RU2560608C1 - Heat power plant operation mode - Google Patents

Heat power plant operation mode Download PDF

Info

Publication number
RU2560608C1
RU2560608C1 RU2014113492/02A RU2014113492A RU2560608C1 RU 2560608 C1 RU2560608 C1 RU 2560608C1 RU 2014113492/02 A RU2014113492/02 A RU 2014113492/02A RU 2014113492 A RU2014113492 A RU 2014113492A RU 2560608 C1 RU2560608 C1 RU 2560608C1
Authority
RU
Russia
Prior art keywords
heat
heat exchanger
condenser
steam
network water
Prior art date
Application number
RU2014113492/02A
Other languages
Russian (ru)
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014113492/02A priority Critical patent/RU2560608C1/en
Application granted granted Critical
Publication of RU2560608C1 publication Critical patent/RU2560608C1/en

Links

Abstract

FIELD: power industry.
SUBSTANCE: invention can be used in heat power plants (HPP) for utilisation of excess heat energy generated by HPP systems during its operation. The utilisation of excess low-grade heat of the return system water is performed using cooling liquid by means of the heat engine with closed circulation circuit, operating according to Rankine organic cycle. The cooling liquid is the low-boiling working body, for example, the liquefied propane C3H8. The working body is compressed in the condensate pump of the heat engine, heated in the recuperative heat exchanger of the heat engine, evaporated and overheated in the heat exchanger evaporator, expanded in the turbine expander of the heat engine, its temperature is decreased in the recuperative heat exchanger and condensed in the heat exchanger condenser of the heat engine.
EFFECT: method provides increase of efficiency of heat power plant due to additional electric power generation at utilisation of excess heat energy generated by systems of heat power plant.
3 cl, 1 dwg, 1 ex

Description

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.The invention relates to the field of energy and can be used at thermal power plants (TPPs) when disposing of excess low-grade heat of return network water for additional generation of electric energy.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям, при этом весь поток сетевой воды последовательно нагревают в нижнем сетевом подогревателе, конденсаторе теплонасосной установки и верхнем сетевом подогревателе (патент RU №2275512, МПК F01K 17/02, 27.04.2006).An analogue is the method of operation of a thermal power plant, in which the entire return flow of network water returned from consumers is heated by steam of turbine withdrawals in the lower and upper network heaters, as well as in the condenser of the heat pump installation with heat removed from the return network water in the evaporator of the heat pump installation, after which they are sent to consumers, while the entire flow of network water is sequentially heated in the lower network heater, the condenser of the heat pump installation and the upper network heater atelier (patent RU No. 2275512, IPC F01K 17/02, 04/27/2006).

Прототипом является способ работы тепловой электрической станции, содержащей теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU №2269014, МПК F01K 17/02, 27.01.2006).The prototype is the method of operation of a thermal power plant containing a cogeneration turbine with heating steam extraction, supply and return pipelines of the heating network, network heaters connected via a heated medium between the supply and return pipelines of the heating network and connected via heating medium to the heating selection, heat pump installation with an evaporator included in the return pipe of the heating system, and a condenser, while the condenser of the heat pump installation is included in the supply pipe of the heating system after evyh heaters (patent RU №2269014, IPC F01K 17/02, 27.01.2006).

В известном способе возвращаемая от потребителей по обратному трубопроводу теплосети сетевая вода подается сетевым насосом в испаритель теплонасосной установки, где отдает часть теплоты хладагенту теплонасосной установки и охлаждается, затем сетевая вода поступает в сетевые подогреватели, где нагревается паром отопительных отборов турбины. Перед подачей потребителям сетевая вода дополнительно нагревается в конденсаторе теплонасосной установки за счет теплоты хладагента, циркулирующего в контуре теплонасосной установки. Благодаря последовательному включению испарителя теплонасосной установки в обратный трубопровод теплосети до сетевых подогревателей, а конденсатора в подающий трубопровод теплосети после сетевых подогревателей достигается максимальное охлаждение обратной сетевой воды.In the known method, the network water returned from the consumers through the return pipe of the heating network is supplied by the network pump to the evaporator of the heat pump installation, where it transfers part of the heat to the coolant of the heat pump installation and is cooled, then the network water is supplied to the network heaters, where it is heated by steam from the turbine heating taps. Before being supplied to consumers, the network water is additionally heated in the condenser of the heat pump installation due to the heat of the refrigerant circulating in the circuit of the heat pump installation. Due to the sequential inclusion of the evaporator of the heat pump installation in the return pipe of the heating system to the network heaters, and the condenser in the supply pipe of the heating system after the network heaters, maximum cooling of the return network water is achieved.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в теплообменник-испаритель, нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в теплообменнике-испарителе осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости.Thus, in the known method of operating a thermal power plant, steam of heating parameters from the steam turbine’s withdrawals enters the steam space of the upper and lower network heaters, network water is supplied from consumers through a return line of network water to a heat exchanger-evaporator, lower network heater and upper network heater, Further, the network water is sent to the supply pipe of the network water, the exhaust steam is supplied from the steam turbine to the steam space of the condenser, and it condenses I’m on the surface of the condenser tubes, while the condensate is sent to the regeneration system using the condensate pump of the condenser of the steam turbine, and in the heat exchanger-evaporator, the excess low-grade heat of the return network water is recycled using coolant.

Основным недостатком аналога и прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.The main disadvantage of the analogue and the prototype is that the disposal of excess low potential heat return network water is carried out in order to generate additional thermal energy, and not for additional generation of electric energy.

Кроме этого недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки.In addition, the disadvantage of the analogue and prototype is the relatively low efficiency of TPPs for the generation of electric energy, due to the cost of electric power to drive the heat pump installation.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.The objective of the invention is to develop a method of utilizing the heat of a thermal power plant, which eliminates these disadvantages of the analogue and prototype.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.The technical result is to increase the efficiency of TPPs due to the utilization of excess low-grade heat of return network water for additional generation of electric energy.

Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление пара отопительных параметров в паровое пространство верхнего и нижнего сетевых подогревателей, связанных с подающим трубопроводом и обратным трубопроводом сетевой воды, снабженным теплообменником-испарителем, при этом отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в теплообменнике-испарителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды посредством охлаждающей жидкости, согласно настоящему изобретению, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, причем в качестве охлаждающей жидкости The technical result is achieved by the fact that in the method of utilization of thermal energy generated by a thermal power plant, including the selection of steam from a steam turbine, directing the steam of heating parameters to the steam space of the upper and lower network heaters associated with the supply pipe and the return pipe of the network water provided with a heat exchanger the evaporator, while the exhaust steam from the steam turbine is sent to the steam space of the condenser, in which it is condensed on the surface of the condenser tubes, and the condensate obtained is sent via a condenser pump of a steam turbine condenser to a regeneration system, and in the heat exchanger-evaporator of the network water, the excess low potential heat of the return network water is recovered by means of the cooling liquid, according to the present invention, the excess low potential heat of the return network water is recovered by closed-loop heat engine operating on the organic Rankine cycle, consisting consisting of a turboexpander with an electric generator, a heat exchanger-recuperator, a heat exchanger-condenser and a condensate pump, moreover, as a coolant

используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре, испаряют и перегревают в теплообменнике-испарителе сетевой воды, расширяют в турбодетандере, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.use a low-boiling working fluid circulating in a closed circuit, while the aforementioned low-boiling working fluid is compressed in a condensate pump of a heat engine, heated in a heat exchanger-recuperator, evaporated and overheated in a heat exchanger-evaporator of network water, expanded in a turbine expander, lower its temperature in a heat exchanger-recuperator and condense in the heat exchanger-condenser of the heat engine.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.An air cooling condenser or a water cooling condenser, or an air and water cooling condenser are used as a heat exchanger-condenser of a heat engine.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Таким образом, технический результат достигается за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, которую осуществляют путем нагрева в теплообменнике-испарителе низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the technical result is achieved by utilizing the excess low potential heat of the return network water to additionally generate electric energy, which is carried out by heating in a heat exchanger-evaporator of a low-boiling working fluid (liquefied propane C 3 H 8 ) a closed-loop heat engine using an organic Rankine cycle.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменником-рекуператором, и теплообменник-испаритель.The invention is illustrated by the drawing, which shows a thermal power plant having a heat engine with a heat exchanger-condenser, a heat exchanger-recuperator, and a heat exchanger-evaporator.

На чертеже цифрами обозначены:In the drawing, the numbers indicate:

1 - паровая турбина,1 - steam turbine,

2 - конденсатор паровой турбины,2 - condenser of a steam turbine,

3 - конденсатный насос конденсатора паровой турбины,3 - condensate pump condenser of a steam turbine,

4 - основной электрогенератор,4 - the main generator

5 - тепловой двигатель с замкнутым контуром циркуляции,5 - heat engine with a closed circuit,

6 - турбодетандер,6 - turboexpander,

7 - электрогенератор,7 - electric generator,

8 - теплообменник-конденсатор,8 - heat exchanger-condenser,

9 - конденсатный насос,9 - condensate pump,

10 - верхний сетевой подогреватель,10 - upper network heater,

11 - нижний сетевой подогреватель,11 - lower network heater,

12 - подающий трубопровод сетевой воды,12 - supply pipe network water,

13 - обратный трубопровод сетевой воды,13 - return pipe network water,

14 - теплообменник-испаритель,14 - heat exchanger-evaporator,

15 - теплообменник-рекуператор.15 - heat exchanger-recuperator.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, и теплообменник-испаритель 14, включенный по нагреваемой среде в обратный трубопровод 13 сетевой воды перед нижним сетевым подогревателем 11. В тепловую электрическую станцию введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 15, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 15, который соединен по нагреваемой среде с входом теплообменника-испарителя 14, выход теплообменника-испарителя 14 по нагреваемой среде соединен с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 15, выход теплообменника-рекуператора 15 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.The thermal power plant includes a series-connected steam turbine 1, a steam turbine condenser 2 and a condenser pump 3 of the steam turbine condenser, as well as a main electric generator 4 connected to the steam turbine 1, which is connected via heating medium to the upper 10 and lower 11 network heaters connected via the heated medium between the supply 12 and the return 13 pipelines of network water, and the heat exchanger-evaporator 14 connected through the heated medium to the return pipeline 13 of the network water in front of the lower network bottom revatelem 11. The thermal power plant introduced thermal engine 5 with a closed circulation circuit, which uses the organic Rankine cycle. The closed circulation circuit of the heat engine 5 is made in the form of a circuit with a low boiling fluid containing a turboexpander 6 with an electric generator 7, a heat exchanger-recuperator 15, a heat exchanger-condenser 8 and a condensate pump 9, and the output of the condensate pump 9 is connected via a heated medium to the input of the heat exchanger-recuperator 15, which is connected through a heated medium to the inlet of the heat exchanger-evaporator 14, the output of the heat exchanger-evaporator 14 through a heated medium is connected to the inlet of the turbo-expander 6, the output of which is connected via a heating medium with a heat exchanger-recuperator 15, the output of the heat exchanger-recuperator 15 is connected via a heating medium to a heat exchanger-condenser 8, the output of which is connected via a heated medium to the inlet of the condensate pump 9, forming a closed cooling circuit.

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.A method of utilizing thermal energy generated by a thermal power plant is as follows.

Способ включает в себя отбор пара из паровой турбины 1, направление пара отопительных параметров в паровое пространство верхнего 10 и нижнего 11 сетевых подогревателей, связанных с подающим трубопроводом 12 и обратным трубопроводом 13 сетевой воды, снабженным теплообменником-испарителем 14, при этом отработавший пар из паровой турбины 1 направляют в паровое пространство конденсатора 2, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины 1 направляют в систему регенерации, причем в теплообменнике-испарителе 14 сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды посредством охлаждающей жидкости.The method includes steam extraction from a steam turbine 1, steam direction of the heating parameters to the steam space of the upper 10 and lower 11 network heaters associated with the supply pipe 12 and the return water pipe 13 provided with a heat exchanger-evaporator 14, while the exhaust steam from the steam the turbines 1 are sent to the steam space of the condenser 2, in which it is condensed on the surface of the condenser tubes, and the condensate obtained by the condensate pump 3 of the condenser of the steam turbine 1 is directed pour into the regeneration system, and in the heat exchanger-evaporator 14 of the network water, the excess low potential heat of the return network water is recycled by means of a cooling liquid.

Отличием предлагаемого способа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют посредством теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера 6 с электрогенератором 7, теплообменника-рекуператора 15, теплообменника-конденсатора 8 и конденсатного насоса 9, причем в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в теплообменнике-рекуператоре 15, испаряют и перегревают в теплообменнике-испарителе 14 сетевой воды, расширяют в турбодетандере 6, снижают его температуру в теплообменнике-рекуператоре 15 и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.The difference of the proposed method is that the utilization of the excess low-potential heat of the return network water is carried out by means of a closed-circuit heat engine 5 operating on the organic Rankine cycle, consisting of a turboexpander 6 with an electric generator 7, a heat exchanger-recuperator 15, a heat exchanger-condenser 8 and a condensate pump 9, wherein a low boiling medium circulating in a closed circuit is used as coolant, while the aforementioned low boiling medium the body is compressed in the condensate pump 9 of the heat engine 5, heated in the heat exchanger-recuperator 15, evaporated and overheated in the heat exchanger-evaporator 14 of the network water, expanded in the turboexpander 6, lower its temperature in the heat exchanger-recuperator 15 and condensed in the heat exchanger-condenser 8 of the heat engine .

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.As the heat exchanger-condenser 8 of the heat engine, an air-cooled condenser or a water-cooled condenser, or an air and water-cooled condenser are used.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.As a low-boiling working fluid, liquefied propane C 3 H 8 is used .

Пример конкретного выполнения.An example of a specific implementation.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.The exhaust steam coming from the steam turbine 1 into the steam space of the condenser 2 is condensed on the surface of the condenser tubes. In this case, the condensate formed is sent via a condensate pump 3 of the steam turbine condenser to the regeneration system. The power of the steam turbine 1 is transmitted to the main generator 4 connected to one shaft.

Преобразование избыточной низкопотенциальной тепловой энергии обратной сетевой воды в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.The conversion of the excess low-potential thermal energy of the return network water into mechanical and, further, into electric energy takes place in a closed circuit of the circulation of the heat engine 5 operating on the organic Rankine cycle.

Таким образом, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют путем нагрева в теплообменнике-испарителе 14 низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.Thus, the utilization of the excess low-potential heat of the return network water is carried out by heating in the heat exchanger-evaporator 14 a low-boiling working fluid (liquefied propane C 3 H 8 ) of a heat engine 5 with a closed circulation circuit operating on the organic Rankine cycle.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который в начале направляют на нагрев в теплообменник-рекуператор 15, а затем направляют на испарение и перегрев в теплообменник-испаритель 14, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура обратной сетевой воды может варьироваться в интервале от 313,15 K до 343,15 K.The whole process begins with compression in a condensate pump 9 of liquefied propane C 3 H 8 , which is first sent for heating to the heat exchanger-recuperator 15, and then sent for evaporation and overheating in the heat exchanger-evaporator 14, where the return network water from the return pipe 13 enters . In this case, the temperature of the return network water can vary from 313.15 K to 343.15 K.

Температура кипения сжиженного пропана C3H8 сравнительна низка (293 К при давлении 0,833 МПа), поэтому в теплообменнике-испарителе 14, в процессе теплообмена обратной сетевой воды с сжиженным пропаном C3H8, происходит испарение сжиженного пропана C3H8 и его перегрев до температуры в интервале от 308,15 K до 333,15 K.The boiling point of liquefied propane C 3 H 8 is relatively low (293 K at a pressure of 0.833 MPa), therefore, in the heat exchanger-evaporator 14, during the heat exchange of the return network water with liquefied propane C 3 H 8 , the liquefied propane C 3 H 8 and its overheating to a temperature in the range from 308.15 K to 333.15 K.

После теплообменника-испарителя 14 перегретый газообразный пропан C3H8 направляют в турбодетандер 6.After the heat exchanger-evaporator 14, superheated gaseous propane C 3 H 8 is sent to a turboexpander 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 K, направляют в теплообменник-рекуператор 15 для снижения температуры.The process is configured in such a way that condensation of gaseous propane C 3 H 8 does not occur in the operation of the heat transfer in the turbine expander 6. The power of the turboexpander 6 is transmitted to an electric generator 7 connected to one shaft. At the outlet of the turboexpander 6, gaseous propane C 3 H 8 having a superheated gas temperature of about 288 K is sent to the heat exchanger-recuperator 15 to reduce the temperature.

В теплообменнике-рекуператоре 15 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на теплообменник-конденсатор 8, выполненный, например, в виде конденсатора воздушного охлаждения, и затраты мощности на привод вентиляторов воздушного охлаждения.In the heat exchanger-recuperator 15 in the process of heat removal for heating liquefied propane C 3 H 8 the load on the heat exchanger-condenser 8, made, for example, in the form of an air-cooled condenser, and the power consumption for driving air-cooled fans are reduced.

Далее, при снижении температуры газообразного пропана C3H8, происходит его сжижение в теплообменнике-конденсаторе 8, охлаждаемом воздухом окружающей среды в температурном диапазоне от 223,15 K до 283,15 K.Further, with a decrease in the temperature of gaseous propane C 3 H 8 , it liquefies in a heat exchanger-condenser 8 cooled by ambient air in the temperature range from 223.15 K to 283.15 K.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя.After the heat exchanger-condenser 8 in a liquefied state, propane C 3 H 8 is sent for compression to the condensate pump 9 of the heat engine.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.Further, the organic Rankine cycle based on a low-boiling working fluid is repeated.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.Using the proposed method of operation of a thermal power plant will allow, in comparison with the prototype, to increase the efficiency of thermal power plants by utilizing the excess low potential heat of the return network water for additional generation of electric energy.

Claims (3)

1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление пара отопительных параметров в паровое пространство верхнего и нижнего сетевых подогревателей, связанных с подающим трубопроводом и обратным трубопроводом сетевой воды, снабженным теплообменником-испарителем, при этом отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в теплообменнике-испарителе сетевой воды осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды посредством охлаждающей жидкости, отличающийся тем, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, причем в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре, испаряют и перегревают в теплообменнике-испарителе сетевой воды, расширяют в турбодетандере, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.1. The method of utilization of thermal energy generated by a thermal power plant, including the selection of steam from a steam turbine, the direction of the steam of heating parameters into the steam space of the upper and lower network heaters associated with the supply pipe and the return pipe of the network water equipped with a heat exchanger-evaporator, the steam from the steam turbine is sent to the steam space of the condenser, in which it is condensed on the surface of the condenser tubes, and the condensate obtained with the condenser pump of the condenser of the steam turbine is sent to the regeneration system, and in the heat exchanger-evaporator of the network water, the excess low potential heat of the return network water is recycled by means of a cooling liquid, characterized in that the recovery of the excess low potential heat of the return network water is carried out by means of a closed-circuit heat engine, working on the organic Rankine cycle, consisting of a turboexpander with an electric generator, heat transfer a nickel recuperator, a heat exchanger-condenser and a condensate pump, moreover, a low boiling medium circulating in a closed circuit is used as coolant, while the aforementioned low boiling medium is compressed in a condensate pump of a heat engine, heated in a heat exchanger-recuperator, evaporated and overheated in a heat exchanger network water evaporator is expanded in a turboexpander, its temperature is reduced in a heat exchanger-recuperator and it is condensed in a heat engine heat exchanger-condenser. 2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.2. The method according to p. 1, characterized in that the air-cooled condenser or the water-cooled condenser, or the air and water-cooled condenser are used as the heat exchanger-condenser of the heat engine. 3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8. 3. The method according to p. 1, characterized in that as a low-boiling working fluid use liquefied propane C 3 H 8 .
RU2014113492/02A 2014-04-07 2014-04-07 Heat power plant operation mode RU2560608C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014113492/02A RU2560608C1 (en) 2014-04-07 2014-04-07 Heat power plant operation mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014113492/02A RU2560608C1 (en) 2014-04-07 2014-04-07 Heat power plant operation mode

Publications (1)

Publication Number Publication Date
RU2560608C1 true RU2560608C1 (en) 2015-08-20

Family

ID=53880740

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014113492/02A RU2560608C1 (en) 2014-04-07 2014-04-07 Heat power plant operation mode

Country Status (1)

Country Link
RU (1) RU2560608C1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1276841A1 (en) * 1985-06-26 1986-12-15 Одесский Технологический Институт Холодильной Промышленности Method for operation of thermal power plant
WO2005003628A1 (en) * 2003-07-04 2005-01-13 Katsushige Yamada Reheat/regenerative type thermal power plant using rankine cycle
RU2269014C2 (en) * 2004-03-05 2006-01-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Thermal power station
RU2278981C1 (en) * 2005-02-15 2006-06-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of operation of thermal power station
US8046999B2 (en) * 2007-10-12 2011-11-01 Doty Scientific, Inc. High-temperature dual-source organic Rankine cycle with gas separations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1276841A1 (en) * 1985-06-26 1986-12-15 Одесский Технологический Институт Холодильной Промышленности Method for operation of thermal power plant
WO2005003628A1 (en) * 2003-07-04 2005-01-13 Katsushige Yamada Reheat/regenerative type thermal power plant using rankine cycle
RU2269014C2 (en) * 2004-03-05 2006-01-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Thermal power station
RU2278981C1 (en) * 2005-02-15 2006-06-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of operation of thermal power station
US8046999B2 (en) * 2007-10-12 2011-11-01 Doty Scientific, Inc. High-temperature dual-source organic Rankine cycle with gas separations

Similar Documents

Publication Publication Date Title
RU2570131C2 (en) Operating method of thermal power plant
RU2560606C1 (en) Heat power plant heat utilisation method
RU2560503C1 (en) Heat power plant operation mode
RU2560615C1 (en) Heat power plant operation mode
RU2562735C1 (en) Utilisation method of heat energy generated by thermal power plant
RU2560608C1 (en) Heat power plant operation mode
RU2562730C1 (en) Utilisation method of thermal energy generated by thermal power plant
RU2560505C1 (en) Heat power plant operation mode
RU2562745C1 (en) Utilisation method of heat energy generated by thermal power plant
RU2562733C1 (en) Utilisation method of heat energy generated by thermal power plant
RU2560624C1 (en) Heat power plant heat utilisation method
RU2560611C1 (en) Heat power plant operation mode
RU2562725C1 (en) Utilisation method of thermal energy generated by thermal power plant
RU2560617C1 (en) Heat power plant operation mode
RU2560607C1 (en) Heat power plant operation mode
RU2560621C1 (en) Heat power plant operation mode
RU2562743C1 (en) Method of recovery of heat energy generated by thermal power station
RU2562741C1 (en) Utilisation method of thermal energy generated by thermal power plant
RU2566249C1 (en) Method of heat recycling of thermal power plant
RU2560612C1 (en) Heat power plant operation mode
RU2562724C1 (en) Utilisation method of thermal energy generated by thermal power plant
RU2560605C1 (en) Heat power plant operation mode
RU2560622C1 (en) Method of utilisation of low-grade heat of oil supply system of steam turbine bearings of heat power plant
RU2570133C2 (en) Recovery of heat power generated by thermal electric power station
RU2562727C1 (en) Utilisation method of thermal energy generated by thermal power station

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160408