JP2014127510A - Electrode member and method for manufacturing the same - Google Patents

Electrode member and method for manufacturing the same Download PDF

Info

Publication number
JP2014127510A
JP2014127510A JP2012281294A JP2012281294A JP2014127510A JP 2014127510 A JP2014127510 A JP 2014127510A JP 2012281294 A JP2012281294 A JP 2012281294A JP 2012281294 A JP2012281294 A JP 2012281294A JP 2014127510 A JP2014127510 A JP 2014127510A
Authority
JP
Japan
Prior art keywords
groove
electrode member
insulating film
flat
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012281294A
Other languages
Japanese (ja)
Other versions
JP5946761B2 (en
Inventor
Koichiro Sato
浩一郎 佐藤
Tetsuya Ozawa
哲也 小澤
Hiroyuki Yamagishi
弘幸 山岸
Hiroaki Shimizu
洋昭 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012281294A priority Critical patent/JP5946761B2/en
Publication of JP2014127510A publication Critical patent/JP2014127510A/en
Application granted granted Critical
Publication of JP5946761B2 publication Critical patent/JP5946761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode member including a refrigerant passage which is less likely to short-circuit via a refrigerant.SOLUTION: The heat generated by a power semiconductor element is delivered to an electrode member 3 through a bonding material. The heat delivered to the electrode member 3 is diffused in the atmosphere through a heat exchange or the like via a refrigerant circulating in a refrigerant passage 7. The electrode member 3 which supplies power to the power semiconductor element includes the refrigerant passage 7 in which the refrigerant circulates in the inside thereof, and an insulating layer 9 which electrically insulates the refrigerant and the electrode member 3 in an inner wall of the refrigerant passage 7.

Description

本発明は、電子部品に電力を供給するための電極部材及びその製造方法に関する。   The present invention relates to an electrode member for supplying electric power to an electronic component and a manufacturing method thereof.

従来、半導体モジュールにおけるパワー半導体チップ等の電子部品に電力を供給するための電極部材は、電子部品が発する熱をヒートシンクに送るための熱の通路としても機能する。例えば、特許文献1に記載のモールド樹脂封止型パワー半導体装置では、電極部材としての銅電極は、その主面に半田でパワー半導体チップが固定され、主面と反対側の面が、エポキシ樹脂等の絶縁体やサーマルコンパウンドを介し、ヒートシンクとしての放熱フィンに接合される。   Conventionally, an electrode member for supplying electric power to an electronic component such as a power semiconductor chip in a semiconductor module also functions as a heat path for sending heat generated by the electronic component to a heat sink. For example, in a molded resin-encapsulated power semiconductor device described in Patent Document 1, a copper electrode as an electrode member has a power semiconductor chip fixed to its main surface with solder, and the surface opposite to the main surface is an epoxy resin It is joined to a heat radiating fin as a heat sink through an insulator such as a thermal compound.

特開2004−165281号公報JP 2004-165281 A

しかしながら、上記のようなパワー半導体装置においては、絶縁体やサーマルコンパウンドは、熱伝導率が比較的低い半面、線膨張係数の違いによる構造の歪みを抑えて装置の構造を維持するために、ある程度の厚さを有することが必要である。この結果、パワー半導体チップが発した熱は、ヒートシンクに伝わり難くなるとともに、装置が大型化する。   However, in the power semiconductor device as described above, the insulator and the thermal compound have a relatively low thermal conductivity, but in order to maintain the structure of the device while suppressing the distortion of the structure due to the difference in linear expansion coefficient. It is necessary to have a thickness of As a result, the heat generated by the power semiconductor chip is not easily transmitted to the heat sink, and the size of the device is increased.

そこで、電極部材の内部に冷媒通路を設け、この冷媒通路に冷却水等の冷媒を流通させることにより、パワー半導体チップが発した熱を除去することが考えられる。しかし、これによれば、電極部材から冷媒を介してショートするおそれがある。   Therefore, it is conceivable to remove the heat generated by the power semiconductor chip by providing a coolant passage in the electrode member and circulating coolant such as cooling water through the coolant passage. However, this may cause a short circuit from the electrode member via the refrigerant.

本発明は、かかる従来技術の課題に鑑み、冷媒を介してショートするおそれのない冷媒通路を有する電極部材とその製造方法を提供することにある。   In view of the problems of the related art, the present invention is to provide an electrode member having a refrigerant passage that does not cause a short circuit through the refrigerant and a method for manufacturing the electrode member.

本発明の電極部材は、電子部品に電力を供給するための電極部材であって、内部に冷媒が流通する冷媒通路を有し、該冷媒通路の内壁に冷媒と当該電極部材とを電気的に絶縁する絶縁層を備えたことを特徴とする。   The electrode member of the present invention is an electrode member for supplying electric power to an electronic component, and has a refrigerant passage through which a refrigerant flows, and electrically connects the refrigerant and the electrode member to the inner wall of the refrigerant passage. An insulating layer for insulation is provided.

本発明によれば、電子部品が発する熱は、電極部材に伝わり、さらに冷媒通路内を流れる冷媒を介して排出される。この間、冷媒通路の内壁の絶縁層により、電極部材と冷媒との間の電気的な導通が確実に阻止される。したがって、電極部材から冷媒を介してショートが発生するおそれがなく、電子部品を効果的に冷却することができる。   According to the present invention, the heat generated by the electronic component is transmitted to the electrode member and further discharged through the refrigerant flowing in the refrigerant passage. During this time, the electrical conduction between the electrode member and the refrigerant is reliably prevented by the insulating layer on the inner wall of the refrigerant passage. Therefore, there is no possibility that a short circuit occurs from the electrode member via the refrigerant, and the electronic component can be effectively cooled.

本発明の電極部材において、複数の第1平坦部と第1溝が交互に配置された第1波状面を有する第1構成部材と、前記複数の第1平坦部にそれぞれ対応する複数の第2平坦部と前記複数の第1溝にそれぞれ対応する複数の第2溝とが交互に配置された第2波状面を有する第2構成部材とを備え、前記第1溝及び第2溝の各溝面はそれぞれ第1絶縁膜及び第2絶縁膜により被覆され、対応する前記第1平坦部と前記第2平坦部とが接合され、対応する第1溝と第2溝とで前記冷媒通路が形成され、対応する第1絶縁膜と第2絶縁膜とで前記絶縁層が形成されてもよい。   In the electrode member of the present invention, a first component member having a first wavy surface in which a plurality of first flat portions and first grooves are alternately arranged, and a plurality of second portions respectively corresponding to the plurality of first flat portions. A second component having a second wavy surface in which a flat portion and a plurality of second grooves respectively corresponding to the plurality of first grooves are alternately arranged, and each groove of the first groove and the second groove The surfaces are respectively covered with the first insulating film and the second insulating film, the corresponding first flat portion and the second flat portion are joined, and the corresponding first groove and the second groove form the refrigerant passage. The insulating layer may be formed of the corresponding first insulating film and second insulating film.

これによれば、第1構成部材の第1溝の溝面及び第2構成部材の第2溝の溝面をそれぞれ第1絶縁膜及び第2絶縁膜で被覆してから、対応する第1平坦部と第2平坦部とを接合させることにより、冷媒通路の絶縁層が確実に形成された電極部材を容易に製造することができる。   According to this, after covering the groove surface of the first groove of the first component member and the groove surface of the second groove of the second component member with the first insulating film and the second insulating film, respectively, the corresponding first flat surface By joining the part and the second flat part, an electrode member in which the insulating layer of the refrigerant passage is reliably formed can be easily manufactured.

また、対応する前記第1溝と第2溝の絶縁膜の長さ方向に沿った端縁は、隙間を有して対峙し、該隙間に充填された接着剤を介して結合していてもよい。   Further, the corresponding edges of the first groove and the second groove along the length direction of the insulating film may be opposed to each other with a gap and bonded via an adhesive filled in the gap. Good.

これによれば、対応する第1溝及び第2溝の各絶縁膜の長さ方向に沿った端縁の間から冷媒が漏れ出すのを防止し、絶縁層の機能を確実に維持することができる。   According to this, it is possible to prevent the refrigerant from leaking from between the end edges along the length direction of the respective insulating films of the corresponding first groove and second groove, and reliably maintain the function of the insulating layer. it can.

また、各第1溝とその隣の各第1平坦部との間に第1切欠き溝が設けられ、各第2溝とその隣の各第2平坦部との間に第2切欠き溝が設けられ、対応する前記第1切欠き溝及び第2切欠き溝は、これらの間に充填された接着剤を介して結合し、該接着剤は、隣接する前記隙間に充填された接着剤と一体化していてもよい。   Also, a first notch groove is provided between each first groove and each adjacent first flat portion, and a second notch groove is provided between each second groove and each adjacent second flat portion. And the corresponding first notch groove and second notch groove are bonded via an adhesive filled therebetween, and the adhesive is filled in the adjacent gap. And may be integrated.

これによれば、上述の隙間に充填された接着剤が、冷媒の流れによって、該隙間から剥離するのを防止し、絶縁層の機能をより確実に維持することができる。   According to this, it is possible to prevent the adhesive filled in the gap described above from being peeled from the gap by the flow of the refrigerant, and to maintain the function of the insulating layer more reliably.

本発明の電極部材の製造方法は、電子部品に電力を供給するための電極部材の製造方法であって、複数の第1平坦部と第1溝が交互に配置された第1波状面を有する第1構成部材を作製する第1工程と、前記複数の第1平坦部にそれぞれ対応する複数の第2平坦部と前記複数の第1溝にそれぞれ対応する複数の第2溝とが交互に配置された第2波状面を有する第2構成部材を作製する第2工程と、前記第1構成部材の各第1溝の溝面に対し、各第1平坦部をマスキングした状態で第1絶縁膜を形成する第3工程と、前記第2構成部材の各第2溝の溝面に対し、各第2平坦部をマスキングした状態で第2絶縁膜を形成する第4工程と、前記第3工程及び第4工程の後、対応する第1平坦部と第2平坦部を接合させて前記第1構成部材と前記第2構成部材を結合する第5工程とを備えることを特徴とする。   The electrode member manufacturing method of the present invention is a method of manufacturing an electrode member for supplying electric power to an electronic component, and has a first corrugated surface in which a plurality of first flat portions and first grooves are alternately arranged. A first step of producing a first component member, a plurality of second flat portions respectively corresponding to the plurality of first flat portions, and a plurality of second grooves respectively corresponding to the plurality of first grooves are alternately arranged. A second step of producing a second constituent member having a second corrugated surface, and a first insulating film in a state where each first flat portion is masked with respect to the groove surface of each first groove of the first constituent member A third step of forming a second insulating film in a state where each second flat portion is masked with respect to the groove surface of each second groove of the second component member, and the third step And after a 4th process, the corresponding 1st flat part and 2nd flat part are joined, and said 1st component and said 2nd Characterized in that it comprises a fifth step of attaching the formed member.

本発明によれば、電極部材の内部に冷媒を流通させるための冷媒通路が上記の第1溝及び第2溝により形成され、かつ該冷媒通路の内壁に冷媒と電極部材とを絶縁する絶縁層が上記の第1絶縁膜及び第2絶縁膜により形成された電極部材を容易に製造することができる。   According to the present invention, the refrigerant passage for allowing the refrigerant to flow inside the electrode member is formed by the first groove and the second groove, and the insulating layer that insulates the refrigerant from the electrode member on the inner wall of the refrigerant passage. However, the electrode member formed of the first insulating film and the second insulating film can be easily manufactured.

本発明の製造方法において、前記第3工程及び前記第4工程におけるマスキングは、各第1溝と各第2溝の長さ方向に沿った端縁部分も覆うようにして行われ、前記第5工程では、前記第1平坦部と前記第2平坦部を接合する前に、各第1溝及び各第2溝の長さ方向に沿った端縁に接着剤が塗布されてもよい。   In the manufacturing method of the present invention, the masking in the third step and the fourth step is performed so as to cover edge portions along the length direction of the first grooves and the second grooves, and the fifth step. In the step, an adhesive may be applied to the edge along the length direction of each first groove and each second groove before joining the first flat part and the second flat part.

これによれば、第1平坦部及び第2平坦部を接合させたとき、対応する第1絶縁膜及び第2絶縁膜の長さ方向に沿った端縁を、該端縁に塗布された接着剤により容易に結合させることができる。これにより、対応する第1絶縁膜の長さ方向に沿った端縁と第2絶縁膜の長さ方向に沿った端縁との間から冷媒が漏れ出すのを防止し、絶縁層の機能を確実に維持することができる。   According to this, when the first flat portion and the second flat portion are joined, the edge along the length direction of the corresponding first insulating film and second insulating film is bonded to the edge. It can be easily combined with an agent. This prevents the refrigerant from leaking out between the edge along the length direction of the corresponding first insulating film and the edge along the length direction of the second insulating film, and functions the insulating layer. It can be reliably maintained.

また、前記第1工程では、各第1平坦部とその隣の各第1溝との間に第1切欠き溝が設けられ、前記第2工程では、各第2平坦部とその隣の各第2溝との間に第2切欠き溝が設けられ、前記第5工程における前記接着剤の塗布は、各第1切欠き溝及び第2切欠き溝の上に対して行われてもよい。   In the first step, a first notch groove is provided between each first flat portion and each adjacent first groove. In the second step, each second flat portion and each adjacent next groove are provided. A second notch groove may be provided between the second groove, and the application of the adhesive in the fifth step may be performed on each of the first notch groove and the second notch groove. .

これによれば、対応する各第1絶縁膜の長さ方向に沿った端縁と各第2絶縁膜の長さ方向に沿った端縁との間の隙間から、これに隣接する各第1切欠き溝及び第2切欠き溝の間の空間にわたり、接着剤が一体的に充填された電極部材を容易に製造することができる。これにより、第1絶縁膜及び第2絶縁膜の長さ方向に沿った端縁の隙間に充填された接着剤が、冷媒の流れによって該隙間から剥離するのを防止し、絶縁層の機能をより確実に維持することができる。   According to this, each 1st adjacent to this from the clearance gap between the edge along the length direction of each corresponding 1st insulating film, and the edge along the length direction of each 2nd insulating film. An electrode member that is integrally filled with an adhesive can be easily manufactured over the space between the notch groove and the second notch groove. As a result, the adhesive filled in the gaps at the edges along the length direction of the first insulating film and the second insulating film is prevented from being peeled off from the gaps by the flow of the refrigerant, and the function of the insulating layer is improved. It can be maintained more reliably.

本発明の一実施形態に係る電極部材を備えるパワーモジュールの要部を示す図である。It is a figure which shows the principal part of a power module provided with the electrode member which concerns on one Embodiment of this invention. 図1のパワーモジュールにおける電極部材の一部の断面図である。FIG. 2 is a partial cross-sectional view of an electrode member in the power module of FIG. 1. 本発明の一実施形態に係る電極部材の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the electrode member which concerns on one Embodiment of this invention. 図3の製造工程を説明するための第1構成部材及び第2構成部材部分の斜視図である。It is a perspective view of the 1st component member and the 2nd component member part for demonstrating the manufacturing process of FIG. 図4の第1構成部材の第1溝に第1絶縁膜を形成する様子を示す断面図である。It is sectional drawing which shows a mode that a 1st insulating film is formed in the 1st groove | channel of the 1st structural member of FIG. 本発明の第2実施形態に係る電極部材の一部の断面図である。It is a partial sectional view of an electrode member concerning a 2nd embodiment of the present invention. 図6の電極部材の製造工程においてマスキングが行われた第1構成部材の一部の断面図である。FIG. 7 is a partial cross-sectional view of the first component member that has been masked in the manufacturing process of the electrode member of FIG. 6. 本発明の第3実施形態に係る電極部材の一部の断面図である。It is a partial sectional view of an electrode member concerning a 3rd embodiment of the present invention. 図8の電極部材の製造工程においてマスキングが行われた第1構成部材の一部の断面図である。It is sectional drawing of a part of 1st structural member by which masking was performed in the manufacturing process of the electrode member of FIG.

以下、図面を用いて本発明の実施形態を説明する。図1(a)は、本発明の一実施形態に係る電極部材を備えるパワーモジュールの要部の概略平面図である。図1(b)は、図1(a)のA−A線断面図である。図1(c)は、図1(b)のB−B線断面図である。ただし、図1(c)では、樹脂モールドの図示が省略されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig.1 (a) is a schematic plan view of the principal part of a power module provided with the electrode member which concerns on one Embodiment of this invention. FIG.1 (b) is the sectional view on the AA line of Fig.1 (a). FIG.1 (c) is the BB sectional drawing of FIG.1 (b). However, the resin mold is not shown in FIG.

図1に示すように、パワーモジュール1は、IGBTやパワーMOSFET等のパワー半導体素子2と、N電極、出力電極及びP電極のそれぞれを構成する電極部材3と、パワー半導体素子2に制御信号を送るための信号ピン4と、パワー半導体素子2と電極部材3又は信号ピン4とを接合する銀ナノペーストの接合材5と、これらを封止する樹脂モールド6とを備える。パワーモジュール1は、例えば車載用の電力変換装置に用いられる。   As shown in FIG. 1, the power module 1 includes a power semiconductor element 2 such as an IGBT or a power MOSFET, an electrode member 3 constituting each of an N electrode, an output electrode, and a P electrode, and a control signal to the power semiconductor element 2. A signal pin 4 for sending, a silver nano paste bonding material 5 for bonding the power semiconductor element 2 and the electrode member 3 or the signal pin 4, and a resin mold 6 for sealing them are provided. The power module 1 is used for, for example, an in-vehicle power conversion device.

電極部材3は、その内部に設けられ、冷媒が流通する冷媒通路7を備える。冷媒通路7には、その入口側及び出口側に接続された管路8を介して冷媒が供給及び排出される。冷媒としては、例えば、冷却水が用いられる。冷媒通路7の内壁には、冷媒と電極部材3とを絶縁する高熱伝導度の絶縁層9が設けられる。管路8の出入り口は、高熱伝導度の絶縁体10により覆われている。   The electrode member 3 includes a refrigerant passage 7 provided therein and through which a refrigerant flows. The refrigerant is supplied to and discharged from the refrigerant passage 7 via a pipe line 8 connected to the inlet side and the outlet side thereof. As the refrigerant, for example, cooling water is used. An insulating layer 9 having high thermal conductivity that insulates the refrigerant from the electrode member 3 is provided on the inner wall of the refrigerant passage 7. The entrance / exit of the pipe line 8 is covered with an insulator 10 having high thermal conductivity.

図2は、電極部材3の一部の断面図である。図2に示すように、電極部材3は、第1構成部材11と、これに結合した第2構成部材12とを備える。第1構成部材11は、複数の第1平坦部13及び第1溝14が交互に配置された第1波状面15を有する。第2構成部材12は、各第1平坦部13にそれぞれ対応する複数の第2平坦部16と、各第1溝14にそれぞれ対応する複数の第2溝17とが交互に配置された第2波状面18を有する。   FIG. 2 is a cross-sectional view of a part of the electrode member 3. As shown in FIG. 2, the electrode member 3 includes a first component member 11 and a second component member 12 coupled thereto. The first component member 11 has a first wavy surface 15 in which a plurality of first flat portions 13 and first grooves 14 are alternately arranged. The second component member 12 is a second member in which a plurality of second flat portions 16 corresponding to the respective first flat portions 13 and a plurality of second grooves 17 corresponding to the respective first grooves 14 are alternately arranged. It has a wavy surface 18.

第1溝14及び第2溝17の溝面は、いずれも横断面が半円形状を有しており、それぞれ第1絶縁膜19及び第2絶縁膜20により被覆される。対応する第1平坦部13と第2平坦部16とは接合されている。対応する第1溝14及び第2溝17により冷媒通路7が形成される。対応する第1絶縁膜19及び第2絶縁膜20により絶縁層9が形成される。   The groove surfaces of the first groove 14 and the second groove 17 both have a semicircular cross section, and are covered with a first insulating film 19 and a second insulating film 20, respectively. The corresponding first flat portion 13 and second flat portion 16 are joined. The corresponding first groove 14 and second groove 17 form the refrigerant passage 7. The corresponding first insulating film 19 and second insulating film 20 form the insulating layer 9.

パワーモジュール1の駆動時には、電極部材3を介してパワー半導体素子2に電力が供給される。また、電極部材3内の冷媒通路7に冷媒が流通される。このとき、パワー半導体素子2が発する熱は、接合材5を経て電極部材3に伝達する。電極部材3に伝達した熱は、冷媒通路7内を流通する冷媒を介し、熱交換器などを経て大気中に放散される。   When the power module 1 is driven, power is supplied to the power semiconductor element 2 through the electrode member 3. Further, the refrigerant flows through the refrigerant passage 7 in the electrode member 3. At this time, the heat generated by the power semiconductor element 2 is transmitted to the electrode member 3 through the bonding material 5. The heat transmitted to the electrode member 3 is dissipated into the atmosphere via a heat exchanger and the like through the refrigerant flowing in the refrigerant passage 7.

このようにして、パワー半導体素子2は、電極部材3内を流通する冷媒を介して効果的に冷却される。また、この間、冷媒通路7の内壁の絶縁層9により、電極部材3と冷媒との間の導通が阻止されるので、電極部材3から冷媒を通じてショートが生じるおそれはない。したがって、パワーモジュール1は、発熱による問題や冷媒を通じたショートが生じることなく、高い信頼性を維持しながら駆動することができる。   In this way, the power semiconductor element 2 is effectively cooled via the refrigerant flowing through the electrode member 3. Further, during this time, the insulating layer 9 on the inner wall of the refrigerant passage 7 prevents conduction between the electrode member 3 and the refrigerant, so that there is no possibility that a short circuit will occur from the electrode member 3 through the refrigerant. Therefore, the power module 1 can be driven while maintaining high reliability without causing a problem due to heat generation or a short circuit through the refrigerant.

図3は、電極部材3の製造工程を示すフローチャートである。この製造工程は、第1工程〜第5工程を含む。すなわち、図3に示すように、第1工程では、電極部材3を構成する第1構成部材11が作製される(ステップS1)。また、第2工程では、電極部材3を構成する第2構成部材12が作製される(ステップS2)。   FIG. 3 is a flowchart showing the manufacturing process of the electrode member 3. This manufacturing process includes the first to fifth steps. That is, as shown in FIG. 3, in the first step, the first component member 11 constituting the electrode member 3 is produced (step S1). In the second step, the second component member 12 constituting the electrode member 3 is produced (step S2).

図4(a)は、第1工程及び第2工程で作製される第1構成部材11及び第2構成部材12の要部の斜視図である。図4(a)に示すように、第1構成部材11は、複数の第1平坦部13及び第1溝14が交互に配置された第1波状面15を有する。また、第2構成部材12は、各第1平坦部13にそれぞれ対応する複数の第2平坦部16と、各第1溝14にそれぞれ対応する複数の第2溝17とが交互に配置された第2波状面18を有する。   FIG. 4A is a perspective view of a main part of the first component member 11 and the second component member 12 produced in the first step and the second step. As shown to Fig.4 (a), the 1st structural member 11 has the 1st wavy surface 15 in which the some 1st flat part 13 and the 1st groove | channel 14 are alternately arrange | positioned. Further, in the second component member 12, a plurality of second flat portions 16 corresponding to the respective first flat portions 13 and a plurality of second grooves 17 corresponding to the respective first grooves 14 are alternately arranged. A second wavy surface 18 is provided.

第1構成部材11及び第2構成部材12の作製は、プレス加工により行うことができる。この作製は切削加工で行ってもよいが、その場合には、プレス加工で作製する場合よりもコストがかかる。   The first component member 11 and the second component member 12 can be produced by press working. This production may be performed by cutting, but in that case, the cost is higher than the production by press working.

図4(b)に示すように、第3工程では、第1構成部材11の各第1溝14の溝面に第1絶縁膜19が形成される(ステップS3)。また、第4工程では、第2構成部材12の各第2溝17の溝面に第2絶縁膜20が形成される(ステップS4)。   As shown in FIG. 4B, in the third step, the first insulating film 19 is formed on the groove surface of each first groove 14 of the first component 11 (step S3). In the fourth step, the second insulating film 20 is formed on the groove surface of each second groove 17 of the second component member 12 (step S4).

図5は、第1構成部材11の第1溝14に第1絶縁膜19を形成する様子を示す。第1絶縁膜19の形成は、図5(a)に示すように、テープ等のマスキング材21を用いて、第1絶縁膜19を形成する領域以外の部分、すなわち第1平坦部13をマスキングし、被膜形成装置のノズル22からエアロゾル等の被膜剤を第1溝14の溝面に付与することにより行われる。   FIG. 5 shows a state in which the first insulating film 19 is formed in the first groove 14 of the first component member 11. As shown in FIG. 5A, the first insulating film 19 is formed by masking a portion other than the region where the first insulating film 19 is formed, that is, the first flat portion 13 by using a masking material 21 such as a tape. Then, a coating agent such as aerosol is applied to the groove surface of the first groove 14 from the nozzle 22 of the coating film forming apparatus.

マスキング材21による被覆は、図5(b)のように、形成される第1絶縁膜19の厚さの分だけ第1溝14上にマスキング材21が張り出した状態となるようにして行われる。これにより、ラッピングによる研磨を施すことなく、図5(c)のように、第1平坦部13から第1絶縁膜19の端縁にかけて平滑な面を形成することができる。   As shown in FIG. 5B, the masking material 21 is covered so that the masking material 21 protrudes from the first groove 14 by the thickness of the first insulating film 19 to be formed. . Thus, a smooth surface can be formed from the first flat portion 13 to the edge of the first insulating film 19 as shown in FIG. 5C without polishing by lapping.

第1絶縁膜19の形成は、例えば、AD(エアロゾルデポジション)法やゾルゲル法でアルミナ絶縁膜を成膜することにより行うことができる。第1絶縁膜19の形成後、マスキング材21は剥離される。第4工程(ステップS4)における第2構成部材12への第2絶縁膜20の形成も、同様に、第2平坦部16をマスキングして行われる。   The first insulating film 19 can be formed, for example, by forming an alumina insulating film by an AD (aerosol deposition) method or a sol-gel method. After the formation of the first insulating film 19, the masking material 21 is peeled off. Similarly, the formation of the second insulating film 20 on the second component 12 in the fourth step (step S4) is performed by masking the second flat portion 16.

第5工程(ステップS5)では、図4(c)に示すように、対応する第1平坦部13及び第2平坦部16を接合させて第1構成部材11及び第2構成部材12を結合する。第1平坦部13と第2平坦部16との接合は、ロウ付け、圧着、かしめ、レーザ接合等により行うことができる。これにより、電極部材3の製造工程が終了する。   In the fifth step (step S5), as shown in FIG. 4C, the corresponding first flat member 13 and second flat member 16 are joined to join the first component member 11 and the second component member 12. . The first flat portion 13 and the second flat portion 16 can be joined by brazing, crimping, caulking, laser joining, or the like. Thereby, the manufacturing process of the electrode member 3 is complete | finished.

本実施形態によれば、第1構成部材11の第1溝14の溝面及び第2構成部材12の第2溝17の溝面をそれぞれ第1絶縁膜19及び第2絶縁膜20で被覆してから、対応する第1平坦部13と第2平坦部16とを接合して第1構成部材11と第2構成部材12とを結合するようにしたので、冷媒通路7の絶縁層9を確実に機能するものとして容易に形成しながら電極部材3を製造することができる。   According to this embodiment, the groove surface of the first groove 14 of the first component member 11 and the groove surface of the second groove 17 of the second component member 12 are respectively covered with the first insulating film 19 and the second insulating film 20. Since the corresponding first flat portion 13 and second flat portion 16 are joined to join the first constituent member 11 and the second constituent member 12, the insulating layer 9 of the refrigerant passage 7 is securely attached. The electrode member 3 can be manufactured while being easily formed so as to function.

図6は、本発明の第2実施形態に係る電極部材の一部の断面図である。図6に示すように、この電極部材23は、第1実施形態における第1絶縁膜19及び第2絶縁膜20で構成される絶縁層9の代わりに、第1絶縁膜24及び第2絶縁膜25で構成される絶縁層26を備える。   FIG. 6 is a partial cross-sectional view of an electrode member according to the second embodiment of the present invention. As shown in FIG. 6, the electrode member 23 includes a first insulating film 24 and a second insulating film instead of the insulating layer 9 constituted by the first insulating film 19 and the second insulating film 20 in the first embodiment. 25 is provided.

対応する第1絶縁膜24及び第2絶縁膜25の周方向端縁(長さ方向に沿った端縁)は、隙間を有して対峙し、該隙間に充填された接着剤27により結合している。電極部材23についての他の構成及び作用は、第1実施形態の電極部材3の場合と同様である。   The circumferential edges (edges along the length direction) of the corresponding first insulating film 24 and second insulating film 25 are opposed to each other with a gap, and are bonded by the adhesive 27 filled in the gap. ing. Other configurations and operations of the electrode member 23 are the same as those of the electrode member 3 of the first embodiment.

電極部材23の製造は、次の点を除き、図2の製造工程と同様の工程を経て行われる。すなわち、第3工程(ステップS3)におけるマスキングは、図7のように、各第1平坦部13に加えて各第1溝14の周方向端縁部分もマスキング材21で覆うようにして行われる。第4工程(ステップS4)におけるマスキングも同様に、各第2平坦部16に加えて各第2溝17の周方向端縁部分をも覆うようにして行われる。   The electrode member 23 is manufactured through the same process as the manufacturing process of FIG. 2 except for the following points. That is, the masking in the third step (step S3) is performed so as to cover the circumferential edge portions of the first grooves 14 with the masking material 21 in addition to the first flat portions 13 as shown in FIG. . Similarly, the masking in the fourth step (step S4) is performed so as to cover the circumferential edge portions of the second grooves 17 in addition to the second flat portions 16.

また、第5工程(ステップS5)において、第1平坦部13及び第2平坦部16の接合が行われる前に、各第1溝14の周方向端縁及び各第2溝17の周方向端縁に接着剤27が塗布される。   In the fifth step (step S5), before the first flat portion 13 and the second flat portion 16 are joined, the circumferential edge of each first groove 14 and the circumferential edge of each second groove 17 are joined. Adhesive 27 is applied to the edges.

これにより、この後、第1平坦部13及び第2平坦部16の接合が行われたとき、図6のように、対峙する各第1絶縁膜24の周方向端縁と各第2絶縁膜25の周方向端縁との間の隙間に接着剤27が充填された状態となる。   As a result, when the first flat portion 13 and the second flat portion 16 are subsequently joined, as shown in FIG. 6, the circumferential edge of each first insulating film 24 and each second insulating film facing each other, as shown in FIG. It will be in the state by which the adhesive agent 27 was filled into the clearance gap between 25 circumferential direction edges.

第2実施形態によれば、対応する各第1絶縁膜24の周方向端縁と各第2絶縁膜25の周方向端縁とを、該端縁間の隙間に充填された接着剤27により容易に結合させることができる。これにより、対応する各第1絶縁膜24の周方向端縁と各第2絶縁膜25の周方向端縁との間から冷媒が漏れ出すのを防止し、絶縁層26の機能を確実に維持することができる。   According to the second embodiment, the circumferential edge of each corresponding first insulating film 24 and the circumferential edge of each second insulating film 25 are bonded by the adhesive 27 filled in the gap between the edges. Can be easily combined. Thereby, the refrigerant is prevented from leaking from between the circumferential edge of each corresponding first insulating film 24 and the circumferential edge of each second insulating film 25, and the function of the insulating layer 26 is reliably maintained. can do.

図8は、本発明の第3実施形態に係る電極部材の一部の断面図である。図8に示すように、この電極部材30は、第1実施形態の電極部材3の第1構成部材11及び第2構成部材12とほぼ同様の第1構成部材31及び第2構成部材32を備える。   FIG. 8 is a partial cross-sectional view of an electrode member according to the third embodiment of the present invention. As shown in FIG. 8, the electrode member 30 includes a first component member 31 and a second component member 32 that are substantially the same as the first component member 11 and the second component member 12 of the electrode member 3 of the first embodiment. .

第1構成部材31は、第1構成部材11の第1平坦部13及び第1溝14とほぼ同様の第1平坦部33及び第1溝34を備える。第2構成部材32は、第2構成部材12の第2平坦部16及び第2溝17とほぼ同様の第2平坦部36及び第2溝37を備える。   The first component member 31 includes a first flat portion 33 and a first groove 34 that are substantially the same as the first flat portion 13 and the first groove 14 of the first component member 11. The second component member 32 includes a second flat portion 36 and a second groove 37 that are substantially the same as the second flat portion 16 and the second groove 17 of the second component member 12.

各第1溝34及び第2溝37は、第2実施形態における第1溝14及び第2溝17の場合と同様に、それぞれ第1絶縁膜24及び第2絶縁膜25により被覆される。また、対応する各第1絶縁膜24及び各第2絶縁膜25の周方向端縁は、隙間を有して対峙し、該隙間に充填された接着剤27により結合している。各第1絶縁膜24及び各第2絶縁膜25は、第1溝34及び第2溝37により構成される冷媒通路7の内壁において、図2の電極部材3における絶縁層9と同様の機能を有する絶縁層26を構成する。   Each of the first grooves 34 and the second grooves 37 is covered with the first insulating film 24 and the second insulating film 25, respectively, as in the case of the first grooves 14 and the second grooves 17 in the second embodiment. Further, the circumferential edges of the corresponding first insulating films 24 and second insulating films 25 are opposed to each other with a gap, and are bonded by an adhesive 27 filled in the gap. Each first insulating film 24 and each second insulating film 25 has the same function as the insulating layer 9 in the electrode member 3 in FIG. 2 on the inner wall of the refrigerant passage 7 constituted by the first groove 34 and the second groove 37. An insulating layer 26 is formed.

ただし、各第1溝34とその隣の各第1平坦部33との間に第1切欠き溝38が設けられる。また、各第2溝37とその隣の各第2平坦部36との間に第2切欠き溝39が設けられる。   However, a first notch groove 38 is provided between each first groove 34 and each adjacent first flat portion 33. A second notch groove 39 is provided between each second groove 37 and each adjacent second flat portion 36.

対応する第1切欠き溝38及び第2切欠き溝39は、これらの間に充填された接着剤27を介して結合している。この第1切欠き溝38及び第2切欠き溝39の間に充填された接着剤27は、この第1切欠き溝38及び第2切欠き溝39にそれぞれ隣接する第1絶縁膜24の周方向端縁と第2絶縁膜25の周方向端縁との間の隙間に充填された接着剤27と一体化している。   Corresponding first notch groove 38 and second notch groove 39 are connected via an adhesive 27 filled therebetween. The adhesive 27 filled between the first notch groove 38 and the second notch groove 39 is surrounded by the periphery of the first insulating film 24 adjacent to the first notch groove 38 and the second notch groove 39, respectively. It is integrated with the adhesive 27 filled in the gap between the direction edge and the circumferential edge of the second insulating film 25.

電極部材30の製造は、次の点を除き、図2の製造工程と同様の工程を経て行われる。すなわち、第1工程(ステップS1)では、各第1平坦部33とその隣の各第1溝34との間に第1切欠き溝38が設けられる。また、第2工程(ステップS2)では、各第2平坦部36とその隣の各第2溝37との間に第2切欠き溝39が設けられる。   The electrode member 30 is manufactured through the same process as the manufacturing process of FIG. 2 except for the following points. That is, in the first step (step S1), the first notch groove 38 is provided between each first flat portion 33 and each adjacent first groove 34. In the second step (step S2), a second notch groove 39 is provided between each second flat portion 36 and each adjacent second groove 37.

第3工程(ステップS3)におけるマスキングは、図9のように、各第1平坦部33に加えて各第1溝34の周方向端縁部分もマスキング材21で覆うようにして行われる。第4工程(ステップS4)におけるマスキングも同様に、各第2平坦部36に加えて各第2溝37の周方向端縁部分をも覆うようにして行われる。   Masking in the third step (step S3) is performed so as to cover the peripheral edge portions of the first grooves 34 with the masking material 21 in addition to the first flat portions 33 as shown in FIG. Similarly, the masking in the fourth step (step S4) is performed so as to cover the circumferential edge portions of the second grooves 37 in addition to the second flat portions 36.

また、第5工程(ステップS5)において、第1平坦部33及び第2平坦部36の接合が行われる前に、各第1溝34の周方向端縁及び各第2溝37の周方向端縁から、これらに隣接する各第1切欠き溝38及び各第2切欠き溝39の上にかけて接着剤27が塗布される。   Further, in the fifth step (step S5), before joining the first flat portion 33 and the second flat portion 36, the circumferential edge of each first groove 34 and the circumferential edge of each second groove 37 are joined. The adhesive 27 is applied from the edge onto the first notch grooves 38 and the second notch grooves 39 adjacent to the edges.

この後、第1平坦部33及び第2平坦部36の接合が行われる。このとき、図8のように、対峙する各第1絶縁膜24の周方向端縁と各第2絶縁膜25の周方向端縁との間の隙間に接着剤27が充填され、かつ対応する各第1切欠き溝38及び各第2切欠き溝39の間にも接着剤27が充填された状態となる。   Thereafter, the first flat portion 33 and the second flat portion 36 are joined. At this time, as shown in FIG. 8, the adhesive 27 is filled in the gap between the circumferential edge of each first insulating film 24 and the circumferential edge of each second insulating film 25 facing each other, and correspondingly. The adhesive 27 is also filled between the first notch grooves 38 and the second notch grooves 39.

第3実施形態によれば、各第1絶縁膜24の周方向端縁と各第2絶縁膜25の周方向端縁との間の隙間から、これに隣接する各第1切欠き溝38と第2切欠き溝39との間の空間にわたり、接着剤27が一体的に充填された電極部材30を容易に製造することができる。これにより、電極部材30において、第1絶縁膜24の周方向端縁と各第2絶縁膜25の周方向端縁との間の隙間に充填された接着剤27が、冷媒の流れによって該隙間から剥離するのを防止し、絶縁層26の機能をより確実に維持することができる。   According to the third embodiment, from the gap between the circumferential edge of each first insulating film 24 and the circumferential edge of each second insulating film 25, each first notch groove 38 adjacent to this gap The electrode member 30 in which the adhesive 27 is integrally filled over the space between the second notch groove 39 can be easily manufactured. Thereby, in the electrode member 30, the adhesive 27 filled in the gap between the circumferential edge of the first insulating film 24 and the circumferential edge of each second insulating film 25 is removed by the flow of the refrigerant. Can be prevented from peeling off, and the function of the insulating layer 26 can be more reliably maintained.

なお、本発明は、上記の実施形態に限定されない。例えば、上記の各実施形態では、本発明をパワー半導体素子2に電力を供給するための電極部材3、23、30に適用した例について説明したが、本発明はこれに限らず、発熱が問題となり得る各種電子部品に電力を供給するための電極部材に適用し、その効果を発揮させることができる。   In addition, this invention is not limited to said embodiment. For example, in each of the above embodiments, the example in which the present invention is applied to the electrode members 3, 23, and 30 for supplying power to the power semiconductor element 2 has been described. However, the present invention is not limited to this, and heat generation is a problem. It can be applied to an electrode member for supplying electric power to various electronic components that can be used to exert its effect.

また、上記の各実施形態では、半導体素子2を挟むように配置される電極部材3、23、30について説明したが、本発明は、上述の特許文献1に記載のパワー半導体装置におっける銅電極のように、半導体素子の一方の側にのみ配置される電極部材に適用してもよい。   In each of the above embodiments, the electrode members 3, 23, and 30 that are disposed so as to sandwich the semiconductor element 2 have been described. However, the present invention provides a copper in the power semiconductor device described in Patent Document 1 described above. Like an electrode, you may apply to the electrode member arrange | positioned only at one side of a semiconductor element.

2…パワー半導体素子(電子部品)、3,23,30…電極部材、6…絶縁層、7…冷媒通路、9,211,31…第1構成部材、12,32…第2構成部材、13,33…第1平坦部、14,34…第1溝、15…第1波状面、16,36…第2平坦部、17,37…第2溝、18…第2波状面、19,24…第1絶縁膜、20,25…第2絶縁膜、27…接着剤、38…第1切欠き溝、39…第2切欠き溝。   DESCRIPTION OF SYMBOLS 2 ... Power semiconductor element (electronic component), 3, 23, 30 ... Electrode member, 6 ... Insulating layer, 7 ... Refrigerant passage, 9, 211, 31 ... 1st structural member, 12, 32 ... 2nd structural member, 13 33, first flat portion, 14, 34, first groove, 15 ... first wavy surface, 16, 36, second flat portion, 17, 37 ... second groove, 18 ... second wavy surface, 19, 24. ... 1st insulating film, 20, 25 ... 2nd insulating film, 27 ... Adhesive, 38 ... 1st notch groove, 39 ... 2nd notch groove.

Claims (7)

電子部品に電力を供給するための電極部材であって、
内部に冷媒が流通する冷媒通路を有し、
該冷媒通路の内壁に冷媒と当該電極部材とを電気的に絶縁する絶縁層を備えたことを特徴とする電極部材。
An electrode member for supplying electric power to an electronic component,
Having a refrigerant passage through which the refrigerant flows,
An electrode member comprising an insulating layer that electrically insulates the refrigerant from the electrode member on an inner wall of the refrigerant passage.
複数の第1平坦部と第1溝が交互に配置された第1波状面を有する第1構成部材と、
前記複数の第1平坦部にそれぞれ対応する複数の第2平坦部と前記複数の第1溝にそれぞれ対応する複数の第2溝とが交互に配置された第2波状面を有する第2構成部材とを備え、
前記第1溝及び第2溝の各溝面はそれぞれ第1絶縁膜及び第2絶縁膜により被覆され、
対応する前記第1平坦部と前記第2平坦部とが接合され、対応する第1溝と第2溝とで前記冷媒通路が形成され、対応する第1絶縁膜と第2絶縁膜とで前記絶縁層が形成されることを特徴とする請求項1に記載の電極部材。
A first component member having a first wavy surface in which a plurality of first flat portions and first grooves are alternately arranged;
A second constituent member having a second wavy surface in which a plurality of second flat portions respectively corresponding to the plurality of first flat portions and a plurality of second grooves corresponding to the plurality of first grooves are alternately arranged. And
The groove surfaces of the first groove and the second groove are respectively covered with a first insulating film and a second insulating film,
The corresponding first flat part and the second flat part are joined, the corresponding first groove and the second groove form the refrigerant passage, and the corresponding first insulating film and the second insulating film The electrode member according to claim 1, wherein an insulating layer is formed.
対応する前記第1絶縁膜と第2絶縁膜の長さ方向に沿った端縁は、隙間を有して対峙し、該隙間に充填された接着剤により結合していることを特徴とする請求項2に記載の電極部材。   The corresponding edges along the length direction of the first insulating film and the second insulating film are opposed to each other with a gap, and are bonded by an adhesive filled in the gap. Item 3. The electrode member according to Item 2. 各第1溝とその隣の各第1平坦部との間に第1切欠き溝が設けられ、
各第2溝とその隣の各第2平坦部との間に第2切欠き溝が設けられ、
対応する前記第1切欠き溝及び第2切欠き溝は、これらの間に充填された接着剤を介して結合し、
該接着剤は、隣接する前記隙間に充填された接着剤と一体化していることを特徴とする請求項3に記載の電極部材。
A first notch groove is provided between each first groove and each first flat portion adjacent thereto,
A second notch groove is provided between each second groove and each second flat portion adjacent thereto,
The corresponding first notch groove and second notch groove are bonded via an adhesive filled therebetween,
The electrode member according to claim 3, wherein the adhesive is integrated with an adhesive filled in the adjacent gap.
電子部品に電力を供給するための電極部材の製造方法であって、
複数の第1平坦部と第1溝が交互に配置された第1波状面を有する第1構成部材を作製する第1工程と、
前記複数の第1平坦部にそれぞれ対応する複数の第2平坦部と前記複数の第1溝にそれぞれ対応する複数の第2溝とが交互に配置された第2波状面を有する第2構成部材を作製する第2工程と、
前記第1構成部材の各第1溝の溝面に対し、各第1平坦部をマスキングした状態で第1絶縁膜を形成する第3工程と、
前記第2構成部材の各第2溝の溝面に対し、各第2平坦部をマスキングした状態で第2絶縁膜を形成する第4工程と、
前記第3工程及び第4工程の後、対応する第1平坦部と第2平坦部を接合させて前記第1構成部材と前記第2構成部材を結合する第5工程とを備えることを特徴とする電極部材の製造方法。
A method of manufacturing an electrode member for supplying electric power to an electronic component,
A first step of producing a first component member having a first wavy surface in which a plurality of first flat portions and first grooves are alternately arranged;
A second constituent member having a second wavy surface in which a plurality of second flat portions respectively corresponding to the plurality of first flat portions and a plurality of second grooves corresponding to the plurality of first grooves are alternately arranged. A second step of producing
A third step of forming a first insulating film in a state where each first flat portion is masked with respect to a groove surface of each first groove of the first constituent member;
A fourth step of forming a second insulating film in a state where each second flat portion is masked with respect to the groove surface of each second groove of the second component member;
After the third step and the fourth step, a fifth step of joining the corresponding first flat part and the second flat part to join the first constituent member and the second constituent member is provided. A method for manufacturing an electrode member.
前記第3工程及び前記第4工程におけるマスキングは、各第1溝と各第2溝の長さ方向に沿った端縁部分も覆うようにして行われ、
前記第5工程では、前記第1平坦部と前記第2平坦部を接合する前に、各第1溝及び各第2溝の長さ方向に沿った端縁に接着剤が塗布されることを特徴とする請求項5に記載の電極部材の製造方法。
Masking in the third step and the fourth step is performed so as to cover edge portions along the length direction of each first groove and each second groove,
In the fifth step, before joining the first flat part and the second flat part, an adhesive is applied to the edge along the length direction of each first groove and each second groove. The manufacturing method of the electrode member according to claim 5, wherein
前記第1工程では、各第1平坦部とその隣の各第1溝との間に第1切欠き溝が設けられ、
前記第2工程では、各第2平坦部とその隣の各第2溝との間に第2切欠き溝が設けられ、
前記第5工程における前記接着剤の塗布は、各第1切欠き溝及び第2切欠き溝の上に対しても行われることを特徴とする請求項6に記載の電極部材の製造方法。
In the first step, a first notch groove is provided between each first flat portion and each adjacent first groove,
In the second step, a second notch groove is provided between each second flat portion and each adjacent second groove,
The method for manufacturing an electrode member according to claim 6, wherein the application of the adhesive in the fifth step is also performed on each of the first cutout grooves and the second cutout grooves.
JP2012281294A 2012-12-25 2012-12-25 Electrode member and method for manufacturing electrode member Active JP5946761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281294A JP5946761B2 (en) 2012-12-25 2012-12-25 Electrode member and method for manufacturing electrode member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281294A JP5946761B2 (en) 2012-12-25 2012-12-25 Electrode member and method for manufacturing electrode member

Publications (2)

Publication Number Publication Date
JP2014127510A true JP2014127510A (en) 2014-07-07
JP5946761B2 JP5946761B2 (en) 2016-07-06

Family

ID=51406804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281294A Active JP5946761B2 (en) 2012-12-25 2012-12-25 Electrode member and method for manufacturing electrode member

Country Status (1)

Country Link
JP (1) JP5946761B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027904A (en) * 2018-08-15 2020-02-20 株式会社東芝 Semiconductor device and power converter
CN111540717A (en) * 2020-05-06 2020-08-14 晏新海 Power module
EP3754702A1 (en) * 2019-06-19 2020-12-23 Siemens Aktiengesellschaft Method for producing a cooling member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112359A (en) * 1984-11-07 1986-05-30 Hitachi Ltd Manufacture of heat exchanger
JP2006303290A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Semiconductor device
US20110303404A1 (en) * 2010-06-14 2011-12-15 Irvine Sensors Corporation Wear-Resistant Conformal Coating for Micro-Channel Structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112359A (en) * 1984-11-07 1986-05-30 Hitachi Ltd Manufacture of heat exchanger
JP2006303290A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Semiconductor device
US20110303404A1 (en) * 2010-06-14 2011-12-15 Irvine Sensors Corporation Wear-Resistant Conformal Coating for Micro-Channel Structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027904A (en) * 2018-08-15 2020-02-20 株式会社東芝 Semiconductor device and power converter
EP3754702A1 (en) * 2019-06-19 2020-12-23 Siemens Aktiengesellschaft Method for producing a cooling member
WO2020254064A1 (en) * 2019-06-19 2020-12-24 Siemens Aktiengesellschaft Method for producing a cooling element
CN111540717A (en) * 2020-05-06 2020-08-14 晏新海 Power module

Also Published As

Publication number Publication date
JP5946761B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5251991B2 (en) Semiconductor module
US8963321B2 (en) Semiconductor device including cladded base plate
KR101188150B1 (en) Cooling device
JP5046378B2 (en) Power semiconductor module and power semiconductor device equipped with the module
JP5928485B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5858594B2 (en) Thermal management device and method of manufacturing thermal management device
JP2010219529A (en) Double side cooled power module including coating layer for power
JP2012009567A (en) Semiconductor module and manufacturing method of the same
US10090222B2 (en) Semiconductor device with heat dissipation and method of making same
JP2006222347A (en) Semiconductor module and manufacturing method thereof
JP2008042074A (en) Semiconductor device and power conversion device
JP2008034792A (en) Thermoelectric converter and its manufacturing process
JP2011181879A (en) Semiconductor device and method of manufacturing the same
JP2018157157A (en) Semiconductor device and manufacturing method of the same
JP5946761B2 (en) Electrode member and method for manufacturing electrode member
JP5126201B2 (en) Semiconductor module and manufacturing method thereof
JP2010192591A (en) Power semiconductor device and method of manufacturing the same
JP2013062282A (en) Semiconductor device
JP2011054889A (en) Resin sealing semiconductor device, and method of manufacturing the same
CN117293101A (en) Power module, manufacturing method thereof and power equipment
CN104795378A (en) Intelligent power module and manufacturing method thereof
JP5125530B2 (en) Power converter
JP7059714B2 (en) Power converter and manufacturing method of power converter
JP2012015167A (en) Semiconductor module and manufacturing method of the same
JP6953859B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R150 Certificate of patent or registration of utility model

Ref document number: 5946761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150