JP2014134106A - Geothermal power generation system - Google Patents

Geothermal power generation system Download PDF

Info

Publication number
JP2014134106A
JP2014134106A JP2013001221A JP2013001221A JP2014134106A JP 2014134106 A JP2014134106 A JP 2014134106A JP 2013001221 A JP2013001221 A JP 2013001221A JP 2013001221 A JP2013001221 A JP 2013001221A JP 2014134106 A JP2014134106 A JP 2014134106A
Authority
JP
Japan
Prior art keywords
steam
hot water
power generation
water
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013001221A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Ishida
哲義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013001221A priority Critical patent/JP2014134106A/en
Publication of JP2014134106A publication Critical patent/JP2014134106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a geothermal power generation system capable of increasing an amount of steam supplied to a steam turbine and increasing power generation amount without increasing the flow volume of gas-water mixture fluid of hot water and the steam pumped up from the underground.SOLUTION: An absorption heat pump including a regenerator 63, a condenser 64, an evaporator 61, an absorber 62, and the like; a high-pressure gas-water separator 51H; and high-pressure steam turbine 52H are installed in a conventional geothermal power generation system. A conventional gas-water separator and a conventional steam turbine are used as a low-pressure gas-water separator 51L and a low-pressure steam turbine 52L, respectively. A geothermal power generation system with the absorption heat pump absorbs heat from the hot water returned to the underground, generates high-temperature heat, heats the hot water pumped up from the underground with this heat, and generates high-temperature high-pressure steam. The generated steam is supplied first to the high-pressure steam turbine 52H and then to the low-pressure steam turbine 52L. The steam generated when the hot water is pumped up from the underground is supplied to the low-pressure steam turbine 52L.

Description

本発明は、ヒートポンプを用いて地中からの熱水を加熱して発電量を増加する蒸気のみを蒸気タービンに供給する地熱発電システムに関する。 The present invention relates to a geothermal power generation system that supplies only steam that heats hot water from the ground using a heat pump to increase power generation to a steam turbine.

従来技術の地熱発電システムには、火力発電システムと比較して、燃料が不要である長所を有するが、蒸気タービンへ供給される蒸気の温度及び圧力が低いため、発電量当たりの蒸気流量が多く、装置コストが高くなる短所がある。 The prior art geothermal power generation system has the advantage that fuel is not required compared to a thermal power generation system, but the steam flow per unit of power generation is large because the temperature and pressure of the steam supplied to the steam turbine are low. However, there is a disadvantage that the device cost becomes high.

従来技術において、冷暖房用や給湯用のヒートポンプと地熱発電システムを組み合せる冷暖房や給湯の運用改善を図る公知例はあるが、ヒートポンプを用いて地中から汲み上げた熱水を加熱し、蒸気タービンに供給する蒸気の流量を増加する公知例見は当たらない。 In the prior art, there are known examples of improving the operation of air conditioning and hot water supply by combining a heat pump for air conditioning and hot water supply with a geothermal power generation system, but hot water pumped from the ground using a heat pump is heated to the steam turbine. There is no known example of increasing the flow rate of the supplied steam.

また、地熱に代わって太陽熱を利用するシステムとヒートポンプを組み合わせる発電システムの公知例はあるが、この公知例においてヒートポンプを用いて蒸気タービンに供給する蒸気流量を増加する記述は見当たらない。 In addition, there is a known example of a power generation system that combines a heat pump with a system that uses solar heat instead of geothermal heat, but there is no description in this known example of increasing the flow rate of steam supplied to a steam turbine using a heat pump.

特開2012−251456号公報JP 2012-251456 A 特開2012−225313号公報JP 2012-225313 A 特開2006−170072号公報JP 2006-170072 A 特開2011−69233号公報JP 2011-69233 A

八丈島地熱・風力発電所−東京電力ホームページ、地熱発電所、地熱発電のしくみ(http店//www.tepco.co.jp/hachijojima−gp/hachijo/g−03−J.html)Hachijojima Geothermal / Wind Power Plant-TEPCO Homepage, Geothermal Power Plant, Mechanism of Geothermal Power Generation (http://www.tepco.co.jp/hachijojima-gp/hachijo/g-03-J.html)

解決しようとする課題は、蒸気のみを蒸気タービンに供給する地熱発電システムにおいて、地中から汲み上げる気水混合流体の流量を増加することなく、発電量を増加することができる地熱発電システムを提供することにある。 A problem to be solved is to provide a geothermal power generation system capable of increasing the power generation amount without increasing the flow rate of the air-water mixed fluid pumped from the ground in a geothermal power generation system that supplies only steam to the steam turbine. There is.

この課題は、ヒートポンプを設置し、地中に戻される熱水の有する熱を吸収して高温の熱をつくり、この高温の熱を用いて地中から汲み上げる熱水を沸騰させることにより、蒸気タービンへ供給される蒸気の流量を増加し、温度及び圧力を高くすることにより解決される。 The challenge is to install a heat pump, absorb the heat of the hot water returned to the ground, create high-temperature heat, and boil the hot water pumped from the ground using this high-temperature heat. This can be solved by increasing the flow rate of steam supplied to and increasing the temperature and pressure.

ヒートポンプには、圧縮式ヒートポンプ又は吸収式ヒートポンプを使用する。 As the heat pump, a compression heat pump or an absorption heat pump is used.

本発明によれば、地中から汲み上げる熱水と蒸気の気水混合流体の流量を増加することなく、発電量を増加することができるので、発電量当たりの地熱発電システムの装置寸法が小さくなり、装置コストが削減され、発電コストが低減される効果が得られる。 According to the present invention, the power generation amount can be increased without increasing the flow rate of the hot-water and steam-air mixed fluid that is pumped from the ground, so the size of the geothermal power generation system per unit of power generation is reduced. As a result, the apparatus cost is reduced, and the power generation cost is reduced.

本発明の実施例1による圧縮式ヒートポンプを有する地熱発電システムの概略図。1 is a schematic diagram of a geothermal power generation system having a compression heat pump according to Embodiment 1 of the present invention. 本発明の実施例2による吸収式ヒートポンプを有する地熱発電システムの概略図。The schematic of the geothermal power generation system which has an absorption heat pump by Example 2 of this invention. 本発明の実施例3による吸収式ヒートポンプを有する地熱発電システムの概略図。The schematic of the geothermal power generation system which has an absorption heat pump by Example 3 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1による圧縮式ヒートポンプを有する地熱発電システムの概略図である。この本発明の実施例1の地熱発電システムは、概して、気水分離器11、蒸気タービン12、発電機13、復水器14、冷却塔15、復水ポンプ16、熱水ピット17、還元水ポンプ18、ガス抽出器19等の地熱発電システム本体を構成する機器類、蒸発器21、凝縮器22、圧縮機23、膨張弁24等から構成される圧縮式ヒートポンプを構成する機器類、及び循環ポンプ26から構成される。 FIG. 1 is a schematic diagram of a geothermal power generation system having a compression heat pump according to a first embodiment of the present invention. The geothermal power generation system according to the first embodiment of the present invention generally includes a steam / water separator 11, a steam turbine 12, a generator 13, a condenser 14, a cooling tower 15, a condensate pump 16, a hot water pit 17, and reduced water. Equipment constituting the geothermal power generation system main body such as the pump 18 and the gas extractor 19, equipment constituting the compression heat pump constituted by the evaporator 21, the condenser 22, the compressor 23, the expansion valve 24, and the like, and circulation The pump 26 is configured.

圧縮式ヒートポンプの熱媒体には、室温から約200℃の温度域において、容易に気液相変化する水又は二酸化炭素ガス又はフロン系流体を使用する。 As the heat medium of the compression heat pump, water, carbon dioxide gas, or chlorofluorocarbon fluid that easily changes in gas-liquid phase in a temperature range from room temperature to about 200 ° C. is used.

地中から汲み上げた蒸気と熱水の気水混合流体M11は、気水分離器11に供給され、蒸気S11と熱水W11に分離される。 The steam / hot water steam-water mixed fluid M11 pumped from the ground is supplied to the steam / water separator 11 and separated into steam S11 and hot water W11.

蒸発器21において、液相熱媒体H21は、気水分離器11からの熱水W23によって加熱されて、気相に変化する。この気相熱媒体H22は、圧縮機23によって圧縮されて高温の気相熱媒体H23になる。この高温の気相熱媒体H23は、凝縮器22において熱水W21によって冷却されて、液相熱媒体H24になる。液相熱媒体H24は、膨張弁24を通過するときに減圧し、低温の液相熱媒体H21になり、蒸発器21に戻される。 In the evaporator 21, the liquid phase heat medium H <b> 21 is heated by the hot water W <b> 23 from the steam separator 11 and changes to a gas phase. The gas phase heat medium H22 is compressed by the compressor 23 to become a high temperature gas phase heat medium H23. This high-temperature gas phase heat medium H23 is cooled by the hot water W21 in the condenser 22 to become a liquid phase heat medium H24. The liquid phase heat medium H24 is decompressed when passing through the expansion valve 24, becomes a low temperature liquid phase heat medium H21, and is returned to the evaporator 21.

気水分離器11からの熱水W21は、循環ポンプ26によって凝縮器22に移送され、高温の気相熱媒体H23によって加熱されて沸騰し、気水混合流体M22となって気水分離器11に戻される。また、気水分離器11からの熱水W23は、蒸発器21に移送され、蒸発器22において液相熱媒体H21を加熱し、自らは冷却されて温度が低下した熱水W24となり、熱水ピット17内に排出される。 The hot water W21 from the steam separator 11 is transferred to the condenser 22 by the circulation pump 26, heated and boiled by the high-temperature gas phase heat medium H23, and becomes the steam-water mixed fluid M22. Returned to Further, the hot water W23 from the steam separator 11 is transferred to the evaporator 21, where the liquid phase heat medium H21 is heated in the evaporator 22 and is cooled to become hot water W24 having a lowered temperature. It is discharged into the pit 17.

気水分離器11内の蒸気S11は、蒸気タービン12に供給されて蒸気タービン12を駆動し、連動する発電機13から電力を発生させる。蒸気タービン12を出た蒸気S12は、復水器14において冷却されて凝縮水C11となった後、冷却塔15を経て熱水ピット17に排出される。 The steam S11 in the steam separator 11 is supplied to the steam turbine 12 to drive the steam turbine 12 and generate electric power from the interlocking generator 13. The steam S12 exiting the steam turbine 12 is cooled in the condenser 14 to become condensed water C11, and then discharged to the hot water pit 17 through the cooling tower 15.

熱水ピット17に排出された熱水W24及び凝縮水C12は、還元水ポンプ18によって地中に戻される。 The hot water W24 and the condensed water C12 discharged to the hot water pit 17 are returned to the ground by the reduced water pump 18.

本発明の実施例1による地熱発電システムの蒸気タービン12に供給される蒸気S11の流量は、従来技術による地熱発電システムの蒸気タービンに供給される蒸気流量よりも、凝縮器22における熱交換によって発生する蒸気流量が増加となる。 The flow rate of the steam S11 supplied to the steam turbine 12 of the geothermal power generation system according to the first embodiment of the present invention is generated by heat exchange in the condenser 22 rather than the flow rate of steam supplied to the steam turbine of the geothermal power generation system according to the prior art. The steam flow to be increased.

本発明の実施例1による地熱発電システムの発電量は、蒸気タービンに供給される蒸気流量が増加するので、従来技術による地熱発電システムの発電量よりも多くなる。 The amount of power generated by the geothermal power generation system according to the first embodiment of the present invention is larger than the amount of power generated by the conventional geothermal power generation system because the flow rate of steam supplied to the steam turbine increases.

例えば、表1に示すように、地中内の温度150℃(飽和圧力0.48MPa)の熱水を毎時100トン汲み上げる条件において得られる発電量は、従来技術による地熱発電システムでは約450kWであるが、本発明の実施例1による地熱発電システムでは約1,5000kWに増加する。 For example, as shown in Table 1, the power generation amount obtained under the condition of pumping hot water at a temperature of 150 ° C. (saturation pressure 0.48 MPa) in the underground at 100 tons per hour is about 450 kW in the conventional geothermal power generation system. However, it increases to about 1,5000 kW in the geothermal power generation system according to the first embodiment of the present invention.

しかし、本発明の実施例1による地熱発電システムでは、圧縮機が約660kWの電力を使用するため、その他補機動力を無視する条件において、システムの発電量は約840kWになる。 However, in the geothermal power generation system according to the first embodiment of the present invention, since the compressor uses about 660 kW of electric power, the power generation amount of the system is about 840 kW under the condition that other auxiliary power is ignored.

本発明の実施例1による地熱発電システムには、発電機からの発生電力が大きくなるが、使用電力が大きい圧縮機を有するため、システム全体の電力発生量が十分大きくならない欠点がある。 The geothermal power generation system according to the first embodiment of the present invention has a drawback that the generated power from the generator increases, but the amount of power generated by the entire system does not increase sufficiently because it has a compressor that uses a large amount of power.

このため、本発明の実施例1による地熱発電システムには、使用電力が小さい地熱発電システムを提供する課題が残る。 For this reason, the subject which provides the geothermal power generation system with small electric power used remains in the geothermal power generation system by Example 1 of this invention.

使用電力が小さい地熱発電システムを提供する課題は、圧縮式ヒートポンプに代わって吸収式ヒートポンプを使用することによって解決する。 The problem of providing a geothermal power generation system with low power consumption is solved by using an absorption heat pump instead of a compression heat pump.

図2は、本発明の実施例2による吸収式ヒートポンプを使用する地熱発電システムの概略図である。この本発明の実施例2による吸収式ヒートポンプを使用する地熱発電システムは、概して、気水分離器31、蒸気タービン32、発電機33、復水器34、復水ポンプ35、冷却塔36、熱水ピット37、還元水ポンプ38、ガス抽出器39等の地熱発電システム本体を構成する機器類、蒸発器41、吸収器42、再生器43、凝縮器44、熱交換器45等から構成される吸収式ヒートポンプを構成する機器類、及び循環ポンプ46等から構成される。 FIG. 2 is a schematic diagram of a geothermal power generation system using an absorption heat pump according to a second embodiment of the present invention. The geothermal power generation system using the absorption heat pump according to the second embodiment of the present invention generally includes a steam / water separator 31, a steam turbine 32, a generator 33, a condenser 34, a condensate pump 35, a cooling tower 36, a heat Consists of equipment constituting the geothermal power generation system main body such as water pit 37, reduced water pump 38, gas extractor 39, evaporator 41, absorber 42, regenerator 43, condenser 44, heat exchanger 45, etc. It is comprised from the apparatus which comprises an absorption heat pump, and the circulation pump 46 grade | etc.,.

吸収式ヒートポンプに用いる熱媒体と吸収液の組み合わせには、室温から約200℃の温度域において、吸収液への気相熱媒体の吸収及び吸収液からの気相熱媒体の放出が容易に行われる特性が要求される。このため、熱媒体は水で吸収液は臭化リチウム水溶液の組み合わせ、又は、熱媒体はアンモニアで吸収液は水の組み合わせを使用する。 In the combination of the heat medium and the absorption liquid used in the absorption heat pump, the absorption of the vapor phase heat medium into the absorption liquid and the release of the vapor phase heat medium from the absorption liquid are easily performed in the temperature range from room temperature to about 200 ° C. Required characteristics. For this reason, the heat medium is water and the absorbent is a combination of lithium bromide aqueous solutions, or the heat medium is ammonia and the absorbent is a combination of water.

地中内の蒸気と熱水の気水混合流体M31は、気水分離器31に供給されて蒸気S31と熱水W31に分離される。 The steam / hot water / water mixed fluid M31 in the ground is supplied to the steam / water separator 31 and separated into steam S31 and hot water W31.

蒸発器41において、液相熱媒体H41は、気水分離器31からの熱水W43によって加熱されて気相に変化し、この気相熱媒体H42は吸収器42に供給される。このとき、熱水W43は、液相熱媒体H43によって冷却されるので、温度が低下した熱水W44になる。 In the evaporator 41, the liquid phase heat medium H41 is heated by the hot water W43 from the steam separator 31 to be changed into a gas phase, and the gas phase heat medium H42 is supplied to the absorber 42. At this time, since the hot water W43 is cooled by the liquid-phase heat medium H43, the hot water W44 has a lowered temperature.

吸収器42において、気相熱媒体H42は、気水分離器31からの熱水W41によって冷却される吸収液H43に吸収される。このとき、熱水W41は、吸収液H43から加熱されるので沸騰し、蒸気と熱水の気液混合流体M42になる。気相の熱媒体H42を吸収した吸収液H44は、熱交換器45を経て、再生器43に供給される。 In the absorber 42, the gas phase heat medium H42 is absorbed by the absorbing liquid H43 cooled by the hot water W41 from the steam separator 31. At this time, since the hot water W41 is heated from the absorbing liquid H43, it boils and becomes a gas-liquid mixed fluid M42 of steam and hot water. The absorbing liquid H44 that has absorbed the gas phase heat medium H42 is supplied to the regenerator 43 via the heat exchanger 45.

再生器43において、吸収液H44は、蒸発器41を経た熱水W44によって加熱されて沸騰し、吸収器42おいて吸収した気相熱媒体を放出する。気相熱媒体H45を放出した吸収液H43は、熱交換器45を経て、吸収器42に戻される。 In the regenerator 43, the absorbing liquid H <b> 44 is heated and boiled by the hot water W <b> 44 that has passed through the evaporator 41, and releases the gas phase heat medium absorbed in the absorber 42. The absorbing liquid H43 that has released the gas phase heat medium H45 is returned to the absorber 42 through the heat exchanger 45.

再生器43で発生した気相熱媒体H45は、凝縮器44に供給され、冷却流体CW41によって冷却され、液相熱媒体H41になる。この液相熱媒体H41は、蒸発器41に戻される。冷却流体CW41には、地下水、河川水、海水、冷却塔からの水又は大気が使用される。 The gas phase heat medium H45 generated in the regenerator 43 is supplied to the condenser 44, cooled by the cooling fluid CW41, and becomes the liquid phase heat medium H41. The liquid phase heat medium H41 is returned to the evaporator 41. As the cooling fluid CW41, groundwater, river water, seawater, water from a cooling tower, or air is used.

気水分離器31から吸収器42へ移送される熱水W41は、加熱されて気水混合流体M42となって気水分離器31に戻される。また、気水分離器31から蒸発器41へ移送される熱水W43は、冷却されて温度が低下し、続いて、再生器43において冷却されて更に温度が低下した後、熱水ピット37内に排水される。 The hot water W41 transferred from the steam-water separator 31 to the absorber 42 is heated to become the steam-water mixed fluid M42 and returned to the steam-water separator 31. Further, the hot water W43 transferred from the steam separator 31 to the evaporator 41 is cooled to lower the temperature, and subsequently cooled in the regenerator 43 to further decrease the temperature. To be drained.

気水分離器31内の蒸気S31は、蒸気タービン32に供給されて蒸気タービン32を駆動し、連動する発電機33から電力を発生させる。蒸気タービン32を出た蒸気S32は、復水器34において冷却されて凝縮水C31となった後、冷却塔36を経て熱水ピット37に排出される。 The steam S31 in the steam separator 31 is supplied to the steam turbine 32 to drive the steam turbine 32 and generate electric power from the associated generator 33. The steam S32 exiting the steam turbine 32 is cooled in the condenser 34 to become condensed water C31, and then discharged to the hot water pit 37 through the cooling tower 36.

熱水ピット37に排出された熱水W45と凝縮水C32は、還元水ポンプ48によって地中に戻される。 The hot water W45 and the condensed water C32 discharged to the hot water pit 37 are returned to the ground by the reduced water pump 48.

本発明の実施例2になる地熱発電システムの蒸気タービン32に供給される蒸気S31の流量は、前記した本発明の実施例1になる地熱発電システムの蒸気タービン12に供給される蒸気S11の流量に近似する。このため、発電機33からの発電量も、前記した本発明の実施例1になる地熱発電システムの発電機13からの発電量に近似する。 The flow rate of the steam S31 supplied to the steam turbine 32 of the geothermal power generation system according to the second embodiment of the present invention is the flow rate of the steam S11 supplied to the steam turbine 12 of the geothermal power generation system according to the first embodiment of the present invention. To approximate. For this reason, the electric power generation amount from the generator 33 also approximates the electric power generation amount from the generator 13 of the geothermal power generation system which becomes Example 1 of this invention mentioned above.

したがって、本発明の実施例2になる地熱発電システムの発電量は、圧縮機が不要になるので、実施例1になる地熱発電システムの発電量より、概略、圧縮機の使用する電力量相当分が多くなる。 Therefore, since the amount of power generation of the geothermal power generation system according to the second embodiment of the present invention does not require a compressor, the power generation amount of the geothermal power generation system according to the first embodiment is roughly equivalent to the amount of power used by the compressor. Will increase.

例えば、表1に示すように、地中内の温度150℃(飽和圧力0.48MPa)の熱水を毎時100トン汲み上げて地熱発電をするする条件において、その他補機動力を無視するとき、本発明の実施例2になる地熱発電システムの発電量は1,480kWになる。 For example, as shown in Table 1, in the condition that geothermal power generation is performed by pumping up 100 tons of hot water at a temperature of 150 ° C. (saturation pressure 0.48 MPa) in the ground, The amount of power generated by the geothermal power generation system according to the second embodiment of the invention is 1,480 kW.

更に、本発明の実施例2になる地熱発電システムよりも多くの電力を発電する課題に対しては、蒸気タービンに供給される蒸気の圧力及び温度を高くすることで解決する。 Furthermore, the problem of generating more power than the geothermal power generation system according to the second embodiment of the present invention is solved by increasing the pressure and temperature of the steam supplied to the steam turbine.

蒸気タービンに供給される蒸気の圧力及び温度を高くすることは、熱水を循環するだけであった循環ポンプ46を昇圧できるポンプに取り替えるとともに、気水分離器を高圧気水分離器と低圧気水分離器の複数とし、蒸気タービンを高圧蒸気タービンと低圧蒸気タービンの複数とし、高圧気水分離器からの蒸気は高圧蒸気タービンに、低圧気水分離器からの蒸気は低圧蒸気タービンに供給することによって達成される。 Increasing the pressure and temperature of the steam supplied to the steam turbine replaces the circulation pump 46 that only circulated hot water with a pump capable of boosting the pressure, and the steam separator is replaced with a high pressure steam separator and a low pressure steam. Multiple water separators, multiple steam turbines, high pressure steam turbines and low pressure steam turbines, supply steam from high pressure steam separator to high pressure steam turbine, and supply steam from low pressure steam separator to low pressure steam turbine Is achieved.

図3は、本発明の実施例3による吸収式ヒートポンプを使用する地熱発電システムの概略図である。この本発明の実施例3による吸収式ヒートポンプを使用する地熱発電システムは、高圧気水分離器51H、低圧気水分離器51L、高圧蒸気タービン52H、低圧蒸気タービン52L、発電機53、復水器54、冷却塔55、復水ポンプ56、熱水ピット57、還元水ポンプ58、ガス抽出器59等の地熱発電システムの本体を構成する機器類、蒸発器61、吸収器62、再生器63、凝縮器64、熱交換器65等から構成される吸収式ヒートポンプを構成する機器類、及び昇圧ポンプ66から構成される。 FIG. 3 is a schematic diagram of a geothermal power generation system using an absorption heat pump according to a third embodiment of the present invention. The geothermal power generation system using the absorption heat pump according to the third embodiment of the present invention includes a high pressure steam / water separator 51H, a low pressure steam / water separator 51L, a high pressure steam turbine 52H, a low pressure steam turbine 52L, a generator 53, and a condenser. 54, cooling tower 55, condensate pump 56, hot water pit 57, reducing water pump 58, equipment constituting the main body of the geothermal power generation system such as gas extractor 59, evaporator 61, absorber 62, regenerator 63, It is comprised from the apparatus which comprises the absorption heat pump comprised from the condenser 64, the heat exchanger 65, etc., and the pressure | voltage rise pump 66.

吸収式ヒートポンプに用いる熱媒体と吸収液の組み合わせには、室温から約200℃の温度域において、吸収液への気相熱媒体の吸収及び吸収液からの気相熱媒体の放出が容易に行われる特性が要求される。このため、熱媒体は水で吸収液は臭化リチウム水溶液とする組み合わせ、又は、熱媒体はアンモニアで吸収液は水の組み合わせを使用する。 In the combination of the heat medium and the absorption liquid used in the absorption heat pump, the absorption of the vapor phase heat medium into the absorption liquid and the release of the vapor phase heat medium from the absorption liquid are easily performed in the temperature range from room temperature to about 200 ° C. Required characteristics. For this reason, the heat medium is water and the absorbing solution is a lithium bromide aqueous solution, or the heat medium is ammonia and the absorbing solution is a combination of water.

地中内の蒸気と熱水の気水混合流体M51は、低圧気水分離器51Lに供給されて蒸気と熱水に分離される。蒸発器61において、液相熱媒体H61は、低圧気水分離器51Lからの熱水W63によって加熱されて気相に変化し、この気相熱媒体H62は吸収器62に供給される。このとき、熱水W63は、液相熱媒体H63によって冷却されるので、温度が低下した熱水W64になる。 The steam / hot water / water mixed fluid M51 in the ground is supplied to the low pressure steam / water separator 51L and separated into steam and hot water. In the evaporator 61, the liquid phase heat medium H61 is heated by the hot water W63 from the low-pressure steam-water separator 51L to be changed into a gas phase, and the gas phase heat medium H62 is supplied to the absorber 62. At this time, since the hot water W63 is cooled by the liquid phase heat medium H63, the hot water W64 has a reduced temperature.

吸収器62において、気相熱媒体H62は、低圧気水分離器51Lからの熱水W61によって冷却される吸収液H63に吸収される。このとき、低圧気水分離器51Lからの熱水W61は、吸収液H63から加熱されるので、蒸気と熱水の気液混合流体M62になる。気相熱媒体H62を吸収した吸収液H64は、熱交換器65を経て、再生器63に供給される。 In the absorber 62, the gas phase heat medium H62 is absorbed by the absorbing liquid H63 cooled by the hot water W61 from the low pressure steam-water separator 51L. At this time, since the hot water W61 from the low pressure steam-water separator 51L is heated from the absorbing liquid H63, it becomes a gas-liquid mixed fluid M62 of steam and hot water. The absorbing liquid H64 that has absorbed the gas phase heat medium H62 is supplied to the regenerator 63 via the heat exchanger 65.

再生器63において、吸収液H64は、蒸発器61を経た熱水W64によって加熱されて沸騰し、吸収器62において吸収した気相熱媒体を放出する。気相熱媒体H65を放出した吸収液H63は、熱交換器65を経て、吸収器62に戻される。 In the regenerator 63, the absorbing liquid H <b> 64 is heated and boiled by the hot water W <b> 64 that has passed through the evaporator 61, and releases the vapor phase heat medium that has been absorbed by the absorber 62. The absorbing liquid H63 that has released the gas phase heat medium H65 is returned to the absorber 62 through the heat exchanger 65.

再生器63で発生した気相熱媒体H65は、凝縮器64に供給され、冷却流体CW61によって冷却され、液相熱媒体H61になる。この液相熱媒体H61は、蒸発器61に戻される。冷却流体CW61には、地下水、河川水、海水、冷却塔からの水又は大気が使用される。 The vapor phase heat medium H65 generated in the regenerator 63 is supplied to the condenser 64, cooled by the cooling fluid CW61, and becomes the liquid phase heat medium H61. The liquid phase heat medium H61 is returned to the evaporator 61. As the cooling fluid CW61, groundwater, river water, seawater, water from a cooling tower, or air is used.

低圧気水分離器51Lから吸収器62へ移送される熱水W61は、加熱されて気水混合流体M62となって高圧気水分離器51Hに供給される。また、低圧気水分離器51Lから蒸発器61へ移送される熱水W63は、冷却されて温度が低下し、続いて、再生器63において冷却されて温度が低下した後、熱水ピット57内に排水される。 The hot water W61 transferred from the low pressure steam / water separator 51L to the absorber 62 is heated to become a steam / water mixed fluid M62 and supplied to the high pressure steam / water separator 51H. Further, the hot water W63 transferred from the low-pressure steam-water separator 51L to the evaporator 61 is cooled to lower the temperature, and subsequently cooled in the regenerator 63 to lower the temperature. To be drained.

吸収器62からの気水混合流体M62は、高圧気水分離器51Hにおいて、蒸気S51Hと熱水W51Hに分離される。高圧気水分離器51H内の蒸気S51Hは、高圧蒸気タービン52Hに供給され、高圧蒸気タービン52Hを駆動し、発電機53から電力を発生する。高圧蒸気タービン52Hを出た蒸気S52Hは、低圧蒸気タービン52Lに供給され、発電機53からの電力発生に使用される。 The steam-water mixed fluid M62 from the absorber 62 is separated into steam S51H and hot water W51H in the high-pressure steam-water separator 51H. The steam S51H in the high-pressure steam separator 51H is supplied to the high-pressure steam turbine 52H, drives the high-pressure steam turbine 52H, and generates electric power from the generator 53. The steam S52H that has exited the high-pressure steam turbine 52H is supplied to the low-pressure steam turbine 52L and used to generate electric power from the generator 53.

高圧気水分離器51H内の熱水W51Hは、低圧気水分離器51Lに供給される。このとき、圧力が低下するため蒸気と熱水の気水混合流体になる。 Hot water W51H in the high pressure steam separator 51H is supplied to the low pressure steam separator 51L. At this time, since the pressure is reduced, it becomes an air-water mixed fluid of steam and hot water.

低圧気水分離器51L内の蒸気S51Lは、低圧蒸気タービン52Lに供給されて低圧蒸気タービン52Lを駆動し、連動する発電機53から電力を発生する。低圧蒸気タービン52Lを出た蒸気S52Lは、復水器53において冷却されて凝縮水C51となった後、冷却塔56を経て熱水ピット57に排出される。 The steam S51L in the low-pressure steam separator 51L is supplied to the low-pressure steam turbine 52L to drive the low-pressure steam turbine 52L, and generates electric power from the associated generator 53. The steam S52L exiting the low-pressure steam turbine 52L is cooled in the condenser 53 to become condensed water C51, and then discharged to the hot water pit 57 through the cooling tower 56.

熱水ピット57に排出された蒸発器61及び再生器63を経由した熱水W65と、冷却塔56を経由した凝縮水C52は、還元水ポンプ68によって地中に戻される。 The hot water W65 that has passed through the evaporator 61 and the regenerator 63 discharged to the hot water pit 57 and the condensed water C52 that has passed through the cooling tower 56 are returned to the ground by a reducing water pump 68.

本発明の実施例3による地熱発電システムの発電量は、高圧蒸気タービン52Hが駆動するときに発生する電力量と低圧蒸気タービン52Lが駆動するときに発生する電力量の合計となる。 The power generation amount of the geothermal power generation system according to the third embodiment of the present invention is the sum of the power amount generated when the high-pressure steam turbine 52H is driven and the power amount generated when the low-pressure steam turbine 52L is driven.

本発明の実施例3による地熱発電システムにおいて、低圧蒸気タービン52Lに供給される蒸気S51Hの流量、温度及び圧力は、実施例2における蒸気タービン32に供給される蒸気の流量、温度及び圧力に近似する。このため、本発明の実施例3による地熱発電システムにおける低圧蒸気タービン52Lの駆動によって発生する電力量は、本発明の実施例2による地熱発電システムの蒸気タービン32の駆動によって発生する電力量と近似する。 In the geothermal power generation system according to the third embodiment of the present invention, the flow rate, temperature and pressure of the steam S51H supplied to the low pressure steam turbine 52L are close to the flow rate, temperature and pressure of the steam supplied to the steam turbine 32 in the second embodiment. To do. Therefore, the amount of electric power generated by driving the low-pressure steam turbine 52L in the geothermal power generation system according to Embodiment 3 of the present invention is close to the amount of electric power generated by driving the steam turbine 32 of the geothermal power generation system according to Embodiment 2 of the present invention. To do.

したがって、本発明の実施例3になる地熱発電システムの発電量は、本発明の実施例2の地熱発電システムの発電量よりも、高圧蒸気タービン52Hの駆動によって発生する電力量が増加する。 Therefore, the amount of power generated by the geothermal power generation system according to the third embodiment of the present invention is greater than the amount of power generated by the geothermal power generation system according to the second embodiment of the present invention by driving the high-pressure steam turbine 52H.

例えば、表1に示すように地中内の温度150℃(飽和圧力0.48MPa)の熱水を毎時100トン汲み上げて地熱発電をするする条件において、その他補機動力を無視するとき、本発明の実施例2の地熱発電システムの発電量は約1、480kWであるが、本発明の実施例3の発電量は約1、580kWの電力に増加する。 For example, as shown in Table 1, when the auxiliary power is ignored under the condition that the geothermal power is generated by pumping up 100 tons of hot water at a temperature of 150 ° C. (saturation pressure 0.48 MPa) in the ground as shown in Table 1. The power generation amount of the geothermal power generation system of Example 2 is about 1,480 kW, but the power generation amount of Example 3 of the present invention increases to about 1,580 kW.

蒸気タービンには、蒸気中の乾き度が低下するとき、蒸気の流れが不安定になる問題が生じる。この問題は、蒸気タービンに供給される蒸気の過熱度(蒸気温度―飽和温度)を大きくすることで解決される。 The steam turbine has a problem that the flow of steam becomes unstable when the dryness in the steam decreases. This problem can be solved by increasing the degree of superheat (steam temperature-saturation temperature) of the steam supplied to the steam turbine.

蒸気タービンに供給される蒸気の過熱度を大きくすることは、高圧蒸気タービン52Hから出た蒸気S52Hを、高圧気水分離器51L内の熱水W51Hによって再加熱することにより達成できる。 Increasing the degree of superheat of the steam supplied to the steam turbine can be achieved by reheating the steam S52H emitted from the high-pressure steam turbine 52H with the hot water W51H in the high-pressure steam-water separator 51L.

低圧蒸気タービン52Lに供給される蒸気は、温度が熱水W51Hの温度近くまで加熱されるので、低圧蒸気タービン内における蒸気中の乾き度が向上し、不安定な蒸気流れを抑制されるようになる。 The steam supplied to the low-pressure steam turbine 52L is heated to a temperature close to that of the hot water W51H, so that the dryness of the steam in the low-pressure steam turbine is improved and the unstable steam flow is suppressed. Become.

本発明になるヒートポンプと組み合わせた地熱発電システムは、新設及び既設の地熱発電システムに応用可能であり、太陽熱や工場排熱を利用する発電システムにも応用可能である。






The geothermal power generation system combined with the heat pump according to the present invention can be applied to new and existing geothermal power generation systems, and can also be applied to power generation systems using solar heat and factory exhaust heat.






Figure 2014134106
Figure 2014134106




51H:高圧気水分離器、51L:低圧気水分離器、52H:高圧蒸気タービン、52L:低圧蒸気タービン、53:発電機、54:復水器、55:冷却塔、56:復水ポンプ、57:熱水ピット、58:還元水ポンプ、59:ガス抽出器、61:蒸発器、62:吸収器、63:再生器、64:凝縮器、65:熱交換器、66:昇圧ポンプ、S51H:高圧蒸気、S51L:低圧蒸気、S52H:高圧蒸気、S52L:低圧蒸気、C51:凝縮水、M51:気液混合流体、M62:気液混合流体、W51H:熱水、W51L:熱水、W61:熱水、W62:熱水、W63:熱水、W64:熱水、W65:熱水、H61:液相熱媒体、H62:気相熱媒体、H63:吸収液、H64:吸収液、H65:気相熱媒体、CW61:冷却流体









51H: High pressure steam separator, 51L: Low pressure steam separator, 52H: High pressure steam turbine, 52L: Low pressure steam turbine, 53: Generator, 54: Condenser, 55: Cooling tower, 56: Condensate pump, 57: Hot water pit, 58: Reduced water pump, 59: Gas extractor, 61: Evaporator, 62: Absorber, 63: Regenerator, 64: Condenser, 65: Heat exchanger, 66: Booster pump, S51H : High-pressure steam, S51L: Low-pressure steam, S52H: High-pressure steam, S52L: Low-pressure steam, C51: Condensed water, M51: Gas-liquid mixed fluid, M62: Gas-liquid mixed fluid, W51H: Hot water, W51L: Hot water, W61: Hot water, W62: Hot water, W63: Hot water, W64: Hot water, W65: Hot water, H61: Liquid phase heat medium, H62: Gas phase heat medium, H63: Absorption liquid, H64: Absorption liquid, H65: Gas Phase heat medium, CW61: Cooling fluid









Claims (6)

地中からの気水混合流体を蒸気と熱水に分離する気水分離器、蒸気が供給される蒸気タービン、蒸気タービンと連動する発電機、蒸気タービンを出た蒸気が凝縮する復水器、熱水と液相の熱媒体が熱交換する蒸発器、熱水と気相の熱媒体が熱交換する凝縮器、気相の熱媒体を圧縮する圧縮機を備えていることを特徴とする地熱発電システム。 A steam / water separator that separates the steam-and-water mixed fluid from the ground into steam and hot water, a steam turbine that is supplied with steam, a generator that works in conjunction with the steam turbine, a condenser that condenses steam that exits the steam turbine, Geothermal heat, comprising an evaporator for exchanging heat between the hot water and the liquid phase heat medium, a condenser for exchanging heat between the hot water and the gas phase heat medium, and a compressor for compressing the gas phase heat medium. Power generation system. 前記熱媒体は、水又は炭酸ガス又はフロン系流体であることを特徴とする請求項1に記載の地熱発電システム。 The geothermal power generation system according to claim 1, wherein the heat medium is water, carbon dioxide gas, or a fluorocarbon fluid. 地中からの気水混合流体を蒸気と熱水に分離する気水分離器、蒸気が供給される蒸気タービン、蒸気タービンと連動する発電機、蒸気タービンを出た蒸気が凝縮する復水器、熱水と液相の熱媒体が熱交換する蒸発器、熱水と熱交換する吸収液に気相の熱媒体が吸収される吸収器、熱水と熱交換する吸収液から気相の熱媒体を発生する再生器、気相の熱媒体が凝縮する凝縮器を備えていることを特徴とする地熱発電システム。 A steam / water separator that separates the steam-and-water mixed fluid from the ground into steam and hot water, a steam turbine that is supplied with steam, a generator that works in conjunction with the steam turbine, a condenser that condenses steam that exits the steam turbine, An evaporator that exchanges heat between the hot water and the liquid phase heat exchanger, an absorber that absorbs the gas phase heat medium into the absorption liquid that exchanges heat with the hot water, and a gas phase heat medium from the absorption liquid that exchanges heat with the hot water. A geothermal power generation system comprising a regenerator that generates gas and a condenser that condenses a gaseous heat medium. 気水混合流体を蒸気と熱水に分離する高圧気水分離器、この高圧気水分離器からの蒸気が供給される高圧蒸気タービン、地中からの気水混合流体を蒸気と熱水に分離する低圧気水分離器、この低圧気水分離器からの蒸気が供給される低圧蒸気タービン、高圧蒸気タービン及び低圧蒸気タービンと連動する発電機、低圧蒸気タービンを出た蒸気が凝縮する復水器、熱水と液相の熱媒体が熱交換する蒸発器、熱水と熱交換する吸収液に気相の熱媒体が吸収される吸収器、熱水と熱交換する吸収液から気相の熱媒体を発生する再生器、気相の熱媒体が凝縮する凝縮器を備えていることを特徴とする地熱発電システム。 A high pressure steam / water separator that separates the steam / water mixture into steam and hot water, a high pressure steam turbine that is supplied with steam from the steam / hot water separator, and a steam / hot fluid separated from the ground into steam and hot water Low-pressure steam / water separator, low-pressure steam turbine to which steam from the low-pressure steam / water separator is supplied, high-pressure steam turbine, generator coupled to the low-pressure steam turbine, condenser for condensing steam from the low-pressure steam turbine , An evaporator that exchanges heat between the hot water and the liquid phase heat exchanger, an absorber that absorbs the gas phase heat medium into the absorbing liquid that exchanges heat with the hot water, and heat in the gas phase from the absorbing liquid that exchanges heat with the hot water A geothermal power generation system comprising a regenerator for generating a medium and a condenser for condensing a gas phase heat medium. 前記高圧蒸気タービンを出た蒸気は、前記高圧気水分離器内の熱水と熱交換した後、低圧蒸気タービンに供給されることを特徴とする請求項4の地熱発電システム。 5. The geothermal power generation system according to claim 4, wherein the steam exiting the high-pressure steam turbine is supplied to the low-pressure steam turbine after heat exchange with hot water in the high-pressure steam-water separator. 前記熱媒体は水であって前記吸収液は臭化リチウム水溶液である、又は、前記熱媒体はアンモニアであって前記吸収液は水であることを特徴とする請求項3、4、5に記載の地熱発電システム。
6. The heat medium is water and the absorption liquid is an aqueous lithium bromide solution, or the heat medium is ammonia and the absorption liquid is water. Geothermal power generation system.
JP2013001221A 2013-01-08 2013-01-08 Geothermal power generation system Pending JP2014134106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001221A JP2014134106A (en) 2013-01-08 2013-01-08 Geothermal power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013001221A JP2014134106A (en) 2013-01-08 2013-01-08 Geothermal power generation system

Publications (1)

Publication Number Publication Date
JP2014134106A true JP2014134106A (en) 2014-07-24

Family

ID=51412569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013001221A Pending JP2014134106A (en) 2013-01-08 2013-01-08 Geothermal power generation system

Country Status (1)

Country Link
JP (1) JP2014134106A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148304A (en) * 2015-02-13 2016-08-18 株式会社タクマ Power generation system and power generation method
JP2018017173A (en) * 2016-07-27 2018-02-01 一般財団法人電力中央研究所 Geothermal power generation facility
CN109404073A (en) * 2018-11-20 2019-03-01 华电电力科学研究院有限公司 A kind of solidifying pumping back heating system and operation method for variable working condition unit
CN110905618A (en) * 2019-11-18 2020-03-24 天津大学 Internal combustion engine cogeneration waste heat recovery system suitable for distributed energy system
CN111336580A (en) * 2020-03-19 2020-06-26 宁波市成大机械研究所 Internal combustion heating and ground source heat pump coupling heating system
CN112922687A (en) * 2021-02-01 2021-06-08 房盼盼 Satellite-to-people circulation system for seawater temperature difference power generation device
CN113738460A (en) * 2021-07-16 2021-12-03 惠州学院 Comprehensive geothermal utilization system based on absorption and detection of non-condensable gas
CN113847745A (en) * 2020-09-25 2021-12-28 中国科学院广州能源研究所 Heat pipe type heat-taking integrated cold-electric heat combined-use mining-using integrated geothermal system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148304A (en) * 2015-02-13 2016-08-18 株式会社タクマ Power generation system and power generation method
JP2018017173A (en) * 2016-07-27 2018-02-01 一般財団法人電力中央研究所 Geothermal power generation facility
CN109404073A (en) * 2018-11-20 2019-03-01 华电电力科学研究院有限公司 A kind of solidifying pumping back heating system and operation method for variable working condition unit
CN109404073B (en) * 2018-11-20 2023-09-15 华电电力科学研究院有限公司 Condensation back-pumping heat supply system for variable working condition unit and operation method
CN110905618A (en) * 2019-11-18 2020-03-24 天津大学 Internal combustion engine cogeneration waste heat recovery system suitable for distributed energy system
CN111336580A (en) * 2020-03-19 2020-06-26 宁波市成大机械研究所 Internal combustion heating and ground source heat pump coupling heating system
CN113847745A (en) * 2020-09-25 2021-12-28 中国科学院广州能源研究所 Heat pipe type heat-taking integrated cold-electric heat combined-use mining-using integrated geothermal system
CN112922687A (en) * 2021-02-01 2021-06-08 房盼盼 Satellite-to-people circulation system for seawater temperature difference power generation device
CN112922687B (en) * 2021-02-01 2022-08-02 房盼盼 Energy-saving circulating system for seawater temperature difference power generation device
CN113738460A (en) * 2021-07-16 2021-12-03 惠州学院 Comprehensive geothermal utilization system based on absorption and detection of non-condensable gas
CN113738460B (en) * 2021-07-16 2023-08-18 惠州学院 Comprehensive geothermal utilization system based on non-condensable gas absorption and detection

Similar Documents

Publication Publication Date Title
JP2014134106A (en) Geothermal power generation system
JP4343738B2 (en) Binary cycle power generation method and apparatus
WO2015196881A1 (en) Method for providing steam power
JP2007064047A (en) Waste heat recovery facility for steam turbine plant
KR101431133B1 (en) OTEC cycle device that contains the ejector
JP2017516057A (en) Self-driven thermal compression heat pump cooling method
KR20120047795A (en) Rankine cycle integrated with absorption chiller
US20220228512A1 (en) Combined cycle power device
US20110214435A1 (en) Heat pump cycle system and method of providing combined cooling and heating supply
US20220213813A1 (en) Combined cycle power device
JP2010038391A (en) Heat pump type steam generating device
EP3015794B1 (en) Heat recovery method
CN110068170A (en) A kind of oilfield residual heat based on absorption refrigeration utilizes system
JP2011099640A (en) Hybrid heat pump
JP2012247156A (en) Steam generating method using heat pump
CN205297661U (en) Take waste heat power generation system of calorimeter back to
JP2011208569A (en) Temperature difference power generation device
KR101603253B1 (en) Condenser Waste-heat Recovery System
CN105649901A (en) Solar light-condensation and heat-collection power generation device based on absorption heat pump
CN110567190B (en) Vapor compression type absorption heat pump
WO2023083242A1 (en) Low-temperature cyclic power generation system and method with carbon dioxide gas as working medium
CN108362039B (en) Gravity field membrane type heat power conversion device and method
KR20160081758A (en) High efficiency low temperature power generation system by evaporator
RU91487U1 (en) DEVICE FOR CONVERTING LOW-POTENTIAL HEAT TO ELECTRIC ENERGY
KR101103768B1 (en) Electric Generating System Using Heat Pump Unit