JP2014128157A - 風力発電施設及びその運転方法 - Google Patents

風力発電施設及びその運転方法 Download PDF

Info

Publication number
JP2014128157A
JP2014128157A JP2012284847A JP2012284847A JP2014128157A JP 2014128157 A JP2014128157 A JP 2014128157A JP 2012284847 A JP2012284847 A JP 2012284847A JP 2012284847 A JP2012284847 A JP 2012284847A JP 2014128157 A JP2014128157 A JP 2014128157A
Authority
JP
Japan
Prior art keywords
power
wind power
wind
grid
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012284847A
Other languages
English (en)
Other versions
JP5787870B2 (ja
Inventor
Shinji Arinaga
真司 有永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012284847A priority Critical patent/JP5787870B2/ja
Publication of JP2014128157A publication Critical patent/JP2014128157A/ja
Application granted granted Critical
Publication of JP5787870B2 publication Critical patent/JP5787870B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

【課題】他励式の直交変換器を用いる場合であっても無効電力補償用の付帯設備を設けることなくグリッドの電圧安定化を図ることができる風力発電施設及びその運転方法を提供する。
【解決手段】複数の風力発電装置を含むウィンドファームを備える風力発電施設は、前記複数の風力発電装置のうち少なくとも一つの第1風力発電装置からグリッドに電力を送るための直流送電路と、前記少なくとも一つの第1風力発電装置からの交流電力を直流電力に変換して前記直流送電路に供給するための交直変換器と、前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための直交変換器と、前記複数の風力発電装置のうち前記第1風力発電装置以外の少なくとも一つの第2風力発電装置を、前記風力発電施設の前記グリッドとの連系点と前記直交変換器との間に接続するための交流送電路とを備える。前記少なくとも一つの第2風力発電装置は、前記交流送電路を介して前記直交変換器に無効電力を供給するように構成される。
【選択図】 図1

Description

本開示は、複数の風力発電装置を含むウィンドファームを備えた風力発電施設及びその運転方法に関する。
近年、地球環境の保全の観点から、大規模な風力発電施設の普及が進んでいる。風力発電施設は、一般に、複数の風力発電装置を含むウィンドファームと、ウィンドファームで生成した電力をグリッド(系統)に送電する送電設備とを備えている。
大規模なウィンドファームは、洋上や山間部などグリッドへの連系点から離れた場所に設けられることが多い。例えば、洋上風力発電施設では、グリッドへの連系点からの距離が100kmを超すような場所にウィンドファームを設置することがあり得る。この場合、ウィンドファームからグリッドの連系点までの送電距離が大きいと、無効電力が存在しない直流送電の方が交流送電に比べて送電ロスの観点から有利である。特に、長距離の海底ケーブルを用いる場合には、交流送電だと送電ロスが大きくなる傾向にあり、直流送電が適切であるとされている。これは、海底ケーブルは、一般的に、絶縁体および導体シースの比較的薄い層で導体が囲まれた構成になっており、高い静電容量を有するためである。
直流送電方式の発電施設として、高圧直流(HVDC;High Voltage Direct Current)システムを介してグリッドに連系されたものが知られている(特許文献1参照)。
HVDCシステムは、発電施設側に設けられる交直変換器(送り出し変換器;SEC)と、グリッド側に設けられる直交変換器(受け取り変換器;REC)とを有している。交直変換器と直交変換器の間には、直流送電路が設けられる。交直変換器は、発電施設からの交流電力を直流電力に変換し、直流送電路を介して直交変換器に直流電力を供給する。直交変換器は、直流送電路を介して交直変換器から受け取った直流電力を交流電力に変換し、グリッドにこれを供給する。
米国特許第6479907号明細書
ところで、HVDCシステムの直交変換器には、サイリスタを用いた他励式変換器と、GTOやIGBTを用いた自励式変換器とがある。他励式変換器は、自励式変換器に比べて安価であるが、稼働時に無効電力を消費するため、一般的に無効電力を補償するための付帯設備(進相コンデンサ)が必要だとされている。これは、グリッド電圧を安定化したいグリッド運用者からの要求に応えて、グリッドとの連系点における力率を所定範囲内に収めるためである。
ここで、風力発電施設のより一層の普及のためには、安価な他励式変換器を直交変換器として用いながら、付帯設備への投資コストは可能な限り抑制し、風力発電施設全体としての建設コストを削減することが望まれる。
この点、特許文献1には、付帯設備を設けずに、他励式の直交変換器を採用するための具体的な構成については何ら開示されていない。
本発明の少なくとも一実施形態の目的は、他励式の直交変換器を用いる場合であっても無効電力補償用の付帯設備を設けることなくグリッドの電圧安定化を図ることができる風力発電施設及びその運転方法を提供することである。
本発明の少なくとも一実施形態に係る風力発電施設は、複数の風力発電装置を含むウィンドファームを備える風力発電施設であって、前記複数の風力発電装置のうち少なくとも一つの第1風力発電装置からグリッド(系統)に電力を送るための直流送電路と、前記少なくとも一つの第1風力発電装置からの交流電力を直流電力に変換して前記直流送電路に供給するための交直変換器と、前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための直交変換器と、前記複数の風力発電装置のうち前記第1風力発電装置以外の少なくとも一つの第2風力発電装置を、前記風力発電施設の前記グリッドとの連系点と前記直交変換器との間に接続するための交流送電路とを備え、前記少なくとも一つの第2風力発電装置は、前記交流送電路を介して前記直交変換器に無効電力を供給するように構成される。
上記風力発電施設によれば、交流送電路を介してウィンドファームの第2風力発電装置から直交変換器に無効電力が供給されるので、安価な他励式の直交変換器を採用する場合であっても、付帯設備を設けることなく連系点における力率を補償できる。
幾つかの実施形態では、前記少なくとも一つの第2風力発電装置は、前記少なくとも一つの第1風力発電装置よりも前記グリッドの近くに位置する。
第2風力発電装置で生成した電力は、交流電力として交流送電路を介してグリッド側へ送電される。その際、交流送電路のキャパシタンス成分に起因した送電ロスが発生し、第2風力発電装置とグリッドとの間の距離に比例して送電ロスは大きくなる。一方、第1風力発電装置で生成した電力の送電経路は、大部分を直流送電路が占めるため、比較的送電ロスは小さい。そこで、少なくとも一つの第2風力発電装置が、少なくとも一つの第1風力発電装置よりもグリッドの近くに位置するように構成することで、風力発電施設全体としての送電ロスを低減することができ、長距離送電においても効率的な送電が可能となる。
一実施形態では、前記連系点における力率が目標範囲内に収まるように前記少なくとも一つの第2風力発電装置を制御するための風車制御部をさらに備える。
このように、連系点における力率が目標範囲内に収まるように第2風力発電装置を制御することによって、第2風力発電装置から供給される無効電力を精度良く調整可能となり、グリッドの電圧安定化により一層寄与する。
他の実施形態では、前記グリッド側からの無効電力供給指令に基づいて、前記少なくとも一つの第2風力発電装置を制御するための風車制御部をさらに備える。
このように、グリッド側からの無効電力指令に基づいて第2風力発電装置を制御することによって、第2風力発電装置から供給される無効電力を容易に調整可能となり、グリッドの電圧安定化により一層寄与する。
本発明の少なくとも一実施形態に係る風力発電施設の運転方法は、複数の風力発電装置を含むウィンドファームと、前記複数の風力発電装置のうち少なくとも一つの第1風力発電装置からグリッドに電力を送るための直流送電路と、前記少なくとも一つの第1風力発電装置からの交流電力を直流電力に変換して前記直流送電路に供給するための交直変換器と、前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための直交変換器と、前記複数の風力発電装置のうち前記第1風力発電装置以外の少なくとも一つの第2風力発電装置を、風力発電施設の前記グリッドとの連系点と前記直交変換器との間に接続するための交流送電路とを備えた風力発電施設の運転方法であって、前記交流送電路を介して前記少なくとも一つの第2風力発電装置から前記直交変換器に無効電力を供給するように構成される。
上記風力発電施設の運転方法によれば、交流送電路を介してウィンドファームの第2風力発電装置から直交変換器に無効電力が供給されるので、安価な他励式の直交変換器を採用する場合であっても、付帯設備を設けることなく連系点における力率を補償できる。
本発明の少なくとも一実施形態によれば、付帯設備を設けることなく連系点における力率を補償でき、風力発電施設を安価な設備構成としながらグリッドの電圧安定化を図ることが可能となる。
本発明の一実施形態に係る風力発電施設の全体構成を示す図である。 (a)〜(d)は風力発電装置の構成例を示す図である。 本発明の変形例に係る風力発電施設の全体構成を示す図である。 図3に対応した風力発電施設とグリッドとの位置関係を説明する図である。
以下、添付図面に従って本発明の実施形態について説明する。ただし、実施形態として以下に記載され、あるいは、実施形態として図面で示された構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
図1は、一実施形態に係る風力発電施設の全体構成を示す図である。
同図に示すように、風力発電施設1は、第1風力発電装置10(10a,10b,…10x)及び第2風力発電装置20を含むウィンドファーム2と、第1風力発電装置10及び第2風力発電装置20とグリッド(系統)40とを接続するローカルグリッド3と、第1風力発電装置10とグリッド40との間に設けられる第1送電設備11と、第2風力発電装置20とグリッド40との間に設けられる第2送電設備21とを備える。
第1風力発電装置10及び第2風力発電装置20は、風を受けて回転するロータの回転エネルギーを電力に変換する発電機を有する。
幾つかの実施形態では、第1風力発電装置10及び第2風力発電装置20は、同一の連系点45に接続されることによって一つのウィンドファーム2を構成する。但し、第1風力発電装置10と第2風力発電装置20とは、互いに離れたエリアに配置されてもよい。各風力発電装置10,20から出力される交流電力はローカルグリッド3に送り出され、ローカルグリッド3に設けられる各送電設備11,21を経てグリッド40に供給される。なお、風力発電施設1において、第1風力発電装置10及び第2風力発電装置20は少なくとも一つずつ設けられればよいが、図1には一例として、複数の第1風力発電装置10a,10b,…10xと、一つの第1風力発電装置20が設けられた構成を示している。
一実施形態において、ローカルグリッド3は、第1風力発電装置10とグリッド40との間に設けられる第1ローカルグリッド3aと、第2風力発電装置20とグリッド40との間に設けられる第2ローカルグリッド3bとを含む。第2ローカルグリッド3bは、後述する第1変圧器18とグリッド40との間の接続点4で第1ローカルグリッド3aに接続される。
第1ローカルグリッド3aは、第1風力発電装置10(10a,10b,…10x)側から順に、交流送電路5(5a,5b,…5x)と、直流送電路6(6a,6b,…6x),7と、交流送電路8とから構成されてもよい。なお、複数の第1風力発電装置10a,10b,…10xに対応して設けられた複数の直流送電路6a,6b,…6xは、任意の接続点7aで一つの直流送電路7に接続されてもよい。
第2ローカルグリッド3bは、交流送電路9から構成されてもよい。
また、第1ローカルグリッド3a及び第2ローカルグリッド3bには、それぞれ、開閉器14(14a,14b,…14x)及び開閉器24が設けられている。なお、図には模式的に、各直流送電路6a,6b,…6x及び交流送電路9に各一つの開閉器14,24を設けた構成を示しているが、通常、第1ローカルグリッド3a及び第2ローカルグリッド3bには、それぞれ複数の開閉器が設けられる。グリッド40及びローカルグリッド3に異常がない場合、開閉器14,24は全て閉になっており、風力発電装置10,20で生成された電力はローカルグリッド3内をグリッド40に向かって送電される。
第1風力発電装置10は、風車ロータと、該風車ロータの回転エネルギーを電力エネルギーに変換する発電機とを備える。第1風力発電装置10の発電機は、例えば同期発電機や誘導発電機が用いられ、交流送電路5(5a,5b,…5x)に接続される。
一実施形態では、第1風力発電装置10は、図2(a)に示すように、風車ロータ100によって駆動される油圧ポンプ200と、該油圧ポンプ200で生成された圧油によって駆動される油圧モータ210と、油圧モータ210によって駆動される同期発電機220とを含む。同期発電機220の電機子巻線220Aは、インバータやコンバータ等を介さずに交流送電路5(5a,5b,…5x)に直結される。一方、同期発電機220の界磁巻線220Bは、励磁機230から直流の界磁電流が供給されるようになっている。なお、電機子巻線220Aと交流送電路5との間には変圧器が設けられていてもよい。
他の実施形態では、第1風力発電装置10は、図2(b)に示すように、風車ロータ100に接続されて風車ロータ100の回転を増速するための増速機300と、増速機300によって駆動されるかご型誘導発電機310とを含む。かご型誘導発電機310の固定子310Aはインバータやコンバータ等を介さずに交流送電路5(5a,5b,…5x)に直結されており、交流送電路5からの励磁電流が流れるようになっている。一方、かご型誘導発電機310の回転子310Bは、増速機300の出力軸とともに回転可能であり、固定子310Aに励磁電流が流れる際の電磁誘導によって励磁されるようになっている。
さらに別の実施形態では、第1風力発電装置10は、図2(c)に示すように、風車ロータ100に接続されて風車ロータ100の回転を増速するための増速機400と、増速機400によって駆動される巻線型誘導発電機410とを含む。巻線型誘導発電機410は、交流送電路5(5a,5b,…5x)に直結される固定子巻線410Aと、AC−DC−ACコンバータ430を介して交流送電路5(5a,5b,…5x)に接続される回転子巻線410Bとを含む。AC−DC−ACコンバータ430は、発電機側インバータ432、DCバス434及び系統側インバータ436で構成されている。
さらに別の実施形態では、第1風力発電装置10は、図2(d)に示すように、風車ロータ100に直結された同期発電機500を含む。同期発電機500の電機子巻線500Aは、AC−DC−ACリンク510を介して交流送電路5(5a,5b,…5x)に接続される。AC−DC−ACリンク510は、コンバータ512、DCバス514及びインバータ516で構成されている。一方、同期発電機500の界磁巻線500Bには、励磁機520から直流の界磁電流が供給されるようになっている。
第1風力発電装置10a,10b,…10xとグリッド40との間には、交直変換器(コンバータ又は送り出し変換器とも言う)12a,12b,…12xと、直交変換器(インバータ又は受け取り変換器とも言う)16と、変圧器18とを含む第1送電設備11が設けられる。そして、複数の第1風力発電装置10a,10b,…10xから出力される交流電力は、それぞれ、交流送電路5a,5b,…5xを介して各交直変換器12a,12b,…12xに導入され、直流電力に変換される。各交直変換器12a,12b,…12xで変換された直流電力は、直流送電路6a,6b,…6x及び直流送電路7によって直流送電され、直交変換器16に導入される。直交変換器16では直流電力を交流電力に変換し、この変換された交流電力は変圧器18によって変圧されてグリッド40に供給される。
第2風力発電装置20は、無効電力を供給可能な構成を有する。例えば発電機として、同期発電機やインバータを具備した誘導発電機等が用いられ、交流送電路9が接続される。
一実施形態では、第2風力発電装置20は、図2(a)に示すように、風車ロータ100によって駆動される油圧ポンプ200と、該油圧ポンプ200で生成された圧油によって駆動される油圧モータ210と、油圧モータ210によって駆動される同期発電機220とを含む。同期発電機220の電機子巻線220Aは、インバータやコンバータ等を介さずに交流送電路9に直結される。一方、同期発電機220の界磁巻線220Bは、励磁機230から直流の界磁電流が供給されるようになっている。なお、電機子巻線220Aと交流送電路9との間には変圧器が設けられていてもよい。
他の実施形態では、第2風力発電装置20は、図2(c)に示すように、風車ロータ100に接続されて風車ロータ100の回転を増速するための増速機400と、増速機400によって駆動される巻線型誘導発電機410とを含む。巻線型誘導発電機410は、交流送電路9に直結される固定子巻線410Aと、AC−DC−ACコンバータ430を介して交流送電路9に接続される回転子巻線410Bとを含む。AC−DC−ACコンバータ430は、発電機側インバータ432、DCバス434及び系統側インバータ436で構成されている。
さらに別の実施形態では、第2風力発電装置20は、図2(d)に示すように、風車ロータ100に直結された同期発電機500を含む。同期発電機500の電機子巻線500Aは、AC−DC−ACリンク510を介して交流送電路9に接続される。AC−DC−ACリンク510は、コンバータ512、DCバス514及びインバータ516で構成されている。一方、同期発電機500の界磁巻線500Bには、励磁機520から直流の界磁電流が供給されるようになっている。
第2風力発電装置20とグリッド40との間には、変圧器28を含む第2送電設備21が設けられる。そして、第2風力発電装置20から出力される交流電力は、交流送電路9を介して交流送電され、変圧器28で変圧される。そして、第2風力発電装置20から出力された交流電力は、第2ローカルグリッド3bと第1ローカルグリッド3aとの接続点4を介して、変圧器18とグリッド40との間の交流送電路8に供給される。
これにより、第2風力発電装置20で生成された無効電力が直交変換器16に供給される。
このように、第2ローカルグリッド3bの交流送電路9を介して第2風力発電装置20から直交変換器16に無効電力が供給されるので、安価な他励式の直交変換器(例えばサイリスタインバータ)16を採用する場合であっても、付帯設備を設けることなく連系点45における力率を補償できる。よって、風力発電施設1を安価な設備構成としながらグリッド40の電圧安定化を図ることが可能となる。また、第2風力発電装置20は無効電力の他に有効電力としても電力を供給可能なので、第2風力発電装置20によって風力エネルギーから生成した電力を無効電力又は有効電力として有効利用でき、効率の優れた風力発電施設1を実現することができる。
なお、風力発電施設1において、ウィンドファーム2及び交直変換器12は洋上に設置され、直交変換器16及び変圧器18,28、グリッド40は陸上に設置されてもよい。この場合、直流送電路6,7及び交流送電路9の大部分は海底に設置される海底ケーブルである。
幾つかの実施形態では、風力発電施設1は、第2風力発電装置20で生成する無効電力を制御する風車制御部30を備えている。この風車制御部30によって、グリッド40との連系点45と直交変換器16との間に接続するための交流送電路8を介して、第2風力発電装置20から直交変換器16に供給される無効電力量が調節されるようになっている。
一実施形態では、風車制御部30は、連系点45における力率が目標範囲内に収まるように第2風力発電装置20を制御する構成となっている。例えば、風車制御部30は、検出部32によって検出される連系点45の電流及び電圧の値を用いて、連系点45における有効電力および無効電力を算出し、連系点45における有効電力と予め定められた力率の目標範囲とを用いて目標無効電力を算出する。そして、この目標無効電力となるように、第2風力発電装置20を制御する。
このように、連系点45における力率が目標範囲内に収まるように第2風力発電装置20を制御することによって、第2風力発電装置20から供給される無効電力を精度良く調整可能となり、グリッド40の電圧安定化により一層寄与する。
他の実施形態では、風車制御部30は、グリッド40側からの無効電力供給指令に基づいて、第2風力発電装置20を制御する構成としてもよい。グリッド40側には、グリッド40の全体を対象として監視制御を行う系統監視制御所が設けられている。系統監視制御所は、グリッド40を構成している各種設備の状態や各所に設置されるセンサの情報等を監視し、電力を安定して供給するように各種設備に指令を送る。風車制御部30は、系統監視制御室からの無効電力供給指令に基づいて、第2風力発電装置20を制御する。
このように、グリッド40側からの無効電力指令に基づいて第2風力発電装置20を制御することによって、第2風力発電装置20から供給される無効電力を容易に調整可能となり、グリッド40の電圧安定化により一層寄与する。
以上説明したように、上述の実施形態によれば、付帯設備を設けることなく連系点45における力率を補償でき、風力発電施設1を安価な設備構成としながらグリッド40の電圧安定化を図ることが可能となる。
以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
例えば、上述の実施形態では、第1風力発電装置10から出力された電力をグリッド40へ送電する第1送電設備11において、複数の交流送電路5a,5b,…5xにそれぞれ交直変換器12a,12b,…12xが設けられた構成を例示したが、図3に示すように、複数の交流送電路5a,5b,…5xが接続された一本の交流送電路50に交直変換器12が設けられた構成としてもよい。この場合、交直変換器12と直交変換器16との間は一本の直流送電路60で接続される。なお、図3は、本発明の変形例に係る風力発電施設の全体構成を示す図である。
また、図4に示すように、第2風力発電装置20は、第1風力発電装置10よりもグリッド40に近い位置に設けられてもよい。ここで、図4は、図3に対応した風力発電施設とグリッドとの位置関係を説明する図である。図3に示すように、ウィンドファーム2は、複数の第1風力発電装置10(10a〜10f)と、第2風力発電装置20を含む。このとき、第2風力発電装置20とグリッド40との距離Xは、第1風力発電装置10とグリッド40との距離Xより小さい。
第2風力発電装置20で生成した電力は、交流電力として交流送電路9を介してグリッド40側へ送電されるので、交流送電路9のキャパシタンス成分に起因した送電ロスが発生する。この送電ロスは、第2風力発電装置20とグリッド40との間の距離に比例して大きくなる。これに対し、第1風力発電装置10で生成した電力の送電経路(第1送電設備11)は、その大部分を直流送電路60が占めるため、比較的送電ロスは小さい。
そこで、上記したように、第2風力発電装置20が第1風力発電装置10よりもグリッド40の近くに位置するように構成することで、ウィンドファーム2全体としての送電ロスを低減することができ、長距離送電においても効率的な送電が可能となる。
1 風力発電施設
2 ウィンドファーム
3 ローカルグリッド
3a 第1ローカルグリッド
3b 第2ローカルグリッド
4 接続点
5(5a,5b,…5x),8,9,50 交流送電路
6(6a,6b,…6x),7,60 直流送電路
10(10a,10b,…10x) 第1風力発電装置
11 第1送電設備
12(12a,12b,…12x) 交直変換器
14(14a,14b,…14x),24 開閉器
16 直交変換器
18,28 変圧器
20 第2風力発電装置
30 風車制御部
40 グリッド
42 系統監視制御部
45 連系点

Claims (5)

  1. 複数の風力発電装置を含むウィンドファームを備える風力発電施設であって、
    前記複数の風力発電装置のうち少なくとも一つの第1風力発電装置からグリッドに電力を送るための直流送電路と、
    前記少なくとも一つの第1風力発電装置からの交流電力を直流電力に変換して前記直流送電路に供給するための交直変換器と、
    前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための直交変換器と、
    前記複数の風力発電装置のうち前記第1風力発電装置以外の少なくとも一つの第2風力発電装置を、前記風力発電施設の前記グリッドとの連系点と前記直交変換器との間に接続するための交流送電路とを備え、
    前記少なくとも一つの第2風力発電装置は、前記交流送電路を介して前記直交変換器に無効電力を供給するように構成されたことを特徴とする風力発電施設。
  2. 前記少なくとも一つの第2風力発電装置は、前記少なくとも一つの第1風力発電装置よりも前記グリッドに近いことを特徴とする請求項1に記載の風力発電施設。
  3. 前記連系点における力率が目標範囲内に収まるように前記少なくとも一つの第2風力発電装置を制御するための風車制御部をさらに備えることを特徴とする請求項1又は2に記載の風力発電施設。
  4. 前記グリッド側からの無効電力供給指令に基づいて、前記少なくとも一つの第2風力発電装置を制御するための風車制御部をさらに備えることを特徴とする請求項1又は2に記載の風力発電施設。
  5. 複数の風力発電装置を含むウィンドファームと、前記複数の風力発電装置のうち少なくとも一つの第1風力発電装置からグリッドに電力を送るための直流送電路と、前記少なくとも一つの第1風力発電装置からの交流電力を直流電力に変換して前記直流送電路に供給するための交直変換器と、前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための直交変換器と、前記複数の風力発電装置のうち前記第1風力発電装置以外の少なくとも一つの第2風力発電装置を、風力発電施設の前記グリッドとの連系点と前記直交変換器との間に接続するための交流送電路とを備えた風力発電施設の運転方法であって、
    前記交流送電路を介して前記少なくとも一つの第2風力発電装置から前記直交変換器に無効電力を供給するように構成されたことを特徴とする風力発電施設の運転方法。

JP2012284847A 2012-12-27 2012-12-27 風力発電施設及びその運転方法 Active JP5787870B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012284847A JP5787870B2 (ja) 2012-12-27 2012-12-27 風力発電施設及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012284847A JP5787870B2 (ja) 2012-12-27 2012-12-27 風力発電施設及びその運転方法

Publications (2)

Publication Number Publication Date
JP2014128157A true JP2014128157A (ja) 2014-07-07
JP5787870B2 JP5787870B2 (ja) 2015-09-30

Family

ID=51407249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012284847A Active JP5787870B2 (ja) 2012-12-27 2012-12-27 風力発電施設及びその運転方法

Country Status (1)

Country Link
JP (1) JP5787870B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106337782A (zh) * 2015-07-07 2017-01-18 西门子公司 用网络桥接器控制器来运行风力涡轮机
CN106337779A (zh) * 2015-07-07 2017-01-18 西门子公司 用网络桥接器控制器来操作风力涡轮机
CN106337781A (zh) * 2015-07-07 2017-01-18 西门子公司 用网络桥接器控制器来运行风力涡轮机
CN108306309A (zh) * 2018-03-28 2018-07-20 上海电气电站设备有限公司 透平发电机组的改造方法及同步调相机组
WO2018210203A1 (zh) * 2017-05-16 2018-11-22 蔚来汽车有限公司 基于旋转变压器的矢量控制方法、系统及电机系统
CN109038660A (zh) * 2018-07-27 2018-12-18 上海电力学院 一种考虑静暂态电压稳定性的风电并网系统无功规划方法
CN110622380A (zh) * 2017-05-23 2019-12-27 通用电气公司 电功率系统和子系统
CN113890119A (zh) * 2021-08-18 2022-01-04 广东电网有限责任公司 一种交直流混联电网的储能容量配置方法、装置及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023733A (ja) * 2001-07-05 2003-01-24 Toshiba Corp 風力発電設備、その運転方法および記録媒体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023733A (ja) * 2001-07-05 2003-01-24 Toshiba Corp 風力発電設備、その運転方法および記録媒体

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106337779A (zh) * 2015-07-07 2017-01-18 西门子公司 用网络桥接器控制器来操作风力涡轮机
CN106337781A (zh) * 2015-07-07 2017-01-18 西门子公司 用网络桥接器控制器来运行风力涡轮机
JP2017022982A (ja) * 2015-07-07 2017-01-26 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 電力および電圧の制御を実施する系統側ブリッジコントローラによる、高電圧直流電力接続のみを介して電力系統に接続されている風力タービンの運転
JP2017022984A (ja) * 2015-07-07 2017-01-26 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 電力および電圧の制御を実施する系統側ブリッジコントローラによる、高電圧直流電力接続とアンビリカル交流ケーブルの双方を介して電力系統に接続されている風力タービンの運転
US9998050B2 (en) 2015-07-07 2018-06-12 Siemens Aktiengesellschaft Operating a wind turbine being connected to a utility grid both via a HVDC power connection and via an umbilical AC cable with a network bridge controller performing a power and a voltage control
CN106337782A (zh) * 2015-07-07 2017-01-18 西门子公司 用网络桥接器控制器来运行风力涡轮机
US10063176B2 (en) 2015-07-07 2018-08-28 Siemens Aktiengesellschaft Operating a wind turbine being connected to a utility grid solely via a HVDC power connection with a network bridge controller performing a power and a voltage control
WO2018210203A1 (zh) * 2017-05-16 2018-11-22 蔚来汽车有限公司 基于旋转变压器的矢量控制方法、系统及电机系统
CN110622380A (zh) * 2017-05-23 2019-12-27 通用电气公司 电功率系统和子系统
CN108306309A (zh) * 2018-03-28 2018-07-20 上海电气电站设备有限公司 透平发电机组的改造方法及同步调相机组
CN109038660A (zh) * 2018-07-27 2018-12-18 上海电力学院 一种考虑静暂态电压稳定性的风电并网系统无功规划方法
CN109038660B (zh) * 2018-07-27 2022-03-29 上海电力学院 一种考虑静暂态电压稳定性的风电并网系统无功规划方法
CN113890119A (zh) * 2021-08-18 2022-01-04 广东电网有限责任公司 一种交直流混联电网的储能容量配置方法、装置及系统
CN113890119B (zh) * 2021-08-18 2024-04-26 广东电网有限责任公司 一种交直流混联电网的储能容量配置方法、装置及系统

Also Published As

Publication number Publication date
JP5787870B2 (ja) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5787870B2 (ja) 風力発電施設及びその運転方法
JP6312166B2 (ja) 風力タービン、当該風力タービンを制御する方法、当該風力タービンを備えた発電および送電システム、当該風力タービンの運転を制御するコンピュータプログラム、当該風力タービンにおける電力変換器の系統側ブリッジの動作を制御するための系統側ブリッジコントローラ
CN102299677B (zh) 用于旋转发电系统的电力转换系统以及方法
US7667343B2 (en) Hydrogen production system using wind turbine generator
US8120202B2 (en) Electric power transmission system for wind turbine and wind turbine farm and method for operating same
US9593672B2 (en) Isochronous wind turbine generator capable of stand-alone operation
KR101707464B1 (ko) 분산형 발전 시스템
US9178456B2 (en) Power transmission systems
JP6312165B2 (ja) 電力および電圧の制御を実施する系統側ブリッジコントローラによる、高電圧直流電力接続のみを介して電力系統に接続されている風力タービンの運転
JP5836401B2 (ja) 風力発電システム
US20120136494A1 (en) Method of controlling reactive power in a wind farm
JP2017022983A (ja) 電力および電圧の制御を実施する系統側ブリッジコントローラによる、アンビリカル交流ケーブルのみを介して電力系統に接続されている風力タービンの運転
JP4899800B2 (ja) 風力発電装置,風力発電システムおよび電力系統制御装置
US9178357B2 (en) Power generation and low frequency alternating current transmission system
US20130127172A1 (en) Electrical Rotating Machine System or Wind Turbine System
KR20150042862A (ko) 직류 전압 네트워크를 포함하는 풍력 발전 단지
Garcia-Hernandez et al. Modeling a wind turbine synchronous generator
JP2012044863A (ja) 風力発電装置
KR20130100052A (ko) 송전 시스템
US20230110182A1 (en) System and methods to address drive train damper oscillations in a grid forming power generating asset
EP3503381B1 (en) Methods for providing electrical power to wind turbine components
JP2019041477A (ja) 分散電源システムの制御装置、分散電源システム、分散電源システムの制御方法、及び分散電源システムの制御プログラム
JP2014128159A (ja) 発電施設及びその運転方法、並びに発電施設の制御装置
JP6257895B2 (ja) 洋上発電施設及びその運転方法
Ahmed Electrical technologies for grid integration of ocean wave power into the UK national grid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R151 Written notification of patent or utility model registration

Ref document number: 5787870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151