JP2014135526A - Light-emitting device and method for manufacturing the same - Google Patents

Light-emitting device and method for manufacturing the same Download PDF

Info

Publication number
JP2014135526A
JP2014135526A JP2014093370A JP2014093370A JP2014135526A JP 2014135526 A JP2014135526 A JP 2014135526A JP 2014093370 A JP2014093370 A JP 2014093370A JP 2014093370 A JP2014093370 A JP 2014093370A JP 2014135526 A JP2014135526 A JP 2014135526A
Authority
JP
Japan
Prior art keywords
light emitting
light
plate
emitting element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014093370A
Other languages
Japanese (ja)
Other versions
JP5712313B2 (en
Inventor
Takeshi Waragaya
剛司 藁谷
Kozaburo Ito
功三郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2014093370A priority Critical patent/JP5712313B2/en
Publication of JP2014135526A publication Critical patent/JP2014135526A/en
Application granted granted Critical
Publication of JP5712313B2 publication Critical patent/JP5712313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a light-emitting device having a reduced light-emitting area and a high extraction efficiency of light.SOLUTION: A method for manufacturing a light-emitting device comprises: on a plurality of light-emitting elements arranged at intervals from each other on a substrate, overlapping a plate-like optical layer larger than a combination of top faces of the plurality of light-emitting elements, and having predetermined control structures in the intervals, so as to sandwich an uncured transparent material, while a surface tension of the transparent material forms inclined planes each extending from a side face of the light-emitting element toward the control structure of the plate-like optical layer, in the intervals of the plurality of light-emitting elements; and thereafter curing a transparent material layer. Accordingly, the inclined planes of the transparent material layer can reflect light from the light-emitting elements and form cavities.

Description

本発明は、発光素子からの光を波長変換層で変換する発光装置およびその製造方法に関する。   The present invention relates to a light emitting device that converts light from a light emitting element by a wavelength conversion layer and a method for manufacturing the same.

発光素子からの光の一部を蛍光体で異なる波長の光に変換し、発光素子からの光と混合して出射する発光装置が知られている。例えば、カップ内に発光素子を配置し、カップ内を蛍光体含有樹脂で充填する構造や、カップの開口部のみを蛍光体含有樹脂層で覆う構造が知られている。また、発光素子の周囲を蛍光体含有樹脂層で被覆する構造も知られている。   2. Description of the Related Art There is known a light emitting device that converts part of light from a light emitting element into light having a different wavelength with a phosphor and mixes it with light from the light emitting element to emit. For example, a structure in which a light emitting element is arranged in a cup and the inside of the cup is filled with a phosphor-containing resin, or a structure in which only the opening of the cup is covered with a phosphor-containing resin layer is known. A structure in which the periphery of the light emitting element is covered with a phosphor-containing resin layer is also known.

一方、発光装置(光源)からの出射光をレンズやリフレクタ等の光学系で制御する光学装置では、小型な光学系で有効に光を利用するために、発光面積の小さい発光装置(光源)を用いることが望ましい。   On the other hand, in an optical device that controls light emitted from a light emitting device (light source) with an optical system such as a lens or a reflector, a light emitting device (light source) with a small light emitting area is used in order to effectively use light with a small optical system. It is desirable to use it.

特許文献1には、キャビティ内の底部を光反射性の充填物質で満たすことにより、開口の小さいキャビティ内に、充填物質の上面で湾曲した反射面を形成する構成が開示されている。   Patent Document 1 discloses a configuration in which a reflecting surface curved at the upper surface of a filling material is formed in a cavity having a small opening by filling the bottom of the cavity with a light reflecting filling material.

特許文献2では、発光素子の上面に波長変換層を搭載し、発光素子および波長変換層の側面を反射部材で覆った構造が開示されている。発光素子および波長変換層の側面を反射部材で覆うことにより、発光素子および波長変換層の側面方向に放射しようとする光を側面で反射し、上面から出射させることができるため、発光面積を小さくでき、正面方向の輝度を向上させることができる。   Patent Document 2 discloses a structure in which a wavelength conversion layer is mounted on an upper surface of a light emitting element, and side surfaces of the light emitting element and the wavelength conversion layer are covered with a reflecting member. By covering the side surfaces of the light emitting element and the wavelength conversion layer with a reflecting member, light to be radiated in the direction of the side surface of the light emitting element and the wavelength conversion layer can be reflected from the side surface and emitted from the upper surface, thereby reducing the light emitting area. And the luminance in the front direction can be improved.

特許文献3の図15には、開口を有するケーシングボディ内に、複数の発光素子を所定の間隔で配列し、発光素子の上面に波長変換材を搭載し、開口を拡散層で覆った構成が開示されている。また、特許文献3の図16には、開口を波長変換層で覆った構成が開示されている。   FIG. 15 of Patent Document 3 has a configuration in which a plurality of light emitting elements are arranged at a predetermined interval in a casing body having an opening, a wavelength conversion material is mounted on the upper surface of the light emitting element, and the opening is covered with a diffusion layer. It is disclosed. Further, FIG. 16 of Patent Document 3 discloses a configuration in which the opening is covered with a wavelength conversion layer.

特開2004−40099号公報JP 2004-40099 A 特開2009−218274号公報JP 2009-218274 A 特開2008−507850号公報JP 2008-507850 A

特許文献1および3のように、発光素子をキャビティやケーシングボディの開口内に配置する構成は、キャビティの開口部が発光面となる。このため、発光面のサイズは、加工可能なキャビティの大きさによって決まり、小さなキャビティを作成することは容易ではない。   As in Patent Documents 1 and 3, in the configuration in which the light emitting element is disposed in the opening of the cavity or the casing body, the opening of the cavity becomes the light emitting surface. For this reason, the size of the light emitting surface is determined by the size of the cavity that can be processed, and it is not easy to create a small cavity.

一方、特許文献2に記載された、発光素子および波長変換層の側面に反射部材が垂直壁になるように配置した構成は、素子または波長変換層の側面から出射される光を反射部材によって反射することで、発光面を小さくし、正面輝度を向上させている。しかし、発光素子の側面において反射部材で反射された光は、発光素子の内部に戻され、発光素子の半導体層によって吸収される。このため、発光される全光束量が低下するという問題がある。   On the other hand, in the configuration described in Patent Document 2 in which the reflecting member is arranged on the side surface of the light emitting element and the wavelength conversion layer so as to be a vertical wall, the light emitted from the side surface of the element or the wavelength conversion layer is reflected by the reflecting member. By doing so, the light emitting surface is made smaller and the front luminance is improved. However, the light reflected by the reflecting member on the side surface of the light emitting element is returned to the inside of the light emitting element and is absorbed by the semiconductor layer of the light emitting element. For this reason, there exists a problem that the total luminous flux emitted is reduced.

本発明の目的は、発光面積が小さく、かつ、光の取り出し効率の高い発光装置を提供することにある。   An object of the present invention is to provide a light emitting device having a small light emitting area and high light extraction efficiency.

上記目的を達成するために、本発明の第1の態様によれば、以下のような発光装置が提供される。すなわち、基板と、該基板上に間隔をあけて実装された複数の発光素子と、発光素子上に配置された、発光素子の発する光の少なくとも一部を透過する透明材料層と、透明材料層の上に搭載された板状光学層とを有する。板状光学層は、複数の発光素子の上面を合わせたものより大きく、透明材料層は、隣合う前記発光素子の間隙の位置に、発光素子の側面から板状光学層の下面に向かう傾斜面を有する。板状光学層の下面には、隣合う発光素子の間隙の位置に、透明材料層の傾斜面の形状を制御するための傾斜面制御構造が備えられている。   In order to achieve the above object, according to the first aspect of the present invention, the following light emitting device is provided. That is, a substrate, a plurality of light emitting elements mounted on the substrate at intervals, a transparent material layer that is disposed on the light emitting element and transmits at least part of light emitted from the light emitting element, and a transparent material layer And a plate-like optical layer mounted thereon. The plate-like optical layer is larger than the sum of the upper surfaces of a plurality of light-emitting elements, and the transparent material layer is an inclined surface from the side surface of the light-emitting element toward the lower surface of the plate-like optical layer at the position of the gap between the adjacent light-emitting elements. Have On the lower surface of the plate-like optical layer, an inclined surface control structure for controlling the shape of the inclined surface of the transparent material layer is provided at the position of the gap between adjacent light emitting elements.

傾斜面制御構造としては、板状光学層の下面に設けられた凸部または溝を用いることができる。   As the inclined surface control structure, convex portions or grooves provided on the lower surface of the plate-like optical layer can be used.

透明材料層の傾斜面は、例えば、発光素子の側面と凸部の下端とを結ぶ面となるように形成する。このとき傾斜面は、発光素子に向かって湾曲するように形成することも可能である。   For example, the inclined surface of the transparent material layer is formed to be a surface connecting the side surface of the light emitting element and the lower end of the convex portion. At this time, the inclined surface can be formed to be curved toward the light emitting element.

凸部の高さは、例えば、発光素子の上部における透明材料層の厚さ以下となるように設定する。   For example, the height of the convex portion is set to be equal to or less than the thickness of the transparent material layer in the upper portion of the light emitting element.

透明材料層は、板状光学層の外周側の複数の発光素子の側面から、板状光学層の外周に向かう傾斜面をさらに有する構造とすることも可能である。このとき、板状光学層の下面には、外周に沿った部分の少なくとも一部に、傾斜面制御構造を備えることも可能である。   The transparent material layer may have a structure further including an inclined surface that faces the outer periphery of the plate-like optical layer from the side surfaces of the plurality of light emitting elements on the outer periphery side of the plate-like optical layer. At this time, it is also possible to provide an inclined surface control structure on at least a part of the portion along the outer periphery on the lower surface of the plate-like optical layer.

透明材料層の周囲には、傾斜面に沿うように反射材料層が配置することが可能である。   A reflective material layer can be disposed around the transparent material layer along the inclined surface.

本発明の第2の態様によれば、以下のような発光装置の製造方法が提供される。すなわち、基板上に間隙をあけて配置された複数の発光素子の上に、複数の発光素子の上面を合わせたものより大きく、間隙の位置に所定の制御構造を備えた板状光学層を、未硬化の透明材料を挟んで、重ね合わせる。これにより、未硬化の透明材料の表面張力により、複数の発光素子の間隙の位置に、発光素子の側面から板状光学層の制御構造に向かう傾斜面を有する透明材料層を形成する。   According to the second aspect of the present invention, the following method for manufacturing a light emitting device is provided. That is, a plate-like optical layer having a predetermined control structure at the position of the gap, which is larger than the sum of the top surfaces of the plurality of light emitting elements on the plurality of light emitting elements arranged with a gap on the substrate, Overlay with uncured transparent material. Thus, a transparent material layer having an inclined surface from the side surface of the light emitting element toward the control structure of the plate-like optical layer is formed at the position of the gap between the plurality of light emitting elements due to the surface tension of the uncured transparent material.

所定の制御構造としては、例えば、板状光学層の下面に備えられた凸部または溝を用いる。凸部または溝と、発光素子の側面との間に形成されるメニスカスにより、傾斜面を形成することができる。   As the predetermined control structure, for example, a convex portion or a groove provided on the lower surface of the plate-like optical layer is used. The inclined surface can be formed by a meniscus formed between the convex portion or the groove and the side surface of the light emitting element.

本発明によれば、発光素子の側面から出射された光を発光素子の内部に戻さず、透明材料層の傾斜面で反射することができるため、光の取り出し効率が向上する。発光面は板状光学層の上面であるため、小型化できる。   According to the present invention, since the light emitted from the side surface of the light emitting element can be reflected by the inclined surface of the transparent material layer without returning to the inside of the light emitting element, the light extraction efficiency is improved. Since the light emitting surface is the upper surface of the plate-like optical layer, it can be miniaturized.

第1の実施形態の発光装置の断面図。Sectional drawing of the light-emitting device of 1st Embodiment. (a)〜(e)第1の実施形態の発光装置の製造工程を示す説明図。(A)-(e) Explanatory drawing which shows the manufacturing process of the light-emitting device of 1st Embodiment. (a)〜(e)第1の実施形態の発光装置の板状光学層14の凸部140の形状例を示す断面図。(A)-(e) Sectional drawing which shows the example of a shape of the convex part 140 of the plate-shaped optical layer 14 of the light-emitting device of 1st Embodiment. 第1の実施形態の凸部140の下端がx方向に幅を持たない形状である場合の、蛍光体含有樹脂層13の傾斜面の形状例を示す断面図。Sectional drawing which shows the example of a shape of the inclined surface of the fluorescent substance containing resin layer 13 in case the lower end of the convex part 140 of 1st Embodiment is a shape which does not have a width | variety in a x direction. 第1の実施形態の凸部140の下端がx方向に幅を有する形状である場合の、蛍光体含有樹脂層13の傾斜面の形状例を示す断面図。Sectional drawing which shows the example of a shape of the inclined surface of the fluorescent substance containing resin layer 13 in case the lower end of the convex part 140 of 1st Embodiment is a shape which has a width | variety in a x direction. 第1の実施形態の凸部140の高さが、発光素子11の上部の蛍光体含有樹脂層13の厚さよりも小さい場合の、蛍光体含有樹脂層13の傾斜面の形状例を示す断面図。Sectional drawing which shows the example of a shape of the inclined surface of the fluorescent substance containing resin layer 13 in case the height of the convex part 140 of 1st Embodiment is smaller than the thickness of the fluorescent substance containing resin layer 13 of the upper part of the light emitting element 11. . 第1の実施形態の凸部140の高さが、発光素子11の上部の蛍光体含有樹脂層13の厚さと等しい場合の、蛍光体含有樹脂層13の傾斜面の形状例を示す断面図。Sectional drawing which shows the example of a shape of the inclined surface of the fluorescent substance containing resin layer 13 in case the height of the convex part 140 of 1st Embodiment is equal to the thickness of the fluorescent substance containing resin layer 13 of the upper part of the light emitting element 11. FIG. 第1の実施形態の凸部140の高さが、発光素子11の上部の蛍光体含有樹脂層13の厚さより大きい場合の、蛍光体含有樹脂層13の傾斜面の形状例を示す断面図。Sectional drawing which shows the example of a shape of the inclined surface of the fluorescent substance containing resin layer 13 in case the height of the convex part 140 of 1st Embodiment is larger than the thickness of the fluorescent substance containing resin layer 13 of the upper part of the light emitting element 11. FIG. (a)〜(d)第2の実施形態の発光装置の板状光学層14の溝141の形状例を示す断面図。(A)-(d) Sectional drawing which shows the example of a shape of the groove | channel 141 of the plate-shaped optical layer 14 of the light-emitting device of 2nd Embodiment.

以下、本発明の一実施の形態の発光装置について説明する。   Hereinafter, a light emitting device according to an embodiment of the present invention will be described.

(第1の実施形態)
図1に、第1の実施形態の発光装置の断面図を示す。この発光装置は、発光素子側面に近い位置に、光取り出しのための反射面を備えている。
(First embodiment)
FIG. 1 is a cross-sectional view of the light emitting device according to the first embodiment. This light emitting device includes a reflecting surface for extracting light at a position close to the side surface of the light emitting element.

具体的には、上面に配線が形成されたサブマウント基板10の上に、フリップチップタイプの複数の発光素子11が所定の間隔で搭載されている。図1には、図示の都合上、発光素子11が2つの場合を示しているが、3以上の発光素子11を配置することも可能である。発光素子11は、複数のバンプ12によりサブマウント基板10に実装されている。発光素子11の上面には、蛍光体含有樹脂層13が搭載されている。   Specifically, a plurality of flip chip type light emitting elements 11 are mounted at predetermined intervals on a submount substrate 10 having wirings formed on the upper surface. Although FIG. 1 shows a case where there are two light emitting elements 11 for the sake of illustration, it is possible to arrange three or more light emitting elements 11. The light emitting element 11 is mounted on the submount substrate 10 by a plurality of bumps 12. A phosphor-containing resin layer 13 is mounted on the upper surface of the light emitting element 11.

蛍光体含有樹脂層13の上には、複数の発光素子の全体を覆う大きさの板状光学層14が搭載されている。板状光学層14の下面には、未硬化の蛍光体含有樹脂層13のメニスカスを制御するためのメニスカス制御構造が備えられている。第1の実施形態では、メニスカス制御構造として凸部140が備えられている。   On the phosphor-containing resin layer 13, a plate-like optical layer 14 having a size covering the whole of the plurality of light emitting elements is mounted. On the lower surface of the plate-like optical layer 14, a meniscus control structure for controlling the meniscus of the uncured phosphor-containing resin layer 13 is provided. In 1st Embodiment, the convex part 140 is provided as a meniscus control structure.

複数の発光素子11の配列方向を図1のようにxとし、配列の幅方向をy、高さ方向をzとした場合、凸部140は、x方向については、隣合う発光素子11の間隙の中央に配置されている。また、y方向については、(発光素子11の辺と同等もしくはそれ以上に渡って)線状に配置されている。凸部140の高さzには、発光素子11の上部の蛍光体含有樹脂層13の厚さ以下であることが望ましい。凸部140の形状については後で詳しく述べる。   Assuming that the arrangement direction of the plurality of light emitting elements 11 is x as shown in FIG. 1, the width direction of the arrangement is y, and the height direction is z, the protrusion 140 has a gap between adjacent light emitting elements 11 in the x direction. It is arranged in the center of. In addition, the y direction is arranged linearly (equivalent to or longer than the side of the light emitting element 11). The height z of the convex portion 140 is desirably equal to or less than the thickness of the phosphor-containing resin layer 13 on the light emitting element 11. The shape of the convex portion 140 will be described in detail later.

なお、凸部140は、隣合う発光素子11の間のみならず、板状光学層14の端部(下面の外縁)に沿って配置することも可能である。   In addition, the convex part 140 can also be arrange | positioned not only between the adjacent light emitting elements 11, but along the edge part (outer edge of a lower surface) of the plate-shaped optical layer 14. FIG.

発光素子11の外側には、枠体16が配置され、発光素子11と枠体16との間の空間は反射材料層15により充填されている。反射材料層15は、発光素子11、蛍光体含有樹脂層13および板状光学層14の外周側面を覆っている。また、反射材料層15は、バンプ12の間を埋めるように、発光素子11の底面と基板10の上面との間の空間も充填している。   A frame body 16 is disposed outside the light emitting element 11, and a space between the light emitting element 11 and the frame body 16 is filled with a reflective material layer 15. The reflective material layer 15 covers the outer peripheral side surfaces of the light emitting element 11, the phosphor-containing resin layer 13, and the plate-like optical layer 14. The reflective material layer 15 also fills a space between the bottom surface of the light emitting element 11 and the top surface of the substrate 10 so as to fill the space between the bumps 12.

蛍光体含有樹脂層13は、発光素子11の発する光により励起されて所定波長の蛍光を発する蛍光体(例えばYAG蛍光体)を、発光素子11の発光および蛍光に対して透明な樹脂(例えばシリコーン樹脂)に分散させたものである。蛍光体含有樹脂層13には、蛍光体の他に、所定の粒径のビーズや、拡散材等を含有させる構成にことも可能である。ビーズは、例えば発光素子11の上面と板状光学層14との間に挟まれてスペーサーの役割を果たし、蛍光体含有樹脂層13の膜厚を決定するために用いられる。   The phosphor-containing resin layer 13 is made of a phosphor (for example, YAG phosphor) that is excited by light emitted from the light-emitting element 11 and emits fluorescence having a predetermined wavelength. Resin). In addition to the phosphor, the phosphor-containing resin layer 13 may include a bead having a predetermined particle diameter, a diffusing material, and the like. For example, the beads are sandwiched between the upper surface of the light emitting element 11 and the plate-like optical layer 14 and serve as a spacer, and are used to determine the film thickness of the phosphor-containing resin layer 13.

板状光学層14は、発光素子11の発光および蛍光に対して透明な材料を用いる。もしくは、板状光学層14として、発光素子11の発光により励起され所定波長の蛍光を発する蛍光体プレート、蛍光セラミックならびに蛍光ガラスを用いることも可能である。   The plate-like optical layer 14 uses a material that is transparent to the light emission and fluorescence of the light emitting element 11. Alternatively, as the plate-like optical layer 14, it is possible to use a phosphor plate, a fluorescent ceramic, and a fluorescent glass that are excited by light emission of the light emitting element 11 and emit fluorescence of a predetermined wavelength.

反射材料層15は、非導電性で反射率の高い材料、例えば、酸化チタンや酸化亜鉛等の反射性のフィラーを分散させた樹脂によって形成する。枠体16は、例えばセラミックリングを用いる。   The reflective material layer 15 is formed of a non-conductive and highly reflective material, for example, a resin in which a reflective filler such as titanium oxide or zinc oxide is dispersed. For example, a ceramic ring is used for the frame body 16.

サブマウント基板10は、例えば、Auなどの配線パターンが形成されたAlNセラミックス製の基板を用いる。バンプ12としては、例えばAuバンプを用いる。発光素子11としては、所望の波長光を出射するものを用意する。例えば、青色光を発するものを用いる。   As the submount substrate 10, for example, an AlN ceramic substrate on which a wiring pattern such as Au is formed is used. For example, Au bumps are used as the bumps 12. As the light emitting element 11, an element that emits light having a desired wavelength is prepared. For example, one that emits blue light is used.

図1の構成によれば、蛍光体含有樹脂層13を形成する際に、後述する製造工程のように未硬化の蛍光体含有樹脂を発光素子11と板状光学層14の間に挟むことにより、未硬化の蛍光体含有樹脂の表面張力で、発光素子11の側面から板状光学層14の端部に向かってメニスカスが形成され、傾斜した側面を有する蛍光体含有樹脂層13を形成することができる。また、板状光学層14に凸部140を設けたことにより、隣合う発光素子11の間隙においても、未硬化の蛍光体含有樹脂の表面張力で、発光素子11の側面から凸部140の下端に向かってメニスカスが形成され、蛍光体含有樹脂層13が発光素子11の間隙で湾曲面を形成する。これにより、蛍光体含有樹脂層13は、複数の発光素子130のそれぞれを取り囲むように傾斜した側面(以下傾斜面と称する)130を有する形状になる。   According to the configuration of FIG. 1, when the phosphor-containing resin layer 13 is formed, an uncured phosphor-containing resin is sandwiched between the light emitting element 11 and the plate-like optical layer 14 as in the manufacturing process described later. A meniscus is formed from the side surface of the light emitting element 11 toward the end of the plate-like optical layer 14 by the surface tension of the uncured phosphor-containing resin, and the phosphor-containing resin layer 13 having an inclined side surface is formed. Can do. Further, by providing the convex portion 140 on the plate-like optical layer 14, the lower end of the convex portion 140 from the side surface of the light emitting element 11 is also applied to the gap between the adjacent light emitting elements 11 by the surface tension of the uncured phosphor-containing resin. A meniscus is formed toward the surface, and the phosphor-containing resin layer 13 forms a curved surface in the gap between the light emitting elements 11. Thus, the phosphor-containing resin layer 13 has a shape having side surfaces (hereinafter referred to as inclined surfaces) 130 that are inclined so as to surround each of the plurality of light emitting elements 130.

また、蛍光体含有樹脂層13の周囲に、未硬化の反射材料層15を充填することにより、傾斜面130の形状に沿う形状の反射材料層15を形成することができる。また、反射材料層15を発光素子11の下部のバンプ12の間隙にも充填することができる。   Further, by filling an uncured reflective material layer 15 around the phosphor-containing resin layer 13, the reflective material layer 15 having a shape along the shape of the inclined surface 130 can be formed. Further, the reflective material layer 15 can be filled in the gaps between the bumps 12 below the light emitting element 11.

本発光装置において、図1のように発光素子11の上面から上方へ出射される光は、蛍光体含有樹脂層13を透過する。その際、一部の光は、蛍光体に吸収され、蛍光が発せられる。発光素子11の出射光と蛍光は、板状光学層14を透過して、板状光学層14を上面(発光面)から出射される。   In the present light emitting device, the light emitted upward from the upper surface of the light emitting element 11 as shown in FIG. 1 passes through the phosphor-containing resin layer 13. At that time, part of the light is absorbed by the phosphor, and fluorescence is emitted. Light emitted from the light-emitting element 11 and fluorescence pass through the plate-like optical layer 14 and are emitted from the upper surface (light-emitting surface) of the plate-like optical layer 14.

発光素子11の側面から出射される光は、蛍光体含有樹脂層13に入射し、反射材料層15と蛍光体含有樹脂層13との境界の傾斜面130によって上方に反射され、板状光学層14を通過して上面から出射される。これにより、発光素子11の側面から出射される光の多くは、発光素子11の内部に戻らないため、発光素子11によって吸収されない。また、発光素子11の側面と反射材料層15までの距離は短いため、蛍光体含有樹脂層13による吸収の影響もほとんど受けない。   The light emitted from the side surface of the light emitting element 11 is incident on the phosphor-containing resin layer 13 and is reflected upward by the inclined surface 130 at the boundary between the reflective material layer 15 and the phosphor-containing resin layer 13, and is a plate-like optical layer. 14 is emitted from the upper surface. Accordingly, most of the light emitted from the side surface of the light emitting element 11 does not return to the inside of the light emitting element 11 and is not absorbed by the light emitting element 11. Further, since the distance between the side surface of the light emitting element 11 and the reflective material layer 15 is short, it is hardly affected by absorption by the phosphor-containing resin layer 13.

発光素子11の下面から出射される光は、発光素子11の底面で反射材料層15により反射されて上方に向かい、蛍光体含有樹脂層13および板状光学層14を通過して上面から出射される。   The light emitted from the lower surface of the light emitting element 11 is reflected by the reflective material layer 15 on the bottom surface of the light emitting element 11, travels upward, passes through the phosphor-containing resin layer 13 and the plate-like optical layer 14, and is emitted from the upper surface. The

このように、図1の発光装置は、複数の発光素子11を所定の間隔で並べて配置した構造であるが、それぞれの発光素子11から出射された光を、各発光素子11の側面の周囲に近接して形成された傾斜面130によって反射して上方から出射することができる。すなわち、それぞれの発光素子11の周囲に傾斜面130によりキャビティを形成しているため、上方からの光の取り出し効率を向上させることができる。特に、発光素子11の側面から出射された光の多くは、発光素子11の内部に戻されることなく、蛍光体含有樹脂層13を短い距離だけ通過した後、反射材料層13により反射されて上方に向かうため、光の取り出し効率が向上する。   As described above, the light emitting device of FIG. 1 has a structure in which a plurality of light emitting elements 11 are arranged at predetermined intervals. Light emitted from each light emitting element 11 is transmitted around the side surface of each light emitting element 11. The light can be reflected from the inclined surface 130 formed in the vicinity and emitted from above. That is, since the cavity is formed by the inclined surface 130 around each light emitting element 11, the light extraction efficiency from above can be improved. In particular, most of the light emitted from the side surface of the light-emitting element 11 passes through the phosphor-containing resin layer 13 for a short distance without being returned to the inside of the light-emitting element 11, and then is reflected by the reflective material layer 13 and reflected upward. Therefore, the light extraction efficiency is improved.

また、隣合う発光素子11の間にも蛍光体含有樹脂層13の傾斜面130が形成されているため、隣合う発光素子11の間の蛍光体含有樹脂層13の容積が小さい。このため、傾斜面130がない場合と比較して、隣合う発光素子11の間で蛍光の割合が増加することがなく、複数の発光素子11を並べて配置した発光素子でありながら、色ムラを低減することができる。   Further, since the inclined surface 130 of the phosphor-containing resin layer 13 is formed between the adjacent light-emitting elements 11, the volume of the phosphor-containing resin layer 13 between the adjacent light-emitting elements 11 is small. For this reason, compared with the case where there is no inclined surface 130, the ratio of fluorescence does not increase between the adjacent light emitting elements 11, and although the light emitting element has a plurality of light emitting elements 11 arranged side by side, color unevenness is caused. Can be reduced.

傾斜面130により形成されるキャビティは小径であるため、発光面積が小さくでき、小型の発光装置が提供される。よって、レンズ等の他の光学素子との結合効率が高くなる。   Since the cavity formed by the inclined surface 130 has a small diameter, the light emitting area can be reduced, and a small light emitting device is provided. Therefore, the coupling efficiency with other optical elements such as lenses increases.

さらに、発光素子11の底面側にも反射材料層15で充填することにより、発光素子11の底面と基板10の上面との間で光が繰り返し反射されて減衰するのを防止できるため、上方への光の取り出し効率を向上させることができる。   Further, by filling the bottom surface side of the light emitting element 11 with the reflective material layer 15, it is possible to prevent light from being repeatedly reflected and attenuated between the bottom surface of the light emitting element 11 and the upper surface of the substrate 10. The light extraction efficiency can be improved.

なお、傾斜面130の形状で好ましいのは、図1のように発光素子の内側に向かって凸の曲面であって、その曲率が5以下の場合である。   In addition, the shape of the inclined surface 130 is preferable when the curved surface is convex toward the inside of the light emitting element as shown in FIG.

また、傾斜面130の下端は、必ずしも図1のように発光素子11の底面と同じ高さにある必要はなく、少なくとも発光素子11の側面にあればよい。また、発光素子11は、基板10にフリップチップ実装されることが好ましい。フリップチップ実装の場合、発光面が発光素子の底面に近い位置にあるため、傾斜面130による反射を最も利用することができるためである。   Further, the lower end of the inclined surface 130 is not necessarily at the same height as the bottom surface of the light emitting element 11 as shown in FIG. The light emitting element 11 is preferably flip-chip mounted on the substrate 10. This is because in the case of flip chip mounting, since the light emitting surface is located near the bottom surface of the light emitting element, the reflection by the inclined surface 130 can be most utilized.

つぎに、本実施形態の発光装置の製造方法について図2(a)〜(e)を用いて説明する。まず、図2(a)のように、サブマウント基板10の上面の配線パターンに、複数のフリップチップタイプの発光素子11を所定の間隔で搭載し、バンプ12を用いて実装する。   Next, a method for manufacturing the light emitting device of the present embodiment will be described with reference to FIGS. First, as shown in FIG. 2A, a plurality of flip chip type light emitting elements 11 are mounted on a wiring pattern on the upper surface of the submount substrate 10 at a predetermined interval, and mounted using bumps 12.

図2(b)のように、発光素子11の上面に、蛍光体を分散させた樹脂(未硬化)13’をディスペンサ等で適量だけポッティング(滴下)し、複数の発光素子11の上面全体より若干大きい板状光学層14を搭載する。これにより、図2(c)のように未硬化の樹脂13’が発光素子の側面の少なくとも一部を覆いつつ表面張力を保つことによって、発光素子11の側面と板状光学層14の下面を接続する傾斜面130が形成される。また、隣合う発光素子11の間隙においても、発光素子11の側面と凸部140を接続するメニスカスが形成される。これにより発光素子11の間隙にも傾斜面130が形成される。   As shown in FIG. 2 (b), an appropriate amount of resin (uncured) 13 ′ in which a phosphor is dispersed is potted (dropped) on the upper surface of the light emitting element 11 by using a dispenser or the like. A slightly larger plate-like optical layer 14 is mounted. Thereby, as shown in FIG. 2C, the uncured resin 13 ′ keeps the surface tension while covering at least a part of the side surface of the light emitting element, so that the side surface of the light emitting element 11 and the lower surface of the plate-like optical layer 14 are covered. An inclined surface 130 to be connected is formed. A meniscus that connects the side surface of the light emitting element 11 and the convex portion 140 is also formed in the gap between the adjacent light emitting elements 11. Thereby, the inclined surface 130 is also formed in the gap between the light emitting elements 11.

樹脂13’を所定硬化処理により硬化させ、蛍光体含有樹脂層13を形成する。なお、この後の工程で蛍光体含有樹脂層13の形状が変わらないのであれば、完全に硬化させず、半硬化となる条件で硬化させても良い。   The resin 13 ′ is cured by a predetermined curing process to form the phosphor-containing resin layer 13. In addition, as long as the shape of the phosphor-containing resin layer 13 does not change in the subsequent steps, the phosphor-containing resin layer 13 may be cured under conditions that are semi-cured without being completely cured.

つぎに、図2(d)のように、基板10上面に枠体16を樹脂等で接着する。図2(e)のように、発光素子11、蛍光体含有樹脂層13および板状光学層14と、枠体16との間に、ディスペンサなどで反射材料(未硬化)を注入する。この際、発光素子11の下部のバンプ12の周囲にも反射材料が十分充填されるように注入する。また、蛍光体含有樹脂層13の傾斜面130および板状光学層14の側面に、反射材料(未硬化)が隙間なく密着するように充填する。これにより、蛍光体含有樹脂層13の傾斜面130に沿う形状の傾斜面を有する反射材料層15を形成することができる。最後に、反射材料を所定の硬化処理により硬化させ、反射材料層15を形成する。以上により、本実施形態の発光装置が製造される。   Next, as shown in FIG. 2D, the frame 16 is bonded to the upper surface of the substrate 10 with a resin or the like. As shown in FIG. 2 (e), a reflective material (uncured) is injected between the light emitting element 11, the phosphor-containing resin layer 13 and the plate-like optical layer 14, and the frame 16 with a dispenser or the like. At this time, the injection is performed so that the reflective material is sufficiently filled also around the bump 12 below the light emitting element 11. Further, the reflective material (uncured) is filled so as to adhere to the inclined surface 130 of the phosphor-containing resin layer 13 and the side surface of the plate-like optical layer 14 without a gap. Thereby, the reflective material layer 15 having an inclined surface along the inclined surface 130 of the phosphor-containing resin layer 13 can be formed. Finally, the reflective material is cured by a predetermined curing process to form the reflective material layer 15. Thus, the light emitting device of this embodiment is manufactured.

なお、板状光学層14は、上面および下面のいずれか一方、または両方に粗面を設け、光散乱を生じさせる構造としてもよい。ただし、板状光学層14の上面を粗面にする場合、粗面を設ける領域のサイズ、粗面の粗さ、粗面を構成する凹凸の形状・密度などを調整し、蛍光体含有樹脂層13や反射材料層15を形成する工程で未硬化樹脂が板状光学層14の上面に這い上がってこないようにすることが望ましい。   The plate-like optical layer 14 may have a structure in which a rough surface is provided on one or both of the upper surface and the lower surface to cause light scattering. However, when making the upper surface of the plate-like optical layer 14 rough, the size of the area where the rough surface is provided, the roughness of the rough surface, the shape / density of the irregularities constituting the rough surface, and the like, and the phosphor-containing resin layer It is desirable to prevent uncured resin from climbing up to the upper surface of the plate-like optical layer 14 in the process of forming the layer 13 and the reflective material layer 15.

本実施形態では、板状光学層14の下面に凸部140を形成することにより、未硬化の蛍光体含有樹脂13’の表面張力を利用して、隣合う発光素子11の間に、傾斜面130を形成することができる。このとき、凸部140の形状や高さを設定することにより、傾斜面130の形状を変化させることができる。   In the present embodiment, an inclined surface is formed between adjacent light emitting elements 11 by using the surface tension of the uncured phosphor-containing resin 13 ′ by forming the convex portion 140 on the lower surface of the plate-like optical layer 14. 130 can be formed. At this time, the shape of the inclined surface 130 can be changed by setting the shape and height of the convex portion 140.

本実施形態の凸部140の例を図3(a)〜(e)に示す。図3(a)〜(e)は、凸部140の断面図(xz面)である。図3(a)の凸部は、内側に内側に湾曲した三角形状であり、図3(b)〜(e)はそれぞれ、断面が三角形、半円形、長方形ならびに台形の凸部の例である。   The example of the convex part 140 of this embodiment is shown to Fig.3 (a)-(e). 3A to 3E are cross-sectional views (xz plane) of the convex portion 140. FIG. 3A is a triangular shape curved inwardly, and FIGS. 3B to 3E are examples of triangular, semicircular, rectangular and trapezoidal convex sections, respectively. .

凸部140は、図3(a)、(b)、(c)のように、下端がx方向(発光素子11の配列方向)について幅を持たない形状のものと、図3(d),(e)のように下端がx方向に幅を有する形状のものがある。下端がx方向に幅を持たない形状(図3(a)、(b)、(c))である場合には、図4のように蛍光体含有樹脂層13内で、凸部140の占める容積が小さく、板状光学層14を上部から見た場合の非発光面積を低減することができる。特に、図3(a)のように側面が内側に湾曲した形状の凸部140は、容積が特に小さく、非発光面積を小さくするのに好適である。   As shown in FIGS. 3A, 3 </ b> B, and 3 </ b> C, the convex portion 140 has a shape in which the lower end does not have a width in the x direction (the arrangement direction of the light emitting elements 11), and FIGS. As shown in (e), there is a shape in which the lower end has a width in the x direction. When the lower end has a shape having no width in the x direction (FIGS. 3A, 3B, and 3C), the protrusion 140 occupies the phosphor-containing resin layer 13 as shown in FIG. The volume is small, and the non-light emitting area when the plate-like optical layer 14 is viewed from above can be reduced. In particular, as shown in FIG. 3A, the convex portion 140 whose side surface is curved inward has a particularly small volume and is suitable for reducing the non-light emitting area.

一方、下端がx方向に幅を有する形状(図3(d),(e))である場合、図5のように、凸部140は下端の両脇の角部を有し、この角部と発光素子と間に未硬化の蛍光体含有樹脂13’が表面張力によりメニスカスを形成する。このため、凸部140の下端よりも下側で傾斜面(メニスカス)が形成されにくく、発光素子と凸部140とを接続する傾斜面130を比較的容易に形成できるというメリットがある。   On the other hand, when the lower end has a shape having a width in the x direction (FIGS. 3D and 3E), the convex portion 140 has corners on both sides of the lower end as shown in FIG. The uncured phosphor-containing resin 13 ′ forms a meniscus due to surface tension between the light emitting element and the light emitting element. For this reason, it is difficult to form an inclined surface (meniscus) below the lower end of the convex portion 140, and there is an advantage that the inclined surface 130 that connects the light emitting element and the convex portion 140 can be formed relatively easily.

凸部140のx方向の位置は、発光素子11の間隙の中央とする。凸部140のx方向の幅は、小さければ小さいほど発光面積を大きくすることができるため好ましい。隣合う発光素子11の間隙(x方向)の20%程度にすることが望ましい。また、発光素子11と板状光学層14との製造時の位置合わせの誤差を考慮し、凸部140のx方向の幅は大きくても、発光素子11の間隙の80%以下であることが望ましい。   The position of the convex portion 140 in the x direction is the center of the gap of the light emitting element 11. The smaller the width of the convex portion 140 in the x direction is, the smaller the light emission area can be. It is desirable to set it to about 20% of the gap (x direction) between adjacent light emitting elements 11. Further, in consideration of an alignment error at the time of manufacturing the light emitting element 11 and the plate-like optical layer 14, even if the width of the convex portion 140 in the x direction is large, it is 80% or less of the gap between the light emitting elements 11. desirable.

凸部140のz方向の高さは、図6および図7に示したように、発光素子11の上部の蛍光体含有樹脂層13の膜厚t以下であることが望ましい。図8のように、凸部140の高さが、膜厚tを超えると、発光素子11の間隙における蛍光体含有樹脂層13の膜厚が、発光素子11の上部における膜厚tよりも厚くなるため、発光素子11の間隙の発光色が蛍光色寄りになりやすい。このため、色ムラを抑制するために、凸部140の高さは、蛍光体含有樹脂層13の膜厚t以下であることが望ましい。   As shown in FIGS. 6 and 7, the height of the convex portion 140 in the z direction is desirably equal to or less than the film thickness t of the phosphor-containing resin layer 13 on the light emitting element 11. As shown in FIG. 8, when the height of the convex portion 140 exceeds the film thickness t, the film thickness of the phosphor-containing resin layer 13 in the gap between the light emitting elements 11 is thicker than the film thickness t above the light emitting elements 11. Therefore, the emission color in the gap between the light emitting elements 11 tends to be close to the fluorescent color. For this reason, in order to suppress color unevenness, the height of the convex portion 140 is desirably equal to or less than the film thickness t of the phosphor-containing resin layer 13.

凸部140のz方向の高さは、未硬化の蛍光体含有樹脂により凸部140の下端でメニスカスが形成される高さであれば小さければ小さいほどよい。メニスカスが形成される最小の高さは、使用する未硬化の蛍光体含有樹脂の粘度や、蛍光体含有樹脂の板状光学層14および発光素子11に対する濡れ性により異なるが、一例としては、発光素子11の上部の膜厚tの1/3程度に設定する。   The height of the projection 140 in the z direction is preferably as small as possible so long as the meniscus is formed at the lower end of the projection 140 by the uncured phosphor-containing resin. The minimum height at which the meniscus is formed varies depending on the viscosity of the uncured phosphor-containing resin used and the wettability of the phosphor-containing resin with respect to the plate-like optical layer 14 and the light-emitting element 11. It is set to about 1/3 of the film thickness t above the element 11.

また、凸部140の下端でメニスカスを形成するためには、図2(b)、(c)の製造工程で発光素子11と板状光学層14との間に挟む未硬化の蛍光体含有樹脂の量を調節することが望ましい。蛍光体含有樹脂の量が多すぎると、凸部140の下端を超えて、下端よりも下側でメニスカスが形成されやすい。一方、蛍光体含有樹脂の量が少なすぎると凸部140の下端と発光素子11を結ぶメニスカスが形成されにくいためである。   Further, in order to form a meniscus at the lower end of the convex portion 140, an uncured phosphor-containing resin sandwiched between the light emitting element 11 and the plate-like optical layer 14 in the manufacturing process of FIGS. 2B and 2C. It is desirable to adjust the amount. If the amount of the phosphor-containing resin is too large, a meniscus is likely to be formed below the lower end beyond the lower end of the convex portion 140. On the other hand, if the amount of the phosphor-containing resin is too small, a meniscus that connects the lower end of the convex portion 140 and the light emitting element 11 is difficult to be formed.

このように、第1の実施形態では、板状光学層14の下面にメニスカス制御構造として凸部140を配置したことにより、蛍光体含有樹脂層を形成する際に、凸部140の下端と発光素子11の側面とを結ぶメニスカス構造を容易に形成することができる。よって、発光素子11の間にも傾斜面を形成でき、隣合う発光素子11の間隙の色ムラを低減できる。また、凸部140の形状を所望の形状に設計することにより、蛍光体含有樹脂層13の側面を所望の傾斜角の傾斜面130にすることができる。   As described above, in the first embodiment, the convex portion 140 is disposed as the meniscus control structure on the lower surface of the plate-like optical layer 14, so that when the phosphor-containing resin layer is formed, the lower end of the convex portion 140 and the light emission. A meniscus structure connecting the side surfaces of the element 11 can be easily formed. Accordingly, an inclined surface can be formed between the light emitting elements 11 and color unevenness in the gap between the adjacent light emitting elements 11 can be reduced. Moreover, the side surface of the phosphor-containing resin layer 13 can be formed into the inclined surface 130 having a desired inclination angle by designing the shape of the convex portion 140 to a desired shape.

なお、蛍光体含有樹脂層13に代えて、蛍光体を含有しない樹脂層や、樹脂材料ではない材料で層を形成することも可能である。この場合も、未硬化の状態で表面張力が生じる液体材料であれば、本実施形態と同様に、傾斜面を有する層を形成することが可能である。   Instead of the phosphor-containing resin layer 13, it is also possible to form a layer using a resin layer that does not contain a phosphor or a material that is not a resin material. Also in this case, as long as the liquid material generates surface tension in an uncured state, it is possible to form a layer having an inclined surface as in the present embodiment.

(第2の実施形態)
第2の実施形態では、メニスカス制御構造として、板状光学層14の下面に溝141を設けた。板状光学層14の構成例を図9(a)〜(d)に示す。図9(a)〜(d)に示した例では、断面形状が、長方形、三角形、逆台形、台形の溝を板状光学層14の下面に設けている。
(Second Embodiment)
In the second embodiment, the groove 141 is provided on the lower surface of the plate-like optical layer 14 as a meniscus control structure. A configuration example of the plate-like optical layer 14 is shown in FIGS. In the example shown in FIGS. 9A to 9D, grooves having a cross-sectional shape of a rectangle, a triangle, an inverted trapezoid, and a trapezoid are provided on the lower surface of the plate-like optical layer 14.

このように、板状光学層14の下面に溝141を設けた場合、未硬化の蛍光体含有樹脂の濡れ広がりが溝141の開口の角部で止まる。これにより、図2(c)の工程で発光素子11の側面と、溝141の開口の角部とを結ぶメニスカスを形成することができる。   As described above, when the groove 141 is provided on the lower surface of the plate-like optical layer 14, wetting and spreading of the uncured phosphor-containing resin stops at the corner of the opening of the groove 141. 2C, a meniscus that connects the side surface of the light emitting element 11 and the corner of the opening of the groove 141 can be formed.

溝141のxおよびy方向の配置については、第1の実施形態の凸部140と同様である。他の構成および製造方法についても第1の実施形態と同様であるので説明を省略する。   The arrangement of the grooves 141 in the x and y directions is the same as that of the convex portion 140 of the first embodiment. Other configurations and manufacturing methods are also the same as those in the first embodiment, and thus description thereof is omitted.

なお、第1の実施形態の製造方法において、図2(b)の工程で発光素子11の上面に未硬化の蛍光体含有樹脂13’をポッティングしたが、本実施形態の製造方法はこれに限られるものではない。例えば、板状光学層14の下面に蛍光体含有樹脂13’を塗布してもよい。また、発光素子11の上面と板状光学層14の下面の両方に蛍光体含有樹脂13’を塗布することもできる。   In the manufacturing method of the first embodiment, the uncured phosphor-containing resin 13 ′ is potted on the upper surface of the light emitting element 11 in the step of FIG. 2B, but the manufacturing method of the present embodiment is not limited to this. It is not something that can be done. For example, the phosphor-containing resin 13 ′ may be applied to the lower surface of the plate-like optical layer 14. Further, the phosphor-containing resin 13 ′ can be applied to both the upper surface of the light emitting element 11 and the lower surface of the plate-like optical layer 14.

第1及び第2の実施形態の発光装置は、複数の発光素子11の間隙で蛍光体含有樹脂層13をメニスカス形状に湾曲させて傾斜面130形成することができるため、複数の発光素子11の間隙からの出射光が蛍光色寄りになるのを防止できる。よって、複数の発光素子11の間の領域で輝度のムラが生じるのを防止することができる。   In the light emitting devices of the first and second embodiments, the phosphor-containing resin layer 13 can be curved in a meniscus shape in the gap between the plurality of light emitting elements 11, and the inclined surface 130 can be formed. It is possible to prevent the light emitted from the gap from being close to the fluorescent color. Therefore, uneven brightness can be prevented from occurring in the region between the plurality of light emitting elements 11.

10…サブマウント基板、11…発光素子、12…バンプ、13…蛍光体含有樹脂層、14…板状光学層、15…反射材料層、16…外枠、130…傾斜面、140…凸部、141…溝 DESCRIPTION OF SYMBOLS 10 ... Submount board | substrate, 11 ... Light emitting element, 12 ... Bump, 13 ... Phosphor containing resin layer, 14 ... Plate-like optical layer, 15 ... Reflective material layer, 16 ... Outer frame, 130 ... Inclined surface, 140 ... Convex part 141 ... groove

Claims (11)

基板と、該基板上に間隔をあけて実装された複数の発光素子と、前記発光素子上に配置された、前記発光素子の発する光の少なくとも一部を透過する透明材料層と、前記透明材料層の上に搭載された板状光学層とを有し、
前記板状光学層は、前記複数の発光素子の上面を合わせたものより大きく、
前記透明材料層は、隣合う前記発光素子の間隙の位置に、前記発光素子の側面から前記板状光学層の下面に向かう傾斜面を有し、
前記板状光学層の下面には、隣合う前記発光素子の間隙の位置に、前記透明材料層の前記傾斜面の形状を制御するための傾斜面制御構造が備えられていることを特徴とする発光装置。
A substrate, a plurality of light-emitting elements mounted on the substrate at intervals, a transparent material layer disposed on the light-emitting element and transmitting at least part of light emitted from the light-emitting element, and the transparent material A plate-like optical layer mounted on the layer,
The plate-like optical layer is larger than the combined upper surface of the plurality of light emitting elements,
The transparent material layer has an inclined surface from the side surface of the light emitting element toward the lower surface of the plate-like optical layer at the position of the gap between the adjacent light emitting elements.
The lower surface of the plate-like optical layer is provided with an inclined surface control structure for controlling the shape of the inclined surface of the transparent material layer at a position of a gap between the adjacent light emitting elements. Light emitting device.
請求項1に記載の発光装置において、前記傾斜面制御構造は、前記板状光学層の下面に設けられた凸部であることを特徴とする発光装置。   The light-emitting device according to claim 1, wherein the inclined surface control structure is a convex portion provided on a lower surface of the plate-like optical layer. 請求項1に記載の発光装置において、前記傾斜面制御構造は、前記板状光学層の下面に設けられた溝であることを特徴とする発光装置。   2. The light emitting device according to claim 1, wherein the inclined surface control structure is a groove provided on a lower surface of the plate-like optical layer. 請求項2に記載の発光装置において、前記透明材料層の傾斜面は、前記発光素子の側面と前記凸部の下端とを結ぶ面であることを特徴とする発光装置。   3. The light emitting device according to claim 2, wherein the inclined surface of the transparent material layer is a surface connecting the side surface of the light emitting element and the lower end of the convex portion. 請求項2または4に記載の発光装置において、前記凸部の高さは、前記発光素子の上部における前記透明材料層の厚さ以下であることを特徴とする発光装置。   5. The light emitting device according to claim 2, wherein a height of the convex portion is equal to or less than a thickness of the transparent material layer on the light emitting element. 請求項1ないし5のいずれか1項に記載の発光装置において、前記傾斜面は、発光素子に向かって湾曲していることを特徴とする発光装置。   The light-emitting device according to claim 1, wherein the inclined surface is curved toward the light-emitting element. 請求項1ないし6のいずれか1項に記載の発光装置において、前記透明材料層は、前記板状光学層の外周側の前記複数の発光素子の側面から、前記板状光学層の外周に向かう傾斜面をさらに有することを特徴とする発光装置。   7. The light-emitting device according to claim 1, wherein the transparent material layer is directed from a side surface of the plurality of light-emitting elements on an outer peripheral side of the plate-like optical layer toward an outer periphery of the plate-like optical layer. A light-emitting device further comprising an inclined surface. 請求項7に記載の発光装置において、前記板状光学層の下面には、外周に沿った部分の少なくとも一部に、前記傾斜面制御構造が備えられていることを特徴とする発光装置。   8. The light emitting device according to claim 7, wherein the inclined surface control structure is provided on at least a part of a portion along the outer periphery of the lower surface of the plate-like optical layer. 請求項1ないし8のいずれか1項に記載の発光装置において、前記透明材料層の周囲には、前記傾斜面に沿うように反射材料層が配置されていることを特徴とする発光装置。   9. The light emitting device according to claim 1, wherein a reflective material layer is disposed around the transparent material layer along the inclined surface. 基板上に間隙をあけて配置された複数の発光素子の上に、前記複数の発光素子の上面を合わせたものより大きく、前記間隙の位置に所定の制御構造を備えた板状光学層を、未硬化の透明材料を挟んで、重ね合わせることにより、前記未硬化の透明材料の表面張力により、前記複数の発光素子の間隙の位置に、前記発光素子の側面から前記板状光学層の前記制御構造に向かう傾斜面を有する透明材料層を形成する工程とを有することを特徴とする発光装置の製造方法。   A plate-like optical layer having a predetermined control structure at a position of the gap, which is larger than a combination of the top surfaces of the plurality of light emitting elements on a plurality of light emitting elements arranged with a gap on the substrate, The control of the plate-like optical layer from the side surface of the light-emitting element to the position of the gap between the plurality of light-emitting elements by the surface tension of the uncured transparent material by overlapping the uncured transparent material And a step of forming a transparent material layer having an inclined surface facing the structure. 請求項10に記載の発光装置の製造方法において、前記所定の制御構造は、前記板状光学層の下面に備えられた凸部または溝であり、前記凸部または溝と、前記発光素子の側面との間に形成されるメニスカスにより、前記傾斜面を形成することを特徴とする発光装置の製造方法。   11. The method for manufacturing a light emitting device according to claim 10, wherein the predetermined control structure is a convex portion or a groove provided on a lower surface of the plate-like optical layer, and the convex portion or the groove and a side surface of the light emitting element. A method for manufacturing a light emitting device, wherein the inclined surface is formed by a meniscus formed between the two.
JP2014093370A 2014-04-30 2014-04-30 Light emitting device and manufacturing method thereof Active JP5712313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093370A JP5712313B2 (en) 2014-04-30 2014-04-30 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093370A JP5712313B2 (en) 2014-04-30 2014-04-30 Light emitting device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010276875A Division JP5539849B2 (en) 2010-06-16 2010-12-13 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014135526A true JP2014135526A (en) 2014-07-24
JP5712313B2 JP5712313B2 (en) 2015-05-07

Family

ID=51413542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093370A Active JP5712313B2 (en) 2014-04-30 2014-04-30 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5712313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194404A1 (en) * 2015-05-29 2016-12-08 シチズン電子株式会社 Light emitting device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device
JP2010219324A (en) * 2009-03-17 2010-09-30 Nichia Corp Light-emitting device
JP2012004303A (en) * 2010-06-16 2012-01-05 Stanley Electric Co Ltd Light emitting device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device
JP2010219324A (en) * 2009-03-17 2010-09-30 Nichia Corp Light-emitting device
JP2012004303A (en) * 2010-06-16 2012-01-05 Stanley Electric Co Ltd Light emitting device and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194404A1 (en) * 2015-05-29 2016-12-08 シチズン電子株式会社 Light emitting device and manufacturing method thereof
CN107615497A (en) * 2015-05-29 2018-01-19 西铁城电子株式会社 Light-emitting device and its manufacture method
JPWO2016194404A1 (en) * 2015-05-29 2018-03-22 シチズン電子株式会社 Light emitting device and manufacturing method thereof
CN107615497B (en) * 2015-05-29 2019-05-21 西铁城电子株式会社 Light emitting device and its manufacturing method
US10714460B2 (en) 2015-05-29 2020-07-14 Citizen Electronics Co., Ltd. Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP5712313B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5539849B2 (en) Light emitting device and manufacturing method thereof
JP5588368B2 (en) Light emitting device and manufacturing method thereof
JP5572013B2 (en) Light emitting device and manufacturing method thereof
JP5647028B2 (en) Light emitting device and manufacturing method thereof
US9583682B2 (en) Light-emitting device and method of manufacturing the same
KR102349834B1 (en) Light-emitting device
JP6099901B2 (en) Light emitting device
JP5622494B2 (en) Light emitting device and manufacturing method thereof
JP5883662B2 (en) Light emitting device
US20150204494A1 (en) Light-Emitting Device and Method of Manufacturing the Same
JP5736203B2 (en) Light emitting device
JP6005953B2 (en) Light emitting device
JP2013175531A (en) Light-emitting device
JP5518662B2 (en) Light emitting device and manufacturing method thereof
JP2014138176A (en) Semiconductor light-emitting device
JP6253949B2 (en) LED light emitting device
JP5543386B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2017152475A (en) Light-emitting device
JP5681532B2 (en) Light emitting device and manufacturing method thereof
JP2010225754A (en) Semiconductor light emitting device
JP6097040B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5970215B2 (en) Light emitting device and manufacturing method thereof
JP5712313B2 (en) Light emitting device and manufacturing method thereof
JP2013026485A (en) Light-emitting device
JP6399783B2 (en) LED light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5712313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250