JP2014128913A - Method for manufacturing double-sided metal-clad laminate - Google Patents

Method for manufacturing double-sided metal-clad laminate Download PDF

Info

Publication number
JP2014128913A
JP2014128913A JP2012287688A JP2012287688A JP2014128913A JP 2014128913 A JP2014128913 A JP 2014128913A JP 2012287688 A JP2012287688 A JP 2012287688A JP 2012287688 A JP2012287688 A JP 2012287688A JP 2014128913 A JP2014128913 A JP 2014128913A
Authority
JP
Japan
Prior art keywords
film
metal
double
clad laminate
sided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012287688A
Other languages
Japanese (ja)
Other versions
JP6031352B2 (en
Inventor
Shoichi Ii
正一 井伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2012287688A priority Critical patent/JP6031352B2/en
Publication of JP2014128913A publication Critical patent/JP2014128913A/en
Application granted granted Critical
Publication of JP6031352B2 publication Critical patent/JP6031352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a double-sided metal-clad laminate that realizes the manufacture of a double-sided metal-clad laminate having excellent interlayer adhesion between an insulation film and a metal foil and having no variations in adhesive strength with industrially good productivity while suppressing the occurence of appearance defects such as wrinkles and the like.SOLUTION: In the method for manufacturing a double-sided metal-clad laminate having metal foil (B, B') adhesively bonded to both sides of an insulation film (A) having an adhesive surface comprising a thermoplastic resin, the double-sided metal-clad laminate is produced by, using a divider film (C) having a heat capacity in a range of 50-150 J/m, laminating the insulation film (A), the metal foils (B, B') and the divider film (C) in the order of (r)/(B)/(A)/(B')/(C)/(B')/(A)/(B)/(r) between a pair of pressure rollers (r, r), followed by thermal compression bonding and then separating from the divider film (C) to obtain two double-sided metal-clad laminates.

Description

本発明は、熱可塑性樹脂からなる接着面を有した絶縁性フィルムの両面に金属箔が接着された両面金属張積層体の製造方法に関する。   The present invention relates to a method for producing a double-sided metal-clad laminate in which a metal foil is bonded to both sides of an insulating film having an adhesive surface made of a thermoplastic resin.

近年の電気機器の小型化・軽量化・高機能化に伴い、フレキシブル回路基板の採用が増大しており、例えば表面が熱可塑性を有するポリイミドフィルムや液晶ポリマーフィルム等の絶縁フィルムに金属箔を熱圧着した金属張積層体が好適に用いられている。このような構造を有する積層体の製法としては、絶縁フィルムと金属箔とをロール・トゥ・ロール方式で搬送し、加熱しながら一対の加圧ロール間を通して連続的に熱圧着する方法が一般に採用されている。   With the recent reduction in size, weight and functionality of electrical devices, the use of flexible circuit boards has increased. For example, metal foil is applied to insulating films such as polyimide films and liquid crystal polymer films whose surfaces are thermoplastic. A crimped metal-clad laminate is preferably used. As a method for producing a laminate having such a structure, a method in which an insulating film and a metal foil are conveyed by a roll-to-roll method and continuously heat-pressed through a pair of pressure rolls while being heated is generally employed. Has been.

例えば、特許文献1には、耐熱性フィルムの両面に熱可塑性樹脂層を有した接着シートの片面に金属箔を熱圧着する際、熱圧着装置の加圧面と接着シートとの間に保護材料を配置することで、金属箔を積層しない側の熱可塑性樹脂層が金属ロールや保護フィルムに融着するのを防ぐ方法が提案されている。しかしながら、この方法では、加圧を均一に行う為の圧力緩衝効果に乏しく、特に薄い接着シートや薄い金属箔を用いる場合には加圧のバラツキにより、未接着部分や接着強度が弱い部分が生じるおそれのあるほか、接着シートと金属箔との層間に空隙が形成されたりして、しわ等の外観不良が発生するといった不具合がある。   For example, in Patent Document 1, when a metal foil is thermocompression bonded to one side of an adhesive sheet having a thermoplastic resin layer on both sides of a heat resistant film, a protective material is provided between the pressure surface of the thermocompression bonding apparatus and the adhesive sheet. There has been proposed a method for preventing the thermoplastic resin layer on the side where the metal foil is not laminated from being fused to a metal roll or a protective film. However, in this method, the pressure buffering effect for uniformly applying pressure is poor, and particularly when a thin adhesive sheet or a thin metal foil is used, an unadhered portion or a portion with low adhesive strength is generated due to pressure variation. In addition to this, there is a problem that voids are formed between the adhesive sheet and the metal foil, resulting in appearance defects such as wrinkles.

また、特許文献2には、液晶ポリマーフィルムと金属箔とを重ね合わせて金属加圧ロールで熱圧着させる際に、金属加圧ロールと接触する面側に耐熱性樹脂フィルムを更に重ね合わせて積層体を製造する方法が提案されている。この方法によれば、製造目的の積層体とロールとの間に耐熱性樹脂フィルムを介在させることから一定の緩衝効果は期待できるものの、逆に、加圧ロールの熱を被積層体に伝える伝熱効果が阻害されて、金属箔と液晶ポリマーフィルムとの接着力の低下や、接着力にばらつきが生じるおそれがある。   Further, in Patent Document 2, when a liquid crystal polymer film and a metal foil are overlapped and thermocompression bonded with a metal pressure roll, a heat resistant resin film is further overlapped and laminated on the side in contact with the metal pressure roll. A method of manufacturing a body has been proposed. According to this method, since a heat-resistant resin film is interposed between the laminate for production and the roll, a certain buffering effect can be expected, but conversely, the heat of the pressure roll is transmitted to the laminate. The thermal effect is hindered, and there is a possibility that the adhesive force between the metal foil and the liquid crystal polymer film is lowered or the adhesive force varies.

また、特許文献3には、熱可塑性ポリマーフィルムと被着体とをロール間で熱処理しながら圧着する積層体の製造方法において、熱可塑性ポリマーフィルムと被着体とを重ね合わせて、その両側から被覆材で挟んだ状態で圧着することにより、フィルムと被着体とを短時間で強固に圧着する方法が提案されている。しかしながら、この方法では、保護材料が加熱加圧面に直接接触するために保護材料の劣化がはやく、保護材料の再利用回数が少なくなるために製造コストが高くなるなどの欠点を有していた。特許文献2の場合と同様に、加圧ロールの熱を被積層体に伝える伝熱効果が阻害されて、金属箔と液晶ポリマーフィルムとの接着力の低下や、接着力にばらつきが生じるおそれがある。   Further, in Patent Document 3, in a method for producing a laminate in which a thermoplastic polymer film and an adherend are pressure-bonded while being heat-treated between rolls, the thermoplastic polymer film and the adherend are overlapped, and from both sides thereof. There has been proposed a method in which a film and an adherend are firmly bonded in a short time by pressing in a state of being sandwiched between covering materials. However, this method has drawbacks such that the protective material is in direct contact with the heating and pressing surface, so that the protective material is rapidly deteriorated, and the number of reuses of the protective material is reduced, resulting in an increase in manufacturing cost. As in the case of Patent Document 2, the heat transfer effect for transferring the heat of the pressure roll to the laminated body is hindered, and there is a possibility that the adhesive force between the metal foil and the liquid crystal polymer film is lowered or the adhesive force is varied. is there.

更に、特許文献4には、工業的に生産性良く金属張積層体を製造する方法として、積層時に離間フィルムを中心にその両側に片面金属張積層体が積層される態様で積層し、その後、片面金属張積層体を離間フィルムから剥離する方法が示されている。この方法は、片面金属張積層体の製造方法に係るものであり、離間フィルムと接するのは絶縁性フィルムである。そのため、特許文献4では絶縁性フィルムとの剥離性をよくするために離間フィルムの表面粗さを規定している。したがって、この技術は離間フィルムが金属箔と接する両面金属張積層体を製造する場合については教えておらず、また、これを適用しうるものではない。   Furthermore, in Patent Document 4, as a method for producing a metal-clad laminate with high productivity on an industrial scale, lamination is performed in a mode in which a single-sided metal-clad laminate is laminated on both sides of a separation film at the time of lamination, A method for peeling a single-sided metal-clad laminate from a spacing film is shown. This method relates to a method for producing a single-sided metal-clad laminate, and an insulating film is in contact with the separation film. Therefore, in patent document 4, in order to improve the peelability with an insulating film, the surface roughness of a separation film is prescribed | regulated. Therefore, this technique does not teach the case of producing a double-sided metal-clad laminate in which the spacing film is in contact with the metal foil, and this is not applicable.

特開2008−272958号公報JP 2008-272958 A WO2004/108397号公報WO 2004/108397 特開2001−88219号公報JP 2001-88219 A WO2011/093427号公報WO2011 / 093427 publication

本発明は、絶縁性フィルムと金属箔との層間密着性に優れて、接着強度にばらつきがなく、しわ等の外観不具合の発生を抑制しながら、工業的に生産性良く両面金属張積層体を製造することができる方法を提供することを目的とする。   The present invention provides a double-sided metal-clad laminate that is excellent in industrial productivity with excellent interlaminar adhesion between an insulating film and a metal foil, without variation in adhesive strength, and suppressing occurrence of appearance defects such as wrinkles. It is an object to provide a method that can be manufactured.

本発明者らは、上述した従来技術の問題点を解消するために鋭意研究を行った結果、絶縁性フィルムと金属箔との組み合わせを、離間フィルムを中心にその上下に対称となるように2組重ねて、加圧ロールで熱圧着することで、加圧ロールにフィルムが融着するおそれがなく、しかも、加圧ロール間の圧力がより均一に伝わるようになることから、接着強度のばらつきや、しわの発生等を防ぐことができ、更には、離間フィルムから分離又は剥離すれば、このように品質が安定した両面金属張積層体を一度に2組得ることができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have determined that the combination of the insulating film and the metal foil is symmetric about the distance film so as to be symmetrical up and down. By stacking and thermocompression bonding with pressure rolls, there is no risk of film fusing to the pressure rolls, and the pressure between the pressure rolls is more evenly transmitted. In addition, it has been found that two sets of double-sided metal-clad laminates with stable quality can be obtained at one time by separating or peeling from the separation film, and the like. Was completed.

すなわち、本発明は、少なくとも表面に熱可塑性樹脂からなる接着面を有した絶縁性フィルム(A)の両面に金属箔(B、B')が接着された両面金属張積層体を製造する方法であって、熱容量が50〜150J/m2の範囲にある離間フィルム(C)を用いて、一対の加圧ロール(r1、r2)間で(r1)/(B)/(A)/(B')/(C)/(B')/(A)/(B)/(r2)の順となるように、絶縁性フィルム(A)、金属箔(B、B')、及び離間フィルム(C)を重ねて熱圧着し、その後、離間フィルム(C)から両面金属張積層体を分離又は剥離して2つの両面金属張積層体を得ることを特徴とする両面金属張積層体の製造方法である。 That is, the present invention is a method for producing a double-sided metal-clad laminate in which metal foils (B, B ′) are bonded to both surfaces of an insulating film (A) having an adhesive surface made of a thermoplastic resin on at least the surface. Then, using the separation film (C) having a heat capacity in the range of 50 to 150 J / m 2 , (r 1 ) / (B) / (A) between the pair of pressure rolls (r 1 , r 2 ) / (B ′) / (C) / (B ′) / (A) / (B) / (r 2 ) in order of insulating film (A), metal foil (B, B ′), And the two-sided metal-clad laminate obtained by separating and peeling the double-sided metal-clad laminate from the separation film (C) and then thermocompression bonding the separation film (C). It is a manufacturing method of a body.

また、本発明においては、一対の加圧ロールが表面温度調節機能を有する金属表面のロールからなり、前記ロール表面の表面粗度RzをRzrとし、前記ロール表面と接する金属箔(B)表面の表面粗度RzをRzBとし、前記金属箔(B)表面と接する離間フィルム(C)の表面粗度RzをRzCとしたとき、Rzr−RzB及びRzC−RzBがいずれも±0.8μm以下になるようにするのが好ましい。   Further, in the present invention, the pair of pressure rolls is composed of a metal surface roll having a surface temperature adjusting function, the surface roughness Rz of the roll surface is Rzr, and the surface of the metal foil (B) in contact with the roll surface When the surface roughness Rz is RzB and the surface roughness Rz of the separation film (C) in contact with the surface of the metal foil (B) is RzC, both Rzr-RzB and RzC-RzB are ± 0.8 μm or less. It is preferable to do so.

また、本発明においては、好ましくは、絶縁性フィルム(A)が、熱可塑性液晶ポリマーフィルム、又は耐熱性樹脂層の両面に熱可塑性樹脂層を備えた耐熱性樹脂フィルムからなるのが良く、更に、本発明においては、好ましくは、離間フィルム(C)が、アルミニウム箔、耐熱性樹脂フィルム、又は樹脂フィルムの表裏面に金属箔を有した複合フィルムから選ばれるものである良く、更にまた、本発明においては、好ましくは、金属箔(B)が、厚さ1〜100μmの銅箔であるのが良い。   In the present invention, the insulating film (A) is preferably composed of a thermoplastic liquid crystal polymer film or a heat resistant resin film provided with a thermoplastic resin layer on both sides of the heat resistant resin layer. In the present invention, preferably, the separation film (C) may be selected from an aluminum foil, a heat-resistant resin film, or a composite film having a metal foil on the front and back surfaces of the resin film. In the invention, the metal foil (B) is preferably a copper foil having a thickness of 1 to 100 μm.

本発明によれば、しわの発生や接着強度のばらつきをなくして、絶縁性フィルムと金属箔との層間密着性に優れた高品質の両面金属張積層体を、工業的に生産性良く製造することができるようになる。すなわち、本発明の製造方法は、従来の方法と比べて、工業生産効率を格段に高めることができ、高品質の両面金属張積層体をより低コストで製造することができる。そして、本発明によって得られた両面金属張積層体は、高品質であって信頼性にも優れることから、例えばファインパターン形成が必要な回路基板や、多層回路基板用の基板材料として好適に用いることができる。   According to the present invention, a high-quality double-sided metal-clad laminate excellent in interlayer adhesion between an insulating film and a metal foil is produced industrially with high productivity, eliminating wrinkles and variations in adhesive strength. Will be able to. That is, the production method of the present invention can significantly increase the industrial production efficiency as compared with the conventional method, and can produce a high-quality double-sided metal-clad laminate at a lower cost. And since the double-sided metal-clad laminate obtained by the present invention is high quality and excellent in reliability, for example, it is suitably used as a circuit board for which fine pattern formation is required, or as a substrate material for a multilayer circuit board. be able to.

図1は、本発明の実施の形態に係る両面金属張積層体の製造方法を説明する側面模式図である。FIG. 1 is a schematic side view illustrating a method for producing a double-sided metal-clad laminate according to an embodiment of the present invention. 図2は、絶縁性フィルムと金属箔との密着性評価に使用した試験片を説明する平面模式図である。FIG. 2 is a schematic plan view illustrating the test piece used for evaluating the adhesion between the insulating film and the metal foil.

以下、本発明について詳細に説明する。
本発明では、一対の加圧ロール(r1、r2)間で、金属箔(B)/絶縁性フィルム(A
)/金属箔(B')/離間フィルム(C)/金属箔(B')/絶縁性フィルム(A)/金属箔(B)の順となるように重ねて熱圧着し、離間フィルム(C)から剥離して、絶縁性フィルム(A)の両面にそれぞれ金属箔(B、B')が接着された2つの両面金属張積層体を同時に製造する。
Hereinafter, the present invention will be described in detail.
In the present invention, between the pair of pressure rolls (r 1 , r 2 ), a metal foil (B) / insulating film (A
) / Metal foil (B ′) / separating film (C) / metal foil (B ′) / insulating film (A) / metal foil (B) in the order of thermocompression bonding and separating film (C ) To produce two double-sided metal-clad laminates in which metal foils (B, B ′) are bonded to both sides of the insulating film (A) at the same time.

ここで、本発明に用いられる絶縁性フィルム(A)は、熱可塑性樹脂からなる接着面を有して、熱圧着により接着面に金属箔(B、B')を貼り合わせることができるものであれば特に制限はなく、i)熱可塑性樹脂フィルムからなるもののほか、ii)耐熱性樹脂層の両面に熱可塑性樹脂層を設けた耐熱性樹脂フィルムが挙げられる。また、これらの1種又は2種以上を重ね合わせて複数層にしたものを使用することもできる。   Here, the insulating film (A) used in the present invention has an adhesive surface made of a thermoplastic resin, and the metal foil (B, B ′) can be bonded to the adhesive surface by thermocompression bonding. There is no particular limitation as long as it includes i) a thermoplastic resin film, and ii) a heat resistant resin film in which a thermoplastic resin layer is provided on both sides of the heat resistant resin layer. Moreover, what laminated | stacked these 1 type (s) or 2 or more types into multiple layers can also be used.

このうち、i)熱可塑性樹脂フィルムからなる絶縁性フィルム(A)としては、例えば、ポリエチレンテレフタラート樹脂、ポリエチレンナフタレート樹脂、ポリカーボネート樹脂、アクリロニトリル・スチレン共重合樹脂、熱可塑性ポリイミド樹脂、液晶ポリマーなどを例示することができ、なかでも、加工性、電気特性、耐熱性等の観点から、液晶ポリマー、又は熱可塑性ポリイミド樹脂が好適に用いられる。   Among these, as i) insulating film (A) made of a thermoplastic resin film, for example, polyethylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, acrylonitrile / styrene copolymer resin, thermoplastic polyimide resin, liquid crystal polymer, etc. Among these, from the viewpoint of processability, electrical characteristics, heat resistance, and the like, a liquid crystal polymer or a thermoplastic polyimide resin is preferably used.

液晶ポリマーについては、次の(1)〜(4)に分類される化合物及びその誘導体から導かれる公知のサーモトロピック液晶ポリエステル、サーモトロピック液晶ポリエステルアミド等を挙げることができる。
(1)芳香族又は脂肪族ジヒドロキシ化合物
(2)芳香族又は脂肪族ジカルボン酸
(3)芳香族ヒドロキシカルボン酸
(4)芳香族ジアミン、芳香族ヒドロキシアミン又は芳香族アミノカルボン酸
Examples of the liquid crystal polymer include known thermotropic liquid crystal polyesters and thermotropic liquid crystal polyester amides derived from the compounds classified into the following (1) to (4) and derivatives thereof.
(1) Aromatic or aliphatic dihydroxy compounds (2) Aromatic or aliphatic dicarboxylic acids (3) Aromatic hydroxycarboxylic acids (4) Aromatic diamines, aromatic hydroxyamines or aromatic aminocarboxylic acids

これらの原料化合物から得られる液晶ポリマーの中でも、分子中に脂肪族鎖を含まない芳香族液晶ポリマーが好ましい。そのような液晶ポリマーの代表例として、6−ヒドロキシ−2−ナフトエ酸と、p−ヒドロキシ安息香酸とを原料として得られる下記式に示す構成単位を有した共重合体を挙げることができる。なお、下記式中のm2およびn2は、各構成単位の存在モル比を示す正の数である。

Figure 2014128913
Among the liquid crystal polymers obtained from these raw material compounds, aromatic liquid crystal polymers that do not contain an aliphatic chain in the molecule are preferred. As a typical example of such a liquid crystal polymer, a copolymer having a structural unit represented by the following formula obtained using 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid as raw materials can be given. Incidentally, m 2 and n 2 in the formula is a positive number indicating the presence molar ratio of the respective structural units.
Figure 2014128913

液晶ポリマーは、耐熱性と共に、熱圧着における加工性を考慮すると、好ましくは200〜400℃の範囲、より好ましくは250〜350℃の範囲内に光学的に異方性の溶融相への転移温度を有するものであるのが良い。また、液晶ポリマーには、その特性を損なわない範囲で、例えば滑剤、酸化防止剤、充填剤などを配合することもできる。   In consideration of heat resistance and workability in thermocompression bonding, the liquid crystal polymer is preferably in the range of 200 to 400 ° C, more preferably in the range of 250 to 350 ° C, and the transition temperature to an optically anisotropic melt phase. It is good to have. The liquid crystal polymer may be blended with, for example, a lubricant, an antioxidant, a filler, and the like, as long as the characteristics are not impaired.

液晶ポリマーをフィルム化する方法としては、例えばTダイ法、ラミネート体延伸法、インフレーション法などが挙げられる。インフレーション法やラミネート体延伸法では、フィルムの機械軸方向(MD方向)だけでなく、これと直行する方向(TD方向)にも応力が加えられるため、MD方向とTD方向における機械的性質のバランスのとれたフィルムを得ることができる。なお、液晶ポリマーフィルムは、市販品を使用することも可能であり、例えば株式会社クラレ製Vecstar(登録商標)や、ジャパンゴアテックス株式会社製BIAC、STABIAX(共に登録商標)などを用いることができる。   Examples of the method for forming a liquid crystal polymer into a film include a T-die method, a laminate stretching method, and an inflation method. In the inflation method and the laminate stretching method, stress is applied not only in the mechanical axis direction of the film (MD direction) but also in the direction perpendicular to this (TD direction), so the balance of mechanical properties in the MD and TD directions. An excellent film can be obtained. In addition, a commercial item can also be used for a liquid crystal polymer film, for example, Kuraray Co., Ltd. Vecstar (registered trademark), Japan Gore-Tex Co., Ltd. BIAC, STABIAX (both are registered trademarks), etc. can be used. .

また、熱可塑性ポリイミド樹脂については、その前駆体であるポリアミド酸をイミド化(硬化)することによって形成することができ、ポリアミド酸は、公知のジアミンと酸無水物とを溶媒の存在下で反応させて製造することができる。   The thermoplastic polyimide resin can be formed by imidizing (curing) the precursor polyamic acid, and the polyamic acid reacts with a known diamine and acid anhydride in the presence of a solvent. Can be manufactured.

熱可塑性のポリイミド樹脂に使用される前駆体としては、下記一般式(1)で表される構造単位を有する前駆体が好ましい。一般式(1)において、Ar3は式(2)、式(3)又は式(4)で表される2価の芳香族基を示し、Ar4は式(5)又は式(6)で表される4価の芳香族基を示し、R2は独立に炭素数1〜6の1価の炭化水素基又はアルコキシ基を示し、V及びWは、独立に単結合又は炭素数1〜15の2価の炭化水素基、O、S、CO、SO2、又はCONHから選ばれる2価の基を示し、m1は独立に0〜4の整数を示し、pは構成単位の存在モル比を示し、0.1〜1.0の値である。

Figure 2014128913
As a precursor used for a thermoplastic polyimide resin, a precursor having a structural unit represented by the following general formula (1) is preferable. In General Formula (1), Ar 3 represents a divalent aromatic group represented by Formula (2), Formula (3), or Formula (4), and Ar 4 represents Formula (5) or Formula (6). 4 represents an aromatic group represented by R 2 , R 2 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and V and W each independently represents a single bond or 1 to 15 carbon atoms. 2 represents a divalent group selected from divalent hydrocarbon group, O, S, CO, SO 2 , or CONH, m 1 independently represents an integer of 0 to 4, and p represents a molar ratio of the constituent units. The value is 0.1 to 1.0.
Figure 2014128913

用いられるジアミンとしては、例えば、4,4'−ジアミノジフェニルエーテル、2'−メトキシ−4,4'−ジアミノベンズアニリド、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2'−ジメチル−4,4'−ジアミノビフェニル、3,3'−ジヒドロキシ−4,4'−ジアミノビフェニル、4,4'−ジアミノベンズアニリド等が挙げられる。また、酸無水物としては、例えば、無水ピロメリット酸、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、3,3',4,4'-ジフェニルスルフォンテトラカルボン酸二無水物、4,4'−オキシジフタル酸無水物等が挙げられる。ジアミン、及び酸無水物は、それぞれ1種のみを使用してもよく、2種以上を併用することもできる。なお、ポリイミド樹脂は、上記ジアミンと酸無水物から得られるものに限定されることはない。   Examples of the diamine used include 4,4′-diaminodiphenyl ether, 2′-methoxy-4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, and 1,3-bis (4 -Aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4 Examples include '-diaminobiphenyl and 4,4'-diaminobenzanilide. Examples of the acid anhydride include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride. Products, 4,4′-oxydiphthalic anhydride and the like. Each of the diamine and the acid anhydride may be used alone or in combination of two or more. In addition, a polyimide resin is not limited to what is obtained from the said diamine and an acid anhydride.

絶縁性フィルム(A)として熱可塑性ポリイミド樹脂フィルムを用いる場合、そのフィルムは、ポリイミド樹脂の前駆体であるポリアミド酸からテンター法やキャスト法などの公知の手法によってフィルム化することができる。代表的な方法の一つであるテンター法は、回転ドラムにポリアミド酸溶液を流延し、ポリアミド酸のゲルフィルムの状態で回転ドラムから剥離し、テンター炉で加熱・硬化(イミド化)させてポリイミドフィルムとする方法である。キャスト法は、任意の支持基材にポリアミド酸溶液を塗布、乾燥した後、熱処理して硬化(イミド化)させ、ポリイミドフィルムとする方法である。イミド化は、例えば、80〜400℃の範囲内の温度条件で1〜60分間の範囲内の時間加熱することにより行うことができる。なお、ポリイミド樹脂には、その特性を損なわない範囲で、例えば滑剤、酸化防止剤、充填剤などを配合することもできる。   When a thermoplastic polyimide resin film is used as the insulating film (A), the film can be formed into a film from a polyamic acid which is a precursor of the polyimide resin by a known method such as a tenter method or a cast method. In the tenter method, which is one of the typical methods, a polyamic acid solution is cast on a rotating drum, peeled off from the rotating drum in the form of a polyamic acid gel film, and heated and cured (imidized) in a tenter furnace. This is a method of forming a polyimide film. The casting method is a method in which a polyamide acid solution is applied to an arbitrary supporting substrate, dried, and then heat-treated and cured (imidized) to form a polyimide film. The imidization can be performed, for example, by heating for a time within a range of 1 to 60 minutes under a temperature condition within a range of 80 to 400 ° C. In addition, a lubricant, an antioxidant, a filler, etc. can be mix | blended with a polyimide resin in the range which does not impair the characteristic, for example.

絶縁性フィルム(A)として、ii)耐熱性樹脂層の両面に熱可塑性樹脂層を設けた耐熱性樹脂フィルムを用いる場合、この耐熱性樹脂層については、その熱変形温度が熱可塑性樹脂層よりも高いものであれば特に制限はないが、なかでも好適には、非熱可塑性のポリイミド樹脂フィルムが好ましい。非熱可塑性ポリイミド樹脂は、熱可塑性ポリイミドと同様、公知のジアミンと酸無水物とを溶媒の存在下で反応させて製造することができ、そこで用いる原料の組合せを変更することで、耐熱性のポリイミド樹脂とすることができる。この非熱可塑性ポリイミド樹脂フィルムとして市販品を挙げるとすると、例えば東レ・デュポン株式会社製のカプトンEN、カプトンH、カプトンV(いずれも商品名)、鐘淵化学株式会社製のアピカルNPI(商品名)、宇部興産株式会社製のユーピレックスS(商品名)等を例示することができる。非熱可塑性ポリイミド樹脂フィルムは、ガラス転移温度が300℃以上であることが好ましく、更には、ロールによる熱圧着温度で変形しないものが好ましい。   As the insulating film (A), ii) when a heat resistant resin film provided with a thermoplastic resin layer on both sides of the heat resistant resin layer is used, the heat deformation temperature of the heat resistant resin layer is higher than that of the thermoplastic resin layer. However, a non-thermoplastic polyimide resin film is particularly preferable. The non-thermoplastic polyimide resin can be produced by reacting a known diamine and an acid anhydride in the presence of a solvent in the same manner as the thermoplastic polyimide. It can be a polyimide resin. As this non-thermoplastic polyimide resin film, for example, Kapton EN, Kapton H, Kapton V (all trade names) manufactured by Toray DuPont Co., Ltd., Apical NPI (trade names manufactured by Kaneka Chemical Co., Ltd.) ), Upilex S (trade name) manufactured by Ube Industries, Ltd., and the like. The non-thermoplastic polyimide resin film preferably has a glass transition temperature of 300 ° C. or higher, and more preferably does not deform at the thermocompression bonding temperature by a roll.

また、耐熱性樹脂層の両面に設けられる熱可塑性樹脂層については、少なくとも熱圧着における加熱温度以下でガラス転位温度を有するような樹脂から形成されたものであればよく、樹脂の種類に特に制限はないが、例えば熱可塑性ポリイミド樹脂、熱可塑性液晶ポリマー、ポリエーテルエーテルケトン、ポリエチレンナフタレート等を例示することができる。なお、この熱可塑性樹脂層は、耐熱性樹脂層からなるフィルム材に熱可塑性樹脂フィルムを接合させて形成してもよく、同フィルム材上のポリイミドの前駆体をキャスト法等により塗布して形成するようにしてもよい。   Further, the thermoplastic resin layers provided on both surfaces of the heat resistant resin layer may be formed from a resin having a glass transition temperature at least below the heating temperature in thermocompression bonding, and the type of resin is particularly limited. However, for example, thermoplastic polyimide resin, thermoplastic liquid crystal polymer, polyether ether ketone, polyethylene naphthalate and the like can be exemplified. The thermoplastic resin layer may be formed by bonding a thermoplastic resin film to a film material composed of a heat resistant resin layer, and is formed by applying a polyimide precursor on the film material by a casting method or the like. You may make it do.

絶縁性フィルム(A)の厚さは、好ましくは5〜200μmであるのが良く、より好ましくは10〜100μmであるのが良い。絶縁性フィルム(A)が薄過ぎると剛性が低下し、金属張積層体の製造工程や得られた積層体を用いた配線基板の加工工程において、しわや破れ等の不具合が生じるおそれがある。一方、厚過ぎると絶縁性フィルムの柔軟性に欠け、金属張積層体の製造工程におけるロール・トゥ・ロールでの搬送が困難となり、また、回路加工された配線基板も狭小筐体に収まりにくい等の不具合が生じるおそれがある。   The thickness of the insulating film (A) is preferably 5 to 200 μm, more preferably 10 to 100 μm. If the insulating film (A) is too thin, the rigidity is lowered, and problems such as wrinkles and tearing may occur in the manufacturing process of the metal-clad laminate and the processing process of the wiring board using the obtained laminate. On the other hand, if the thickness is too thick, the insulating film lacks flexibility, making it difficult to transport by roll-to-roll in the manufacturing process of metal-clad laminates, and circuit-processed wiring boards are also difficult to fit in a narrow housing. May cause problems.

また、本発明に用いられる金属箔(B、B')の材質は特に制限はなく、例えば金、銀、銅、ステンレス、ニッケル、アルミニウムなどが例示される。なかでも、導電性、取扱いの容易性、価格等の観点から、銅箔やステンレス箔が好適である。このうち銅箔としては、圧延法や電解法によって製造されるいずれのものでも使用することができる。また、金属箔には絶縁フィルムとの接着力向上などを目的として、予め粗化処理等の物理的表面処理のほか、酸洗浄、UV処理、プラズマ処理等の化学的表面処理を施すようにしても良い。   The material of the metal foil (B, B ′) used in the present invention is not particularly limited, and examples thereof include gold, silver, copper, stainless steel, nickel, and aluminum. Of these, copper foil and stainless steel foil are preferred from the viewpoints of conductivity, ease of handling, price, and the like. Of these, any copper foil produced by a rolling method or an electrolytic method can be used. In addition, for the purpose of improving the adhesive strength with the insulating film, in addition to physical surface treatment such as roughening treatment, the metal foil is subjected to chemical surface treatment such as acid cleaning, UV treatment and plasma treatment in advance. Also good.

金属箔(B、B')の厚さについては、1〜100μmが好ましく、より好ましくは5〜70μm、更に好ましくは8〜20μmの範囲であるのが良い。金属箔の厚さを薄くすることは、回路加工においてファインパターンを形成し易いという点で望ましいが、薄過ぎると金属張積層体の製造工程で金属箔にしわが生じ易くなるほか、回路加工された配線基板においても配線の破断が生じ易く、配線基板としての信頼性が低下するおそれがある。反対に厚過ぎると、金属箔をエッチング加工して回路を形成する際に、回路側面にテーパーが生じ易く、ファインパターン形成に不利である。   The thickness of the metal foil (B, B ′) is preferably 1 to 100 μm, more preferably 5 to 70 μm, and still more preferably 8 to 20 μm. It is desirable to reduce the thickness of the metal foil because it is easy to form a fine pattern in circuit processing. However, if it is too thin, the metal foil tends to wrinkle in the manufacturing process of the metal-clad laminate, and the circuit processing is performed. In the wiring board, the wiring is easily broken, and the reliability as the wiring board may be reduced. On the other hand, when the thickness is too thick, when the circuit is formed by etching the metal foil, the side surface of the circuit is likely to be tapered, which is disadvantageous for fine pattern formation.

本発明に用いる離間フィルム(C)は、熱容量が50〜150J/m2の範囲にある必要がある。熱容量が50J/m2に満たないと、製造される両面銅張積層板の銅箔と絶縁層間の密着性のばらつきが大きくなってしまい、一方、熱容量が150J/m2を超えると離間フィルム(C)と接する側の銅箔と絶縁層間の密着性が十分発現しえないばかりでなく、密着性のばらつきも生じやすくなる。 The separation film (C) used in the present invention needs to have a heat capacity in the range of 50 to 150 J / m 2 . If the heat capacity is less than 50 J / m 2 , the variation in the adhesion between the copper foil and the insulating layer of the double-sided copper clad laminate to be produced becomes large, while if the heat capacity exceeds 150 J / m 2 , the separation film ( Not only does the adhesiveness between the copper foil on the side in contact with C) and the insulating layer not fully develop, but also the adhesiveness tends to vary.

また、離間フィルム(C)は、熱圧着温度に耐える耐熱性を有する必要があるほか、熱圧着後に金属箔(B')と容易に分離又は剥離可能である必要がある。後者の観点から、離間フィルム(C)の表裏面は、いずれも表面粗さ(Rz)が2.0μm以下、好ましくは0.5〜1.5μmであるものが好ましい。このような離間フィルム(C)としては、非熱可塑性のポリイミドフィルムやポリアミドフィルム等の耐熱性樹脂フィルム、又は、アルミニウム箔やステンレス箔等の金属箔が好適に用いられる。また、樹脂フィルムの表裏面に金属箔を有した複合フィルムを用いることもできる。     Further, the separation film (C) needs to have heat resistance that can withstand the thermocompression bonding temperature, and needs to be easily separated or peelable from the metal foil (B ′) after thermocompression bonding. From the latter viewpoint, the front and back surfaces of the separation film (C) are preferably those having a surface roughness (Rz) of 2.0 μm or less, preferably 0.5 to 1.5 μm. As such a separation film (C), a heat-resistant resin film such as a non-thermoplastic polyimide film or a polyamide film, or a metal foil such as an aluminum foil or a stainless steel foil is preferably used. Moreover, the composite film which has metal foil on the front and back of the resin film can also be used.

離間フィルム(C)については、熱圧着後の金属箔(B')との剥離性を向上させる目的で、離間フィルム(C)の片面もしくは両面を離型処理するようにしても良い。離型処理の具体的方法については、例えば離間フィルム(C)にシリコーン樹脂、フッ素系樹脂等の耐熱離型樹脂皮膜を設ける方法等が挙げられる。   About the separating film (C), you may make it mold release process the single side | surface or both surfaces of a separating film (C) in order to improve peelability with metal foil (B ') after thermocompression bonding. As a specific method of the release treatment, for example, a method of providing a heat-resistant release resin film such as a silicone resin or a fluorine resin on the separation film (C) can be mentioned.

離間フィルム(C)の厚さについては、10〜300μmが好ましく、より好ましくは20〜150μm、更に好ましくは30〜100μmの範囲であるのが良い。離間フィルム(C)が薄過ぎると、熱圧着時の圧力を均一に分散させる圧力緩衝効果が低下し、出来上がった金属張積層体の絶縁フィルム(A)と金属箔(B)の層間密着性にばらつきが生じるおそれがある。一方、厚過ぎるとロール・トゥ・ロール方式での搬送で支障をきたしたり、熱圧着後に金属張積層体から剥離する際の作業性が悪化するおそれがある。   The thickness of the separation film (C) is preferably 10 to 300 μm, more preferably 20 to 150 μm, and still more preferably 30 to 100 μm. If the separation film (C) is too thin, the pressure buffering effect that uniformly disperses the pressure during thermocompression bonding is reduced, and the interlayer adhesion between the insulating film (A) and the metal foil (B) of the finished metal-clad laminate is reduced. Variation may occur. On the other hand, if it is too thick, there is a risk that the roll-to-roll method may be hindered or the workability when peeling from the metal-clad laminate after thermocompression bonding may be deteriorated.

一対の加圧ロール(r1、r2)間に、(r1)/(B)/(A)/(B')/(C)/(B')/(A)/(B)/(r2)の順で重ねられた絶縁性フィルム(A)、金属箔(B、B')、及び離間フィルム(C)を熱圧着するには、加熱機構を備えた一対の加圧ロールを有する公知の加熱加圧装置を使用することができる。その際、絶縁性フィルム(A)、金属箔(B、B')、及び離間フィルム(C)について、それぞれロール状に巻かれた長尺材料を加熱加圧装置と組み合わせて用いるようにすれば、両面金属張積層体の連続製造が可能になる。また、加圧ロール温度や加圧ロールの圧力条件については特に制限はないが、絶縁性フィルム(A)の熱可塑性樹脂が変形等により金属層(B、B')に良好に接着されることが必要であることから、熱可塑性樹脂のTg又は融点よりやや低い温度で行うことがよい。例えば、絶縁性フィルム(A)に液晶ポリマーフィルムを用いる場合、その融点より5〜100℃低い温度範囲が好ましく、融点より20〜80℃低い温度範囲がより好ましい。その上で、加圧圧力は20〜200kN/mの範囲とすることが好ましい。 Between a pair of pressure rolls (r 1 , r 2 ), (r 1 ) / (B) / (A) / (B ′) / (C) / (B ′) / (A) / (B) / In order to thermocompression-bond the insulating film (A), the metal foils (B, B ′), and the separation film (C) stacked in the order of (r 2 ), a pair of pressure rolls equipped with a heating mechanism is used. A known heating and pressurizing apparatus can be used. At that time, for the insulating film (A), the metal foil (B, B ′), and the separation film (C), long materials wound in a roll shape are used in combination with a heating and pressing device. The continuous production of double-sided metal-clad laminates becomes possible. Further, there is no particular limitation on the pressure roll temperature and the pressure condition of the pressure roll, but the thermoplastic resin of the insulating film (A) is favorably bonded to the metal layer (B, B ′) by deformation or the like. Therefore, it is preferable to carry out at a temperature slightly lower than the Tg or melting point of the thermoplastic resin. For example, when a liquid crystal polymer film is used for the insulating film (A), a temperature range that is 5 to 100 ° C. lower than the melting point is preferable, and a temperature range that is 20 to 80 ° C. lower than the melting point is more preferable. In addition, the pressurizing pressure is preferably in the range of 20 to 200 kN / m.

また、本発明においては、加圧ロール(r1、r2)表面における表面粗度RzをRzrとし、加圧ロール(r1、r2)表面と接する金属箔(B)表面の表面粗度RzをRzBとし、金属箔(B)表面と接する離間フィルム(C)の表面粗度RzをRzCとしたとき、Rzr−RzBの値が±0.8μm以下であることが好ましく、Rzr−RzB及びRzC−RzBがいずれも±0.8μm以下とすることがより好ましく、この値を±0.01〜0.5μmの範囲内とすることが特に好ましい。これらの差が上記値より大きくなると、量産される両面銅張積層板の密着性などの特性に差異が生じやすくなる。 In the present invention, the surface roughness Rz on the surface of the pressure roll (r 1 , r 2 ) is Rzr, and the surface roughness of the surface of the metal foil (B) in contact with the surface of the pressure roll (r 1 , r 2 ). When Rz is RzB and the surface roughness Rz of the separating film (C) in contact with the surface of the metal foil (B) is RzC, the value of Rzr-RzB is preferably ± 0.8 μm or less, Rzr-RzB and RzC-RzB is more preferably ± 0.8 μm or less, and this value is particularly preferably in the range of ± 0.01 to 0.5 μm. When these differences are larger than the above values, differences in characteristics such as adhesion of mass-produced double-sided copper-clad laminates are likely to occur.

本発明では、離間フィルム(C)を介してその上下両側に配置される絶縁性フィルム(A)と金属箔(B、B')とは、離間フィルム(C)を中心にしてそれぞれ対称の位置関係になるため、一対の加圧ロール(r1、r2)の温度を同じにして熱圧着することができ、ロール間での不要な熱損失を防ぐことができる。また、加圧ロールはいずれも金属箔(B)に接するため、加圧ロールからの熱伝導が阻害されにくい。そして、熱圧着後には、下記実施例で説明するように、金属箔(B')と離間フィルム(C)は極めて容易に分離又は剥離することができ、接着強度のばらつきをなくして、しわの発生も防ぐことができ、接着性の良好な高品質の両面金属張積層体を生産性良く得ることができる。 In the present invention, the insulating film (A) and the metal foils (B, B ′) arranged on both the upper and lower sides of the spacing film (C) are symmetrical positions about the spacing film (C). Since the relationship is established, thermocompression bonding can be performed with the temperature of the pair of pressure rolls (r 1 , r 2 ) being the same, and unnecessary heat loss between the rolls can be prevented. Moreover, since all of the pressure rolls are in contact with the metal foil (B), the heat conduction from the pressure roll is not easily inhibited. And after thermocompression bonding, as will be described in the following examples, the metal foil (B ′) and the separation film (C) can be separated or peeled off very easily, eliminating variations in adhesive strength, Occurrence can be prevented, and a high-quality double-sided metal-clad laminate with good adhesion can be obtained with high productivity.

次に、実施例により本発明をより具体的に説明するが、本発明はこれらの内容に制限されるものではない。なお、後述する本発明の実施例において、特にことわりのない限り、加工条件、測定(評価)条件は下記によるものである。   EXAMPLES Next, although an Example demonstrates this invention more concretely, this invention is not restrict | limited to these content. In the examples of the present invention to be described later, unless otherwise specified, processing conditions and measurement (evaluation) conditions are as follows.

[表面粗さの測定]
JIS B 0601に準じて、触針式表面粗さ測定器(TENCOR社製、TENCOR P-10)を使用して、荷重100μN、走査速度20μm/秒、測定距離800μmの条件でRz(十点平均粗さ)を測定した。
[Measurement of surface roughness]
In accordance with JIS B 0601, using a stylus type surface roughness tester (TENCOR, TENCOR P-10), Rz (10-point average) under the conditions of a load of 100 μN, a scanning speed of 20 μm / second, and a measurement distance of 800 μm. (Roughness) was measured.

[金属張積層体の密着性評価]
得られた両面銅張積層体をラミネート進行方向(MD方向)に長さ150mmに切り出し、市販のエッチング液(アデカケルミカFE-210、株式会社ADEKA製)を用いたサブトラクティブ法により、銅箔をエッチングして、ラミネート進行方向に沿って、幅1mm、長さ100mmの直線導体パターン7を形成した(図2)。この際、直線導体パターン7は、両面金属張積層体の幅方向(加圧ロールの長さ方向)の中央の位置、中央から幅方向左右にそれぞれ10mm離れた位置の3箇所に形成して、密着性試験片とした。この直線導体パターンをラミネートロールに接する銅箔面(B)と離間フィルムと接する銅箔面(B‘)についてそれぞれ形成した試験片を作成し密着性の評価を実施した。この密着性試験片の3本の直線導体パターンについて、絶縁フィルム(A)から剥離する強度をJISC 6471 8.1 方法B(180°方向引き剥がし)に準じて測定した。そして、3本の剥離強度の平均値が0.8kN/m以上の場合を良好とし、0.8kN/m未満の場合を不良とする2段階で「密着性」を評価した。また、密着性のばらつきについては、3本の剥離強度のうちの最大値と最小値との差が0.3kN/m未満の場合を良好とし、0.3kN/m以上を不良とする2段階で「密着性のばらつき」を評価した。
[Adhesion evaluation of metal-clad laminates]
The obtained double-sided copper clad laminate was cut into a length of 150 mm in the laminating direction (MD direction), and the copper foil was etched by a subtractive method using a commercially available etching solution (Adeka Kermica FE-210, manufactured by ADEKA Co., Ltd.). Then, a linear conductor pattern 7 having a width of 1 mm and a length of 100 mm was formed along the laminating direction (FIG. 2). At this time, the linear conductor pattern 7 is formed at three positions, a center position in the width direction (length direction of the pressure roll) of the double-sided metal-clad laminate, and a position 10 mm away from the center in the left and right directions in the width direction, An adhesion test piece was obtained. A test piece was formed on each of the copper foil surface (B) in contact with the laminate roll and the copper foil surface (B ′) in contact with the separating film, and the adhesion was evaluated. About the three linear conductor patterns of this adhesion test piece, the intensity | strength which peels from an insulating film (A) was measured according to JISC 6471 8.1 method B (180 degree direction peeling). Then, “adhesiveness” was evaluated in two stages, in which the case where the average value of the three peel strengths was 0.8 kN / m or more was good and the case where it was less than 0.8 kN / m was bad. Further, regarding the variation in adhesion, the difference between the maximum value and the minimum value of the three peel strengths is good when it is less than 0.3 kN / m, and it is poor when 0.3 kN / m or more is bad. The “adhesion variation” was evaluated.

(実施例1)
絶縁性フィルム(A)として、厚さ50μm、幅30mmの液晶ポリマーフィルム2(融点320℃)がロール状に巻かれた長尺フィルムを準備し、金属箔(B、B')として、厚さ12μm、幅40mmの市販の電解銅箔1および1'(表面粗さRz:絶縁性フィルム積層面1.6μm、露出面1.4μm)がロール状に巻かれた長尺銅箔を準備し、離間フィルム(C)として、厚さ50μm、幅40mmの非熱可塑性である市販の耐熱性ポリイミドフィルム3(Tg:340℃、表裏ともに表面粗さRz:0.9μm、熱容量79.8J/m2)がロール状に巻かれた長尺耐熱性ポリイミドフィルムを準備した。これらを図1に示すように、絶縁性フィルム繰出しロールA、金属箔繰出しロールB及びB'、離間フィルム繰出しロールCにそれぞれセットし、一対の加圧ロール4(r1、r2)の間に、"電解銅箔1/液晶ポリマーフィルム2/電解銅箔1'/耐熱性ポリイミドフィルム3/電解銅箔1'/液晶ポリマーフィルム2/電解銅箔1"の順で重なるように供給し、熱圧着後に自然冷却して、剥離ロール6により耐熱性ポリイミドフィルム3と電解銅箔1'とを層間剥離し、耐熱性ポリイミドフィルム3は離間フィルム巻取りロールC'で回収し、液晶ポリマーフィルム2と電解銅箔1および1'とが貼り合わされた両面銅張積層体5は、2箇所に設置した製品巻取りロールxでそれぞれ回収するようにした。
Example 1
As the insulating film (A), a long film in which a liquid crystal polymer film 2 (melting point: 320 ° C.) having a thickness of 50 μm and a width of 30 mm is wound in a roll shape is prepared, and the metal foil (B, B ′) has a thickness A commercially available electrolytic copper foil 1 and 1 ′ having a width of 12 μm and a width of 40 mm (surface roughness Rz: insulating film laminated surface 1.6 μm, exposed surface 1.4 μm) is prepared as a long copper foil wound in a roll shape, As the spacing film (C), a commercially available heat-resistant polyimide film 3 having a thickness of 50 μm and a width of 40 mm, which is non-thermoplastic (Tg: 340 ° C., both surface roughness Rz: 0.9 μm, heat capacity 79.8 J / m 2 ) Was prepared as a long heat-resistant polyimide film wound in a roll shape. As shown in FIG. 1, these are set on an insulating film feeding roll A, metal foil feeding rolls B and B ′, and a separation film feeding roll C, respectively, and between a pair of pressure rolls 4 (r 1 , r 2 ). , And supply in an order of "electrolytic copper foil 1 / liquid crystal polymer film 2 / electrolytic copper foil 1 '/ heat resistant polyimide film 3 / electrolytic copper foil 1' / liquid crystal polymer film 2 / electrolytic copper foil 1", It cools naturally after thermocompression bonding, the heat resistant polyimide film 3 and the electrolytic copper foil 1 ′ are delaminated by the peeling roll 6, the heat resistant polyimide film 3 is recovered by the separation film winding roll C ′, and the liquid crystal polymer film 2 And the double-sided copper clad laminate 5 in which the electrolytic copper foils 1 and 1 ′ are bonded to each other are collected by the product take-up rolls x installed at two locations.

電解銅箔1、1'、液晶ポリマーフィルム2、及び耐熱性ポリイミドフィルム3をいずれも0.7m/分の速度で移動させて、2つとも表面温度が280℃の加圧ロール4間により、ロール間圧力40kN/mで熱圧着し、熱圧着後は、自然冷却により積層物を冷却して、離間フィルム巻取りロールC'で耐熱性ポリイミドフィルム3を回収し、2箇所の製品巻取りロールxでは、実施例1に係る両面銅張積層体5をそれぞれ回収した。なお、実施例1で使用した装置の加圧ロール4は、いずれも長さ130mm、ロール径150mmのロール内部に表面温度調節機能を有する表面粗度Rzが1.6μmの炭素鋼製金属ロールを用いた。   Electrolytic copper foils 1, 1 ′, liquid crystal polymer film 2 and heat-resistant polyimide film 3 are all moved at a speed of 0.7 m / min, and both are pressed between pressure rolls 4 having a surface temperature of 280 ° C. Thermocompression bonding is performed at a pressure between rolls of 40 kN / m. After thermocompression bonding, the laminate is cooled by natural cooling, and the heat-resistant polyimide film 3 is collected by the separation film winding roll C ′, and two product winding rolls are collected. In x, the double-sided copper clad laminate 5 according to Example 1 was collected. The pressure roll 4 of the apparatus used in Example 1 is a carbon steel metal roll having a surface roughness Rz of 1.6 μm having a surface temperature adjusting function inside a roll having a length of 130 mm and a roll diameter of 150 mm. Using.

上記実施例1において、熱圧着後の電解銅箔1’と離間フィルムである耐熱性ポリイミドフィルム3の層間剥離は不具合なく極めて順調に行われ、回収された両面銅張積層体5を目視にて確認したところ、破れや皺、表面荒れの発生は全く確認されなかった。また、2箇所で回収された両面銅張積層体5の一方から、上述したようにして密着性試験片を作製し、液晶ポリマーフィルム2と電解銅箔1、および1'との密着性評価を行ったところ、3本の直線導体パターンで得られた剥離強度の平均値で評価した「密着性」はそれぞれ0.83kN/m、1.02kN/mであり、良好であった。更には、3本の剥離強度のうちの最大値と最小値との差から求めた「密着性のばらつき」はそれぞれ0.27kN/m、0.08kN/mであり、液晶ポリマーフィルム2と電解銅箔1および1’とが、面内で均一に接着されていることが確認された。結果を表1に示す。   In Example 1 described above, delamination of the heat-resistant polyimide film 3 as the separation film and the electrolytic copper foil 1 ′ after thermocompression bonding was performed very smoothly without any trouble, and the collected double-sided copper-clad laminate 5 was visually observed. As a result of confirmation, no tears, wrinkles, or rough surfaces were observed. In addition, from one side of the double-sided copper clad laminate 5 collected at two locations, an adhesion test piece is prepared as described above, and an adhesion evaluation between the liquid crystal polymer film 2 and the electrolytic copper foil 1 and 1 ′ is performed. As a result, the “adhesion” evaluated by the average value of the peel strengths obtained with the three linear conductor patterns was 0.83 kN / m and 1.02 kN / m, respectively, which were favorable. Furthermore, the “adhesion variation” obtained from the difference between the maximum value and the minimum value of the three peel strengths is 0.27 kN / m and 0.08 kN / m, respectively. It was confirmed that the copper foils 1 and 1 ′ were uniformly bonded in the plane. The results are shown in Table 1.

(実施例2)
離間フィルム(C)として、厚さ75μmの非熱可塑性である市販の耐熱性ポリイミドフィルム3(Tg:340℃、表裏ともに表面粗さRz:0.9μm、熱容量119.6J/m2)を用いた以外は実施例1と同様にして、実施例2に係る両面銅張積層体を得た。
(Example 2)
As the spacing film (C), a commercially available heat-resistant polyimide film 3 (Tg: 340 ° C., surface roughness Rz: 0.9 μm, heat capacity 119.6 J / m 2 ) on both sides is used. A double-sided copper-clad laminate according to Example 2 was obtained in the same manner as Example 1 except that.

この実施例2において、熱圧着後の電解銅箔1'と耐熱性ポリイミドフィルム3の層間剥離は不具合なく極めて順調に行われた。また、密着性試験片による評価は、「密着性」が良好であり、「密着性のばらつき」も良好であって、液晶ポリマーフィルム2と電解銅箔1および1’とが、面内で均一に接着されていることが確認された。結果を表1に示す。   In Example 2, delamination between the electrolytic copper foil 1 ′ and the heat-resistant polyimide film 3 after thermocompression bonding was performed very smoothly without any defects. In addition, the evaluation using the adhesion test piece shows that “adhesion” is good, “adhesion variation” is also good, and the liquid crystal polymer film 2 and the electrolytic copper foils 1 and 1 ′ are uniform in the plane. It was confirmed that it was adhered to. The results are shown in Table 1.

(実施例3)
離間フィルム(C)として、両面銅張積層体(新日鐵化学社製 エスパネックスMシリーズ(MB12−25−12REQ)、表裏ともに表面粗さRz:0.85μm、熱容量122.8J/m2)を用いた以外は実施例1と同様にして、実施例3に係る両面銅張積層体を得た。この両面銅張積層体は、中心に絶縁層として厚さ25μmのポリイミド樹脂を有し、その両面に厚さ12μmの銅箔がそれぞれ設けられており、銅箔の露出面の表面粗さ(Rz)はいずれも0.85μmである。
(Example 3)
Double-sided copper-clad laminate (Espanex M series (MB12-25-12REQ) manufactured by Nippon Steel Chemical Co., Ltd., surface roughness Rz: 0.85 μm, heat capacity 122.8 J / m 2 ) A double-sided copper-clad laminate according to Example 3 was obtained in the same manner as Example 1 except that was used. This double-sided copper-clad laminate has a polyimide resin with a thickness of 25 μm as an insulating layer at the center, and a copper foil with a thickness of 12 μm is provided on both sides, and the surface roughness (Rz of the exposed surface of the copper foil) ) Is 0.85 μm.

この実施例3の製造においても、熱圧着後の電解銅箔1'と離間フィルムである両面銅張積層体3の層間剥離は不具合なく極めて順調に行われた。また、密着性試験片による評価では、「密着性」が良好であり、「密着性のばらつき」も良好あって、得られた両面銅張積層体5は、面内で均一に接着されていることが確認された。結果を表1に示す。   Also in the manufacture of Example 3, the delamination of the electrolytic copper foil 1 ′ after thermocompression bonding and the double-sided copper-clad laminate 3 which is a separation film was performed very smoothly without any defects. Further, in the evaluation using the adhesion test piece, “adhesion” is good, “adhesion variation” is also good, and the obtained double-sided copper clad laminate 5 is uniformly bonded in the surface. It was confirmed. The results are shown in Table 1.

(実施例4)
離間フィルム(C)として、厚さ25μmのアルミニウム箔(表裏ともに表面粗さRz:1.2μm、熱容量60.5J/m2)を用いるようにした以外は、実施例1と同様にして、実施例4に係る両面銅張積層体を得た。
Example 4
The same procedure as in Example 1 was performed except that an aluminum foil having a thickness of 25 μm (surface roughness Rz: 1.2 μm, heat capacity 60.5 J / m 2 ) was used as the separation film (C). A double-sided copper clad laminate according to Example 4 was obtained.

この実施例4の製造においても、熱圧着後の電解銅箔1'と離間フィルムであるアルミニウム箔3の層間剥離は不具合なく極めて順調に行われた。また、密着性試験片による評価では、「密着性」が良好であり、「密着性のばらつき」も良好あって、得られた両面銅張積層体5は、面内で均一に接着されていることが確認された。結果を表1に示す。   Also in the manufacture of Example 4, the delamination of the electrolytic copper foil 1 ′ after thermocompression bonding and the aluminum foil 3 as the separation film was performed very smoothly without any defects. Further, in the evaluation using the adhesion test piece, “adhesion” is good, “adhesion variation” is also good, and the obtained double-sided copper clad laminate 5 is uniformly bonded in the surface. It was confirmed. The results are shown in Table 1.

(実施例5)
離間フィルム(C)として、厚さ50μmのアルミニウム箔(表裏ともに表面粗さRz:1.2μm、熱容量121.1J/m2)を用いるようにした以外は、実施例1と同様にして、実施例5に係る両面銅張積層体を得た。
(Example 5)
The same procedure as in Example 1 was performed except that an aluminum foil having a thickness of 50 μm (surface roughness Rz: 1.2 μm, heat capacity 121.1 J / m 2 ) was used as the separation film (C). A double-sided copper-clad laminate according to Example 5 was obtained.

この実施例5の製造においても、熱圧着後の電解銅箔1'と離間フィルムであるアルミニウム箔3の層間剥離は不具合なく極めて順調に行われた。また、密着性試験片による評価では、「密着性」が良好であり、「密着性のばらつき」も良好あって、得られた両面銅張積層体5は、面内で均一に接着されていることが確認された。結果を表1に示す。   Also in the manufacture of Example 5, delamination of the electrolytic copper foil 1 ′ after thermocompression bonding and the aluminum foil 3 as the separation film was performed smoothly without any problem. Further, in the evaluation using the adhesion test piece, “adhesion” is good, “adhesion variation” is also good, and the obtained double-sided copper clad laminate 5 is uniformly bonded in the surface. It was confirmed. The results are shown in Table 1.

(比較例1)
離間フィルム(C)として、厚さ25μmの非熱可塑性である市販の耐熱性ポリイミドフィルム3(Tg:340℃、表裏ともに表面粗さRz:0.9μm、熱容量39.9J/m2)を用いた以外は実施例1と同様にして、比較例1に係る両面銅張積層体を得た。
(Comparative Example 1)
As the spacing film (C), a commercially available heat-resistant polyimide film 3 (Tg: 340 ° C., surface roughness Rz: 0.9 μm, heat capacity 39.9 J / m 2 ) on both sides is used. A double-sided copper-clad laminate according to Comparative Example 1 was obtained in the same manner as Example 1 except that.

この比較例1の製造においても、熱圧着後の電解銅箔1'と離間フィルムである耐熱性ポリイミドフィルム3の層間剥離は不具合なく極めて順調に行われた。但し、密着性試験片による評価では、「密着性」は良好であったが、「密着性のばらつき」は0.32kN/mであって、実施例の結果に比べて、両面銅張積層体5の面内での接着性は不均一であることが分った。結果を表1に示す。   Also in the manufacture of Comparative Example 1, delamination between the heat-bonded electrolytic copper foil 1 ′ and the heat-resistant polyimide film 3, which is a separation film, was performed very smoothly without any defects. However, in the evaluation with the adhesion test piece, the “adhesion” was good, but the “variation in adhesion” was 0.32 kN / m, and compared with the results of the examples, the double-sided copper-clad laminate The in-plane adhesion was found to be non-uniform. The results are shown in Table 1.

(比較例2)
離間フィルム(C)として、厚さ100μmの非熱可塑性である市販の耐熱性ポリイミドフィルム3(Tg:340℃、表裏ともに表面粗さRz:0.9μm、熱容量159.5J/m2)を用いた以外は実施例1と同様にして、比較例2に係る両面銅張積層体を得た。
(Comparative Example 2)
As the separation film (C), a commercially available heat-resistant polyimide film 3 (Tg: 340 ° C., surface roughness Rz: 0.9 μm, heat capacity 159.5 J / m 2 ) on both sides is used. A double-sided copper-clad laminate according to Comparative Example 2 was obtained in the same manner as Example 1 except that.

この比較例2の製造においても、熱圧着後の電解銅箔1'と離間フィルムである耐熱性ポリイミドフィルム3の層間剥離は不具合なく極めて順調に行われた。但し、密着性試験片による評価では、「密着性」は良好であったが、「密着性のばらつき」は0.40kN/mであって、実施例の結果に比べて、両面銅張積層体5の面内での接着性は不均一であることが分った。結果を表1に示す。    Also in the manufacture of Comparative Example 2, delamination between the heat-bonded electrolytic copper foil 1 ′ and the heat-resistant polyimide film 3, which is a separation film, was performed extremely smoothly without any defects. However, in the evaluation with the adhesion test piece, “adhesion” was good, but “adhesion variation” was 0.40 kN / m, which is a double-sided copper clad laminate compared with the results of the examples. The in-plane adhesion was found to be non-uniform. The results are shown in Table 1.

(比較例3)
離間フィルム(C)として、厚さ125μmの非熱可塑性である市販の耐熱性ポリイミドフィルム3(Tg:340℃、表裏ともに表面粗さRz:0.9μm、熱容量199.4J/m2)を用いた以外は実施例1と同様にして、比較例3に係る両面銅張積層体を得た。
(Comparative Example 3)
As the spacing film (C), a commercially available heat-resistant polyimide film 3 (Tg: 340 ° C., surface roughness Rz: 0.9 μm, heat capacity 199.4 J / m 2 ) on both sides is used. A double-sided copper-clad laminate according to Comparative Example 3 was obtained in the same manner as Example 1 except that.

この比較例3の製造においても、熱圧着後の電解銅箔1'と離間フィルムである耐熱性ポリイミドフィルム3の層間剥離は不具合なく極めて順調に行われた。しかしながら、密着性試験片による評価では、離間フィルム側の電解銅箔1'と液晶ポリマーフィルム2の「密着性」が0.51kN/mであり、実施例の結果に比べて、密着性が低いことが分かった。結果を表1に示す。    Also in the manufacture of Comparative Example 3, delamination between the electro-deposited copper foil 1 ′ after thermocompression bonding and the heat-resistant polyimide film 3 as a separation film was performed very smoothly without any defects. However, in the evaluation using the adhesion test piece, the “adhesion” between the electrolytic copper foil 1 ′ on the separation film side and the liquid crystal polymer film 2 is 0.51 kN / m, and the adhesion is lower than the results of the examples. I understood that. The results are shown in Table 1.

(比較例4)
離間フィルム(C)として、両面銅張積層体(新日鐵化学社製 エスパネックスMシリーズ(MB12−50−12REQ)、表裏ともに表面粗さRz:0.85μm、熱容量162.8J/m2)を用いた以外は実施例1と同様にして、比較例4に係る両面銅張積層体を得た。
(Comparative Example 4)
Double-sided copper-clad laminate (Espanex M series (MB12-50-12REQ) manufactured by Nippon Steel Chemical Co., Ltd., surface roughness Rz: 0.85 μm, heat capacity 162.8 J / m 2 ) A double-sided copper clad laminate according to Comparative Example 4 was obtained in the same manner as Example 1 except that was used.

この比較例4の製造においても、熱圧着後の電解銅箔1'と離間フィルムである両面銅張積層体3の層間剥離は不具合なく極めて順調に行われた。しかしながら、密着性試験片による評価では、離間フィルム側の電解銅箔1'と液晶ポリマーフィルム2の「密着性」が0.55kN/mであり、実施例の結果に比べて、密着性が低いことが分かった。結果を表1に示す。    Also in the manufacture of Comparative Example 4, the delamination of the electrolytic copper foil 1 ′ after thermocompression bonding and the double-sided copper-clad laminate 3 as a separation film was performed smoothly without any problems. However, in the evaluation using the adhesion test piece, the “adhesion” between the electrolytic copper foil 1 ′ on the side of the separation film and the liquid crystal polymer film 2 is 0.55 kN / m, and the adhesion is lower than the results of the examples. I understood that. The results are shown in Table 1.

(比較例5)
離間フィルム(C)として、厚さ50μmのステンレス箔(熱容量196.7J/m2)を用いた以外は実施例1と同様にして、比較例5に係る両面銅張積層体を得た。
(Comparative Example 5)
A double-sided copper clad laminate according to Comparative Example 5 was obtained in the same manner as in Example 1 except that a 50 μm-thick stainless steel foil (heat capacity 196.7 J / m 2 ) was used as the spacing film (C).

この比較例5の製造においても、熱圧着後の電解銅箔1'と離間フィルムであるステンレス箔3の層間剥離は不具合なく極めて順調に行われた。しかしながら、密着性試験片による評価では、離間フィルム側の電解銅箔1'と液晶ポリマーフィルム2の「密着性」が0.71kN/mであり、実施例の結果に比べて、密着性が低いことが分かった。結果を表1に示す。    Also in the manufacture of Comparative Example 5, delamination between the electrolytic copper foil 1 ′ after thermocompression bonding and the stainless steel foil 3 as the separation film was performed very smoothly without any defects. However, in the evaluation using the adhesion test piece, the “adhesion” between the electrolytic copper foil 1 ′ on the side of the separation film and the liquid crystal polymer film 2 is 0.71 kN / m, and the adhesion is lower than the results of the examples. I understood that. The results are shown in Table 1.

Figure 2014128913
Figure 2014128913

以上の結果から、本発明に係る製造方法によれば、しわの発生や接着強度のばらつきをなくして、絶縁性フィルムと金属箔との層間密着性に優れた高品質の両面金属張積層体を、工業的に生産性良く製造できることが分かった。なお、本発明は上記実施の形態に制約されるものではなく、種々の変形が可能である。   From the above results, according to the manufacturing method according to the present invention, a high-quality double-sided metal-clad laminate excellent in interlayer adhesion between the insulating film and the metal foil without wrinkles or variations in adhesive strength is obtained. It was found that it can be produced industrially with high productivity. In addition, this invention is not restrict | limited to the said embodiment, A various deformation | transformation is possible.

1、1':電解銅箔(金属箔(B、B'))
2:液晶ポリマーフィルム(絶縁性フィルム(A))
3:耐熱性ポリイミドフィルム(離間フィルム(C))
4:加圧ロール
5:両面銅張積層体
6:剥離ロール
7:直線導体パターン
1, 1 ': Electrolytic copper foil (metal foil (B, B'))
2: Liquid crystal polymer film (insulating film (A))
3: Heat-resistant polyimide film (spaced film (C))
4: Pressure roll 5: Double-sided copper clad laminate 6: Peeling roll 7: Linear conductor pattern

Claims (5)

少なくとも表面に熱可塑性樹脂からなる接着面を有した絶縁性フィルム(A)の両面に金属箔(B、B')が接着された両面金属張積層体を製造する方法であって、熱容量が50〜150J/m2の範囲にある離間フィルム(C)を用いて、一対の加圧ロール(r1、r2)間で(r1)/(B)/(A)/(B')/(C)/(B')/(A)/(B)/(r2)の順となるように、絶縁性フィルム(A)、金属箔(B、B')、及び離間フィルム(C)を重ねて熱圧着し、その後、離間フィルム(C)から両面金属張積層体を分離又は剥離して2つの両面金属張積層体を得ることを特徴とする両面金属張積層体の製造方法。 A method for producing a double-sided metal-clad laminate in which metal foils (B, B ′) are adhered to both surfaces of an insulating film (A) having an adhesive surface made of a thermoplastic resin on at least a surface, wherein the heat capacity is 50 (R 1 ) / (B) / (A) / (B ′) / between the pair of pressure rolls (r 1 , r 2 ) using the separation film (C) in the range of ˜150 J / m 2 (C) / (B ′) / (A) / (B) / (r 2 ) In order of the insulating film (A), the metal foil (B, B ′), and the separation film (C) Are laminated and thermocompression bonded, and then the double-sided metal-clad laminate is separated or peeled from the separating film (C) to obtain two double-sided metal-clad laminates. 一対の加圧ロールが表面温度調節機能を有する金属表面のロールからなり、前記ロール表面の表面粗度RzをRzrとし、前記ロール表面と接する金属箔(B)表面の表面粗度RzをRzBとし、前記金属箔(B)表面と接する離間フィルム(C)の表面粗度RzをRzCとしたとき、Rzr−RzB及びRzC−RzBがいずれも±0.8μm以下である請求項1に記載の両面金属張積層体の製造方法。   A pair of pressure rolls consists of a roll having a metal surface having a surface temperature adjustment function, the surface roughness Rz of the roll surface is Rzr, and the surface roughness Rz of the surface of the metal foil (B) in contact with the roll surface is RzB. The both surfaces according to claim 1, wherein Rzr-RzB and RzC-RzB are both ± 0.8 µm or less, where RzC is the surface roughness Rz of the separation film (C) in contact with the surface of the metal foil (B). A method for producing a metal-clad laminate. 絶縁性フィルム(A)が、熱可塑性液晶ポリマーフィルム、又は耐熱性樹脂層の両面に熱可塑性樹脂層を備えた耐熱性樹脂フィルムからなる請求項1に記載の両面金属張積層体の製造方法。   The method for producing a double-sided metal-clad laminate according to claim 1, wherein the insulating film (A) comprises a thermoplastic liquid crystal polymer film or a heat-resistant resin film having a thermoplastic resin layer on both sides of the heat-resistant resin layer. 離間フィルム(C)が、アルミニウム箔、耐熱性樹脂フィルム、又は樹脂フィルムの表裏面に金属箔を有した複合フィルムから選ばれるものである請求項1又は2に記載の両面金属張積層体の製造方法。   The production of the double-sided metal-clad laminate according to claim 1 or 2, wherein the spacing film (C) is selected from an aluminum foil, a heat-resistant resin film, or a composite film having a metal foil on the front and back surfaces of the resin film. Method. 金属箔(B)が、厚さ1〜100μmの銅箔である請求項1〜4のいずれかに記載の両面金属張積層体の製造方法。   The method for producing a double-sided metal-clad laminate according to any one of claims 1 to 4, wherein the metal foil (B) is a copper foil having a thickness of 1 to 100 µm.
JP2012287688A 2012-12-28 2012-12-28 Method for producing double-sided metal-clad laminate Active JP6031352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287688A JP6031352B2 (en) 2012-12-28 2012-12-28 Method for producing double-sided metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287688A JP6031352B2 (en) 2012-12-28 2012-12-28 Method for producing double-sided metal-clad laminate

Publications (2)

Publication Number Publication Date
JP2014128913A true JP2014128913A (en) 2014-07-10
JP6031352B2 JP6031352B2 (en) 2016-11-24

Family

ID=51407774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287688A Active JP6031352B2 (en) 2012-12-28 2012-12-28 Method for producing double-sided metal-clad laminate

Country Status (1)

Country Link
JP (1) JP6031352B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129949A (en) * 2015-01-13 2016-07-21 宇部エクシモ株式会社 Flexible laminate and method for manufacturing flexible laminate
JP2016131193A (en) * 2015-01-13 2016-07-21 宇部エクシモ株式会社 Manufacturing method of laminated plate and multilayer circuit board
WO2016114262A1 (en) * 2015-01-13 2016-07-21 宇部エクシモ 株式会社 Flexible laminated board and multilayer circuit board
KR101751369B1 (en) * 2015-09-04 2017-06-27 배석근 A apparatus for attaching the copper plates
JP2018051900A (en) * 2016-09-28 2018-04-05 新日鉄住金化学株式会社 Metal-clad laminate
CN109548323A (en) * 2017-09-21 2019-03-29 鹤山市得润电子科技有限公司 A kind of manufacturing method and production equipment of multi-layer soft circuit board
KR20210043710A (en) 2018-09-25 2021-04-21 주식회사 쿠라레 Method for producing a metal clad laminate
WO2021193194A1 (en) * 2020-03-24 2021-09-30 株式会社クラレ Method for producing metal clad laminate
JPWO2021193195A1 (en) * 2020-03-24 2021-09-30
US11985762B2 (en) 2015-01-13 2024-05-14 Ube Exsymo Co., Ltd. Flexible laminated board and multilayer circuit board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220015562A (en) * 2020-07-31 2022-02-08 동우 화인켐 주식회사 Flexible Metal Laminate and Printed Circuit Board Using the Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078491A (en) * 2007-09-27 2009-04-16 Toray Ind Inc Method for manufacturing laminate film with metal layer
JP2010125794A (en) * 2008-11-28 2010-06-10 Panasonic Electric Works Co Ltd Method for manufacturing flexible laminate with metal foil clad on one side and laminate construct
WO2011093427A1 (en) * 2010-01-29 2011-08-04 新日鐵化学株式会社 Method for manufacturing a laminate with one metal-plated side

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078491A (en) * 2007-09-27 2009-04-16 Toray Ind Inc Method for manufacturing laminate film with metal layer
JP2010125794A (en) * 2008-11-28 2010-06-10 Panasonic Electric Works Co Ltd Method for manufacturing flexible laminate with metal foil clad on one side and laminate construct
WO2011093427A1 (en) * 2010-01-29 2011-08-04 新日鐵化学株式会社 Method for manufacturing a laminate with one metal-plated side

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11985762B2 (en) 2015-01-13 2024-05-14 Ube Exsymo Co., Ltd. Flexible laminated board and multilayer circuit board
JP2016131193A (en) * 2015-01-13 2016-07-21 宇部エクシモ株式会社 Manufacturing method of laminated plate and multilayer circuit board
WO2016114262A1 (en) * 2015-01-13 2016-07-21 宇部エクシモ 株式会社 Flexible laminated board and multilayer circuit board
JP2016129949A (en) * 2015-01-13 2016-07-21 宇部エクシモ株式会社 Flexible laminate and method for manufacturing flexible laminate
KR101751369B1 (en) * 2015-09-04 2017-06-27 배석근 A apparatus for attaching the copper plates
JP2018051900A (en) * 2016-09-28 2018-04-05 新日鉄住金化学株式会社 Metal-clad laminate
CN109548323A (en) * 2017-09-21 2019-03-29 鹤山市得润电子科技有限公司 A kind of manufacturing method and production equipment of multi-layer soft circuit board
KR20210043710A (en) 2018-09-25 2021-04-21 주식회사 쿠라레 Method for producing a metal clad laminate
JPWO2021193195A1 (en) * 2020-03-24 2021-09-30
JPWO2021193194A1 (en) * 2020-03-24 2021-09-30
WO2021193195A1 (en) * 2020-03-24 2021-09-30 株式会社クラレ Method for manufacturing metal-clad laminate
JP7182030B2 (en) 2020-03-24 2022-12-01 株式会社クラレ METHOD FOR MANUFACTURING METAL-CLAD LAMINATED BODY
JP7182747B2 (en) 2020-03-24 2022-12-02 株式会社クラレ METHOD FOR MANUFACTURING METAL-CLAD LAMINATED BODY
WO2021193194A1 (en) * 2020-03-24 2021-09-30 株式会社クラレ Method for producing metal clad laminate

Also Published As

Publication number Publication date
JP6031352B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5661051B2 (en) Method for producing single-sided metal-clad laminate
JP6031352B2 (en) Method for producing double-sided metal-clad laminate
JP5119401B2 (en) Flexible laminate having thermoplastic polyimide layer and method for producing the same
JP6582048B2 (en) Manufacturing method and manufacturing apparatus for single-sided metal-clad laminate
JP2004098659A (en) Copper-clad laminate and its manufacturing process
JP5904202B2 (en) Polyimide film and metal laminate using the same
KR20090111797A (en) Thermoplastic polyimide, and laminated polyimide film and metal foil-laminated polyimide film using the thermoplastic polyimide
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
JP2016107507A (en) Metal-clad laminated sheet and method for producing the same
JP2010238990A (en) Compound adhesive film, multi-layer circuit substrate using the same, and method of manufacturing the same
JP3534405B1 (en) Method for producing heat-resistant flexible laminate and heat-resistant flexible laminate produced thereby
JP2017205948A (en) Production method of double-sided metal-clad laminate
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP2004358677A (en) Method for manufacturing laminate
JP5040451B2 (en) Manufacturing method of laminate of release material and single-sided metal foil laminated resin film, single-sided metal foil laminated film
TWI821409B (en) Production method of metal-clad laminate
JP2001270033A (en) Method for manufacturing flexible metal foil laminate
CN114007832B (en) Method for producing metal-clad laminate
JP7445921B2 (en) Manufacturing method of single-sided metal-clad laminate
WO2021193195A1 (en) Method for manufacturing metal-clad laminate
JP7182030B2 (en) METHOD FOR MANUFACTURING METAL-CLAD LAMINATED BODY
JP2009071021A (en) Method for manufacturing multilayer wiring circuit board
JP2004358678A (en) Method for manufacturing laminate
JP2018051901A (en) Metal-clad laminate
JP2009196098A (en) Method for manufacturing flexible metal laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6031352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250