JP2014138017A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2014138017A
JP2014138017A JP2013004464A JP2013004464A JP2014138017A JP 2014138017 A JP2014138017 A JP 2014138017A JP 2013004464 A JP2013004464 A JP 2013004464A JP 2013004464 A JP2013004464 A JP 2013004464A JP 2014138017 A JP2014138017 A JP 2014138017A
Authority
JP
Japan
Prior art keywords
semiconductor chip
thermal expansion
expansion coefficient
package substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013004464A
Other languages
Japanese (ja)
Inventor
Chihiro Uchibori
千尋 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013004464A priority Critical patent/JP2014138017A/en
Publication of JP2014138017A publication Critical patent/JP2014138017A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device and a method of manufacturing the same capable of suppressing generation of warpage.SOLUTION: A semiconductor device has a package substrate 10 and a semiconductor chip 20. The semiconductor chip 20 is mounted on the package substrate 10 with an element formation surface down. A thermal expansion coefficient adjustment member 23 is provided on an opposite side to the element formation surface of the semiconductor chip 20. This thermal expansion coefficient adjustment member 23 is formed by filling a material having a thermal expansion coefficient different from that of the semiconductor chip 20 into a hole or a groove formed to the semiconductor chip 20.

Description

本発明は、半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof.

近年、半導体装置の高性能化にともない、半導体装置の入出力端子の数が著しく増加している。このため、従来のワイヤーボンディングを使用したパッケージでは入出力端子の増加に対応できなくなり、ワイヤーボンディングを使用したパッケージに代えてフリップチップパッケージが採用されるようになった。   In recent years, as the performance of semiconductor devices increases, the number of input / output terminals of the semiconductor devices has increased remarkably. For this reason, the conventional package using wire bonding cannot cope with the increase in input / output terminals, and a flip chip package has been adopted instead of the package using wire bonding.

フリップチップパッケージの半導体装置では、半導体チップの電極面上にはんだボールを形成する。そして、パッケージ基板の電極の上にはんだボールが載るように半導体チップを配置し、リフローと呼ばれる熱処理を行う。この熱処理によりはんだボールが溶融し、半導体チップの電極とパッケージ基板の電極とがはんだを介して電気的且つ機械的に接続される。   In a flip chip package semiconductor device, solder balls are formed on the electrode surface of the semiconductor chip. Then, a semiconductor chip is arranged so that solder balls are placed on the electrodes of the package substrate, and a heat treatment called reflow is performed. The solder balls are melted by this heat treatment, and the electrodes of the semiconductor chip and the electrodes of the package substrate are electrically and mechanically connected via the solder.

特開2006−66522号公報JP 2006-66522 A 特開2010−103270号公報JP 2010-103270 A

反りの発生を抑制できる半導体装置及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a semiconductor device capable of suppressing the occurrence of warpage and a manufacturing method thereof.

開示の技術の一観点によれば、パッケージ基板と、前記パッケージ基板上に実装された半導体チップと、前記半導体チップの素子形成面と反対側に埋め込まれ、前記半導体チップの熱膨張係数を前記パッケージ基板の熱膨張係数に近づける熱膨張係数調整部材とを有する半導体装置が提供される。   According to one aspect of the disclosed technology, a package substrate, a semiconductor chip mounted on the package substrate, and a semiconductor chip embedded on the opposite side of the element formation surface of the semiconductor chip, the thermal expansion coefficient of the semiconductor chip is determined as the package. There is provided a semiconductor device having a thermal expansion coefficient adjusting member that approximates the thermal expansion coefficient of a substrate.

開示の技術の他の一観点によれば、半導体チップの素子形成面と反対の側に孔又は溝を形成する工程と、前記孔又は溝内に前記半導体チップとは熱膨張係数が異なる物質を埋めて熱膨張係数調整部材を形成する工程と、前記半導体チップをパッケージ基板に接合する工程とを有する半導体装置の製造方法が提供される。   According to another aspect of the disclosed technology, a step of forming a hole or a groove on the side opposite to the element formation surface of the semiconductor chip, and a substance having a thermal expansion coefficient different from that of the semiconductor chip in the hole or groove are provided. A method for manufacturing a semiconductor device is provided, which includes a step of filling and forming a thermal expansion coefficient adjusting member and a step of bonding the semiconductor chip to a package substrate.

上記一観点に係る半導体装置及び製造方法によれば、半導体チップに埋め込まれた熱膨張係数調整部材により、パッケージ基板と半導体チップとの熱膨張係数の差が小さくなり、反りの発生を抑制できる。   According to the semiconductor device and the manufacturing method according to the above aspect, the difference in thermal expansion coefficient between the package substrate and the semiconductor chip is reduced by the thermal expansion coefficient adjusting member embedded in the semiconductor chip, and the occurrence of warpage can be suppressed.

図1は、実施形態に係る半導体装置を示す断面図である。FIG. 1 is a cross-sectional view illustrating a semiconductor device according to an embodiment. 図2は、実施形態に係る半導体装置及び比較例に係る半導体装置の反りをシミュレーション計算して調べた結果を示す図である。FIG. 2 is a diagram illustrating a result obtained by performing simulation calculation on the warpage of the semiconductor device according to the embodiment and the semiconductor device according to the comparative example. 図3は、実施形態に係る半導体装置の製造方法を示す断面図(その1)である。FIG. 3 is a cross-sectional view (part 1) illustrating the method for manufacturing the semiconductor device according to the embodiment. 図4は、実施形態に係る半導体装置の製造方法を示す断面図(その2)である。FIG. 4 is a cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the embodiment. 図5は、パッケージ基板に設けられた銅配線の密度に応じて半導体チップのビア密度を部分的に調整した例を示す模式図である。FIG. 5 is a schematic diagram showing an example in which the via density of the semiconductor chip is partially adjusted according to the density of the copper wiring provided on the package substrate. 図6は、半導体チップの裏面に溝を形成し、溝内に半導体チップと異なる物質を埋め込んで熱膨張係数調整部材とした例を示す模式図である。FIG. 6 is a schematic diagram illustrating an example in which a groove is formed on the back surface of the semiconductor chip and a material different from the semiconductor chip is embedded in the groove to form a thermal expansion coefficient adjusting member.

前述したように、フリップチップパッケージの半導体装置では、はんだボールをリフローして半導体チップとパッケージ基板とを接続している。しかし、半導体チップとパッケージ基板との熱膨張係数が異なるため、リフロー後の冷却にともなって反りが発生する。   As described above, in the semiconductor device of the flip chip package, the solder ball is reflowed to connect the semiconductor chip and the package substrate. However, since the thermal expansion coefficients of the semiconductor chip and the package substrate are different, warpage occurs with cooling after reflow.

これにより、半導体チップに形成された素子に大きな応力が印加されて特性が変化したり、極端な場合は半導体チップが破損することもある。また、反りのために半導体装置と回路基板(二次実装基板)とを接合することが困難になり、接続不良が発生することもある。   As a result, a large stress is applied to the element formed on the semiconductor chip to change the characteristics, and in an extreme case, the semiconductor chip may be damaged. Further, due to the warp, it becomes difficult to join the semiconductor device and the circuit board (secondary mounting board), and connection failure may occur.

以下の実施形態では、反りの発生を抑制できる半導体装置及びその製造方法について説明する。   In the following embodiments, a semiconductor device capable of suppressing the occurrence of warpage and a manufacturing method thereof will be described.

(実施形態)
図1は、実施形態に係る半導体装置を示す断面図である。
(Embodiment)
FIG. 1 is a cross-sectional view illustrating a semiconductor device according to an embodiment.

この図1に示すように、本実施形態に係る半導体装置は、パッケージ基板10と、パッケージ基板10上に実装された半導体チップ20とを有する。   As shown in FIG. 1, the semiconductor device according to the present embodiment includes a package substrate 10 and a semiconductor chip 20 mounted on the package substrate 10.

パッケージ基板10の上側の面には多数の電極11が比較的小さなピッチで配置されており、下側の面には多数の電極12が比較的大きなピッチで配置されている。これらの電極11と電極12とは、パッケージ基板10内に形成された多層配線(図示せず)を介して電気的に接続されている。また、パッケージ基板10の電極12の下には、回路基板(二次実装基板)に接続するためのはんだボール13が接続されている。   A large number of electrodes 11 are arranged on the upper surface of the package substrate 10 with a relatively small pitch, and a large number of electrodes 12 are arranged on the lower surface with a relatively large pitch. These electrodes 11 and 12 are electrically connected via multilayer wiring (not shown) formed in the package substrate 10. A solder ball 13 for connecting to a circuit board (secondary mounting board) is connected under the electrode 12 of the package board 10.

一方、半導体チップ20は、素子が形成された側の面(以下、表面という)を下にしてパッケージ基板10の上に実装されている。半導体チップ20の表面には多数の電極21が配置されており、それらの電極21は半導体チップ20に形成されたトランジスタ等の素子(図示せず)と電気的に接続している。   On the other hand, the semiconductor chip 20 is mounted on the package substrate 10 with the surface on which the element is formed (hereinafter referred to as the surface) facing down. A large number of electrodes 21 are arranged on the surface of the semiconductor chip 20, and these electrodes 21 are electrically connected to elements (not shown) such as transistors formed on the semiconductor chip 20.

前述のパッケージ基板10の電極11は、半導体チップ20の電極21に対応する位置に形成されている。電極21の下にははんだボール22が形成されており、電極21とパッケージ基板10の電極11とは、はんだボール22を介して電気的且つ機械的に接続されている。   The electrode 11 of the package substrate 10 is formed at a position corresponding to the electrode 21 of the semiconductor chip 20. A solder ball 22 is formed under the electrode 21, and the electrode 21 and the electrode 11 of the package substrate 10 are electrically and mechanically connected via the solder ball 22.

半導体チップ20の裏面(図1では上側の面)側には、半導体チップ20に設けられた孔にCu(銅)を埋め込んで形成されたCuビア23が多数設けられている。Cuビア23は、熱膨張係数調整部材の一例である。   On the back surface (upper surface in FIG. 1) side of the semiconductor chip 20, a number of Cu vias 23 formed by embedding Cu (copper) in holes provided in the semiconductor chip 20 are provided. The Cu via 23 is an example of a thermal expansion coefficient adjusting member.

本実施形態では半導体チップ20の孔にCuを埋め込んでビア23としているが、孔内に埋め込む物質は半導体チップ20の主材料(シリコン)よりも熱膨張係数が大きいものであればよく、Cuに限定されない。孔内に例えばW(タングステン)を埋め込んでビア23としてもよい。   In the present embodiment, Cu is embedded in the hole of the semiconductor chip 20 to form the via 23, but the material embedded in the hole may be any material having a larger thermal expansion coefficient than the main material (silicon) of the semiconductor chip 20, It is not limited. For example, W (tungsten) may be embedded in the hole to form the via 23.

但し、半導体チップ20の主材料の熱膨張係数よりもパッケージ基板10の熱膨張係数のほうが小さい場合は、半導体チップ20の主材料よりも熱膨張係数が小さい物質を孔内に埋め込む。   However, when the thermal expansion coefficient of the package substrate 10 is smaller than the thermal expansion coefficient of the main material of the semiconductor chip 20, a substance having a smaller thermal expansion coefficient than that of the main material of the semiconductor chip 20 is embedded in the holes.

図2は、本実施形態に係る半導体装置の反りをシミュレーション計算して調べた結果を示す図である。図2には、比較例として、半導体チップにビア23が設けられていないこと以外は実施形態と同様の半導体装置の反りをシミュレーション計算した結果も併せて示している。   FIG. 2 is a diagram showing a result of examining the warpage of the semiconductor device according to the present embodiment by simulation calculation. FIG. 2 also shows, as a comparative example, the result of simulation calculation of the warpage of the semiconductor device similar to that of the embodiment except that the via 23 is not provided in the semiconductor chip.

ここで、半導体チップ20の大きさは、52mm(縦)×52mm(横)×0.55mm(厚さ)としている。また、パッケージ基板10の大きさは72mm(縦)×72mm(横)×1.45mm(厚さ)としている。   Here, the size of the semiconductor chip 20 is 52 mm (vertical) × 52 mm (horizontal) × 0.55 mm (thickness). The size of the package substrate 10 is 72 mm (vertical) × 72 mm (horizontal) × 1.45 mm (thickness).

図2において、横軸はパッケージ基板10の中心を原点とした横方向の位置を示し、縦軸は横方向の各位置におけるパッケージ基板10の縦方向のずれ量を示している。また、ここでは、パッケージ基板10の端部における縦方向のずれ量を、反りの大きさと定義する。   In FIG. 2, the horizontal axis indicates the position in the horizontal direction with the center of the package substrate 10 as the origin, and the vertical axis indicates the amount of shift in the vertical direction of the package substrate 10 at each position in the horizontal direction. Here, the amount of vertical displacement at the end of the package substrate 10 is defined as the amount of warpage.

シミュレーションに際し、半導体チップ20の主材料であるシリコンの熱膨張係数は3.6ppm/Kとし、パッケージ基板10の熱膨張係数は10.8ppm/Kとしている。また、はんだボール22の溶融温度を459K(186℃)とし、リフロー時にはこの温度まで半導体チップ20及びパッケージ基板10を加熱し、その後室温(298K)まで冷却するものとしている。   In the simulation, the thermal expansion coefficient of silicon, which is the main material of the semiconductor chip 20, is 3.6 ppm / K, and the thermal expansion coefficient of the package substrate 10 is 10.8 ppm / K. Further, the melting temperature of the solder ball 22 is 459 K (186 ° C.), and at the time of reflow, the semiconductor chip 20 and the package substrate 10 are heated to this temperature and then cooled to room temperature (298 K).

更に、Cuビア23は、その直径が100μm、長さが275μmであり、半導体チップ20の裏面全体に0.15mmのピッチで配置されているものとしている。更にまた、ビア23に埋め込まれた銅の熱膨張係数は17.2ppm/Kとしている。   Further, the Cu vias 23 have a diameter of 100 μm and a length of 275 μm, and are arranged at a pitch of 0.15 mm on the entire back surface of the semiconductor chip 20. Furthermore, the thermal expansion coefficient of the copper embedded in the via 23 is 17.2 ppm / K.

図2からわかるように、Cuビア23がない比較例の半導体装置では、パッケージ基板に0.48mmの反りが発生する。これに対し、実施形態の半導体装置では、パッケージ基板10の反りは0.012mmと極めて少ない。   As can be seen from FIG. 2, in the semiconductor device of the comparative example without the Cu via 23, warpage of 0.48 mm occurs on the package substrate. On the other hand, in the semiconductor device of the embodiment, the warpage of the package substrate 10 is as extremely small as 0.012 mm.

本実施形態では、半導体チップ20の裏面側に多数のCuビア23を設けているので、半導体チップ20の熱膨張係数がパッケージ基板10の熱膨張係数に近づく。これにより、熱膨張係数の差に起因する反りの発生が抑制され、半導体装置の製造歩留まり及び信頼性が向上するという効果を奏する。   In the present embodiment, since many Cu vias 23 are provided on the back side of the semiconductor chip 20, the thermal expansion coefficient of the semiconductor chip 20 approaches the thermal expansion coefficient of the package substrate 10. As a result, the occurrence of warpage due to the difference in thermal expansion coefficient is suppressed, and the manufacturing yield and reliability of the semiconductor device are improved.

図3〜図4は、本実施形態に係る半導体装置の製造方法を工程順に示す断面図である。   3 to 4 are cross-sectional views showing the method of manufacturing the semiconductor device according to this embodiment in the order of steps.

まず、半導体基板(ウェハ)31の表面側に、公知の方法によりトランジスタ及びその他の素子並びに配線層等を形成する。その後、半導体基板31を反転し、図3(a)のように半導体基板31の裏面上にフォトレジストを塗布して、フォトレジスト膜32を形成する。   First, transistors, other elements, wiring layers, and the like are formed on the surface side of the semiconductor substrate (wafer) 31 by a known method. Thereafter, the semiconductor substrate 31 is inverted, and a photoresist is applied to the back surface of the semiconductor substrate 31 as shown in FIG.

次に、所定のパターンが設けられた露光マスク(図示せず)を使用してフォトレジスト膜32を露光し、その後現像処理を実施して、図3(b)に示すように、フォトレジスト膜32の所定の位置に開口部32aを形成する。開口部32aの直径は、例えば100μmとする。   Next, the photoresist film 32 is exposed using an exposure mask (not shown) provided with a predetermined pattern, and then development processing is performed. As shown in FIG. An opening 32 a is formed at a predetermined position of 32. The diameter of the opening 32a is, for example, 100 μm.

その後、フォトレジスト膜32をマスクとし、半導体基板31を例えばその厚さの半分程度までエッチングして、図3(c)に示すように孔31aを形成する。   Thereafter, using the photoresist film 32 as a mask, the semiconductor substrate 31 is etched to, for example, about half of its thickness to form a hole 31a as shown in FIG.

次に、フォトレジスト膜32を除去した後、図4(a)に示すように、スパッタ法等により半導体基板31の裏面上にバリアメタル33として例えばTi(チタン)膜又はTa(タンタル)膜を30nmの厚さに形成し、孔31aの壁面をバリアメタル33で覆う。その後、スパッタ法等により、バリアメタル33の上に、シード層34として例えばCu膜を200nmの厚さに形成する。   Next, after removing the photoresist film 32, as shown in FIG. 4A, for example, a Ti (titanium) film or a Ta (tantalum) film is formed on the back surface of the semiconductor substrate 31 as a barrier metal 33 by sputtering or the like. It is formed to a thickness of 30 nm, and the wall surface of the hole 31 a is covered with a barrier metal 33. Thereafter, a Cu film, for example, is formed to a thickness of 200 nm as the seed layer 34 on the barrier metal 33 by sputtering or the like.

バリアメタル33は、下地とシード層34との密着性を向上させる効果と、Cuの酸化や拡散を防止する効果とを有する。   The barrier metal 33 has an effect of improving the adhesion between the base and the seed layer 34 and an effect of preventing Cu oxidation and diffusion.

次に、図4(b)に示すように、シード層34の上にCuを電解めっきしてCu膜35を形成し、孔31a内にCuを充填する。   Next, as shown in FIG. 4B, Cu is electroplated on the seed layer 34 to form a Cu film 35, and the hole 31a is filled with Cu.

次に、CMP(Chemical Mechanical Polishing)法等により、図4(c)に示すように半導体基板31が露出するまでCu膜35、シード層34及びバリアメタル33を研磨する。研磨後に孔31a内に残ったCuがCuビア23となる。   Next, the Cu film 35, the seed layer 34, and the barrier metal 33 are polished by CMP (Chemical Mechanical Polishing) or the like until the semiconductor substrate 31 is exposed as shown in FIG. Cu remaining in the hole 31 a after polishing becomes the Cu via 23.

次いで、ダイシング装置により半導体基板31を切断し、個々の半導体チップに分離する。その後、半導体チップをパッケージ基板上に配置し、リフロー処理を行う。このようにして、図1に示す構造の半導体装置が完成する。   Next, the semiconductor substrate 31 is cut by a dicing apparatus and separated into individual semiconductor chips. Thereafter, the semiconductor chip is placed on the package substrate and reflow processing is performed. In this way, the semiconductor device having the structure shown in FIG. 1 is completed.

なお、Cuビアの23の直径、深さ及び配設ピッチ等は、予め有限要素法等のシミュレーション計算を行って、反りが所望の値(例えば0.01mm)以下となるように決定することが好ましい。   Note that the diameter, depth, arrangement pitch, and the like of the Cu via 23 are determined in advance by performing a simulation calculation such as a finite element method so that the warp becomes a desired value (for example, 0.01 mm) or less. preferable.

また、上述の製造方法では半導体基板にトランジスタ等の素子及び配線層等を形成してからCuビアを形成する場合について説明したが、半導体基板にCuビアを形成した後、トランジスタ等の素子及び配線層等を形成してもよい。   Further, in the above-described manufacturing method, the case where the Cu via is formed after forming the element such as the transistor and the wiring layer on the semiconductor substrate has been described. However, after the Cu via is formed on the semiconductor substrate, the element and the wiring such as the transistor are formed. A layer or the like may be formed.

(その他の実施形態)
上述の実施形態では、半導体チップの裏面側にCuビアを均一に配置した場合について説明したが、パッケージ基板に設けられた銅配線の密度に応じて半導体チップのCuビア密度を部分的に調整することが好ましい。
(Other embodiments)
In the above-described embodiment, the case where the Cu vias are uniformly arranged on the back surface side of the semiconductor chip has been described. However, the Cu via density of the semiconductor chip is partially adjusted according to the density of the copper wiring provided on the package substrate. It is preferable.

図5は、パッケージ基板に設けられた銅配線の密度に応じて半導体チップのビア密度を部分的に調整した例を示す模式図である。   FIG. 5 is a schematic diagram showing an example in which the via density of the semiconductor chip is partially adjusted according to the density of the copper wiring provided on the package substrate.

この図5のようにパッケージ基板10の銅配線15の密度が高い場所に対応する半導体チップ20の領域には、Cuビア23を高密度に配置する。また、パッケージ基板10の銅配線15の密度が低い場所に対応する半導体チップ20の領域には、Cuビア23を低密度に配置する。これにより、熱膨張係数の差に起因する反りをより一層低減することができる。   As shown in FIG. 5, Cu vias 23 are arranged at a high density in the region of the semiconductor chip 20 corresponding to a place where the density of the copper wiring 15 of the package substrate 10 is high. In addition, Cu vias 23 are arranged at a low density in the region of the semiconductor chip 20 corresponding to a place where the density of the copper wiring 15 of the package substrate 10 is low. Thereby, the curvature resulting from the difference in a thermal expansion coefficient can be reduced further.

また、上述の実施形態では半導体チップの裏面に孔を形成し、孔内に半導体チップと異なる物質を埋め込んで熱膨張係数調整部材(ビア23)としている。しかし、例えば図6に示すように、半導体チップ20の裏面に溝20bを形成し、溝20b内に半導体チップ20と異なる物質を埋め込んで熱膨張係数調整部材としてもよい。   In the above-described embodiment, a hole is formed on the back surface of the semiconductor chip, and a material different from the semiconductor chip is embedded in the hole to form a thermal expansion coefficient adjusting member (via 23). However, for example, as shown in FIG. 6, a groove 20b may be formed on the back surface of the semiconductor chip 20, and a material different from the semiconductor chip 20 may be embedded in the groove 20b to form a thermal expansion coefficient adjusting member.

以上の諸実施形態に関し、更に以下の付記を開示する。   The following additional notes are disclosed with respect to the above embodiments.

(付記1)パッケージ基板と、
前記パッケージ基板上に実装された半導体チップと、
前記半導体チップの素子形成面と反対側に埋め込まれ、前記半導体チップの熱膨張係数を前記パッケージ基板の熱膨張係数に近づける熱膨張係数調整部材と
を有することを特徴とする半導体装置。
(Appendix 1) a package substrate;
A semiconductor chip mounted on the package substrate;
A semiconductor device comprising: a thermal expansion coefficient adjusting member embedded on the side opposite to the element formation surface of the semiconductor chip and configured to approximate the thermal expansion coefficient of the semiconductor chip to the thermal expansion coefficient of the package substrate.

(付記2)前記熱膨張係数調整部材が、前記半導体チップに形成された孔又は溝に前記半導体チップの主材料と異なる物質を埋め込んで形成されたものであることを特徴とする付記1に記載の半導体装置。   (Appendix 2) The appendix 1 is characterized in that the thermal expansion coefficient adjusting member is formed by embedding a substance different from a main material of the semiconductor chip in a hole or a groove formed in the semiconductor chip. Semiconductor device.

(付記3)前記主材料と異なる物質が、銅であることを特徴とする付記2に記載の半導体装置。   (Supplementary note 3) The semiconductor device according to supplementary note 2, wherein the substance different from the main material is copper.

(付記4)前記熱膨張係数調整部材の密度が、前記パッケージ基板の配線密度に応じて設定されていることを特徴とする付記1乃至3のいずれか1項に記載の半導体装置。   (Supplementary note 4) The semiconductor device according to any one of supplementary notes 1 to 3, wherein a density of the thermal expansion coefficient adjusting member is set in accordance with a wiring density of the package substrate.

(付記5)半導体チップの素子形成面と反対の側に孔又は溝を形成する工程と、
前記孔又は溝内に前記半導体チップとは熱膨張係数が異なる物質を埋めて熱膨張係数調整部材を形成する工程と、
前記半導体チップをパッケージ基板に接合する工程と
を有することを特徴とする半導体装置の製造方法。
(Additional remark 5) The process of forming a hole or a groove | channel on the opposite side to the element formation surface of a semiconductor chip,
Filling the hole or groove with a material having a different thermal expansion coefficient from the semiconductor chip to form a thermal expansion coefficient adjusting member;
Bonding the semiconductor chip to a package substrate. A method for manufacturing a semiconductor device, comprising:

(付記6)前記熱膨張係数が異なる物質が、銅であることを特徴とする付記5に記載の半導体装置の製造方法。   (Supplementary note 6) The semiconductor device manufacturing method according to supplementary note 5, wherein the substances having different thermal expansion coefficients are copper.

(付記7)前記パッケージ基板の配線密度に応じて、前記半導体チップに形成する孔又は溝の密度を設定することを特徴とする付記5又は6に記載の半導体装置の製造方法。   (Additional remark 7) The manufacturing method of the semiconductor device of Additional remark 5 or 6 characterized by setting the density of the hole or groove | channel formed in the said semiconductor chip according to the wiring density of the said package substrate.

10…パッケージ基板、11,12…電極、13…はんだボール、15…銅配線、20…半導体チップ、20b…溝、21…電極、22…はんだボール、23…Cuビア(熱膨張係数調整部材)、31…半導体基板、31a…孔、32…フォトレジスト膜、33…バリアメタル、34…シード層、35…Cu膜。   DESCRIPTION OF SYMBOLS 10 ... Package substrate, 11, 12 ... Electrode, 13 ... Solder ball, 15 ... Copper wiring, 20 ... Semiconductor chip, 20b ... Groove, 21 ... Electrode, 22 ... Solder ball, 23 ... Cu via (thermal expansion coefficient adjusting member) 31 ... Semiconductor substrate, 31a ... Hole, 32 ... Photoresist film, 33 ... Barrier metal, 34 ... Seed layer, 35 ... Cu film.

Claims (5)

パッケージ基板と、
前記パッケージ基板上に実装された半導体チップと、
前記半導体チップの素子形成面と反対側に埋め込まれ、前記半導体チップの熱膨張係数を前記パッケージ基板の熱膨張係数に近づける熱膨張係数調整部材と
を有することを特徴とする半導体装置。
A package substrate;
A semiconductor chip mounted on the package substrate;
A semiconductor device comprising: a thermal expansion coefficient adjusting member embedded on the side opposite to the element formation surface of the semiconductor chip and configured to approximate the thermal expansion coefficient of the semiconductor chip to the thermal expansion coefficient of the package substrate.
前記熱膨張係数調整部材が、前記半導体チップに形成された孔又は溝に前記半導体チップの主材料と異なる物質を埋め込んで形成されたものであることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the thermal expansion coefficient adjusting member is formed by embedding a substance different from a main material of the semiconductor chip in a hole or a groove formed in the semiconductor chip. . 前記熱膨張係数調整部材の密度が、前記パッケージ基板の配線密度に応じて設定されていることを特徴とする請求項1又は2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein a density of the thermal expansion coefficient adjusting member is set according to a wiring density of the package substrate. 半導体チップの素子形成面と反対の側に孔又は溝を形成する工程と、
前記孔又は溝内に前記半導体チップとは熱膨張係数が異なる物質を埋めて熱膨張係数調整部材を形成する工程と、
前記半導体チップをパッケージ基板に接合する工程と
を有することを特徴とする半導体装置の製造方法。
Forming a hole or groove on the side opposite to the element formation surface of the semiconductor chip;
Filling the hole or groove with a material having a different thermal expansion coefficient from the semiconductor chip to form a thermal expansion coefficient adjusting member;
Bonding the semiconductor chip to a package substrate. A method for manufacturing a semiconductor device, comprising:
前記熱膨張係数が異なる物質が、銅であることを特徴とする請求項4に記載の半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 4, wherein the substances having different thermal expansion coefficients are copper.
JP2013004464A 2013-01-15 2013-01-15 Semiconductor device and method of manufacturing the same Pending JP2014138017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004464A JP2014138017A (en) 2013-01-15 2013-01-15 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004464A JP2014138017A (en) 2013-01-15 2013-01-15 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014138017A true JP2014138017A (en) 2014-07-28

Family

ID=51415388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004464A Pending JP2014138017A (en) 2013-01-15 2013-01-15 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014138017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952197A (en) * 2020-08-25 2020-11-17 济南南知信息科技有限公司 Semiconductor device and packaging method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186651A (en) * 2002-12-06 2004-07-02 Nec Corp Semiconductor device and its manufacture
JP2005302969A (en) * 2004-04-09 2005-10-27 Ngk Spark Plug Co Ltd Wiring board
JP2006216919A (en) * 2005-02-07 2006-08-17 Nec Electronics Corp Wiring board and semiconductor device
WO2009157413A1 (en) * 2008-06-23 2009-12-30 日本電気株式会社 Semiconductor element and method for manufacturing same
JP2010103384A (en) * 2008-10-27 2010-05-06 Sony Corp Semiconductor device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186651A (en) * 2002-12-06 2004-07-02 Nec Corp Semiconductor device and its manufacture
JP2005302969A (en) * 2004-04-09 2005-10-27 Ngk Spark Plug Co Ltd Wiring board
JP2006216919A (en) * 2005-02-07 2006-08-17 Nec Electronics Corp Wiring board and semiconductor device
WO2009157413A1 (en) * 2008-06-23 2009-12-30 日本電気株式会社 Semiconductor element and method for manufacturing same
JP2010103384A (en) * 2008-10-27 2010-05-06 Sony Corp Semiconductor device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952197A (en) * 2020-08-25 2020-11-17 济南南知信息科技有限公司 Semiconductor device and packaging method thereof
CN111952197B (en) * 2020-08-25 2022-05-27 青岛融合装备科技有限公司 Semiconductor device and packaging method thereof

Similar Documents

Publication Publication Date Title
US9472483B2 (en) Integrated circuit cooling apparatus
US9219030B2 (en) Package on package structures and methods for forming the same
JP5826782B2 (en) Manufacturing method of semiconductor device
TW201405735A (en) Grid fan-out wafer level package and methods of manufacturing a grid fan-out wafer level package
TW201431039A (en) Die package with openings surrounding end-portions of through package vias (TPVs) and package on package (PoP) using the die package
US20090302468A1 (en) Printed circuit board comprising semiconductor chip and method of manufacturing the same
JP6538596B2 (en) METHOD FOR MANUFACTURING ELECTRONIC COMPONENT AND APPARATUS FOR MANUFACTURING ELECTRONIC COMPONENT
JP2005347313A (en) Manufacturing method of semiconductor device
JP6261354B2 (en) Chip mounting structure and manufacturing method thereof
TWI652779B (en) Semiconductor package and method of manufacturing same
JP2018182273A (en) Semiconductor device
JP6952629B2 (en) Semiconductor device
JP5953701B2 (en) Connection board, semiconductor device, and manufacturing method of connection board
KR101095055B1 (en) Method for manufacturing semiconductor device
JP2009004721A (en) Semiconductor package and its manufacturing method
JP2019004007A (en) Semiconductor device and method of manufacturing the same
JP6335132B2 (en) Semiconductor device and method for manufacturing semiconductor device
TWI512923B (en) Interposer and method of manufacture
JP2014138017A (en) Semiconductor device and method of manufacturing the same
TW201640976A (en) Stacked electronic device and method for fabricating the same
JP2008198805A (en) Method for manufacturing semiconductor device
TWI571964B (en) Semiconductor structure and manufacturing method thereof
TWI574597B (en) Coreless package substrate and method for manufacturing the same
JP6113679B2 (en) Semiconductor device
JP2007073826A (en) Three-dimensional semiconductor integrated circuit device, its manufacturing method, packaged three-dimensional semiconductor integrated circuit device using it, and its mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912