JP2014129593A - Self-lubricating metal composite material and self-lubricating metal-based composite material each excellent in terms of strength, lubricity, and abrasion resistance and methods for manufacturing the self-lubricating metal composite material and self-lubricating metal-based composite material - Google Patents

Self-lubricating metal composite material and self-lubricating metal-based composite material each excellent in terms of strength, lubricity, and abrasion resistance and methods for manufacturing the self-lubricating metal composite material and self-lubricating metal-based composite material Download PDF

Info

Publication number
JP2014129593A
JP2014129593A JP2013231403A JP2013231403A JP2014129593A JP 2014129593 A JP2014129593 A JP 2014129593A JP 2013231403 A JP2013231403 A JP 2013231403A JP 2013231403 A JP2013231403 A JP 2013231403A JP 2014129593 A JP2014129593 A JP 2014129593A
Authority
JP
Japan
Prior art keywords
composite material
metal
self
particles
solid lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013231403A
Other languages
Japanese (ja)
Other versions
JP6315761B2 (en
Inventor
Takashi Sato
尚 佐藤
Kazuaki Oguri
一晃 小栗
Motoko Yamada
素子 山田
Yasumasa Oya
泰正 大矢
Ryo Mizuno
亮 水野
Yoshimi Watanabe
義見 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2013231403A priority Critical patent/JP6315761B2/en
Publication of JP2014129593A publication Critical patent/JP2014129593A/en
Application granted granted Critical
Publication of JP6315761B2 publication Critical patent/JP6315761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-lubricating metal composite material and a self-lubricating metal-based composite material each having, while sustaining the strength of a metal matrix, a solid lubricant particle distribution suitable for improving the lubricating performance and abrasion resistance.SOLUTION: The provided metal composite material and metal-based composite material each comprise solid lubricant particles at a ratio of 1% to 10% with respect to the volume of a metal matrix. The metal composite material is manufactured by a mixed powder method using a centrifugal force in which a molten matrix is flowed into a mixed powder consisting of a matrix metal powder and solid lubricant particles, and the self-lubricating metal-based composite material of the present invention is manufactured by a mixed powder method using a centrifugal force in which a molten matrix is flowed into a mixed powder consisting of a matrix metal powder, hard particles, and solid lubricant particles.

Description

本発明は、潤滑性および耐摩耗性に優れ、軸受等に使用される金属との複合材料の製造方法に関するものである。 The present invention relates to a method for producing a composite material with a metal excellent in lubricity and wear resistance and used in a bearing or the like.

軸受における部品の一つに軸受保持器がある。この軸受保持器に用いられる素材には、プラスチックの他、軸受鋼とのなじみ性に優れた高力黄銅が挙げられる。ここで、高力黄銅とは、CuおよびZnを主成分とし、その中に1%程度のFe、AlおよびMnが添加された材料あり、CuおよびZnのみを成分として黄銅に比べて高い強度をもつ材料である。 One of the components in a bearing is a bearing cage. Examples of the material used for the bearing cage include plastic and high-strength brass excellent in compatibility with bearing steel. Here, high-strength brass is a material in which Cu and Zn are the main components and about 1% Fe, Al, and Mn are added therein, and it has higher strength than brass with only Cu and Zn as components. It has a material.

現在、高力黄銅性の軸受保持器は、遠心鋳造材の機械加工によって製造されている。ここで、遠心鋳造とは、円筒などの形状を有する鋳型に遠心力を印加し、その鋳型の内部に溶湯を流し込むことによって、巣などの鋳造欠陥のない鋳造材を製造することが可能な技術である。この高力黄銅で製造された軸受保持器は、優れた摩耗特性を必要とする分野に応用されている。特に風力発電の発電機用の軸受においては交換の困難さゆえ、軸受保持器の素材として用いられている高力黄銅には、既存の材料に比較して高い耐摩耗性が求められている。 Currently, high-strength brass bearing cages are manufactured by machining a centrifugal cast material. Here, centrifugal casting is a technology that can produce a casting material free of casting defects such as a nest by applying centrifugal force to a mold having a shape such as a cylinder and pouring molten metal into the mold. It is. Bearing cages made of this high-strength brass have been applied to fields that require excellent wear characteristics. In particular, high-strength brass used as a material for bearing cages is required to have higher wear resistance than existing materials because of the difficulty of replacement in bearings for wind power generators.

金属材料あるいは金属基複合材料の耐摩耗性や潤滑性を向上させる手段の一つにグラファイトや二硫化モリブデンのような固体潤滑物質を複合化させる方法がある。ここで、金属材料は硬質粒子を含まない金属材料のこと言い、金属基複合材料は金属母材中に硬質粒子を含む材料を言う。固体潤滑粒子であるグラファイトや二硫化モリブデンは六方晶型の層状結晶構造を有しているため高い潤滑性を持つ。それゆえ、これら固体潤滑粒子を金属母材と複合化することで、その金属材料と相手材料となる異種物質の間における摩擦摩耗において摩擦係数を低下させることにより、金属材料の耐摩耗性を向上させることが可能である。 One means for improving the wear resistance and lubricity of a metal material or metal matrix composite material is a method of compounding a solid lubricant such as graphite or molybdenum disulfide. Here, the metal material refers to a metal material that does not include hard particles, and the metal matrix composite refers to a material that includes hard particles in a metal base material. Solid lubricant particles such as graphite and molybdenum disulfide have high lubricity because they have a hexagonal layered crystal structure. Therefore, by combining these solid lubricant particles with a metal base material, the friction coefficient is reduced in the frictional wear between the metal material and the dissimilar material as the counterpart material, thereby improving the wear resistance of the metal material. It is possible to make it.

このような金属母材中に固体潤滑物質が複合化された自己潤滑性金属複合材料の製造手段として、特許文献1および特許文献2に示されている焼結法があげられる。特許文献1にて提案されている自己潤滑性金属複合材料は、質量%でNiが20〜40%、Pが0.1〜0.9%、Cが1〜8%を含有し、かつ5〜25%の気孔率を有する黒鉛分散型Cu基焼結合金である。さらに、特許文献2の発明は、金属母材中に質量%で0.01%〜40%の固体潤滑粒子を含む自己潤滑性焼結体である。しかしながら、この焼結法は、大きな部材の製造が困難であるという欠点を有する。さらに、材料内部における空孔の存在の存在により強度が低いという欠点を有する。 Examples of means for producing a self-lubricating metal composite material in which a solid lubricant is compounded in such a metal base material include the sintering methods disclosed in Patent Document 1 and Patent Document 2. The self-lubricating metal composite material proposed in Patent Document 1 contains 20% to 40% Ni, 0.1% to 0.9% P, 1% to 8% C, and 5% by mass. It is a graphite-dispersed Cu-based sintered alloy having a porosity of ˜25%. Furthermore, the invention of Patent Document 2 is a self-lubricating sintered body containing 0.01% to 40% solid lubricant particles in mass% in a metal base material. However, this sintering method has a drawback that it is difficult to manufacture a large member. Furthermore, it has the disadvantage of low strength due to the presence of vacancies inside the material.

金属母材中に微細な固相粒子を複合化させる方法の一つに、特許文献3に示されている遠心力混合粉末法がある。この技術では、まず母材金属粉末と複合化させたい固相粒子を混合して混合粉末1を作製する(図1参照)。そして、該混合粉末1を円筒形状金型2に投入した後、前記円筒形状金型2を回転させることによって該混合粉末1に遠心力を印加し、湯道3を通じて溶解炉で溶解された母材金属溶湯4を流し込む(図2参照)。凝固後、微細な固相粒子が母材金属に強固に固定され、母材金属中に微細な固相粒子が均一あるいは傾斜分散した鋳造材を得ることできる(図3参照)。本技術による製品の大きさは鋳型のサイズに依存するため、大きな部材を容易に製造することができる。また、材料内部の空孔の低減が可能であることから、該技術を応用することで前記問題点の解決を期待することができる。   One of the methods for compositing fine solid phase particles in a metal base material is a centrifugal force mixed powder method disclosed in Patent Document 3. In this technique, first, a mixed powder 1 is prepared by mixing solid phase particles to be combined with a base metal powder (see FIG. 1). Then, after the mixed powder 1 is put into the cylindrical mold 2, a centrifugal force is applied to the mixed powder 1 by rotating the cylindrical mold 2, and the mother melted in the melting furnace through the runner 3. The molten metal 4 is poured (see FIG. 2). After solidification, the fine solid phase particles are firmly fixed to the base metal, and a cast material in which the fine solid phase particles are uniformly or obliquely dispersed in the base metal can be obtained (see FIG. 3). Since the size of the product according to the present technology depends on the size of the mold, a large member can be easily manufactured. In addition, since the vacancies inside the material can be reduced, application of this technique can be expected to solve the above problems.

しかしながら、グラファイトなど多くの固体潤滑粒子の強度は、金属材料の強度に比べて低い場合が多い。そのため、特許文献2のように多量の固体潤滑粒子を金属母材中に複合化すると材料強度が低下することが考えられる。よって、金属材料において、金属母材の強度を低下させずに潤滑特性および耐摩耗性を向上させるような固体潤滑粒子の適切な分布を見出す必要があるが、まだ見出されていない。   However, the strength of many solid lubricating particles such as graphite is often lower than that of a metal material. Therefore, it is conceivable that the material strength decreases when a large amount of solid lubricant particles are compounded in a metal base material as in Patent Document 2. Therefore, it is necessary to find an appropriate distribution of solid lubricant particles in a metal material that improves the lubrication characteristics and wear resistance without reducing the strength of the metal matrix, but has not yet been found.

一方、非特許文献1では、金属基複合材料の耐摩耗性を改善する方法として硬質粒子の分布を変化させる方法が提案されている。しかし、この方法は、強度や耐摩耗性を改善することができるが、摩擦係数のような潤滑特性の改善が困難である。よって、金属基複合材料においても、強度、耐摩耗性および潤滑特性を両立するような材料設計が必要とされている。   On the other hand, Non-Patent Document 1 proposes a method of changing the distribution of hard particles as a method of improving the wear resistance of the metal matrix composite material. However, this method can improve strength and wear resistance, but it is difficult to improve lubrication characteristics such as a coefficient of friction. Therefore, a metal matrix composite material is also required to have a material design that achieves both strength, wear resistance and lubrication characteristics.

特開2002−180162JP 2002-180162 A 特開平11−241129JP-A-11-241129 特開2008−284589JP2008-284589

H. Sato, E. Miura−Fujiwara and Y. Watanabe:Japanese Journal of Applied Physics, Vol. 51 (2012) 01AK01(6pages)H. Sato, E .; Miura-Fujiwara and Y.M. Watanabe: Japan Journal of Applied Physics, Vol. 51 (2012) 01AK01 (6 pages)

本発明の課題は、上記点に鑑みて、金属母材の強度を保ちつつ、潤滑特性および耐摩耗性を向上させるために適した固体潤滑粒子分布を持つ自己潤滑性金属複合材料および自己潤滑性金属基複合材料を提供することである。   In view of the above points, an object of the present invention is to provide a self-lubricating metal composite material and a self-lubricating material having a solid lubricant particle distribution suitable for improving lubrication characteristics and wear resistance while maintaining the strength of the metal base material. It is to provide a metal matrix composite.

本発明者らは、遠心力混合粉末法にてCu等の金属あるいは金属基母材に固体潤滑粒子を適切な体積率で配合して複合化することで、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の自己潤滑性金属複合材料および自己潤滑性金属基複合材料、ならびにそれら金属複合材料および金属基複合材料の製造方法が提供される。 The present inventors have found that the above problem can be solved by compounding solid lubricant particles into a metal such as Cu or a metal base matrix at an appropriate volume ratio by a centrifugal force mixing powder method and combining them. It was. That is, according to the present invention, there are provided the following self-lubricating metal composite material and self-lubricating metal-based composite material, and methods for producing these metal composite material and metal-based composite material.

[1]金属母材に対する固体潤滑粒子が体積比で1vol%〜10vol%である、金属複合材料および金属基複合材料。 [1] A metal composite material and a metal matrix composite material in which the solid lubricant particles with respect to the metal base material are 1 vol% to 10 vol% in volume ratio.

[2]前記金属母材がCuもしくはCu合金であり、前記固体潤滑粒子がグラファイトである、前記[1]に記載の金属複合材料および金属基複合材料。 [2] The metal composite material and metal matrix composite material according to [1], wherein the metal base material is Cu or a Cu alloy, and the solid lubricant particles are graphite.

[3]前記金属基複合材料が硬質粒子を含む、前記[1]または[2]に記載の金属基複合材料。 [3] The metal matrix composite material according to [1] or [2], wherein the metal matrix composite material includes hard particles.

[4]固体潤滑粒子が摺動面近傍により多く傾斜分散した、前記[1]〜[3]のいずれかに記載の金属複合材料および金属基複合材料。 [4] The metal composite material and metal matrix composite material according to any one of [1] to [3], wherein the solid lubricant particles are more inclined and dispersed near the sliding surface.

[5]母材金属粉末および固体潤滑物質を混合して混合粉末を作製し、該混合粉末を金型に投入した後、該金型を回転させて該混合粉末に遠心力を作用させながら、鋳造用溶解炉で溶融した母材溶融金属を流し込み、該母材溶融金属の持つ熱により前記母材金属粉末を溶融させ、凝固させる、固体潤滑物質が金属母材に分散した金属複合材料の製造方法。 [5] A base metal powder and a solid lubricant are mixed to prepare a mixed powder, and after the mixed powder is put into a mold, the mold is rotated and a centrifugal force is applied to the mixed powder. Production of a metal composite material in which a solid lubricant is dispersed in a metal base material, in which a base metal molten metal melted in a melting furnace for casting is poured, and the base metal powder is melted and solidified by heat of the base metal molten metal. Method.

[6][5]に記載の混合粉末がさらに硬質粒子を含む金属基複合材料の製造方法。
[6] A method for producing a metal matrix composite material, wherein the mixed powder according to [5] further contains hard particles.

遠心力混合粉末法における母材金属粉末と固相粒子粉末の混合粉末を回転中の円筒形状金型に投入する方法を模式的に描いた図である。It is the figure which drawn typically the method of throwing the mixed powder of the base metal metal powder and solid phase particle powder in the rotating cylindrical mold in the centrifugal powder mixing method. 遠心力混合粉末法における母材金属溶湯を回転中の円筒形状金型に流し込む方法を模式的に描いた図である。It is the figure which drawn typically the method of pouring the base metal molten metal in the rotating cylindrical shape metal mold | die in the centrifugal force mixed powder method. 遠心力混合粉末法にて作製した円筒形状複合材料を模式的に描いた図である。It is the figure which drew typically the cylindrical composite material produced with the centrifugal force mixed powder method. 摺動面近傍に固体潤滑粒子がより多く傾斜分散した自己潤滑性金属複合材料を模式的に描いた図である。FIG. 3 is a diagram schematically illustrating a self-lubricating metal composite material in which more solid lubricant particles are inclined and dispersed in the vicinity of a sliding surface. 摺動面近傍に固体潤滑粒子がより多く傾斜分散した自己潤滑性金属基複合材料を模式的に描いた図である。FIG. 3 is a diagram schematically illustrating a self-lubricating metal-based composite material in which more solid lubricant particles are inclined and dispersed in the vicinity of a sliding surface. 遠心力にて棒状複合材料を作製する際に用いた真空遠心鋳造装置を模式的に描いた図である。It is the figure which drawn typically the vacuum centrifugal casting apparatus used when producing a rod-shaped composite material with centrifugal force. 本発明の第1実施例において、遠心力混合粉末法によって製造したCuとグラファイト粒子から構成されるCu複合材料の断面の走査型電子顕微鏡の二次電子像である。In 1st Example of this invention, it is a secondary electron image of the scanning electron microscope of the cross section of Cu composite material comprised by Cu and a graphite particle manufactured by the centrifugal force mixed powder method. 本発明の第1実施例において、遠心力混合粉末法によって製造したCuとグラファイト粒子から構成されるCu複合材料の断面の走査型電子顕微鏡の反射電子組成像である。In 1st Example of this invention, it is a reflection electron composition image of the scanning electron microscope of the cross section of Cu composite material comprised by Cu and a graphite particle manufactured by the centrifugal force mixed powder method. 本発明の第1実施例において、遠心力混合粉末法によって製造したCuとグラファイト粒子から構成されるCu複合材料および純Cu鋳造材の摩擦摩耗試験中における摩擦係数の変化を示したグラフである。In 1st Example of this invention, it is the graph which showed the change of the friction coefficient in the friction wear test of Cu composite material and the pure Cu casting material which are comprised by Cu and a graphite particle manufactured by the centrifugal force mixed powder method. 本発明の第1実施例において、遠心力混合粉末法によって製造したCuとグラファイト粒子から構成されるCu複合材料および純Cu鋳造材の摩擦摩耗試験後における摩耗痕表面を示した光学顕微鏡写真である。In 1st Example of this invention, it is the optical microscope picture which showed the abrasion trace surface after the friction abrasion test of Cu composite material and the pure Cu casting material which consist of Cu and a graphite particle manufactured by the centrifugal force mixed powder method . 本発明の第1実施例において、Cu複合材料の平均摩擦係数とグラファイト粒子の母材体積比との関係を示すグラフである。In 1st Example of this invention, it is a graph which shows the relationship between the average friction coefficient of Cu composite material, and the base material volume ratio of a graphite particle. 本発明の第1実施例において、摩擦摩耗によって生じたCu複合材料の摩耗痕断面積とグラファイト粒子の母材体積比との関係を示すグラフである。In 1st Example of this invention, it is a graph which shows the relationship between the wear trace cross-sectional area of Cu composite material which arose by friction abrasion, and the base material volume ratio of a graphite particle. 本発明の第2実施例において、遠心力混合粉末法にて作製したCu基複合材料の組織を模式的に描いた図である。In 2nd Example of this invention, it is the figure which drawn typically the structure | tissue of the Cu group composite material produced with the centrifugal force mixed powder method. 本発明の第2実施例において、純Cu母材中に母材体積比が15%のSiC粒子および母材体積比2%のグラファイト粒子が複合化されたCu基複合材料における断面微細組織を示す電子顕微鏡写真である。In the second embodiment of the present invention, a cross-sectional microstructure in a Cu-based composite material in which SiC particles having a base material volume ratio of 15% and graphite particles having a base material volume ratio of 2% are combined in a pure Cu base material is shown. It is an electron micrograph. 本発明の第2実施例において、Cu基複合材料の平均摩擦係数とグラファイト粒子の母材体積比との関係を示すグラフである。In 2nd Example of this invention, it is a graph which shows the relationship between the average friction coefficient of Cu base composite material, and the base material volume ratio of a graphite particle. 本発明の第2実施例において、摩擦摩耗によって損失したCu基複合材料の体積とグラファイト粒子の母材体積比との関係を示すグラフである。In 2nd Example of this invention, it is a graph which shows the relationship between the volume of the Cu base composite material lost by friction abrasion, and the base material volume ratio of a graphite particle. 本発明の第2実施例において、平均粒径が150μmのSiC粒子を用いたCu基複合材料の0.2%耐力とグラファイト粒子の母材体積比との関係を示している。The second embodiment of the present invention shows the relationship between the 0.2% proof stress of the Cu-based composite material using SiC particles having an average particle diameter of 150 μm and the base material volume ratio of the graphite particles.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明の金属複合材料および金属基複合材料において、金属母材に対する固体潤滑粒子が体積比で1%〜15%であることが好ましく、1%〜10vol%がより好ましい。前記金属母材はCuもしくはCu合金が好ましい。前記固体潤滑粒子はグラファイトあるいは二硫化モリブデンであることが好ましく、グラファイトがより好ましい。金属基複合材料としては、金属母材と固体潤滑材粒子の他に、硬質粒子を含み、硬質粒子としてはSiC、TiC、CBN、AlN、ダイヤモンド等が好ましいが、SiCが特に好ましい。SiCの平均粒子径は50μm以下が好ましい。SiCの母材金属に対する体積比は1〜30%が好ましい。本発明の金属複合材料および金属基複合材料において、固体潤滑粒子が摺動面近傍により多く傾斜分散していることが好ましい(図4および図5参照)。本発明の金属複合材料は、母材金属粉末および固体潤滑粒子からなる混合粉末に母材溶湯を流し込み、遠心力を利用した混合粉末法にて作製されることが好ましい。また、本発明の金属基複合材料は、母材金属粉末、硬質粒子および固体潤滑粒子からなる混合粉末に母材溶湯を流し込み、遠心力を利用した混合粉末法にて作製されることが好ましい。 In the metal composite material and the metal matrix composite material of the present invention, the solid lubricating particles with respect to the metal base material are preferably 1% to 15% by volume, more preferably 1% to 10% by volume. The metal base material is preferably Cu or a Cu alloy. The solid lubricating particles are preferably graphite or molybdenum disulfide, and more preferably graphite. The metal matrix composite material includes hard particles in addition to the metal base material and solid lubricant particles, and the hard particles are preferably SiC, TiC, CBN, AlN, diamond, etc., but SiC is particularly preferable. The average particle diameter of SiC is preferably 50 μm or less. The volume ratio of SiC to the base metal is preferably 1 to 30%. In the metal composite material and the metal matrix composite material of the present invention, it is preferable that the solid lubricant particles are more inclined and dispersed near the sliding surface (see FIGS. 4 and 5). The metal composite material of the present invention is preferably produced by a mixed powder method using centrifugal force by pouring a molten metal into a mixed powder composed of a base metal powder and solid lubricating particles. In addition, the metal matrix composite material of the present invention is preferably produced by a mixed powder method using centrifugal force by pouring a molten metal into a mixed powder composed of a base metal powder, hard particles and solid lubricant particles.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1:自己潤滑性金属複合材料の作製と評価)
純Cu母材中にグラファイト粒子が複合化されたCu複合材料を製造する。母材金属粉末である純Cu粉末に対して平均粒子径50ミクロン(μm)のグラファイト粉末を体積比(グラファイト粉末/純Cu粉末)で25%〜55%添加した混合粉末を作製し、該混合粉末を図6に示す真空遠心鋳造装置の鋳造用鋳型10に投入した。また、母材金属11である純Cuインゴット120gを該真空遠心鋳造装置の坩堝に装填し、真空中にて該純Cuインゴットを溶解温度1150℃〜1190℃に加熱することで母材溶融純Cuとした。そして、該鋳造用鋳型および母材溶融純Cuを回転させて重力倍数32G(重力倍数1Gが重力場に相当)の遠心力を印加して、該母材溶融純Cuを該鋳造用鋳型10に流し込んだ。この製造工程により、遠心力方向にグラファイト粒子14が傾斜分散したCu複合材料料を得た。その結果、該Cu複合材料料における遠心力方向の先端部には、グラファイト粒子が体積比で0%〜24%分散して複合化される。純Cu粉末7.58gと平均粒子径50μmのグラファイト粉末1.03gからなる混合粉末(グラファイト粉末の、純Cu粉末に対する体積比は54%)を作製し、該混合粉末に純Cuインゴット120gを1170℃に加熱して溶融させ、重力倍数32G(重力倍数1Gが重力場に相当)の遠心力を印加して、該溶融純Cuを流し込むことにより、純Cu母相中にグラファイト粒子が分散して構成されたCu複合材料を得た。図7は、該Cu複合材料(純Cu母材に対するグラファイト粒子の体積比が24%)における断面の走査型電子顕微鏡の二次電子像であり、グラファイト粒子が純Cu母相に複合化されている様子が確認できる。また、図8は、Cu基鋳造材における断面の走査型電子顕微鏡の反射電子組成像であり、この写真からも純Cu母相にグラファイト粒子が複合化されている様子が分かる。以上の結果より、本技術によって純Cu母相にグラファイト粒子が分散して構成されたCu複合材料の製造が可能であることが分かる。
(Example 1: Preparation and evaluation of self-lubricating metal composite material)
A Cu composite material in which graphite particles are combined in a pure Cu base material is manufactured. A mixed powder is prepared by adding 25% to 55% of graphite powder having an average particle diameter of 50 microns (μm) to the pure Cu powder as the base metal powder in a volume ratio (graphite powder / pure Cu powder). The powder was put into a casting mold 10 of a vacuum centrifugal casting apparatus shown in FIG. In addition, 120 g of pure Cu ingot which is the base metal 11 is loaded into the crucible of the vacuum centrifugal casting apparatus, and the pure Cu ingot is heated to a melting temperature of 1150 ° C. to 1190 ° C. in a vacuum to thereby melt the base material molten pure Cu. It was. Then, the casting mold and the base material molten pure Cu are rotated and a centrifugal force of gravity multiple 32G (gravity multiple 1G corresponds to the gravitational field) is applied, so that the base material molten pure Cu is applied to the casting mold 10. Poured. By this manufacturing process, a Cu composite material in which the graphite particles 14 are inclined and dispersed in the centrifugal force direction was obtained. As a result, graphite particles are dispersed in a volume ratio of 0% to 24% and compounded at the tip in the centrifugal force direction of the Cu composite material. A mixed powder composed of 7.58 g of pure Cu powder and 1.03 g of graphite powder having an average particle diameter of 50 μm was prepared (volume ratio of graphite powder to pure Cu powder was 54%), and 120 g of pure Cu ingot was added to the mixed powder. When the molten pure Cu is poured by applying a centrifugal force of gravity multiple of 32G (gravity multiple of 1G corresponds to the gravitational field) by heating to ° C, the graphite particles are dispersed in the pure Cu matrix. A structured Cu composite material was obtained. FIG. 7 is a secondary electron image of a cross-sectional scanning electron microscope in the Cu composite material (volume ratio of graphite particles to pure Cu base material is 24%). Graphite particles are composited with a pure Cu base phase. You can see how it is. FIG. 8 is a reflection electron composition image of a scanning electron microscope in a cross section of a Cu-based cast material, and it can be seen from this photograph that graphite particles are combined with a pure Cu matrix. From the above results, it can be seen that the present technology can produce a Cu composite material in which graphite particles are dispersed in a pure Cu matrix.

前記Cu複合材料と、同じ真空遠心鋳造装置にて純Cuインゴットを溶解して得られた純Cu鋳造材に対して、ボール・オン・ディスク式摩擦摩耗試験機にて摩擦摩耗試験を行った。該摩擦摩耗試験にて用いた相手材は球状の軸受鋼(JIS:SUJ2)であり、荷重は800gとした。図9は、摩擦摩耗試験中における摩擦係数の変化を示したグラフである。Cu複合材料の摩擦係数は、純Cu鋳造材の摩擦係数に比べて小さい。さらに、該Cu複合材料の摩擦摩耗試験中に生じる音は、該純Cu鋳造材に比べて小さいことも分かった。また、図10は、該Cu複合材料の摩耗痕表面および該純Cu鋳造材の摩耗痕表面の組織を示す光学顕微鏡写真である。これより、Cu複合材料の摩耗痕の幅は、該純Cu鋳造材の摩耗痕の幅に比べて小さく、グラファイト粒子との複合化によって耐摩耗性が向上することも分かった。 The Cu composite material and a pure Cu cast material obtained by melting a pure Cu ingot using the same vacuum centrifugal casting apparatus were subjected to a friction wear test using a ball-on-disk type friction wear tester. The mating material used in the friction and wear test was spherical bearing steel (JIS: SUJ2), and the load was 800 g. FIG. 9 is a graph showing changes in the coefficient of friction during the friction and wear test. The friction coefficient of the Cu composite material is smaller than that of the pure Cu casting material. Furthermore, it was also found that the sound generated during the frictional wear test of the Cu composite material was smaller than that of the pure Cu cast material. FIG. 10 is an optical micrograph showing the structures of the wear scar surface of the Cu composite material and the wear scar surface of the pure Cu cast material. From this, it was also found that the wear scar width of the Cu composite material is smaller than the wear scar width of the pure Cu cast material, and that the wear resistance is improved by combining with the graphite particles.

次に、平均摩擦係数に対して、グラファイト粒子の純Cu母材との体積比の関係を調べた。その結果を、図11に示す。グラファイト粒子を添加することによってCu複合材料の平均摩擦係数は低下する。さらに、Cu母材に対するグラファイト粒子の体積比が15%を超えると平均摩擦係数は変化しない。図12は、摩擦摩耗によってCu複合材料に生じた摩耗痕の断面積とCu母材に対するグラファイト粒子の体積比との関係を示すグラフである。このグラフにおいて、摩耗痕の断面積が増加することは、耐摩耗性に低下していることを意味する。Cu複合材料の耐摩耗性は、グラファイト粒子の添加にて向上するが、Cu母材に対するグラファイト粒子の体積比が15%を超えると変化しない。グラファイトは純Cuに比べて強度が小さいため、該実施例において、強度、潤滑特性および耐摩耗性を両立するために適したCu母材に対するグラファイト粒子の体積比は1%〜15%であり、1%〜10%がより好ましい。 Next, the relationship of the volume ratio of the graphite particles to the pure Cu base material was examined with respect to the average friction coefficient. The result is shown in FIG. By adding the graphite particles, the average friction coefficient of the Cu composite material is lowered. Furthermore, when the volume ratio of the graphite particles to the Cu base material exceeds 15%, the average friction coefficient does not change. FIG. 12 is a graph showing the relationship between the cross-sectional area of wear marks generated in the Cu composite material by frictional wear and the volume ratio of the graphite particles to the Cu base material. In this graph, an increase in the cross-sectional area of the wear scar means a decrease in wear resistance. The wear resistance of the Cu composite material is improved by adding graphite particles, but does not change when the volume ratio of the graphite particles to the Cu base material exceeds 15%. Since graphite has a lower strength than pure Cu, in this example, the volume ratio of the graphite particles to the Cu base material suitable for achieving both strength, lubricating properties and wear resistance is 1% to 15%. 1% to 10% is more preferable.

(実施例2:自己潤滑性金属基複合材料の作製と評価)
純Cu母材中に、硬質粒子としてSiC粒子、さらに固体潤滑粒子としてグラファイト粒子が複合化されたCu基複合材料を遠心力混合粉末法によって製造した。母材金属粉末である純Cu粉末に平均粒子径50μmのグラファイト粉末を母材金属粉末体積比で5%〜20%、さらに平均粒子径150μmと40μmの2種類のSiC粉末を同体積比で25%混合した混合粉末を作製し、該混合粉末を図6に示す真空遠心鋳造装置の鋳造用鋳型10に投入した。また、母材金属11である純Cuインゴット100gを該真空遠心鋳造装置の坩堝に装填し、その後、真空中にて該純Cuインゴットを溶解温度1250℃〜1300℃で加熱することで母材溶融純Cuとした。そして、該鋳造用鋳型10および母材溶融純Cuを回転させて重力倍数35Gの遠心力を印加して、該母材溶融純Cuを該鋳造用鋳型10に流し込み、図13の模式図のように遠心力方向にグラファイト粒子14およびSiC粒子16が傾斜分散したCu基複合材料を得た。平均粒径150μmのSiC粒子を用いた場合、純Cu母材中に母材体積比で15%〜19%のSiC粒子、および母材体積比で1%〜5%のグラファイト粒子が複合化されたCu基複合材料を得た。一方、平均粒径40μmのSiC粒子を用いて作製した場合、純Cu母材中に母材体積比で6%〜10%のSiC粒子、および母材体積比で1%〜3%のグラファイト粒子が複合化されたCu基複合材料を得た。図14は、純Cu母材中に母材体積比で15%のSiC粒子(平均粒子径150μm)および2%のグラファイト粒子が複合化されたCu基複合材料における断面組織の走査型電子顕微鏡の反射電子組成像である。これより、遠心力混合粉末法によってCu母材中にSiC粒子およびグラファイト粒子の両方が複合化されている。
(Example 2: Production and evaluation of self-lubricating metal matrix composite)
A Cu-based composite material in which SiC particles as hard particles and graphite particles as solid lubricant particles were combined in a pure Cu base material was produced by a centrifugal mixed powder method. A pure Cu powder, which is a base metal powder, is a graphite powder having an average particle diameter of 50 μm in a volume ratio of 5% to 20%, and two types of SiC powders having an average particle diameter of 150 μm and 40 μm in the same volume ratio. % Mixed powder was prepared, and the mixed powder was put into a casting mold 10 of a vacuum centrifugal casting apparatus shown in FIG. In addition, 100 g of pure Cu ingot which is the base metal 11 is loaded into the crucible of the vacuum centrifugal casting apparatus, and then the pure Cu ingot is heated at a melting temperature of 1250 ° C. to 1300 ° C. in a vacuum to melt the base material. Pure Cu was used. Then, the casting mold 10 and the base material molten pure Cu are rotated and a centrifugal force having a gravity multiple of 35 G is applied to flow the base material molten pure Cu into the casting mold 10, as shown in the schematic diagram of FIG. 13. Thus, a Cu-based composite material in which graphite particles 14 and SiC particles 16 were inclined and dispersed in the direction of centrifugal force was obtained. When SiC particles having an average particle diameter of 150 μm are used, SiC particles having a base material volume ratio of 15% to 19% and graphite particles having a base material volume ratio of 1% to 5% are combined in a pure Cu base material. A Cu-based composite material was obtained. On the other hand, when produced using SiC particles having an average particle size of 40 μm, SiC particles having a volume ratio of 6% to 10% and graphite particles having a volume ratio of 1% to 3% in a pure Cu matrix. A Cu-based composite material having a composite was obtained. FIG. 14 shows a scanning electron microscope of a cross-sectional structure of a Cu-based composite material in which SiC particles (average particle diameter 150 μm) and 2% graphite particles are combined in a pure Cu base material in a volume ratio of 15%. It is a reflection electron composition image. Thus, both SiC particles and graphite particles are combined in the Cu base material by the centrifugal force mixed powder method.

前記Cu基複合材料に対して、ボール・オン・ディスク式摩擦摩耗試験機にて、実施例1と同様に摩擦摩耗試験を行った。該摩擦摩耗試験にて用いた相手材は、球状の軸受鋼(JIS:SUJ2)であり、荷重は800gとした。図15は、Cu基複合材料の平均摩擦係数とグラファイト粒子の母材体積比との関係を示すグラフである。平均粒径150μmのSiC粒子を用いた場合、グラファイト粒子の添加が母材体積比1%を超えるまでCu基複合材料の平均摩擦係数は低下していない。これは、SiC粒子の平均粒径がグラファイト粒子の平均粒径に比べて大きいためである。一方で、グラファイト粒子よりも小さい平均粒径40μmのSiC粒子を用いたCu基複合材料では、グラファイト粒子を添加することでCu基複合材料の平均摩擦係数が低下した。さらに、平均粒径が40μmのSiC粒子を用いたCu基複合材料において、グラファイト粒子の母材体積比が1%を超えると平均摩擦係数は変化しない。図16は、摩擦摩耗によって損失したCu基複合材料の体積とグラファイト粒子の母材体積比との関係を示すグラフである。摩擦摩耗によって損失する体積が増加することは、耐摩耗性に劣ることを意味する。このグラフから、グラファイト粒子の体積比が1%に到達するまで、Cu基複合材料の耐摩耗性はグラファイト粒子の体積率の増加に伴って向上している。しかし、Cu基複合材料の耐摩耗性はグラファイト粒子の母材体積比が1%を超えると飽和する。図17は、平均粒径が150μmのSiC粒子を用いたCu基複合材料の0.2%耐力とグラファイト粒子の母材体積比との関係を示している。Cu基複合材料の0.2%耐力は、グラファイト粒子の体積率の増加に伴い低下しているが、グラファイト粒子の母材体積比が2%を超えるとより顕著に低下している。よって、本Cu基複合材料において、強度、耐摩耗性および潤滑特性を両立するためには、グラファイト粒子の母材体積比は1%〜3%が好ましく、1%〜2%がより好ましい。 The Cu-based composite material was subjected to a frictional wear test in the same manner as in Example 1 using a ball-on-disk frictional wear tester. The counterpart material used in the frictional wear test was spherical bearing steel (JIS: SUJ2), and the load was 800 g. FIG. 15 is a graph showing the relationship between the average friction coefficient of the Cu-based composite material and the base material volume ratio of the graphite particles. When SiC particles having an average particle diameter of 150 μm are used, the average friction coefficient of the Cu-based composite material does not decrease until the addition of graphite particles exceeds 1% of the base material volume ratio. This is because the average particle size of SiC particles is larger than the average particle size of graphite particles. On the other hand, in the Cu-based composite material using SiC particles having an average particle diameter of 40 μm smaller than the graphite particles, the average friction coefficient of the Cu-based composite material was reduced by adding the graphite particles. Further, in the Cu-based composite material using SiC particles having an average particle diameter of 40 μm, the average friction coefficient does not change when the base material volume ratio of the graphite particles exceeds 1%. FIG. 16 is a graph showing the relationship between the volume of the Cu-based composite material lost due to frictional wear and the base material volume ratio of graphite particles. An increase in volume lost due to frictional wear means poor wear resistance. From this graph, until the volume ratio of the graphite particles reaches 1%, the wear resistance of the Cu-based composite material is improved as the volume ratio of the graphite particles increases. However, the wear resistance of the Cu-based composite material is saturated when the base material volume ratio of the graphite particles exceeds 1%. FIG. 17 shows the relationship between the 0.2% proof stress of the Cu-based composite material using SiC particles having an average particle diameter of 150 μm and the base material volume ratio of the graphite particles. The 0.2% yield strength of the Cu-based composite material decreases with an increase in the volume fraction of the graphite particles, but decreases more significantly when the base material volume ratio of the graphite particles exceeds 2%. Therefore, in the present Cu-based composite material, the base material volume ratio of the graphite particles is preferably 1% to 3% and more preferably 1% to 2% in order to achieve both strength, wear resistance, and lubrication characteristics.

本発明は、軸受など摺動部を有する機械部品や耐久性が高くかつ低いスラスト力での加工が可能なメタルボンド砥石などに利用できる。
INDUSTRIAL APPLICABILITY The present invention can be used for a machine part having a sliding part such as a bearing, a metal bond grindstone having high durability and capable of processing with a low thrust force.

Claims (6)

金属母材に対する固体潤滑粒子が体積比で1vol%〜10vol%である、金属複合材料および金属基複合材料。 A metal composite material and a metal matrix composite material, wherein the solid lubricant particles relative to the metal base material are 1 vol% to 10 vol% in volume ratio. 前記金属母材がCuもしくはCu合金であり、前記固体潤滑粒子がグラファイトである、請求項1に記載の金属複合材料および金属基複合材料。 The metal composite material and the metal matrix composite material according to claim 1, wherein the metal base material is Cu or a Cu alloy, and the solid lubricant particles are graphite. 前記金属基複合材料が硬質粒子を含む、請求項1または2に記載の金属基複合材料。 The metal matrix composite material according to claim 1, wherein the metal matrix composite material includes hard particles. 固体潤滑粒子が摺動面近傍により多く傾斜分散した、請求項1〜3のいずれかに記載の金属複合材料および金属基複合材料。 The metal composite material and the metal matrix composite material according to any one of claims 1 to 3, wherein the solid lubricant particles are more inclined and dispersed near the sliding surface. 母材金属粉末および固体潤滑物質を混合して混合粉末を作製し、該混合粉末を金型に投入した後、該金型を回転させて該混合粉末に遠心力を作用させながら、鋳造用溶解炉で溶融した母材溶融金属を流し込み、該母材溶融金属の持つ熱により前記母材金属粉末を溶融させ、凝固させる、固体潤滑物質が金属母材に分散した金属複合材料の製造方法。 A base metal powder and a solid lubricant are mixed to prepare a mixed powder. After the mixed powder is put into a mold, the mold is rotated and centrifugal force is applied to the mixed powder to dissolve for casting. A method for producing a metal composite material in which a solid lubricant is dispersed in a metal base material, in which a base metal molten metal melted in a furnace is poured, and the base metal powder is melted and solidified by heat of the base metal melt. 請求項5に記載の混合粉末がさらに硬質粒子を含む金属基複合材料の製造方法。
The method for producing a metal matrix composite material, wherein the mixed powder according to claim 5 further contains hard particles.
JP2013231403A 2012-11-30 2013-11-07 Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material Active JP6315761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013231403A JP6315761B2 (en) 2012-11-30 2013-11-07 Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012262576 2012-11-30
JP2012262576 2012-11-30
JP2013231403A JP6315761B2 (en) 2012-11-30 2013-11-07 Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material

Publications (2)

Publication Number Publication Date
JP2014129593A true JP2014129593A (en) 2014-07-10
JP6315761B2 JP6315761B2 (en) 2018-04-25

Family

ID=51408210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013231403A Active JP6315761B2 (en) 2012-11-30 2013-11-07 Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material

Country Status (1)

Country Link
JP (1) JP6315761B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256168A (en) * 2015-10-26 2016-01-20 三峡大学 Copper-based graphite self-lubricating composite material and preparing method thereof
CN106756425A (en) * 2016-11-24 2017-05-31 江苏雨燕模业科技有限公司 A kind of Vehicular inner decoration member mold material and preparation method thereof
CN106987741A (en) * 2017-03-01 2017-07-28 东莞市佳乾新材料科技有限公司 A kind of method for preparing powder metallurgy of metal-based compound electronics encapsulating material
JP2023503873A (en) * 2020-12-31 2023-02-01 北京科技大学 Systems and methods for adjusting melt flow rate in multi-component radially functionally graded material equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293621A (en) * 1976-02-02 1977-08-06 Hitachi Ltd Production of copper alloy containing graphite
JPS5641348A (en) * 1979-09-13 1981-04-18 Hitachi Chem Co Ltd Metal-graphite-ceramic composite
JPS5641341A (en) * 1979-09-13 1981-04-18 Hitachi Chem Co Ltd Manufacture of high-strength, high-lubricity sliding member
JPH11293368A (en) * 1998-04-07 1999-10-26 Daido Metal Co Ltd Copper sliding alloy
JP2008284589A (en) * 2007-05-17 2008-11-27 Nagoya Institute Of Technology Manufacturing method of fine-grained composite material with fine-grained powder complexed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293621A (en) * 1976-02-02 1977-08-06 Hitachi Ltd Production of copper alloy containing graphite
JPS5641348A (en) * 1979-09-13 1981-04-18 Hitachi Chem Co Ltd Metal-graphite-ceramic composite
JPS5641341A (en) * 1979-09-13 1981-04-18 Hitachi Chem Co Ltd Manufacture of high-strength, high-lubricity sliding member
JPH11293368A (en) * 1998-04-07 1999-10-26 Daido Metal Co Ltd Copper sliding alloy
JP2008284589A (en) * 2007-05-17 2008-11-27 Nagoya Institute Of Technology Manufacturing method of fine-grained composite material with fine-grained powder complexed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
渡辺義見、佐藤 尚: "遠心力混合粉末法による傾斜機能材料製造とその工業的応用", 粉体および粉末冶金, vol. 第59巻、第7号, JPN7017003169, JP, pages 97 - 404 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256168A (en) * 2015-10-26 2016-01-20 三峡大学 Copper-based graphite self-lubricating composite material and preparing method thereof
CN106756425A (en) * 2016-11-24 2017-05-31 江苏雨燕模业科技有限公司 A kind of Vehicular inner decoration member mold material and preparation method thereof
CN106987741A (en) * 2017-03-01 2017-07-28 东莞市佳乾新材料科技有限公司 A kind of method for preparing powder metallurgy of metal-based compound electronics encapsulating material
JP2023503873A (en) * 2020-12-31 2023-02-01 北京科技大学 Systems and methods for adjusting melt flow rate in multi-component radially functionally graded material equipment

Also Published As

Publication number Publication date
JP6315761B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP5143827B2 (en) Method for producing Pb-free copper alloy sliding material
JP6315761B2 (en) Self-lubricating metal composite material and self-lubricating metal matrix composite material excellent in strength, lubricity and wear resistance, and method for producing the metal composite material and metal matrix composite material
Rajan et al. Centrifugal casting of functionally graded aluminium matrix composite components
WO2014157089A1 (en) Copper alloy powder, sintered copper alloy body and brake lining for use in high-speed railway
Udaya et al. Adhesive wear behaviour of aluminium alloy/fly ash composites
Venkatachalam et al. Mechanical behaviour of aluminium alloy reinforced with SiC/fly ash/basalt composite for brake rotor
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
Juszczyk et al. Tribological properties of copper-based composites with lubricating phase particles
JP6831093B2 (en) Mg-based composite material and its manufacturing method and sliding members
CN110952044A (en) Enhanced copper-based composite material and preparation method and application thereof
Ayyappadas et al. An investigation on tribological and electrical behaviour of conventional and microwave processed copper-graphite composites
Alrasheedi Facile synthesis and characterization of aluminum/graphene nanosheets composites
Mallikarjuna et al. Microstructure and microhardness of carbon nanotube-silicon carbide/copper hybrid nanocomposite developed by powder metallurgy
JP4121733B2 (en) Method for producing graphite-containing aluminum alloy and sliding member
JP2016102235A (en) Metal matrix self-lubrication composite material excellent in strength and friction wear properties and method for producing the same
CN104328368A (en) Self-lubricating and wear-resistant copper-based composite material and preparation method thereof
Nayak et al. Processing and Characterization of Cu–10Sn/ZrO2 Alloys Processed Via Stir Casting Technique: Mechanical Properties and Wear Behavior Studies
JP7266269B2 (en) Mg-based sintered composite material, manufacturing method thereof, and sliding member
JP6312189B2 (en) Sliding member and manufacturing method of sliding member
WO2012157514A1 (en) Metal-carbon composite material and method for producing same
Paidpilli et al. Sintering Response of Aluminum 6061-TiB 2 Composite: Effect of Prealloyed and Premixed Matrix
RU2585588C1 (en) COMPOSITE MATERIAL BASED ON ALLOYS OF Sn-Sb-Cu AND PREPARATION METHOD THEREOF
Gu et al. Microstructures and properties of direct laser sintered tungsten carbide (WC) particle reinforced Cu matrix composites with RE–Si–Fe addition: A comparative study
JP5642414B2 (en) Side plate made of sintered sliding member fixed to the base metal
Watanabe et al. Fabrication of Al/diamond particles functionally graded materials by centrifugal sintered-casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6315761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150