抗値が、温度の結果に変換される。しかしながら、この温度結果のレンジと分解能は、A/D変換器のレンジ及び分解能によって制限される。例えば、摂氏10度(℃)の温度範囲にわたって、14ビットのA/D変換器は、(10/214=10/16384)℃、即ちおよそ摂氏610マイクロ度(μ℃)の分解能を提供するだけだろう。
[0003] ある用途及び実装では、これと同じA/D変換器をレンジ選択方法によって使用して、同一、類似、又はより広い温度範囲にわたってより高い分解能の温度計測値を取得することが可能である。レンジ選択は、増幅した温度依存信号を調節して、当該調節されたアナログ信号をA/D変換器の所望の入力レンジ内に維持する。ある用途及び実装では、温度センサは、固定の高利得アナログ増幅器回路及び固定のレンジ選択回路の使用を通じて、所望のレンジと分解能を達成する。しかしながら、そのような用途及び実装では、高利得アナログ増幅器とレンジ選択回路の併用、並びにディスクリート部品の値及び能動素子のパラメータの許容誤差、例えばアナログマルチプレクサや演算増幅器の入出力電圧や電流オフセットによって、温度センサ及び計測システムの動作、性能、並びに信頼性が悪影響を受ける場合がある。
[0004] オートレンジ温度センサのためのシステム及び方法が提供される。少なくとも1つの実施態様において、温度を検知及び計測するためのシステムは、バイアスされたサーミスタ回路と較正回路の少なくとも一方からのアナログ信号に基づいて増幅アナログ信号出力を生成する少なくとも1つのアナログ信号増幅器と、前記少なくとも1つのアナログ信号増幅器への入力としてアナログオフセット信号を生成するデジタル−アナログ変換器であって、前記アナログオフセット信号は、前記増幅アナログ信号がアナログ−デジタル変換器の入力動作レンジの限界に等しい又はそれより大きい場合に、前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジ内にシフトさせる、デジタル−アナログ変換器と、を備え、前記アナログオフセット信号は、前記増幅アナログ信号の大きさに基づいて決定される。
[0005] 図面は例示的な実施態様のみを描写し、したがって範囲を限定すると見做されてはならないということを理解して、例示的な実施態様が、添付図面の利用を通じて更に具体的且つ詳細に説明される。
[0006] 図1は、本開示で説明される一実施態様におけるオートレンジ温度センサのためのシステムのブロック図である。 [0007] 図2は、本開示で説明される一実施態様におけるオートレンジ温度センサのためのシステムの回路図である。 [0008] 図3は、本開示で説明される一実施態様におけるオートレンジされたアナログA/D入力信号のグラフであり、ここでアナログ信号はアナログ電圧である。 [0009] 図4は、本開示で説明される一実施態様における温度センサ及び計測システムをオートレンジするための方法のフロー図である。
[0010] 一般的な慣行にしたがって、説明される様々な特徴は、縮尺どおりには描かれず、例示的な実施態様に関連する特定の特徴を強調するように描かれている。
[0011] 以下の詳細な説明では、本明細書の一部をなす添付図面への参照がなされ、添付図面には、具体的な例示の実施態様が実例として示されている。しかしながら、他の実施態様が利用され得ること、並びに、本発明の範囲を逸脱又は越えることなく論理的、機械的、及び電気的な変更がなされ得ることが、理解されなければならない。その上、図面及び明細書に提示された方法は、個々のステップが実施される順序を限定するものと解釈されてはならない。したがって、以下の詳細な説明は、限定的な意味に捉えられてはならない。
[0012] 本発明の実施態様は、既存のサーミスタ又は他の温度検知素子ベースの温度検知及び計測システムが、A/D変換器の先天的な積分非直線性、能動素子のパラメータ及びディスクリート部品の値の許容誤差、並びに、時間、温度、及び放射に対する変動といったような課題を含む、幅広い温度範囲と高い温度分解能という相反する要求を満たそうとした時に直面する限界に対処する。本発明の実施態様は、高い精度を有し且つ幅広い温度範囲にわたる較正された温度検知及び計測を実施するシステム並びに方法を提供する。また、本発明の実施態様は、本発明が、より幅広い温度範囲にわたって用いられるのに好適となるように、又は当該範囲内でより高い分解能を達成するように、又はその両方であるように、部品を選択し、部品の値及び支援ソフトウェアを調整する。
[0013] ある実施態様では、デジタル−アナログ(D/A)変換器素子が、温度依存アナログ信号を増幅するアナログ信号増幅器に結合される。このD/A変換器は、A/D変換器へ供給される増幅された温度依存アナログ信号をA/D変換器の所望の入力動作レンジに維持することができる、調節可能なアナログオフセットを供給する。また、特定の温度におけるバイアスされたサーミスタ回路の等価量を複製する較正回路からの信号が、回路及びシステムの較正のために供給される。これは、典型的に、1つのアナログマルチプレクサチャンネルのバイアスされたサーミスタ回路のサーミスタを、特定の温度における当該サーミスタの抵抗値に等しい抵抗値を有する抵抗器で置き換えることによって行われる。D/A変換器と較正回路は、初期許容誤差、経時変化、放射、温度、並びにサーミスタ経路の選択や典型的には所望の温度範囲の中央である較正温度に対する温度検知及び計測へのそれらの影響などの、受動及び能動部品のパラメータ変動を補償するための柔軟性と分解能を提供し、それにより、システムの温度検知及び計測の精度、再現性、並びに長期信頼性を向上させる。
[0014] 図1は、幅広い温度範囲にわたる高分解能温度検知及び計測のためのシステム100の一実施態様のブロック図である。システム100は、アナログ信号増幅器110、A/D変換器130、D/A変換器160、監視制御装置140、プロセッサ120、及び、複数のバイアスされたサーミスタ回路又は較正回路のうちの1つを選択し、初期較正及び周期的較正と幅広い温度範囲(例えば5℃)にわたる精密な温度計測を実施するためのサーミスタ経路150を備える。サーミスタ経路150は、少なくとも1つのバイアスされたサーミスタ回路154、少なくとも1つの較正回路156、及びそれらを選択するための少なくとも1つのアナログマルチプレクサ(図2に示される)を含む。サーミスタ経路150は、選択されたバイアスされたサーミスタ回路154又は較正回路156からアナログ信号増幅器110へアナログ信号152を出力する。サーミスタ経路150のバイアスされたサーミスタ回路154は、任意の物体の内部又は周囲の温度を検知することが可能である。例えば、サーミスタ経路150のバイアスされたサーミスタ回路154は、(慣性センサユニットなどの)温度に敏感な装置、電気機器、又は高分解能の温度計測が求められる任意の他のシステム又は装置を含む、システムの温度を検知することが可能である。ある用途及び実装では、バイアスされたサーミスタ回路154が、システムの内部又は周囲の複数の異なる場所のそれぞれに組み込まれることができる。複数のバイアスされたサーミスタ回路154が存在する場合、監視制御装置140が、当該システムの内部又は周囲の異なる場所における温度を検知するために、1又は複数のアナログマルチプレクサによって複数の異なるバイアスされたサーミスタ回路154のうちの1つを選択することが可能である。更に、システム100を較正するために、それぞれのアナログマルチプレクサチェーンのうちの1チャンネルが、較正回路156を含む。較正回路156は、特定の温度におけるバイアスされたサーミスタ回路の等価量を表す基準信号をそのアナログマルチプレクサチェーンに供給する。これは、マルチプレクサ素子の入出力リーク/オフセット及びオン/オフ抵抗などの部品パラメータの許容誤差並びに変動を補償するようにシステムを較正するための手段を、それぞれのマルチプレクサチェーンに与える。
[0015] 信号増幅器110は、バイアスされたサーミスタ回路154又は較正回路156のアナログ和、即ちサーミスタ経路150からのアナログ信号152と、D/A変換器160からのアナログオフセット信号161とを受け取り、当該アナログ和信号から導かれる増幅アナログ信号116を出力する。増幅アナログ信号116は、D/A変換器160からのアナログオフセット信号161によってオフセットされていないサーミスタ経路150のバイアスされたサーミスタ154又は較正回路156からのアナログ信号152の一部分を表しており、A/D変換器130の入力動作レンジ内に入っている。
[0016] A/D変換器130は、増幅アナログ信号116をデジタル化増幅信号132にデジタル化する。A/D変換器130は、(本明細書でA/D変換器130の最大入力動作レンジと呼ばれる)特定の入力レンジにわたって機能し、増幅アナログ信号116を、当該アナログ信号を既定のビット数からなるデジタルワードとして表現するデジタル化増幅信号132に変換する。それぞれのデジタルワードは、最上位ビットと最下位ビットに分解されることが可能である。デジタルワードの最下位ビット(LSB)で表される温度の値は、A/D変換器130が提供可能なシステムの温度分解能を決定する。A/D変換器130から出力されるデジタル化増幅信号132が温度の値として解釈される時、A/D変換器130が機能する最大温度範囲の幅は、LSBの2倍によって制限される。ここで、nはA/D変換器130が出力する各デジタルサンプルのビット数である。A/D変換器130の望ましい入力動作レンジは、典型的に、レンジ限界又は精度誤差を避けるためにその最大入力動作レンジ未満に制限される。
[0017] A/D変換器130を用いたシステム100の動作レンジを効果的に拡大するために、アナログ信号増幅器110は、D/A変換器160に結合される。D/A変換器160は、増幅アナログ信号116をオフセットするアナログオフセット信号161をアナログ信号増幅器110へ供給し、増幅アナログ信号116がより広い温度範囲にわたってA/D変換器130の望ましい動作レンジ内に留まるようにする。例えば、監視制御装置140がA/D変換器130からデジタル化増幅信号132を受け取り、このデジタル化増幅信号132の値に応じて、プロセッサ120及び関連ソフトウェアが、A/D変換器130がA/D変換器130の望ましい入力動作限界付近で動作しているか否かを判定する。もしA/D変換器130が望ましい入力動作限界付近で動作していれば、プロセッサ120は、D/A変換器160へのデジタルオフセット信号141を調節するように監視制御装置140に命令する。D/A変換器160は、このデジタルオフセット信号を、アナログ信号増幅器110へ供給されるアナログオフセット信号161に変換する。アナログオフセット信号161は、増幅アナログ信号116をシフトさせ、増幅アナログ信号116がA/D変換器130の望ましい入力動作レンジ内に留まるようにする。本発明の重要な特徴は、増幅アナログ信号116が、アナログオフセット信号161によってオフセットされていないアナログ信号152の増幅された一部分である、ということである。それ故に、デジタル化増幅信号132は、デジタル較正基準信号によって調節されたデジタルオフセット信号141の大きさで表される大まかな温度からの細かい温度オフセットを表す。そして、実際の温度計測値は、デジタルオフセット信号141の値、マルチプレクサチェーンのデジタル較正基準値、及びデジタル化増幅信号132の値の結合から導き出される。較正とレンジステッピング機能の両方を実施することを可能にするのは、D/A変換器の高分解能である。
[0018] 1つの実装では、A/D変換器130が上側の望ましい入力閾値と下側の望ましい入力閾値を有する場合、プロセッサ120及びソフトウェアによって制御される監視制御装置140は、D/A変換器160によって供給されるアナログオフセット信号161を、サーミスタ経路150内のバイアスされたサーミスタ回路154によって検知された温度が上昇しているか下降しているかに応じて変化させるように、監視制御装置140に命令する。バイアスされたサーミスタ回路154によって検知された温度が下降している場合、A/D変換器130へ供給される増幅アナログ信号116は、下側の望ましい入力閾値に近付くだろう。増幅アナログ信号116が当該下側の望ましい入力閾値に到達する又はそれを下回った場合、プロセッサ120及びソフトウェアは、アナログオフセット信号161をシフトさせるためのD/A変換器160へのデジタルオフセット信号141を調節するように監視制御装置140に命令して、増幅アナログ信号116が当該下側の望ましい入力閾値から上側の望ましい入力閾値へシフトされるようにする。反対に、バイアスされたサーミスタ回路154によって検知された温度が上昇している場合、A/D変換器130へ供給される増幅アナログ信号116は、上側の望ましい入力閾値に近付くだろう。増幅アナログ信号116が当該上側の望ましい入力閾値に到達する又はそれを上回った場合、プロセッサ120及びソフトウェアは、アナログオフセット信号161をシフトさせるためのD/A変換器160へのデジタルオフセット信号141を調節するように監視制御装置140に命令して、増幅アナログ信号116が当該上側の望ましい入力閾値から下側の望ましい入力閾値へシフトされるようにする。増幅アナログ信号116を自動的にシフトさせることによって、プロセッサ120、ソフトウェア、及び監視制御装置140は、増幅アナログ信号116をA/D変換器130の所望の動作入力レンジ内に効率的に維持し、それによって、図3に関連して更に後述されるように、幅広い温度範囲にわたって効果的にオートレンジすることができる。
[0019] 少なくとも1つの実施態様では、D/A変換器160、アナログ信号増幅器110、A/D変換器130、並びに、特定のマルチプレクサチェーン(マルチプレクサ素子の同じ組み合わせを含む全ての経路)に関するバイアスされたサーミスタ回路154及びサーミスタ経路150の結合を較正するために、較正回路156が用いられる。オン/オフインピーダンス及び入出力オフセット/リーク電流などのアナログマルチプレクサの寄生パラメータは、部品間よりも同一素子内のチャンネル間の方がよく一致している、ということがここで留意されるべきである。入出力オフセット/リーク電流はバイアスされたサーミスタ回路のLSBデルタ信号を上回ることがあるので、それぞれの特有のマルチプレクサチェーンは、補償される必要があるだろう。例えば、D/A変換器160は、デジタルオフセット信号141を受け取り、アナログ信号増幅器110のためにアナログオフセット信号161に変換する。システムの当該部分を較正するために、プロセッサ120及びソフトウェアは、サーミスタ経路150内の較正回路156であって、特定の基準較正温度(典型的には温度範囲の中央)におけるバイアスされたサーミスタ回路154に等価であるアナログ信号152をアナログ信号増幅器110へ供給する較正回路156を選択するように、監視制御装置140に命令する。プロセッサ120及びソフトウェアは、次いで、A/D変換器130からのデジタル化増幅信号132ができる限り0値に近くなるまで、D/A変換器160へ送られるデジタルオフセット信号141を調節するように監視制御装置140に命令する。次いで、デジタルオフセット信号141とデジタル化増幅信号132の値が、システムの当該基準温度及び当該部分に対する較正デジタルワードとして記憶される。次いで、その基準較正温度におけるデジタルオフセット信号141及びデジタル化増幅信号132の値に対して、システムの当該部分における温度計測値が計算される。これは、システムの当該部分における全ての受動ディスクリート及び能動素子のパラメータ値変動を補償する。ある実施態様では、複数の較正回路156(アナログマルチプレクサ素子の特有の結合を含むサーミスタ経路の各グループ、即ちそれぞれの特有のマルチプレクサチェーン)が存在する場合、監視制御装置140、プロセッサ120、及び関連ソフトウェアは、1つの較正回路156に関するシステムの各部分に対して、上述された較正手順を選択し実施する。
[0020] 上記されたように、A/D変換器130は、増幅アナログ信号116をデジタル化し、デジタル化増幅信号132を監視制御装置140に供給する。監視制御装置140は、デジタル化増幅信号132をプロセッサ120に供給する。監視制御装置140とプロセッサ120を実装するために、システム100は、いくつかの手段の何れをも含むことができる。これらの手段は、デジタルコンピュータシステム、マイクロプロセッサ、汎用コンピュータ、プログラマブルコントローラ、及びフィールドプログラマブルゲートアレイ(FPGA)を含むが、これらに限定されない。例えば、一実施態様では、監視制御装置140はFPGAによって実装され、又は、監視制御装置140とプロセッサ120の両方が、ASIC、組み込みプロセッサを用いて実装される。したがって、本発明の他の実施態様は、そのような手段によって実施された時にそれらが本発明の実施態様を実装することを可能にする、コンピュータ可読媒体上のプログラム命令である。コンピュータ可読媒体又は記憶媒体は、物理的なコンピュータメモリ装置の任意の形態を含む。そのような物理的なコンピュータメモリ装置の例は、パンチカード、磁気ディスク若しくはテープ、光学式データ記憶システム、フラッシュリードオンリメモリ(ROM)、不揮発性ROM(NVRAM)、プログラマブルROM(PROM)、消去可能プログラマブルROM(EPROM)、ランダムアクセスメモリ(RAM)、又は、任意の他の形態の永続的、半永続的、若しくは一時的なメモリ記憶システム又は装置を含むが、これらに限定されない。プログラム命令は、コンピュータシステムのプロセッサによって実行されるコンピュータ実行可能命令、及び超高速集積回路(VHSIC)ハードウェア記述言語(VHDL)などのハードウェア記述言語を含むが、これらに限定されない。上記の組み合わせもまた、コンピュータ可読媒体の範囲内に含まれる。その上、AC電源、DC電源、又はその組み合わせが、本発明の実施態様において実装されることが可能である。
[0021] 図2は、上述された図1のシステム100を実装するシステム200の一実施態様の回路図である。ある実施態様では、システム200は、図1のシステム100に関連して説明されたサーミスタ経路150、信号増幅器110、A/D変換器130、D/A変換器160、監視制御装置140、及びプロセッサ120のように機能するサーミスタ経路250、アナログ信号増幅器210、A/D変換器230、D/A変換器260、監視制御装置240、及びプロセッサ220を含む。システム200の動作を制御するために、プロセッサ220は、監視制御装置240からシステム状態の最新情報と温度データを受け取る。プロセッサ220はまた、システム200の各部の動作を制御するための命令を監視制御装置240に供給する。少なくとも1つの実施態様において、監視制御装置240は、FPGAとして実装される。
[0022] ある実施態様では、監視制御装置240は、サーミスタ経路250を制御し監視する。ある実装において、サーミスタ経路250は、図1のサーミスタ経路150として機能する。サーミスタ経路250は、監視対象システムの異なるあちこちの場所に設置された複数のバイアスされたサーミスタ回路258を含む。例えば、サーミスタ経路250は、慣性計測ユニットの異なるあちこちの場所に設置された複数のバイアスされたサーミスタ回路258を含む。少なくとも1つの実施態様において、当該複数のバイアスされたサーミスタ回路258は、第1アナログマルチプレクサレイヤ252と第2アナログマルチプレクサレイヤ254を含む一連のアナログマルチプレクサに接続され、ここで、第1アナログマルチプレクサレイヤ252は、第2アナログマルチプレクサレイヤ254に接続される。例えば、第1アナログマルチプレクサレイヤ252のそれぞれ8入力を有する複数のアナログマルチプレクサの各出力は、アナログマルチプレクサレイヤ254のそれぞれ8入力を有するアナログマルチプレクサの別々の入力に接続されることができ、ここで、第1アナログマルチプレクサレイヤ252の各アナログマルチプレクサの8入力のうちの7つのそれぞれは、異なるバイアスされたサーミスタ回路258に接続される。第1アナログマルチプレクサレイヤ252の各アナログマルチプレクサの8入力のうちの他の入力は、較正回路256に接続されることができ、ここで、較正回路256は、較正回路156に関連して上述されたように、特定の温度におけるバイアスされたサーミスタ回路258と等価である。較正回路256は、特定の温度におけるバイアスされたサーミスタ回路258のアナログ信号と等価なアナログ信号を、第1アナログマルチプレクサレイヤ252の各アナログマルチプレクサに供給する。第1アナログマルチプレクサレイヤ252の複数のアナログマルチプレクサ出力のそれぞれは、第2マルチプレクサレイヤ254の1つのアナログマルチプレクサの異なる入力にも接続される。例えば、第1アナログマルチプレクサレイヤ252に8個のアナログマルチプレクサが存在する場合、各第1アナログマルチプレクサレイヤ254出力は、第2アナログマルチプレクサレイヤ254の共通アナログマルチプレクサの別々の入力に接続することができる。このように、またその延長として、複数のバイアスされたサーミスタ回路258は、それぞれの特有のマルチプレクサチェーンの較正回路256と共に、1又は複数のマルチプレクサレイヤを通じて1又は複数の共有された共通のD/A、信号増幅器、及びA/D回路リソースへファンインすることが可能である。
[0023] 第1アナログマルチプレクサレイヤ252と第2アナログマルチプレクサレイヤ254は、アナログ信号増幅器210によって増幅されるべきアナログ信号251をサーミスタ経路250の複数のバイアスされたサーミスタ回路258のうちのどれが供給するかの選択を、プロセッサ220と監視制御装置240が制御することを可能にする。更に、第1アナログマルチプレクサレイヤ252と第2アナログマルチプレクサレイヤ254は、サーミスタ経路250の較正回路256の選択を、プロセッサ220と監視制御装置240が制御することを可能にする。例えば、第1マルチプレクサレイヤ252のマルチプレクサ、第2マルチプレクサレイヤ254のマルチプレクサ、及び別個の較正回路256からなるシステム並びに特有のマルチプレクサチェーンを較正する場合、アナログ信号251は、第1アナログマルチプレクサレイヤ252と第2アナログマルチプレクサレイヤ254のアナログマルチプレクサを通って増幅のためにアナログ信号増幅器210へ渡され、次いで、監視制御装置240によって監視されるデジタル化増幅信号232への変換のためにA/D変換器230へ渡される。システム200を較正するために、監視制御装置240は、A/D変換器230が所望の値を有するデジタル化増幅信号232を出力するようになるまで、D/A変換器260へ送られるデジタルオフセット信号242を調節する。例えば、監視制御装置240は、A/D変換器230ができるだけ0に近い値を有するデジタル化増幅信号を出力するようになるまで、D/A変換器260へ送られるデジタルオフセット信号242を調節する。監視制御装置240は、このように各マルチプレクサチェーンの較正回路256によって、各マルチプレクサチェーンに関してシステム200を較正する。それぞれの較正回路256からのデジタルオフセット信号242とデジタル化増幅信号の値は、当該マルチプレクサチェーン及び温度についてのシステム較正値として記憶される。次いで、バイアスされたサーミスタ回路258による全ての温度計測値が、当該マルチプレクサチェーンについての較正値に関して計算される。これは、あらゆる部品パラメータの許容誤差及び変動を補償し、それぞれのマルチプレクサチェーンを特定の温度に較正する。システムは、部品パラメータの経時的変動を補償しそれによってシステム精度を維持するために、定期的に再較正されることが可能である。
[0024] バイアスされたサーミスタ回路258がアナログ信号251をアナログ信号増幅器210に供給する際に、アナログ信号増幅器210は、アナログ信号251がA/D変換器230によってデジタル化増幅信号231へ変換される前に、アナログ信号251を増幅する。ある実装では、A/D変換器230は、アナログ信号が特定のレンジ内にある場合に当該アナログ信号をデジタル信号へ変換することができるだけである。例えば、A/D変換器230は、2つの異なる入力レンジを有する場合がある。第1の入力レンジは、A/D変換器230が扱うことのできる最大入力レンジを表すことが可能である。第2の入力レンジは、第1の入力レンジよりも小さい場合があるが、A/D変換器230がより高い精度を有する入力レンジを表すことが可能である。例えば、A/D変換器230は、±2.5Vの第1入力レンジ内にある入力信号を受け取ることができるが、A/D変換器230がより高精度に動作する±1.875Vのより小さい第2入力レンジを有するということがある。温度検知及び計測の精度を向上させるために、アナログ信号増幅器210は、サーミスタ経路250から供給されるアナログ信号251を増幅する。しかしながら、この増幅によって、増幅アナログ信号211の大きさがA/D変換器230の望ましい入力動作レンジを超える場合がある。
[0025] ある実施態様では、増幅アナログ信号211をA/D変換器230の望ましい動作レンジ内に維持するために、システム200は、D/A変換器260を含む。D/A変換器260は、アナログ信号増幅器210に結合され、サーミスタ経路250からのアナログ信号251をオフセットするアナログオフセット信号261を供給して、アナログ信号増幅器210によってA/D変換器230へ供給される増幅アナログ信号211が入力動作レンジ内になるようにする。少なくとも1つの例示的な実施態様において、アナログ信号増幅器210は、第1アナログ信号増幅器212ステージと第2アナログ信号増幅器214ステージを含む。D/A変換器260は、第1アナログ信号増幅器ステージ212と第2アナログ信号増幅器ステージ214の間で2つの抵抗器からなる加算接合器に結合され、第2アナログ信号増幅器ステージ214から出力される増幅アナログ信号211がA/D変換器230の正確な動作のための望ましい動作レンジ内になるように、第2アナログ信号増幅器ステージ214への入力をオフセットさせる。加算接合器は、第1アナログ信号増幅器212から出力される増幅アナログ信号とD/A変換器260から出力されるアナログオフセット信号261を加算する。
[0026] 図3は、アナログ信号増幅器210によってA/D変換器230の入力へ供給される、アナログ電圧信号302としてここに描かれた増幅アナログ信号211が、アナログ電圧信号302をA/D変換器230の望ましい入力動作電圧レンジ内に維持するためにどのように変化するかを示すグラフ300である。グラフ300は、第1入力電圧レンジ306(即ち±2.5V)と第2入力電圧レンジ304(即ち±1.875V)に対応する2つの別々の出力電圧レンジを含む。上述されたように、第1入力電圧レンジ306は、A/D変換器230の最大入力電圧レンジに対応し、第2入力電圧レンジ304は、A/D変換器230がより高精度である望ましい動作入力電圧レンジに対応する。グラフ300は、温度T1とT2の温度範囲にわたってA/D変換器230の入力へのアナログ電圧信号302を示す。D/A変換器260は、アナログ信号増幅器210内のアナログ電圧信号をオフセットするアナログオフセット信号261を供給することによって、アナログ電圧信号302を第2入力電圧レンジ304内に維持するように機能する。例えば、アナログ電圧302が上昇していて第2入力電圧レンジ304の上限に到達又はそれを超えた場合、D/A変換器260は、アナログ電圧302が第2入力電圧レンジ304の下限の方へシフトするように、アナログ信号増幅器210内のアナログ電圧をオフセットさせる。反対に、アナログ電圧302が減少していて第2入力電圧レンジ304の下限に到達又はそれより小さくなった場合、D/A変換器260は、アナログ電圧302が第2入力電圧レンジ304の上限の方へシフトするように、アナログ信号増幅器210内のアナログ電圧をオフセットさせる。
[0027] 少なくとも1つの実装では、システム200は、オフセットシフト前に計測された温度を用いてオフセットシフト後の温度を決定する。例えば、監視制御装置240が増幅アナログ信号211をA/D変換器230の上側入力電圧限界から下側入力電圧限界へシフトさせるデジタルオフセット信号241をD/A変換器260へ送る場合、システム200は、シフト後の下限における電圧とシフト前の上限における電圧から得られるデジタルオフセット信号241及びデジタル化増幅信号231を、同一の温度と関連付ける。同様に、監視制御装置240が増幅アナログ信号211をA/D変換器230の下側入力電圧限界から上側入力電圧限界へシフトさせるデジタルオフセット信号241をD/A変換器260へ送る場合、システム200は、シフト後の上限における電圧とシフト前の下限における電圧から得られるデジタルオフセット信号241及びデジタル化増幅信号231を、同一の温度と関連付ける。第2入力電圧レンジ304の中でアナログ電圧302をシフトさせることによって、システム200は、A/D変換器230のより高精度な電圧レンジの中で幅広い温度範囲を精度良く検知及び計測することが可能である。
[0028] 図4は、システム内の温度を較正、検知、及び計測するためのサーミスタベースの方法400のフロー図である。方法400は402において進行し、ここで、デジタルオフセット信号は、大まかな温度計測値と較正のオフセットを表し、アナログオフセット信号は、増幅アナログ信号をアナログ−デジタル変換器の入力動作レンジ内に維持するように増幅アナログ信号をオフセットする。例えば、監視制御装置240は、各アナログマルチプレクサチェーンの較正回路256を順に選択し、ゼロ値にできるだけ近いデジタル化増幅信号231を生じさせるアナログオフセット信号261を得るためにD/A変換器260へのデジタルオフセット信号241を調節し、デジタルオフセット信号241とデジタル化増幅信号231の値を、それぞれ大まかな及び細かい較正基準温度値のペアとして記憶し、当該値から、同じマルチプレクサチェーンのバイアスされたサーミスタ回路258の温度が検知及び計測される。それぞれのバイアスされたサーミスタ回路258のアナログ信号251も、D/A変換器260からのアナログオフセット信号261を少なくとも1つのアナログ信号増幅器210に供給することによって増幅アナログ信号211をA/D変換器230の入力動作レンジ内に維持するように、D/A変換器260によってオフセットされる。ある実施態様では、A/D変換器は、A/D変換器がアナログ信号をより精度良くデジタル信号に変換する入力動作レンジを有することが可能である。増幅アナログ信号211をA/D変換器の入力動作レンジ内に維持するために、監視制御装置240は、デジタル化増幅信号231又は増幅アナログ信号211のいずれかを監視して、増幅アナログ信号211をA/D変換器の入力動作レンジ内に維持するように増幅アナログ信号211をオフセットするであろうアナログオフセット信号261を決定する。
[0029] 方法400は404において進行し、ここで、アナログ信号が少なくとも1つのアナログ信号増幅器によって増幅されて、増幅アナログ信号211を生じさせる。少なくとも1つの実装では、アナログ信号は、バイアスされたサーミスタ回路258、又は特定の温度におけるバイアスされたサーミスタ回路を複製する較正回路256のいずれかによって生成される。例えば、電子デバイスの内部又は周囲の異なる場所における温度を検知するために、複数のバイアスされたサーミスタ回路258が配置されることが可能である。それぞれのバイアスされたサーミスタ回路258は、別個の温度感知信号を供給し、ここで、アナログマルチプレクサ網を通じて、バイアスされたサーミスタ回路258又は較正回路256の信号が選択可能である。温度感知又は温度基準信号が選択されると、単一の又は一連のアナログ信号増幅器が、当該温度感知又は温度基準アナログ信号を増幅して、増幅アナログ信号211を生成することが可能である。
[0030] 方法400は406へ進行し、増幅アナログ信号がデジタル化増幅信号に変換される。ここで、デジタル化増幅信号は、大まかな温度からの細かい温度オフセットを表す。更なる実装では、少なくとも1つのアナログ信号増幅器210が2つのアナログ信号増幅器ステージ212及び214を含む場合、監視制御装置240は、当該2つのアナログ増幅器ステージ間の少なくとも1つのアナログ増幅器ステージに結合することによってアナログオフセット信号261を供給するように、D/A変換器260に命令する。システムの較正と温度範囲オフセット信号を提供するために高分解能D/A変換器260を使用することは、増幅アナログ信号211をD/A変換器230の入力動作レンジ内に実現し維持するのに必要とされる部品総数を制限する一方で、初期及び長期のシステム精度、信頼性、並びに柔軟性を大幅に改善する。更に、大まかな温度を表すデジタルオフセット信号241と当該大まかな温度からの細かい温度オフセットを表すデジタル化増幅信号231の組み合わせが、最終的な温度計測値に変換される。
<実施態様例>
[0031] 例1は、温度を検知及び計測するためのシステムであって、バイアスされたサーミスタ回路と較正回路の少なくとも一方からのアナログ信号に基づいて増幅アナログ信号出力を生成する少なくとも1つのアナログ信号増幅器と、前記少なくとも1つのアナログ信号増幅器への入力としてアナログオフセット信号を生成するデジタル−アナログ変換器であって、前記アナログオフセット信号は、前記増幅アナログ信号がアナログ−デジタル変換器の入力動作レンジの限界に等しい又はそれより大きい場合に、前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジ内にシフトさせる、デジタル−アナログ変換器と、を備え、前記アナログオフセット信号は、前記増幅アナログ信号の大きさに基づいて決定される、システムを含む。
[0032] 例2は、前記増幅アナログ信号を監視することに基づいて前記アナログオフセット信号を制御するためのデジタルオフセット信号を供給する監視制御装置を更に備える、例1のシステムを含む。
[0033] 例3は、前記監視制御装置を制御するソフトウェアを実行するように構成されたプロセッサを更に備える、例2のシステムを含む。
[0034] 例4は、前記少なくとも1つのアナログ信号増幅器に結合されたアナログ−デジタル変換器を更に備え、前記アナログ−デジタル変換器は、前記増幅アナログ信号からデジタル化増幅信号を生成する、例2−3のいずれかのシステムを含む。
[0035] 例5は、前記監視制御装置は、前記デジタル化増幅信号に基づいて、前記デジタル−アナログ変換器によって生成される前記アナログオフセット信号を制御するための前記デジタルオフセット信号を供給する、例4のシステムを含む。
[0036] 例6は、プロセッサがソフトウェアを実行して、前記アナログ温度信号が前記アナログ−デジタル変換器の入力動作レンジの上限より大きい又はそれに等しい場合に、前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジの下限の方へシフトさせるアナログオフセット信号を供給するように前記デジタル−アナログ変換器を制御することを前記監視制御装置に対して指示し、前記プロセッサが前記ソフトウェアを実行して、前記アナログ温度信号が前記アナログ−デジタル変換器の入力動作レンジの下限より小さい又はそれに等しい場合に、前記アナログ温度信号を前記アナログ−デジタル変換器の入力動作レンジの上限の方へシフトさせるアナログオフセット信号を供給するように前記デジタル−アナログ変換器を制御することを前記監視制御装置に対して命令する、例2−5のいずれかのシステムを含む。
[0037] 例7は、前記少なくとも1つのアナログ信号増幅器は、第2アナログ信号増幅器ステージに結合された第1アナログ信号増幅器ステージを備え、前記第1アナログ信号増幅器ステージは、前記バイアスされたサーミスタ回路と前記較正回路の少なくとも一方からアナログ信号を受け取り、前記第1アナログ信号増幅器ステージの出力と前記アナログオフセット信号は、前記第1アナログ信号増幅器ステージと前記第2アナログ信号増幅器ステージの間で加算接合器に結合される、例1−6のいずれかのシステムを含む。
[0038] 例8は、前記バイアスされたサーミスタ回路は、異なる場所に設置され前記異なる場所と対応する異なる温度検知及び計測値を与えるように構成された複数のバイアスされたサーミスタ回路を含む、例1−7のいずれかのシステムを含む。
[0039] 例9は、前記複数のサーミスタは、電子デバイス上の異なる場所に設置される、例8のシステムを含む。
[0040] 例10は、プロセッサがソフトウェアを実行して、前記アナログ信号を供給するためにアナログ信号が選択される複数のバイアスされたサーミスタ回路から第1のバイアスされたサーミスタ回路を選択することを前記監視制御装置に対して命令し、前記プロセッサが前記ソフトウェアを実行して、前記複数のバイアスされたサーミスタ回路と前記少なくとも1つの増幅器の間に結合された複数のマルチプレクサから前記第1のバイアスされたサーミスタ回路を選択することを前記監視制御装置に対して命令する、例8−9のいずれかのシステムを含む。
[0041] 例11は、前記プロセッサが前記ソフトウェアを実行して、前記複数のアナログマルチプレクサから較正回路を選択することを前記監視制御装置に対して命令し、前記較正回路によって生成されるアナログ信号は、基準温度において前記複数のバイアスされたサーミスタ回路によって生成されるアナログ信号と等価である、例10のシステムを含む。
[0042] 例12は、温度を計測するためのシステムであって、温度計測値に対応する増幅アナログ信号を出力する少なくとも1つのアナログ信号増幅器と、前記少なくとも1つのアナログ信号増幅器に結合され、前記少なくとも1つの増幅器への入力として、大まかな温度計測値を表すデジタルオフセット信号からアナログオフセット信号を生成するデジタル−アナログ変換器と、前記少なくとも1つのアナログ信号増幅器に結合されたアナログ−デジタル変換器であって、アナログ−デジタル変換器の入力動作レンジ内の前記増幅アナログ信号を、前記大まかな温度からの細かい温度オフセットを表すデジタル化増幅信号に変換するアナログ−デジタル変換器と、前記システムを制御するためのソフトウェアを実行するように構成されたプロセッサと、前記デジタル−アナログ変換器、前記アナログ−デジタル変換器、及び前記プロセッサに結合された監視制御装置と、を備え、前記プロセッサは、前記ソフトウェアを実行して、前記デジタルオフセット信号と前記デジタル化増幅信号に基づいて最終的な温度計測値を決定し、前記プロセッサは、前記ソフトウェアを実行して、前記デジタル化増幅信号に基づいて前記デジタルオフセット信号を前記デジタル−アナログ変換器に供給するように前記監視制御装置に対して命令し、その結果、前記増幅アナログ信号が前記アナログ−デジタル変換器の入力動作レンジの限界に等しい又は前記アナログ−デジタル変換器の入力動作レンジ外である場合に、前記アナログオフセット信号が前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジ内にシフトさせる、システムを含む。
[0043] 例13は、前記プロセッサは、前記ソフトウェアを実行して、前記増幅アナログ信号が前記アナログ−デジタル変換器の入力動作レンジの上限より大きい又はそれに等しい場合に前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジの下限の方へシフトさせるアナログオフセット信号を供給するために、前記デジタルオフセット信号を前記デジタル−アナログ変換器に供給することを前記監視制御装置に対して命令し、前記プロセッサは、前記ソフトウェアを実行して、前記増幅アナログ信号が前記アナログ−デジタル変換器の入力動作レンジの下限より小さい又はそれに等しい場合に前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジの上限の方へシフトさせるアナログオフセット信号を供給するために、前記デジタルオフセット信号を前記デジタル−アナログ変換器に供給することを前記監視制御装置に対して命令する、例12のシステムを含む。
[0044] 例14は、前記少なくとも1つのアナログ信号増幅器は、第2アナログ信号増幅器ステージに結合された第1アナログ信号増幅器ステージを備え、前記第1アナログ信号増幅器ステージは、バイアスされたサーミスタ回路と較正回路の少なくとも一方からアナログ信号を受け取り、前記第1アナログ信号増幅器ステージの出力と前記アナログオフセット信号は、前記第1アナログ信号増幅器ステージと前記第2アナログ信号増幅器ステージの間で加算接合器に結合される、例12−13のいずれかのシステムを含む。
[0045] 例15は、前記バイアスされたサーミスタ回路は、異なる場所に設置され前記異なる場所における温度と対応する異なる温度計測値を与えるように構成された複数のバイアスされたサーミスタ回路の1つである、例14のシステムを含む。
[0046] 例16は、前記プロセッサが前記ソフトウェアを実行して、アナログ信号を供給するために前記複数のバイアスされたサーミスタ回路において前記バイアスされたサーミスタ回路を選択することを前記監視制御装置に対して命令する、例15のシステムを含む。
[0047] 例17は、前記プロセッサが前記ソフトウェアを実行して、前記複数のバイアスされたサーミスタ回路と前記少なくとも1つのアナログ信号増幅器の間に結合された複数のマルチプレクサから前記バイアスされたサーミスタ回路を選択することを前記監視制御装置に対して命令する、例15−16のいずれかのシステムを含む。
[0048] 例18は、前記プロセッサが前記ソフトウェアを実行して、前記複数のマルチプレクサから較正回路を選択することを前記監視制御装置に対して命令し、前記較正回路によって生成される前記アナログ信号は、基準温度において前記複数のバイアスされたサーミスタ回路の1つによって生成される前記アナログ信号と等価である、例17のシステムを含む。
[0049] 例19は、温度を較正、検知、及び計測するための方法であって、デジタルオフセット信号をアナログオフセット信号に変換するステップであって、前記デジタルオフセット信号は、大まかな温度計測値及び較正のオフセットを表し、前記アナログオフセット信号は、増幅アナログ信号をオフセットして前記増幅アナログ信号をアナログ−デジタル変換器の入力動作レンジ内に維持する、ステップと、アナログ信号を少なくとも1つのアナログ信号増幅器によって増幅して、バイアスされたサーミスタ回路と較正回路の少なくとも一方からの前記アナログ信号に基づく前記増幅アナログ信号を生成するステップと、前記増幅アナログ信号をデジタル化増幅信号に変換するステップであって、前記デジタル化増幅信号は、前記大まかな温度計測値及び較正のオフセットからの細かい温度オフセットを表す、ステップと、を含む方法を含む。
[0050] 例20は、前記増幅アナログ信号が前記アナログ−デジタル変換器の入力動作レンジの上限より大きい又はそれに等しい場合に、前記アナログオフセット信号は前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジの下限の方へシフトさせ、前記増幅アナログ信号が前記アナログ−デジタル変換器の入力動作レンジの下限より小さい又はそれに等しい場合に、前記アナログオフセット信号は前記増幅アナログ信号を前記アナログ−デジタル変換器の入力動作レンジの上限の方へシフトさせる、例19の方法を含む。
[0051] 特定の実施態様が本明細書で例示され説明されてきたが、同じ目的を達成することを意図される任意のアレンジメントが、当該示された特定の実施態様の代わりとなることができる、ということが当業者によって理解されるだろう。したがって、本発明はクレーム及びその均等物によってのみ限定される、ということが明白に意図される。

Claims (3)

  1. 温度を検知及び計測するためのシステムであって、
    バイアスされたサーミスタ回路(154)と較正回路(156)の少なくとも一方からのアナログ信号(152)に基づいて増幅アナログ信号(116)出力を生成する少なくとも1つのアナログ信号増幅器(110)と、
    前記少なくとも1つのアナログ信号増幅器(110)への入力としてアナログオフセット信号(161)を生成するデジタル−アナログ変換器(160)であって、前記アナログオフセット信号(161)は、前記増幅アナログ信号(116)がアナログ−デジタル変換器の入力動作レンジの限界に等しい又はそれより大きい場合に、前記増幅アナログ信号(116)を前記アナログ−デジタル変換器の入力動作レンジ内にシフトさせる、デジタル−アナログ変換器(160)と、
    を備え、前記アナログオフセット信号(161)は、前記増幅アナログ信号(116)の大きさに基づいて決定される、システム。
  2. 前記増幅アナログ信号(116)を監視することに基づいて前記アナログオフセット信号(161)を制御するためのデジタルオフセット信号(141)を供給する監視制御装置(140)を更に備え、
    プロセッサ(120)がソフトウェアを実行して、前記アナログ温度信号が前記アナログ−デジタル変換器の入力動作レンジの上限より大きい又はそれに等しい場合に、前記増幅アナログ信号(116)を前記アナログ−デジタル変換器の入力動作レンジの下限の方へシフトさせるアナログオフセット信号(161)を供給するように前記デジタル−アナログ変換器(160)を制御することを前記監視制御装置(140)に対して指示し、前記プロセッサ(120)が前記ソフトウェアを実行して、前記アナログ温度信号が前記アナログ−デジタル変換器の入力動作レンジの下限より小さい又はそれに等しい場合に、前記アナログ温度信号を前記アナログ−デジタル変換器の入力動作レンジの上限の方へシフトさせるアナログオフセット信号(161)を供給するように前記デジタル−アナログ変換器(160)を制御することを前記監視制御装置(140)に対して命令する、請求項1に記載のシステム。
  3. 温度を較正、検知、及び計測するための方法であって、
    デジタルオフセット信号(141)をアナログオフセット信号(161)に変換するステップであって、前記デジタルオフセット信号(141)は、大まかな温度計測値及び較正のオフセットを表し、前記アナログオフセット信号(161)は、増幅アナログ信号(116)をオフセットして前記増幅アナログ信号(116)をアナログ−デジタル変換器の入力動作レンジ内に維持する、ステップと、
    アナログ信号(152)を少なくとも1つのアナログ信号増幅器(110)によって増幅して、バイアスされたサーミスタ回路(154)と較正回路(156)の少なくとも一方からの前記アナログ信号(152)に基づく前記増幅アナログ信号(116)を生成するステップと、
    前記増幅アナログ信号(116)をデジタル化増幅信号(132)に変換するステップであって、前記デジタル化増幅信号(132)は、前記大まかな温度計測値及び較正のオフセットからの細かい温度オフセットを表す、ステップと、
    を含む方法。
JP2013236715A 2013-01-17 2013-11-15 オートレンジ温度センサのためのシステム及び方法 Pending JP2014140156A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/743,890 US20140198820A1 (en) 2013-01-17 2013-01-17 Systems and methods for an auto-ranging temperature sensor
US13/743,890 2013-01-17

Publications (1)

Publication Number Publication Date
JP2014140156A true JP2014140156A (ja) 2014-07-31

Family

ID=49356333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236715A Pending JP2014140156A (ja) 2013-01-17 2013-11-15 オートレンジ温度センサのためのシステム及び方法

Country Status (3)

Country Link
US (1) US20140198820A1 (ja)
EP (1) EP2757357A3 (ja)
JP (1) JP2014140156A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216450A (ja) * 2014-04-16 2019-12-19 富士電機株式会社 物理量センサ装置の調整方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441949B2 (en) * 2005-12-16 2008-10-28 Micron Technology, Inc. System and method for providing temperature data from a memory device having a temperature sensor
JP5053421B2 (ja) * 2010-06-16 2012-10-17 矢崎総業株式会社 信号判定システム及び温度判定システム
JP2015204608A (ja) * 2014-04-16 2015-11-16 富士電機株式会社 物理量センサ装置および物理量センサ装置の調整方法
US10218370B1 (en) * 2018-03-09 2019-02-26 Infineon Technologies Ag Temperature reference gain correction for analog-to-digital converter
CN113721231B (zh) * 2021-08-24 2024-04-12 上海航天测控通信研究所 一种深空探测用x频段测距信号转发系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121912A (en) * 1998-09-30 2000-09-19 National Semiconductor Corporation Subranging analog-to-digital converter and method
US6639539B1 (en) * 2002-10-22 2003-10-28 Bei Technologies, Inc. System and method for extending the dynamic range of an analog-to-digital converter
US7089146B1 (en) * 2004-09-28 2006-08-08 National Semiconductor Corporation Apparatus and method for sub-ranging conversion for temperature sensing
US7656330B2 (en) * 2007-05-23 2010-02-02 Analog Devices, Inc. Automatic range shift system and method for an analog to digital converter
US8672542B2 (en) * 2010-05-26 2014-03-18 Honeywell International Inc. High resolution measurement of thermistor thermometry signals with wide dynamic range

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216450A (ja) * 2014-04-16 2019-12-19 富士電機株式会社 物理量センサ装置の調整方法

Also Published As

Publication number Publication date
EP2757357A2 (en) 2014-07-23
US20140198820A1 (en) 2014-07-17
EP2757357A3 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP2014140156A (ja) オートレンジ温度センサのためのシステム及び方法
KR101717069B1 (ko) 향상된 동작 범위를 갖는 질량 흐름 제어기
US9804036B2 (en) Temperature sensor calibration
US9857782B2 (en) Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
JP5667192B2 (ja) リーク電流を検出及び補正するマルチプレクサ
US8672542B2 (en) High resolution measurement of thermistor thermometry signals with wide dynamic range
ES2705433T3 (es) Método para la compensación de deriva de temperatura de dispositivo de medición de temperatura que usa termopar
EP2128579A1 (en) Arrangement for linearizing a non-linear sensor
US20140341257A1 (en) Temperature sensor system and method
TWI742133B (zh) 受應力損害的訊號的校正電路
US10338110B2 (en) Digitally compensating for the impact of input bias current on current measurements
KR101375363B1 (ko) 서미스터를 이용한 온도 측정 장치
EP3690417A1 (en) Apparatus for heat-loss vacuum measurement with improved temperature compensation and extended measurement range
EP3179257B1 (en) Precise current measurement with chopping technique for high power driver
JP6263272B2 (ja) 電流検出装置および電流を検出する方法
US10634565B2 (en) Temperature sensing apparatus and temperature sensing method thereof
RU2562749C2 (ru) Интерфейсный модуль контроля температур
KR20080034687A (ko) 램프 발생기 및 그것의 램프신호 발생 방법
JP6489081B2 (ja) センサ装置
JP2019138735A (ja) 電流検出装置、電流検出システム、及び電流検出装置の校正方法
JP2005147816A (ja) 温度測定装置
Jain et al. An efficient digitization scheme for resistive sensors interfaced through quarter bridge
JPH11118617A (ja) 温度調節器
Kochan et al. Correcting measurement error due to heating by operating current of resistance temperature detectors
CN112013985B (zh) 温度检测装置及温度检测方法