JP2016148304A - Power generation system and power generation method - Google Patents

Power generation system and power generation method Download PDF

Info

Publication number
JP2016148304A
JP2016148304A JP2015026412A JP2015026412A JP2016148304A JP 2016148304 A JP2016148304 A JP 2016148304A JP 2015026412 A JP2015026412 A JP 2015026412A JP 2015026412 A JP2015026412 A JP 2015026412A JP 2016148304 A JP2016148304 A JP 2016148304A
Authority
JP
Japan
Prior art keywords
steam
power generation
medium
generation system
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015026412A
Other languages
Japanese (ja)
Other versions
JP5988320B2 (en
Inventor
大祐 鮎川
Daisuke Ayukawa
大祐 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2015026412A priority Critical patent/JP5988320B2/en
Publication of JP2016148304A publication Critical patent/JP2016148304A/en
Application granted granted Critical
Publication of JP5988320B2 publication Critical patent/JP5988320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation system and power generation method capable of increasing a power generation amount and reducing the size of a condenser.SOLUTION: A power generation system includes: a first power generation system 3 containing a boiler 1, a first steam turbine 2 and a condenser 16; and a second power generation system 6 configured to drive a second steam turbine 5 with overheated steam obtained, by evaporating a low boiling point medium having a lower boiling point than a medium of the first generation system 3 with an evaporator 4. At least a part of exhaust steam of the first steam turbine 2 is subjected to heat exchange with at least one of boiler water and steam in a steam drum 10 of the boiler 1 for overheating thereby to obtain overheated steam, and the overheated steam is used as a high temperature side heat medium of the evaporator 4.SELECTED DRAWING: Figure 1

Description

本発明は、ごみ焼却炉の廃熱を利用した発電システム及び発電方法に関する。   The present invention relates to a power generation system and a power generation method using waste heat from a waste incinerator.

従来、ごみ焼却炉の廃熱を利用して発電するごみ焼却炉用発電設備は、一般の火力発電所と同様の機器で構成されており、蒸気を作動流体とするランキンサイクルを行うため、図4に示すように、廃棄物を燃焼炉7で焼却し、その燃焼排ガスからボイラ1で熱吸収し過熱蒸気を発生せ、更に過熱器11で過熱して復水タービン2で発電する、廃棄物焼却発電が知られている(例えば特許文献1、2等)。図中、符号24は、復水タービン2から抽気した蒸気でボイラ1への給水を加熱し、給水中の溶存酸素を低減するための脱気器である。   Conventionally, power generation facilities for waste incinerators that generate power using waste heat from waste incinerators are composed of the same equipment as general thermal power plants, and perform Rankine cycle using steam as the working fluid. As shown in FIG. 4, waste is incinerated in the combustion furnace 7, heat is absorbed from the combustion exhaust gas by the boiler 1 to generate superheated steam, and further heated by the superheater 11 to be generated by the condensate turbine 2. Incineration power generation is known (for example, Patent Documents 1 and 2). In the figure, reference numeral 24 denotes a deaerator for heating the feed water to the boiler 1 with steam extracted from the condensate turbine 2 to reduce dissolved oxygen in the feed water.

復水タービン2から排気される蒸気は復水器16で冷却されて水に戻り、脱気器24等を経由してボイラ1へ戻される。この蒸気サイクルの廃棄物焼却発電では、復水タービン2入口の排気蒸気が保有するエネルギーの20%程度しか利用しおらず、残りの約80%は復水器(コンデンサ)から大気への放熱となっている。   The steam exhausted from the condensing turbine 2 is cooled by the condenser 16 and returned to water, and then returned to the boiler 1 via the deaerator 24 and the like. In the waste incineration power generation of this steam cycle, only about 20% of the energy held by the exhaust steam at the inlet of the condensing turbine 2 is used, and the remaining 80% is radiated from the condenser (condenser) to the atmosphere. It has become.

特開2014−088812号公報JP 2014-088812 A 特開2013−002393号公報JP 2013-002393 A

従来の廃棄物焼却発電では、ボイラで生成した過熱蒸気の20%程度しか利用できておらず、残りは放熱損失となっている。   In the conventional waste incineration power generation, only about 20% of the superheated steam generated in the boiler can be used, and the rest is a heat dissipation loss.

また、放熱のための復水器は大型となるとともに、復水器の空冷用ファンの動力は発電した電力の5〜6%を消費しており、効率が悪い。   In addition, the condenser for heat dissipation becomes large, and the power of the air cooling fan of the condenser consumes 5 to 6% of the generated power, which is inefficient.

そこで本発明は、発電量を増やし、復水器を小型化し得る発電システム及び発電方法を提供することを主たる目的とする。   Therefore, the main object of the present invention is to provide a power generation system and a power generation method capable of increasing the amount of power generation and downsizing the condenser.

上記目的を達成するため、本発明に係る第1の発電システムは、ボイラ、第1蒸気タービン、及び復水器を含む第1発電系統と、前記第1発電系統の媒体より沸点が低い低沸点媒体を蒸発器で蒸発させた過熱蒸気を用いて第2蒸気タービンを駆動する第2発電系統と、を備え、前記第1蒸気タービンの排気蒸気の少なくとも一部を前記ボイラの蒸気ドラム内の缶水又は蒸気と熱交換させることにより過熱して得られる過熱蒸気を、前記蒸発器の高温側熱媒としたことを特徴とする。   In order to achieve the above object, a first power generation system according to the present invention includes a first power generation system including a boiler, a first steam turbine, and a condenser, and a low boiling point lower than that of the medium of the first power generation system. A second power generation system that drives the second steam turbine using superheated steam obtained by evaporating the medium with an evaporator, and at least a part of the exhaust steam of the first steam turbine is in a can in the steam drum of the boiler Superheated steam obtained by superheating by heat exchange with water or steam is used as the high temperature side heat medium of the evaporator.

また、本発明に係る第2の発電システムは、ボイラ、第1蒸気タービン、及び復水器を含む第1発電系統と、前記第1発電系統の媒体より沸点が低い低沸点媒体を蒸発器で蒸発させた過熱蒸気を用いて第2蒸気タービンを駆動する第2発電系統と、を備え、前記第1蒸気タービンの排気蒸気の少なくとも一部を前記ボイラの蒸気ドラムから排出された蒸気と熱交換させることにより過熱して得られる過熱蒸気を、前記蒸発器の高温側熱媒としたことを特徴とする。   The second power generation system according to the present invention includes a first power generation system including a boiler, a first steam turbine, and a condenser, and a low boiling point medium having a boiling point lower than that of the medium of the first power generation system. A second power generation system that drives the second steam turbine using the evaporated superheated steam, and at least a part of the exhaust steam of the first steam turbine exchanges heat with the steam discharged from the steam drum of the boiler The superheated steam obtained by overheating by heating is used as the high temperature side heat medium of the evaporator.

また、本発明に係る第3の発電システムは、ボイラ、第1蒸気タービン、復水器、及び、脱気器を含む第1発電系統と、前記第1発電系統の媒体より沸点が低い低沸点媒体を蒸発器で蒸発させた過熱蒸気を用いて第2蒸気タービンを駆動する第2発電系統と、を備え、前記第1蒸気タービンの排気蒸気の少なくとも一部を前記脱気器内の媒体と熱交換させることにより過熱して得られる過熱蒸気を、前記蒸発器の高温側熱媒としたことを特徴とする。   In addition, the third power generation system according to the present invention includes a first power generation system including a boiler, a first steam turbine, a condenser, and a deaerator, and a low boiling point lower than that of the medium of the first power generation system. A second power generation system that drives the second steam turbine using superheated steam obtained by evaporating the medium with an evaporator, and at least a part of the exhaust steam of the first steam turbine with the medium in the deaerator. The superheated steam obtained by overheating by heat exchange is used as the high temperature side heat medium of the evaporator.

また、本発明に係る第1の発電方法は、ボイラで過熱蒸気を発生させる第1ステップと、過熱蒸気を用いて第1蒸気タービンを駆動する第2ステップと、前記第1蒸気タービンの排気蒸気の少なくとも一部を前記ボイラの蒸気ドラム内の缶水又は蒸気と熱交換させることにより過熱して過熱蒸気を得る第3ステップと、前記第3ステップで得られた過熱蒸気と前記第1蒸気タービンを駆動する媒体より沸点が低い低沸点媒体とを熱交換させて、前記低沸点媒体の過熱蒸気を得る第4ステップと、前記第4ステップで得られた低沸点媒体の蒸気を用いて第2蒸気タービンを駆動する第5ステップと、を含むことを特徴とする。   The first power generation method according to the present invention includes a first step of generating superheated steam with a boiler, a second step of driving the first steam turbine using superheated steam, and the exhaust steam of the first steam turbine. A third step of obtaining superheated steam by heat-exchanging at least a part thereof with can water or steam in the steam drum of the boiler, and the superheated steam obtained in the third step and the first steam turbine Heat exchange with a low boiling point medium having a boiling point lower than that of the medium for driving the low boiling point medium to obtain superheated steam of the low boiling point medium, and using the steam of the low boiling point medium obtained in the fourth step, the second step And a fifth step of driving the steam turbine.

また、本発明に係る第2の発電方法は、ボイラで過熱蒸気を発生させる第1ステップと、過熱蒸気を用いて第1蒸気タービンを駆動する第2ステップと、前記第1蒸気タービンの排気蒸気の少なくとも一部を前記ボイラの蒸気ドラムから排出した蒸気と熱交換させることにより過熱して過熱蒸気を得る第3ステップと、前記第3ステップで得られた過熱蒸気と前記第1蒸気タービンを駆動する媒体より沸点が低い低沸点媒体とを熱交換させて、前記低沸点媒体の過熱蒸気を得る第4ステップと、前記第4ステップで得られた低沸点媒体の蒸気を用いて第2蒸気タービンを駆動する第5ステップと、を含むことを特徴とする。   The second power generation method according to the present invention includes a first step of generating superheated steam with a boiler, a second step of driving the first steam turbine using the superheated steam, and the exhaust steam of the first steam turbine. A third step of superheating at least a part of the steam by exchanging heat with steam discharged from the steam drum of the boiler to obtain superheated steam, and driving the superheated steam obtained in the third step and the first steam turbine Heat exchange with a low boiling point medium having a lower boiling point than the medium to be heated to obtain superheated steam of the low boiling point medium, and a second steam turbine using the steam of the low boiling point medium obtained in the fourth step And a fifth step of driving.

また、本発明に係る第3の発電方法は、ボイラで過熱蒸気を発生させる第1ステップと、過熱蒸気を用いて第1蒸気タービンを駆動する第2ステップと、前記第1蒸気タービンの排気蒸気の少なくとも一部を前記第蒸気タービンの熱媒を脱気する脱気器内の熱媒と熱交換させることにより過熱して過熱蒸気を得る第3ステップと、前記第3ステップで得られた過熱蒸気と前記第1蒸気タービンを駆動する媒体より沸点が低い低沸点媒体とを熱交換させて、前記低沸点媒体の過熱蒸気を得る第4ステップと、前記第4ステップで得られた低沸点媒体の蒸気を用いて第2蒸気タービンを駆動する第5ステップと、を含むことを特徴とする。   The third power generation method according to the present invention includes a first step of generating superheated steam with a boiler, a second step of driving the first steam turbine using the superheated steam, and the exhaust steam of the first steam turbine. A third step of obtaining superheated steam by superheating at least a part of the heat exchange with a heat medium in a deaerator for degassing the heat medium of the first steam turbine, and the superheat obtained in the third step A fourth step of obtaining a superheated steam of the low boiling point medium by exchanging heat between the steam and a low boiling point medium having a lower boiling point than the medium driving the first steam turbine; and the low boiling point medium obtained in the fourth step And a fifth step of driving the second steam turbine using the steam.

本発明によれば、従来捨てていた蒸気タービンの排気蒸気を利用していわゆるバイナリ発電することにより、発電量を上昇させることができる。   According to the present invention, the power generation amount can be increased by so-called binary power generation using the exhaust steam of the steam turbine that has been discarded.

また、蒸気タービンの排気蒸気を復水器に送る量を減らすことができるため、多大な設置空間を必要とする空冷式復水器を小型化することができる。   In addition, since the amount of exhaust steam from the steam turbine sent to the condenser can be reduced, the air-cooled condenser that requires a large installation space can be reduced in size.

さらに、空冷式復水器のファンで消費する電力を低減させることができるため、トータルとして得られる電力が増加し得る。   Furthermore, since the electric power consumed by the fan of the air-cooled condenser can be reduced, the total electric power can be increased.

本発明に係る発電システムの第1実施形態を示す系統図である。1 is a system diagram showing a first embodiment of a power generation system according to the present invention. 本発明に係る発電システムの第2実施形態を示す系統図である。It is a systematic diagram which shows 2nd Embodiment of the electric power generation system which concerns on this invention. 本発明に係る発電システムの第3実施形態を示す系統図である。It is a systematic diagram which shows 3rd Embodiment of the electric power generation system which concerns on this invention. 従来の発電システムを示す系統図である。It is a systematic diagram which shows the conventional electric power generation system.

本発明に係る発電システムの実施形態について、以下に図面を参照しつつ説明する。なお、全実施例を通し、同一又は類似の構成要素に同符号を付している。   Embodiments of a power generation system according to the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or similar component through all the Examples.

本発明に係る発電システムの第1実施形態は、図1に示すように、ボイラ1で加熱した過熱蒸気を用いて第1蒸気タービン2を駆動する第1発電系統3と、該第1発電系統3の媒体より沸点が低い低沸点媒体を蒸発器4で蒸発させた過熱蒸気を用いて第2蒸気タービン5を駆動する第2発電系統6と、を備えている。   As shown in FIG. 1, the first embodiment of the power generation system according to the present invention includes a first power generation system 3 that drives a first steam turbine 2 using superheated steam heated by a boiler 1, and the first power generation system. And a second power generation system 6 that drives the second steam turbine 5 using superheated steam obtained by evaporating a low boiling point medium having a boiling point lower than that of the medium 3 by the evaporator 4.

第1発電系統3の蒸気サイクルは媒体として水を用いている。第2発電系統6の蒸気サイクルは、いわゆるバイナリ発電の蒸気サイクルであり、作動媒体として、標準沸点が100℃より低い有機媒体、例えばHFC245fa、HFC134a、イソペンタン、ノルマルペンタン、アンモニア水等の低沸点媒体が用いられ得る。   The steam cycle of the first power generation system 3 uses water as a medium. The steam cycle of the second power generation system 6 is a so-called binary power generation steam cycle. As a working medium, an organic medium having a standard boiling point lower than 100 ° C., for example, a low boiling point medium such as HFC245fa, HFC134a, isopentane, normal pentane, or aqueous ammonia. Can be used.

ボイラ1は、焼却炉7の燃焼排ガスの排熱を利用する排熱ボイラとすることができる。図示例の焼却炉7は、ストーカ式焼却炉であり、ボイラ1の水管群1aが焼却炉7の煙道8内に配設され、水管群1aの上部に蒸気ドラム10が配設されている。   The boiler 1 may be an exhaust heat boiler that uses exhaust heat of combustion exhaust gas from the incinerator 7. An incinerator 7 in the illustrated example is a stoker-type incinerator, in which a water tube group 1a of a boiler 1 is disposed in a flue 8 of the incinerator 7, and a steam drum 10 is disposed above the water tube group 1a. .

ボイラ1で発生した蒸気は、過熱器11で過熱されて、第1蒸気タービン2を駆動し、第1発電機12により電力を発生させる。第1蒸気タービン2は、好ましくは、背圧式に比べて発電量を多く得ることができる復水式蒸気タービンが用いられる。   The steam generated in the boiler 1 is superheated by the superheater 11 to drive the first steam turbine 2 and generate electric power by the first generator 12. The first steam turbine 2 is preferably a condensate steam turbine that can obtain a larger amount of power generation than the back pressure type.

第1蒸気タービン2で仕事をした排気蒸気は、ドレンタンク13で湿分を分離された後、一部が管路14を通じて蒸気ドラム10に送られ、残りは管路15を通じて復水器16に送られる。管路14は蒸気ドラム10内に設けた伝熱管で構成される第1熱交換器17に連通し、管路14から第1熱交換器17に送られた排気蒸気は、蒸気ドラム10内の250℃程度の缶水及び/又は蒸気と熱交換することにより過熱蒸気となる。第1熱交換器17で生成した過熱蒸気は、管路118を通じて蒸発器4に送られて蒸発器4の高温側熱媒として作用し、第2発電系統6を循環する低沸点媒体を蒸発させ、過熱する。   The exhaust steam that has worked in the first steam turbine 2 is separated from the moisture in the drain tank 13, and then a part thereof is sent to the steam drum 10 through the pipe 14, and the rest is sent to the condenser 16 through the pipe 15. Sent. The pipe line 14 communicates with a first heat exchanger 17 constituted by a heat transfer pipe provided in the steam drum 10, and the exhaust steam sent from the pipe line 14 to the first heat exchanger 17 is in the steam drum 10. It becomes superheated steam by exchanging heat with canned water at about 250 ° C. and / or steam. The superheated steam generated in the first heat exchanger 17 is sent to the evaporator 4 through the pipe 118 and acts as a high temperature side heat medium for the evaporator 4 to evaporate the low boiling point medium circulating in the second power generation system 6. Overheated.

ドレンタンク13でドレンされた媒体は管路19を通って復水タンク20に送られる。蒸発器4で低沸点媒体との熱交換により凝縮された媒体は、管路21を通って復水タンク20に送られる。復水器16で復水された水は管路22を通って復水タンク20に送られる。復水タンク20の水はポンプ23により脱気器24に送られ、脱気器24で脱気された後、脱気器24からポンプ25により蒸気ドラム10に給水される。   The medium drained in the drain tank 13 is sent to the condensate tank 20 through the pipe 19. The medium condensed by the heat exchange with the low boiling point medium in the evaporator 4 is sent to the condensate tank 20 through the pipe line 21. The water condensed by the condenser 16 is sent to the condensate tank 20 through the pipe line 22. The water in the condensate tank 20 is sent to the deaerator 24 by the pump 23, deaerated by the deaerator 24, and then supplied to the steam drum 10 from the deaerator 24 by the pump 25.

図示していないが、第1タービン2からのタービン排気蒸気の流量を調節するバルブ等の流量調整手段を排気蒸気の通る管路14、15の適宜箇所に介在させることができる。   Although not shown, a flow rate adjusting means such as a valve for adjusting the flow rate of the turbine exhaust steam from the first turbine 2 can be interposed at appropriate portions of the pipe lines 14 and 15 through which the exhaust steam passes.

蒸発器4で過熱蒸気となった低沸点媒体は、第2蒸気タービン5を駆動し、第2発電機30により電力を発生させる。第2蒸気タービン5から出た排気蒸気は、凝縮器31で凝縮されて液体に戻され、凝縮された低沸点媒体は、ポンプ32により蒸発器4に圧送される。凝縮器31で低沸点媒体と熱交換した冷媒は、冷却塔(クーリングタワー)33で冷却されてポンプ34により再び凝縮器31に送られることにより、第2発電系統6の作動媒体として循環する。   The low boiling point medium that has become superheated steam in the evaporator 4 drives the second steam turbine 5 and generates power by the second generator 30. The exhaust steam discharged from the second steam turbine 5 is condensed by the condenser 31 and returned to the liquid, and the condensed low boiling point medium is pumped to the evaporator 4 by the pump 32. The refrigerant having exchanged heat with the low boiling point medium in the condenser 31 is cooled in the cooling tower (cooling tower) 33 and sent to the condenser 31 again by the pump 34, thereby circulating as a working medium of the second power generation system 6.

上記構成を有する本発明の発電効率を、図4に示した従来例と比較して試算する。   The power generation efficiency of the present invention having the above configuration is estimated by comparison with the conventional example shown in FIG.

図4に示す従来例において、各部a1〜d1における温度(℃)、圧力(atm or atg)、エンタルピーh(kcal/kg)、流量(kg/時)、発電機出力(kW)は以下の通りとした。   In the conventional example shown in FIG. 4, the temperature (° C.), pressure (atm or atg), enthalpy h (kcal / kg), flow rate (kg / hour), and generator output (kW) in each part a1 to d1 are as follows. It was.

a1:蒸気ドラム内雰囲気 ;250℃、45atg
b1:蒸気タービンの入口蒸気;400℃、40atg、2470kg/時、h=768kcal/kg
c1:発電機の出力 ;472kW
d1:蒸気タービンの出口湿り蒸気;60℃、0.2atm、h=600kcal/kg
e1:復水器ファン消費電力 ;30kW
次に、図1に示す本発明の実施形態において、各部a2〜j2を試算すると以下の通りとなる。第1蒸気タービン2からのタービン排気蒸気の約50%を管路14を通じて第1熱交換器17に引き抜く場合について試算(概算)した。なお、概算のため、放熱・圧力損失は無視した。図1のボイラ、第1蒸気タービン、第1発電機は、図4の従来例のボイラ、蒸気タービン、発電機と其々同じものとした。なお、以下において詳細な計算は省略する。
a1: Steam drum atmosphere; 250 ° C, 45atg
b1: Steam at the inlet of the steam turbine; 400 ° C, 40 atg, 2470 kg / hour, h = 768 kcal / kg
c1: Generator output; 472kW
d1: Outlet wet steam of steam turbine; 60 ° C, 0.2atm, h = 600kcal / kg
e1: Condenser fan power consumption: 30kW
Next, in the embodiment of the present invention shown in FIG. 1, each part a <b> 2 to j <b> 2 is calculated as follows. A trial calculation (approximate) was made on the case where about 50% of the turbine exhaust steam from the first steam turbine 2 was drawn to the first heat exchanger 17 through the pipe 14. Note that heat dissipation and pressure loss were ignored for the sake of estimation. The boiler, the first steam turbine, and the first generator of FIG. 1 are the same as the boiler, the steam turbine, and the generator of the conventional example of FIG. In the following, detailed calculations are omitted.

a2:蒸気ドラム内雰囲気 ;250℃、45atg
b2:第1蒸気タービン入口蒸気;400℃、40atg、2418kg/時
c2:第1発電機の出力 ;462kW
d2:ドレンタンクから引き出
したタービン排気蒸気 ;60℃、0.2atm、1200kg/時、h=623kcal/kg
e2:復水器ファン消費電力 ;約15kW
f2:蒸発器入口側蒸気 ;120℃、h=651kcal/kg
g2:蒸発器出口側蒸気;60℃、0.2atm
h2:第2発電機の出力 ;80kW
i2:クーリングタワー消費電力;2kW
j2:冷媒循環ポンプ消費電力 ;約5kW
上記の試算結果で示すように、ドレンタンク13でドレン切りされたタービン排気蒸気の状態は、0.2気圧、60℃、エンタルピー623kcal/kgである。この蒸気を蒸気ドラム10内の第1熱交換器17で過熱し120℃にしている。蒸気ドラム10内の缶水温度は250℃程度である(圧力45atg)。ボイラ1での生成蒸気量は、過熱熱量分に応じて減少する。しかしながら、タービン排気蒸気は相変化を伴わない気相状態での過熱であり過熱に必要な熱量(顕熱)は大きくないため、ボイラ1での生成蒸気量の減少は2%程度である。従って、第1蒸気タービン2での発電量は2%(10kW)の減少となる。また、空冷式復水器16へ送られる排気蒸気量が約半分となるため、復水器16の空冷ファンの消費電力は約半分(約15kW)減少する。
a2: Atmosphere in steam drum; 250 ° C, 45atg
b2: First steam turbine inlet steam; 400 ° C., 40 atg, 2418 kg / hour c2: Output of the first generator; 462 kW
d2: Turbine exhaust steam drawn from the drain tank; 60 ° C, 0.2atm, 1200kg / hr, h = 623kcal / kg
e2: Condenser fan power consumption: approx. 15kW
f2: Evaporator inlet side steam; 120 ° C, h = 651kcal / kg
g2: Vapor outlet side steam; 60 ° C, 0.2 atm
h2: Output of the second generator; 80kW
i2: Cooling tower power consumption: 2kW
j2: Refrigerant circulation pump power consumption: approx. 5kW
As shown by the above calculation results, the state of the turbine exhaust steam drained by the drain tank 13 is 0.2 atm, 60 ° C., and enthalpy 623 kcal / kg. This steam is heated to 120 ° C. by the first heat exchanger 17 in the steam drum 10. The temperature of the can water in the steam drum 10 is about 250 ° C. (pressure 45 atg). The amount of generated steam in the boiler 1 decreases according to the amount of superheat. However, since the turbine exhaust steam is superheated in a gas phase without phase change and the amount of heat (sensible heat) necessary for the superheat is not large, the reduction in the amount of generated steam in the boiler 1 is about 2%. Therefore, the power generation amount in the first steam turbine 2 is reduced by 2% (10 kW). Further, since the amount of exhaust steam sent to the air-cooled condenser 16 is about half, the power consumption of the air-cooling fan of the condenser 16 is reduced by about half (about 15 kW).

発電量・消費電力の増減は概ね以下のようになる。   Changes in power generation and power consumption are generally as follows.

−10kW(第1蒸気タービン2の発電量低下分)+15kW(復水器16の空冷ファンの消費電力減少分)+82kW(第2発電機30の発電量)−5kW(冷却塔用冷媒循環ポンプ32の消費電力)−2kW(冷却塔33のクーリングタワー消費電力)=80kW
従って、上記の試算によれば、図4の従来例に比較して、図1の本発明実施例は、発電量が約17%増加することになる。
-10 kW (reduction in power generation amount of the first steam turbine 2) +15 kW (reduction in power consumption of the air cooling fan of the condenser 16) +82 kW (power generation amount of the second generator 30) -5 kW (refrigerant circulation for cooling tower) Power consumption of pump 32) -2 kW (cooling tower power consumption of cooling tower 33) = 80 kW
Therefore, according to the above calculation, the power generation amount of the embodiment of the present invention of FIG. 1 is increased by about 17% as compared with the conventional example of FIG.

第2発電系統6の熱源として第1蒸気タービン2のタービン排気蒸気を直接使用することは、60℃程度の排気蒸気温度であるのでバイナリ発電機のカタログ値等によると不可能である。また、第2発電系統6の発電効率からいうと100℃以上の熱源でないと却って効率が低下することになる。   It is impossible to directly use the turbine exhaust steam of the first steam turbine 2 as a heat source of the second power generation system 6 because the exhaust steam temperature is about 60 ° C. according to the catalog value of the binary generator. Moreover, if it says from the power generation efficiency of the 2nd power generation system 6, if it is not a heat source of 100 degreeC or more, efficiency will decline on the contrary.

図2は、本発明に係る発電システムの第2実施形態を示す系統図である。第2実施形態の発電システムは、蒸気ドラム10内ではなく、蒸気ドラム10の外部に配置された第2熱交換器40において、蒸気ドラム10から排出された蒸気と第1蒸気タービン2の排気蒸気の少なくとも一部を熱交換させることにより過熱している点が上記第1実施形態の発電システムと異なる。第2熱交換器40で過熱された過熱蒸気が蒸発器4の高温側熱媒として用いられ、第2発電系統6を循環する低沸点媒体を蒸発・過熱させる。その他の構成は上記第1実施形態と同様である。図示例では、ボイラ1及び過熱器11で過熱された過熱蒸気は、管路41を通って第1蒸気タービンに送られるが、管路41から分岐する管路42が第2熱交換器40の高温側に接続されている。第2蒸気タービン2の排気蒸気は、第2熱交換器40により、例えば、60℃から130℃に過熱されて、蒸発器4の高温側に送られる。図示しないが、管路42、41に流量を調整するための弁等を適宜介在することができる。   FIG. 2 is a system diagram showing a second embodiment of the power generation system according to the present invention. The power generation system according to the second embodiment includes the steam discharged from the steam drum 10 and the exhaust steam of the first steam turbine 2 in the second heat exchanger 40 disposed outside the steam drum 10 instead of in the steam drum 10. It differs from the electric power generation system of the said 1st Embodiment in the point which is overheating by carrying out heat exchange of at least one part. The superheated steam superheated by the second heat exchanger 40 is used as the high temperature side heat medium of the evaporator 4, and the low boiling point medium circulating in the second power generation system 6 is evaporated and superheated. Other configurations are the same as those in the first embodiment. In the illustrated example, the superheated steam superheated by the boiler 1 and the superheater 11 is sent to the first steam turbine through the pipe 41, but the pipe 42 branched from the pipe 41 is the second heat exchanger 40. Connected to the high temperature side. The exhaust steam of the second steam turbine 2 is superheated from 60 ° C. to 130 ° C., for example, by the second heat exchanger 40 and sent to the high temperature side of the evaporator 4. Although not shown, a valve or the like for adjusting the flow rate can be appropriately interposed in the pipelines 42 and 41.

図3は、本発明に係る発電システムの第3実施形態を示す系統図である。第3実施形態の発電システムは、第1蒸気タービン2の排気蒸気の一部又は全部を脱気器24内の媒体と熱交換させることにより過熱し、得られた過熱蒸気を、蒸発器4の高温側熱媒として第2発電系統6の低沸点媒体を蒸発・過熱させる点が上記第1実施形態と異なり、その他の構成は上記第1実施形態と同様である。   FIG. 3 is a system diagram showing a third embodiment of the power generation system according to the present invention. The power generation system of the third embodiment superheats a part or all of the exhaust steam of the first steam turbine 2 by exchanging heat with the medium in the deaerator 24, and converts the obtained superheated steam into the evaporator 4. Different from the first embodiment in that the low boiling point medium of the second power generation system 6 is evaporated and superheated as the high temperature side heat medium, the other configurations are the same as those in the first embodiment.

即ち、第3実施形態では、ドレンタンク13に接続された管路51が、脱気器24内の第3熱交換機52に連通接続され、第3熱交換器52は更に管路53によって蒸発器4の高温側に接続されている。脱気器24内の熱媒は、第1蒸気タービン2からの抽気蒸気による加熱により例えば158℃程度になっている。従って、第1蒸気タービン2から排出されたタービン排気蒸気は、ドレンタンク13でドレン切りされ、管路51を通って第3熱交換部52で60℃から130℃程度まで過熱されて蒸発器4の高温側に送られる。   That is, in the third embodiment, the pipe line 51 connected to the drain tank 13 is connected to the third heat exchanger 52 in the deaerator 24, and the third heat exchanger 52 is further connected to the evaporator by the pipe line 53. 4 is connected to the high temperature side. The heat medium in the deaerator 24 is, for example, about 158 ° C. due to heating by the extracted steam from the first steam turbine 2. Accordingly, the turbine exhaust steam discharged from the first steam turbine 2 is drained by the drain tank 13, passes through the pipe 51 and is superheated from about 60 ° C. to about 130 ° C. by the third heat exchange unit 52, and then the evaporator 4. Sent to the high temperature side.

本発明は上記実施形態に限らず、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1 ボイラ
2 第1蒸気タービン
3 第1発電系統
4 蒸発器
5 第2蒸気タービン
6 第2発電系統
7 焼却炉
10 蒸気ドラム
11 過熱器
24 脱気器
DESCRIPTION OF SYMBOLS 1 Boiler 2 1st steam turbine 3 1st power generation system 4 Evaporator 5 2nd steam turbine 6 2nd power generation system 7 Incinerator 10 Steam drum 11 Superheater 24 Deaerator

上記目的を達成するため、本発明に係る発電システムは、ボイラ、第1蒸気タービン、復水器、及び、脱気器を含む第1発電系統と、前記第1発電系統の媒体より沸点が低い低沸点媒体を蒸発器で蒸発させた過熱蒸気を用いて第2蒸気タービンを駆動する第2発電系統と、を備え、前記第1蒸気タービンの排気蒸気の少なくとも一部を前記脱気器内の媒体と熱交換させることにより過熱して得られる過熱蒸気を、前記蒸発器の高温側熱媒としたことを特徴とする。 To achieve the above object, engagement Ru power generation system in the present invention, a boiler, a first steam turbine, a condenser, and a first power generation system including a deaerator, boiling point than the medium of the first generator line A second power generation system that drives a second steam turbine using superheated steam obtained by evaporating a low-boiling-point medium with a low boiling point using an evaporator, and at least part of the exhaust steam of the first steam turbine includes the deaerator The superheated steam obtained by overheating by exchanging heat with the medium inside is used as the high temperature side heat medium of the evaporator.

また、本発明に係る発電方法は、ボイラで過熱蒸気を発生させる第1ステップと、過熱蒸気を用いて第1蒸気タービンを駆動する第2ステップと、前記第1蒸気タービンの排気蒸気の少なくとも一部を前記第蒸気タービンの熱媒を脱気する脱気器内の熱媒と熱交換させることにより過熱して過熱蒸気を得る第3ステップと、前記第3ステップで得られた過熱蒸気と前記第1蒸気タービンを駆動する媒体より沸点が低い低沸点媒体とを熱交換させて、前記低沸点媒体の過熱蒸気を得る第4ステップと、前記第4ステップで得られた低沸点媒体の蒸気を用いて第2蒸気タービンを駆動する第5ステップと、を含むことを特徴とする。 Further, engagement Ru power generation method according to the present invention comprises a first step of generating superheated steam in a boiler, and a second step of driving the first steam turbine with superheated steam, the exhaust steam of the first steam turbine A third step of obtaining superheated steam by heat-exchanging at least partly by heat exchange with a heat medium in a deaerator for degassing the heat medium of the first steam turbine; and the superheated steam obtained in the third step And a low boiling point medium having a boiling point lower than that of the medium driving the first steam turbine, to obtain a superheated steam of the low boiling point medium, and a low boiling point medium obtained in the fourth step. And a fifth step of driving the second steam turbine using steam.

本発明に係る発電システムの第1参考形態を示す系統図である。It is a systematic diagram showing the first reference form of the power generation system according to the present invention. 本発明に係る発電システムの第2参考形態を示す系統図である。It is a systematic diagram which shows the 2nd reference form of the electric power generation system which concerns on this invention. 本発明に係る発電システムの実施形態を示す系統図である。 1 is a system diagram showing an embodiment of a power generation system according to the present invention. 従来の発電システムを示す系統図である。It is a systematic diagram which shows the conventional electric power generation system.

本発明に係る発電システムの第1参考形態は、図1に示すように、ボイラ1で加熱した過熱蒸気を用いて第1蒸気タービン2を駆動する第1発電系統3と、該第1発電系統3の媒体より沸点が低い低沸点媒体を蒸発器4で蒸発させた過熱蒸気を用いて第2蒸気タービン5を駆動する第2発電系統6と、を備えている。 As shown in FIG. 1, a first reference form of a power generation system according to the present invention is a first power generation system 3 that drives a first steam turbine 2 using superheated steam heated by a boiler 1, and the first power generation system. And a second power generation system 6 that drives the second steam turbine 5 using superheated steam obtained by evaporating a low boiling point medium having a boiling point lower than that of the medium 3 by the evaporator 4.

第1蒸気タービン2で仕事をした排気蒸気は、ドレンタンク13で湿分を分離された後、一部が管路14を通じて蒸気ドラム10に送られ、残りは管路15を通じて復水器16に送られる。管路14は蒸気ドラム10内に設けた伝熱管で構成される第1熱交換器17に連通し、管路14から第1熱交換器17に送られた排気蒸気は、蒸気ドラム10内の250℃程度の缶水及び/又は蒸気と熱交換することにより過熱蒸気となる。第1熱交換器17で生成した過熱蒸気は、管路18を通じて蒸発器4に送られて蒸発器4の高温側熱媒として作用し、第2発電系統6を循環する低沸点媒体を蒸発させ、過熱する。 The exhaust steam that has worked in the first steam turbine 2 is separated from the moisture in the drain tank 13, and then a part thereof is sent to the steam drum 10 through the pipe 14, and the rest is sent to the condenser 16 through the pipe 15. Sent. The pipe line 14 communicates with a first heat exchanger 17 constituted by a heat transfer pipe provided in the steam drum 10, and the exhaust steam sent from the pipe line 14 to the first heat exchanger 17 is in the steam drum 10. It becomes superheated steam by exchanging heat with canned water at about 250 ° C. and / or steam. Superheated steam generated by the first heat exchanger 17, evaporated low-boiling medium is sent to the evaporator 4 through the pipe line 1 8 acts as a high-temperature-side heat medium of the evaporator 4, circulates the second generation system 6 Let it overheat.

a1:蒸気ドラム内雰囲気 ;250℃、45atg
b1:蒸気タービンの入口蒸気;400℃、40atg、2470kg/時、h=768kcal/kg
c1:発電機の出力 ;472kW
d1:蒸気タービンの出口湿り蒸気;60℃、0.2atm、h=600kcal/kg
e1:復水器ファン消費電力 ;30kW
次に、図1に示す本発明の参考形態において、各部a2〜j2を試算すると以下の通りとなる。第1蒸気タービン2からのタービン排気蒸気の約50%を管路14を通じて第1熱交換器17に引き抜く場合について試算(概算)した。なお、概算のため、放熱・圧力損失は無視した。図1のボイラ、第1蒸気タービン、第1発電機は、図4の従来例のボイラ、蒸気タービン、発電機と其々同じものとした。なお、以下において詳細な計算は省略する。
a1: Steam drum atmosphere; 250 ° C, 45atg
b1: Steam at the inlet of the steam turbine; 400 ° C, 40 atg, 2470 kg / hour, h = 768 kcal / kg
c1: Generator output; 472kW
d1: Outlet wet steam of steam turbine; 60 ° C, 0.2atm, h = 600kcal / kg
e1: Condenser fan power consumption: 30kW
Next, in the reference form of the present invention shown in FIG. 1, each part a <b> 2 to j <b> 2 is calculated as follows. A trial calculation (approximate) was made on the case where about 50% of the turbine exhaust steam from the first steam turbine 2 was drawn to the first heat exchanger 17 through the pipe 14. Note that heat dissipation and pressure loss were ignored for the sake of estimation. The boiler, the first steam turbine, and the first generator of FIG. 1 are the same as the boiler, the steam turbine, and the generator of the conventional example of FIG. In the following, detailed calculations are omitted.

図2は、本発明に係る発電システムの第2参考形態を示す系統図である。第2参考形態の発電システムは、蒸気ドラム10内ではなく、蒸気ドラム10の外部に配置された第2熱交換器40において、蒸気ドラム10から排出された蒸気と第1蒸気タービン2の排気蒸気の少なくとも一部を熱交換させることにより過熱している点が上記第1参考形態の発電システムと異なる。第2熱交換器40で過熱された過熱蒸気が蒸発器4の高温側熱媒として用いられ、第2発電系統6を循環する低沸点媒体を蒸発・過熱させる。その他の構成は上記第1参考形態と同様である。図示例では、ボイラ1及び過熱器11で過熱された過熱蒸気は、管路41を通って第1蒸気タービンに送られるが、管路41から分岐する管路42が第2熱交換器40の高温側に接続されている。第2蒸気タービン2の排気蒸気は、第2熱交換器40により、例えば、60℃から130℃に過熱されて、蒸発器4の高温側に送られる。図示しないが、管路42、41に流量を調整するための弁等を適宜介在することができる。 FIG. 2 is a system diagram showing a second reference form of the power generation system according to the present invention. The power generation system of the second reference embodiment is configured such that the steam discharged from the steam drum 10 and the exhaust steam of the first steam turbine 2 are not in the steam drum 10 but in the second heat exchanger 40 arranged outside the steam drum 10. It differs from the electric power generation system of the said 1st reference form in the point which is overheating by carrying out heat exchange of at least one part. The superheated steam superheated by the second heat exchanger 40 is used as the high temperature side heat medium of the evaporator 4, and the low boiling point medium circulating in the second power generation system 6 is evaporated and superheated. Other configurations are the same as those of the first reference embodiment. In the illustrated example, the superheated steam superheated by the boiler 1 and the superheater 11 is sent to the first steam turbine through the pipe 41, but the pipe 42 branched from the pipe 41 is the second heat exchanger 40. Connected to the high temperature side. The exhaust steam of the second steam turbine 2 is superheated from 60 ° C. to 130 ° C., for example, by the second heat exchanger 40 and sent to the high temperature side of the evaporator 4. Although not shown, a valve or the like for adjusting the flow rate can be appropriately interposed in the pipelines 42 and 41.

図3は、本発明に係る発電システムの実施形態を示す系統図である。実施形態の発電システムは、第1蒸気タービン2の排気蒸気の一部又は全部を脱気器24内の媒体と熱交換させることにより過熱し、得られた過熱蒸気を、蒸発器4の高温側熱媒として第2発電系統6の低沸点媒体を蒸発・過熱させる点が上記第1参考形態と異なり、その他の構成は上記第1参考形態と同様である。 FIG. 3 is a system diagram showing an embodiment of the power generation system according to the present invention. The power generation system of one embodiment superheats a part or all of the exhaust steam of the first steam turbine 2 by exchanging heat with the medium in the deaerator 24, and converts the obtained superheated steam to the high temperature of the evaporator 4. It differs from the first reference embodiment in that the low boiling point medium of the second power generation system 6 is evaporated and superheated as a side heat medium, and the other configuration is the same as the first reference embodiment.

即ち、本発明の実施形態では、ドレンタンク13に接続された管路51が、脱気器24内の第3熱交換機52に連通接続され、第3熱交換器52は更に管路53によって蒸発器4の高温側に接続されている。脱気器24内の熱媒は、第1蒸気タービン2からの抽気蒸気による加熱により例えば158℃程度になっている。従って、第1蒸気タービン2から排出されたタービン排気蒸気は、ドレンタンク13でドレン切りされ、管路51を通って第3熱交換部52で60℃から130℃程度まで過熱されて蒸発器4の高温側に送られる。


That is, in the embodiment of the present invention, the pipe line 51 connected to the drain tank 13 is connected to the third heat exchanger 52 in the deaerator 24, and the third heat exchanger 52 is further evaporated by the pipe line 53. It is connected to the high temperature side of the vessel 4. The heat medium in the deaerator 24 is, for example, about 158 ° C. due to heating by the extracted steam from the first steam turbine 2. Accordingly, the turbine exhaust steam discharged from the first steam turbine 2 is drained by the drain tank 13, passes through the pipe 51 and is superheated from about 60 ° C. to about 130 ° C. by the third heat exchange unit 52, and then the evaporator 4. Sent to the high temperature side.


Claims (6)

ボイラ、第1蒸気タービン、及び復水器を含む第1発電系統と、
前記第1発電系統の媒体より沸点が低い低沸点媒体を蒸発器で蒸発させた過熱蒸気を用いて第2蒸気タービンを駆動する第2発電系統と、を備え、
前記第1蒸気タービンの排気蒸気の少なくとも一部を前記ボイラの蒸気ドラム内の缶水及び蒸気の少なくとも一方と熱交換させることにより過熱して得られる過熱蒸気を、前記蒸発器の高温側熱媒としたことを特徴とする発電システム。
A first power generation system including a boiler, a first steam turbine, and a condenser;
A second power generation system that drives a second steam turbine using superheated steam obtained by evaporating a low boiling point medium having a boiling point lower than that of the medium of the first power generation system with an evaporator;
The superheated steam obtained by superheating at least a part of the exhaust steam of the first steam turbine with at least one of the can water and steam in the steam drum of the boiler is heated on the high temperature side of the evaporator. A power generation system characterized by that.
ボイラ、第1蒸気タービン、及び復水器を含む第1発電系統と、
前記第1発電系統の媒体より沸点が低い低沸点媒体を蒸発器で蒸発させた過熱蒸気を用いて第2蒸気タービンを駆動する第2発電系統と、を備え、
前記第1蒸気タービンの排気蒸気の少なくとも一部を前記ボイラの蒸気ドラムから排出された蒸気と熱交換させることにより過熱して得られる過熱蒸気を、前記蒸発器の高温側熱媒としたことを特徴とする発電システム。
A first power generation system including a boiler, a first steam turbine, and a condenser;
A second power generation system that drives a second steam turbine using superheated steam obtained by evaporating a low boiling point medium having a boiling point lower than that of the medium of the first power generation system with an evaporator;
Superheated steam obtained by overheating at least part of the exhaust steam of the first steam turbine by heat exchange with steam discharged from the steam drum of the boiler is used as a high-temperature side heat medium for the evaporator. Characteristic power generation system.
ボイラ、第1蒸気タービン、復水器、及び、脱気器を含む第1発電系統と、
前記第1発電系統の媒体より沸点が低い低沸点媒体を蒸発器で蒸発させた過熱蒸気を用いて第2蒸気タービンを駆動する第2発電系統と、を備え、
前記第1蒸気タービンの排気蒸気の少なくとも一部を前記脱気器内の媒体と熱交換させることにより過熱して得られる過熱蒸気を、前記蒸発器の高温側熱媒としたことを特徴とする発電システム。
A first power generation system including a boiler, a first steam turbine, a condenser, and a deaerator;
A second power generation system that drives a second steam turbine using superheated steam obtained by evaporating a low boiling point medium having a boiling point lower than that of the medium of the first power generation system with an evaporator;
The superheated steam obtained by superheating at least a part of the exhaust steam of the first steam turbine by exchanging heat with the medium in the deaerator is used as a high temperature side heat medium of the evaporator. Power generation system.
ボイラで過熱蒸気を発生させる第1ステップと、
過熱蒸気を用いて第1蒸気タービンを駆動する第2ステップと、
前記第1蒸気タービンの排気蒸気の少なくとも一部を前記ボイラの蒸気ドラム内の缶水及び蒸気の少なくとも一方と熱交換させることにより過熱して過熱蒸気を得る第3ステップと、
前記第3ステップで得られた過熱蒸気と前記第1蒸気タービンを駆動する媒体より沸点が低い低沸点媒体とを熱交換させて、前記低沸点媒体の過熱蒸気を得る第
4ステップと、
前記第4ステップで得られた低沸点媒体の蒸気を用いて第2蒸気タービンを駆動する第5ステップと、
を含むことを特徴とする発電方法。
A first step of generating superheated steam in a boiler;
A second step of driving the first steam turbine using superheated steam;
A third step in which at least a part of the exhaust steam of the first steam turbine is heated by exchanging heat with at least one of can water and steam in the steam drum of the boiler to obtain superheated steam;
A fourth step of obtaining a superheated steam of the low boiling point medium by exchanging heat between the superheated steam obtained in the third step and a low boiling point medium having a lower boiling point than the medium driving the first steam turbine;
A fifth step of driving the second steam turbine using the steam of the low boiling point medium obtained in the fourth step;
A power generation method comprising:
ボイラで過熱蒸気を発生させる第1ステップと、
過熱蒸気を用いて第1蒸気タービンを駆動する第2ステップと、
前記第1蒸気タービンの排気蒸気の少なくとも一部を前記ボイラの蒸気ドラムから排出した蒸気と熱交換させることにより過熱して過熱蒸気を得る第3ステップと、
前記第3ステップで得られた過熱蒸気と前記第1蒸気タービンを駆動する媒体より沸点が低い低沸点媒体とを熱交換させて、前記低沸点媒体の過熱蒸気を得る第4ステップと、
前記第4ステップで得られた低沸点媒体の蒸気を用いて第2蒸気タービンを駆動する第5ステップと、
を含むことを特徴とする発電方法。
A first step of generating superheated steam in a boiler;
A second step of driving the first steam turbine using superheated steam;
A third step in which at least a part of the exhaust steam of the first steam turbine is superheated by heat exchange with steam discharged from the steam drum of the boiler to obtain superheated steam;
A fourth step of obtaining a superheated steam of the low boiling point medium by exchanging heat between the superheated steam obtained in the third step and a low boiling point medium having a lower boiling point than the medium driving the first steam turbine;
A fifth step of driving the second steam turbine using the steam of the low boiling point medium obtained in the fourth step;
A power generation method comprising:
ボイラで過熱蒸気を発生させる第1ステップと、
過熱蒸気を用いて第1蒸気タービンを駆動する第2ステップと、
前記第1蒸気タービンの排気蒸気の少なくとも一部を前記第蒸気タービンの熱媒を脱気する脱気器内の熱媒と熱交換させることにより過熱して過熱蒸気を得る第3ステップと、
前記第3ステップで得られた過熱蒸気と前記第1蒸気タービンを駆動する媒体より沸点が低い低沸点媒体とを熱交換させて、前記低沸点媒体の過熱蒸気を得る第4ステップと、
前記第4ステップで得られた低沸点媒体の蒸気を用いて第2蒸気タービンを駆動する第5ステップと、
を含むことを特徴とする発電方法。

A first step of generating superheated steam in a boiler;
A second step of driving the first steam turbine using superheated steam;
A third step of obtaining superheated steam by overheating at least a part of the exhaust steam of the first steam turbine by heat exchange with a heat medium in a deaerator for degassing the heat medium of the first steam turbine;
A fourth step of obtaining a superheated steam of the low boiling point medium by exchanging heat between the superheated steam obtained in the third step and a low boiling point medium having a lower boiling point than the medium driving the first steam turbine;
A fifth step of driving the second steam turbine using the steam of the low boiling point medium obtained in the fourth step;
A power generation method comprising:

JP2015026412A 2015-02-13 2015-02-13 Power generation system and power generation method Active JP5988320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015026412A JP5988320B2 (en) 2015-02-13 2015-02-13 Power generation system and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015026412A JP5988320B2 (en) 2015-02-13 2015-02-13 Power generation system and power generation method

Publications (2)

Publication Number Publication Date
JP2016148304A true JP2016148304A (en) 2016-08-18
JP5988320B2 JP5988320B2 (en) 2016-09-07

Family

ID=56691134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015026412A Active JP5988320B2 (en) 2015-02-13 2015-02-13 Power generation system and power generation method

Country Status (1)

Country Link
JP (1) JP5988320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007704A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Waste heat boiler and waste heat recovery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359156A (en) * 1976-09-30 1978-05-27 Westinghouse Electric Corp Heat power generating device
JPS593102U (en) * 1982-06-25 1984-01-10 株式会社サムソン Multi-tubular once-through boiler
JPH1136818A (en) * 1997-07-18 1999-02-09 Toshiba Corp Controller for cogeneration plant utilizing waste heat
JP2014134106A (en) * 2013-01-08 2014-07-24 Tetsuyoshi Ishida Geothermal power generation system
JP2015014261A (en) * 2013-07-05 2015-01-22 株式会社東芝 Steam turbine plant and method of operating the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359156A (en) * 1976-09-30 1978-05-27 Westinghouse Electric Corp Heat power generating device
JPS593102U (en) * 1982-06-25 1984-01-10 株式会社サムソン Multi-tubular once-through boiler
JPH025201Y2 (en) * 1982-06-25 1990-02-08
JPH1136818A (en) * 1997-07-18 1999-02-09 Toshiba Corp Controller for cogeneration plant utilizing waste heat
JP2014134106A (en) * 2013-01-08 2014-07-24 Tetsuyoshi Ishida Geothermal power generation system
JP2015014261A (en) * 2013-07-05 2015-01-22 株式会社東芝 Steam turbine plant and method of operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007704A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Waste heat boiler and waste heat recovery system

Also Published As

Publication number Publication date
JP5988320B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
RU2570131C2 (en) Operating method of thermal power plant
MX2014011444A (en) System and method for recovery of waste heat from dual heat sources.
JP2007255363A (en) Power system
JP5325038B2 (en) System and method applied to combined cycle power plant or Rankine cycle power plant using air-cooled steam condenser
JP2022023871A (en) Thermal power generation plant and exhaust heat recovery method
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
JP2019506563A (en) Heat recovery system and method for converting heat into electrical energy using a heat recovery system
JP3905967B2 (en) Power generation / hot water system
JP5988320B2 (en) Power generation system and power generation method
US10408092B2 (en) Heat exchanger, energy recovery system, and vessel
JP7290520B2 (en) ORC power generation system
RU2560503C1 (en) Heat power plant operation mode
RU2560606C1 (en) Heat power plant heat utilisation method
JP6868022B2 (en) How to generate electricity using a combined cycle
RU2560505C1 (en) Heat power plant operation mode
RU2560615C1 (en) Heat power plant operation mode
RU2560502C1 (en) Heat power plant operation mode
RU2776225C1 (en) Steam-heated power plant with a double zaryankin cycle
RU2686541C1 (en) Steam-gas plant
WO2009048510A1 (en) Combined circulation condenser
RU2560611C1 (en) Heat power plant operation mode
RU2560621C1 (en) Heat power plant operation mode
RU2560624C1 (en) Heat power plant heat utilisation method
RU2560608C1 (en) Heat power plant operation mode
RU2560607C1 (en) Heat power plant operation mode

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5988320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250