JP2014124947A - Biaxially stretched nylon film, laminate film, laminate packaging material, and method for manufacturing a biaxially stretched nylon film - Google Patents

Biaxially stretched nylon film, laminate film, laminate packaging material, and method for manufacturing a biaxially stretched nylon film Download PDF

Info

Publication number
JP2014124947A
JP2014124947A JP2012286183A JP2012286183A JP2014124947A JP 2014124947 A JP2014124947 A JP 2014124947A JP 2012286183 A JP2012286183 A JP 2012286183A JP 2012286183 A JP2012286183 A JP 2012286183A JP 2014124947 A JP2014124947 A JP 2014124947A
Authority
JP
Japan
Prior art keywords
film
biaxially stretched
stretched nylon
laminate
nylon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012286183A
Other languages
Japanese (ja)
Inventor
Masao Takashige
真男 高重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Unitech Co Ltd
Original Assignee
Idemitsu Unitech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Unitech Co Ltd filed Critical Idemitsu Unitech Co Ltd
Priority to JP2012286183A priority Critical patent/JP2014124947A/en
Priority to PCT/JP2013/083689 priority patent/WO2014103785A1/en
Priority to TW102148039A priority patent/TW201436995A/en
Publication of JP2014124947A publication Critical patent/JP2014124947A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0063Cutting longitudinally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/28Storing of extruded material, e.g. by winding up or stacking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Abstract

PROBLEM TO BE SOLVED: To provide a biaxially stretched nylon film not only exhibiting an excellent deep draw moldability on a cold molding occasion but also having high strengths; a laminate film; a laminate packaging material; and a method for manufacturing a biaxially stretched nylon film.SOLUTION: The biaxially stretched nylon film of the present invention is a biaxially stretched nylon film using a nylon resin as a raw ingredient in which the degree of crystallization of the film is 34% or above and 39% or below and in which the piercing strength thereof is at least 17.0 N/25 μm.

Description

本発明は、特に、冷間成型用の包装材料として好適に用いることができる二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法に関する。   In particular, the present invention relates to a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film that can be suitably used as a packaging material for cold forming.

二軸延伸ナイロンフィルム(以後、ONyフィルムとも言う)は、強度や耐衝撃性、耐ピンホール性等に優れるため、重量物包装や水物包装など大きな強度負荷が掛かる用途に多く用いられている。
そして、このONyフィルムを含むラミネート包材を、熱間成型に比して、安全性や形状自由度(深絞り成型性)に優れ、薄肉化や軽量化が図れる冷間成型用の包装材料として用いることが検討され、冷間成型用途に好適な二軸延伸ナイロンフィルムが開発されている(例えば、特許文献1)。このようなONyフィルムを含むラミネート包材は電池包装用や医薬用包装用として好適に用いることができる。
Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging. .
And as a packaging material for cold molding, the laminate packaging material containing this ONy film is superior to hot molding in safety and shape flexibility (deep drawing moldability), and can be made thinner and lighter. A biaxially stretched nylon film suitable for cold forming applications has been developed (for example, Patent Document 1). A laminate packaging material including such an ONy film can be suitably used for battery packaging or pharmaceutical packaging.

特開2008−45016号公報Japanese Patent Laid-Open No. 2008-4516

しかしながら、近年、ラミネート品の更なる薄肉化、軽量化に伴い、より過酷な条件での深絞り成型性や強度が要求されている。そのため、特許文献1に記載のような二軸延伸ナイロンフィルムを含むラミネート包材においても、より優れた深絞り成型性を得るという観点から未だ改善の余地があった。   However, in recent years, with further reduction in thickness and weight of laminate products, deep drawability and strength under more severe conditions are required. Therefore, the laminate packaging material including the biaxially stretched nylon film described in Patent Document 1 still has room for improvement from the viewpoint of obtaining better deep drawability.

そこで、本発明は、冷間成型時に優れた深絞り成型性を有するとともに、高い強度を有する、二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供することを目的とする。   Accordingly, the present invention provides a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film, which have excellent deep drawability at the time of cold molding and high strength. With the goal.

本発明において、冷間成型とは、加熱せず常温下で行う成型をいう。かかる冷間成型の一手段として、アルミニウム箔などの成型に用いられる冷間成型機を用いて、シート材料を雌金型に対して雄金型で押し込み、高速でプレスすることが挙げられる。かかる冷間成型によると、加熱することなく型付け、曲げ、剪断、絞りなどの塑性変形を生じさせることができる。   In the present invention, cold molding refers to molding performed at room temperature without heating. One means of such cold forming is to use a cold forming machine used for forming aluminum foil or the like to push the sheet material into the female mold with a male mold and press it at high speed. According to such cold forming, plastic deformation such as molding, bending, shearing and drawing can be generated without heating.

前記課題を解決すべく、鋭意検討した結果、本発明者は、フィルムの結晶化度および突刺強度と、深絞り成型性との間には相関があることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that there is a correlation between the degree of crystallinity and puncture strength of the film and the deep drawability, and have completed the present invention. It was.

すなわち、本発明の要旨とするところは、以下の通りである。
(1)ナイロン6を原料として含む二軸延伸ナイロンフィルムであって、当該フィルムの結晶化度が34%以上39%以下であり、かつ、突刺強度が17.0N/25μm以上であることを特徴とする二軸延伸ナイロンフィルム。
(2)上述の(1)に記載の二軸延伸ナイロンフィルムにおいて、冷間成型用であることを特徴とする二軸延伸ナイロンフィルム。
(3)上述の(1)または(2)に記載の二軸延伸ナイロンフィルムを積層してなることを特徴とするラミネートフィルム。
(4)上述の(3)に記載のラミネートフィルムを用いたことを特徴とするラミネート包材。
(5)上述の(1)または(2)に記載の二軸延伸ナイロンフィルムを製造する方法であって、前記原料から原反フィルムを成形する原反フィルム製造工程と、MD方向(フィルムの移動方向)およびTD方向(フィルムの幅方向)の延伸倍率がそれぞれ2.8倍以上であり、かつ、MD方向およびTD方向の最大歪速度がそれぞれ2.5s−1以上である条件で、前記原反フィルムを延伸する二軸延伸工程と、前記二軸延伸工程後のフィルムに170℃以上210℃以下の熱処理温度で熱処理を施して熱固定する熱固定工程と、を備えることを特徴とする二軸延伸ナイロンフィルムの製造方法。
(6)上述の(5)に記載の二軸延伸ナイロンフィルムの製造方法において、前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸することを特徴とする二軸延伸ナイロンフィルムの製造方法。
That is, the gist of the present invention is as follows.
(1) A biaxially stretched nylon film containing nylon 6 as a raw material, wherein the film has a crystallinity of 34% or more and 39% or less and a puncture strength of 17.0 N / 25 μm or more. Biaxially stretched nylon film.
(2) The biaxially stretched nylon film as described in (1) above, which is for cold forming.
(3) A laminate film obtained by laminating the biaxially stretched nylon film described in (1) or (2) above.
(4) A laminate packaging material using the laminate film described in (3) above.
(5) A method for producing a biaxially stretched nylon film as described in (1) or (2) above, wherein a raw film production process for forming a raw film from the raw material, and an MD direction (film movement) Direction) and TD direction (film width direction) are each 2.8 times or more, and the maximum strain rate in the MD direction and TD direction is 2.5 s −1 or more, respectively. A biaxial stretching step of stretching the anti-film, and a heat fixing step of heat-setting the film after the biaxial stretching step by heat treatment at a heat treatment temperature of 170 ° C. or higher and 210 ° C. or lower. A method for producing an axially stretched nylon film.
(6) The biaxially stretched nylon film described in (5) above, wherein the biaxially stretched nylon is biaxially stretched by a tubular biaxial stretch method in the biaxially stretched step. A method for producing a film.

本発明によれば、冷間成型時に優れた深絞り成型性を有するとともに、高い強度を有する、二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供することができる。   According to the present invention, there are provided a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film, which have excellent deep drawability during cold molding and high strength. Can do.

本発明の二軸延伸ナイロンフィルムを製造する装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the apparatus which manufactures the biaxially stretched nylon film of this invention.

以下に、本発明の一実施形態について詳述する。
〔二軸延伸ナイロンフィルムの構成〕
本実施形態に係る二軸延伸ナイロンフィルム(以下、「ONyフィルム」ともいう。)は、ナイロン6(以下、「Ny6」ともいう)を原料とする未延伸原反フィルムを二軸延伸し、所定の温度で熱処理(熱固定)して形成したものである。このように未延伸原反フィルムを二軸延伸することで、耐衝撃性に優れたONyフィルムが得られる。
ここで、前記Ny6の化学式を下記式(1)に示す。
Hereinafter, an embodiment of the present invention will be described in detail.
[Configuration of biaxially stretched nylon film]
A biaxially stretched nylon film (hereinafter also referred to as “ONy film”) according to the present embodiment is obtained by biaxially stretching an unstretched raw film made of nylon 6 (hereinafter also referred to as “Ny6”) as a predetermined material. It was formed by heat treatment (heat setting) at a temperature of Thus, an ONy film excellent in impact resistance can be obtained by biaxially stretching an unstretched raw film.
Here, the chemical formula of Ny6 is shown in the following formula (1).

原料であるナイロン樹脂の数平均分子量は、15000以上30000以下であることが好ましく、22000以上24000以下であることがより好ましい。
ナイロン樹脂の数平均分子量が15000未満であると、衝撃強度や引張強度が不十分となるおそれがあり、30000を超えると、押出成形における負荷がかかりすぎて適切な押出量が得られにくく、製造効率が低下するおそれがある。
The number average molecular weight of the raw material nylon resin is preferably 15000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less.
If the number average molecular weight of the nylon resin is less than 15000, impact strength and tensile strength may be insufficient. If it exceeds 30000, a load in extrusion molding is excessively applied and it is difficult to obtain an appropriate extrusion amount. Efficiency may be reduced.

本実施形態に係るONyフィルムは、当該フィルムの結晶化度が34%以上39%以下、好ましくは35%以上38%以下である必要があり、かつ、当該フィルムの突刺強度が17.0N/25μm以上、好ましくは、17.5N/25μm以上である必要がある。フィルムの結晶化度と突刺強度を上記所定範囲内とすることで、通常のONyフィルムに比べて高強度で且つ深絞り成型性が良好なONyフィルムを得ることができ、例えば冷間成型時におけるONyフィルムの破断やピンホールの発生を防止できる。当該フィルムの結晶化度が34%未満である場合、通常のONyフィルムに比べて収縮及びそれによるデラミ(層内剥離)が生じやすく、成形時の不具合が生じるおそれがある。一方、当該フィルムの結晶化度が39%を超える場合、冷間での絞り成形性が低下してしまう。また、当該フィルムの突刺強度が17.0N/25μm未満である場合、深絞り成形を安定して行うことができない不具合を生じる。   The ONy film according to this embodiment needs to have a crystallinity of 34% or more and 39% or less, preferably 35% or more and 38% or less, and the pin puncture strength of the film is 17.0 N / 25 μm. As mentioned above, Preferably, it needs to be 17.5N / 25micrometer or more. By setting the crystallinity and puncture strength of the film within the above predetermined ranges, it is possible to obtain an ONy film that has higher strength and better deep drawability than a normal ONy film. It is possible to prevent breakage of the ONy film and occurrence of pinholes. When the degree of crystallinity of the film is less than 34%, shrinkage and delamination (delamination within the layer) are likely to occur as compared with a normal ONy film, and there may be a problem during molding. On the other hand, if the crystallinity of the film exceeds 39%, cold drawability is lowered. Moreover, when the puncture strength of the film is less than 17.0 N / 25 μm, there arises a problem that deep drawing cannot be stably performed.

結晶化度および突刺強度の測定法は後述する。
なお、ONyフィルムの結晶化度および突刺強度を上述した範囲にする手段としては、ONyフィルム製造時の延伸倍率や最大歪速度、延伸後の熱固定温度を調整することで実現できる。
A method for measuring the crystallinity and the puncture strength will be described later.
In addition, it can implement | achieve by adjusting the draw ratio at the time of ONy film manufacture, the maximum strain rate, and the heat setting temperature after extending | stretching as a means which makes the crystallinity and puncture strength of an ONy film the above-mentioned range.

〔ラミネートフィルムの構成〕
本実施形態のラミネートフィルムは、上記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上の他のラミネート基材を積層して構成されている。具体的に、他のラミネート基材としては、例えばアルミニウム層やステンレス層、及びこれらを含むフィルムや、ポリプロピレン系やポリエチレン系のシール層(シーラント層)などが挙げられる。
また、本実施形態のラミネート包材は、上記したONyフィルムの少なくとも一方の面にポリエチレンテレフタレート(PET)や、ポリエステル樹脂や、ポリ塩化ビニリデン樹脂や、ポリ塩化ビニリデン共重合体樹脂や、滑剤や、帯電防止剤や、硝化綿アミド樹脂などのコーティング層をさらに積層したものでもよい。
このようなラミネート基材が積層されることで、製造効率の向上や搬送効率の向上を図ることができるとともに、機能性(耐薬品性、電気絶縁性、防湿性、耐寒性、加工性など)が付加されたラミネートフィルムを得ることができる。
前記ラミネートフィルムの積層態様としては、例えば、ONy/Al(SUS)/PP、PET/ONy/Al(SUS)/PP、ONy/Al/PVCが挙げられる。
[Composition of laminate film]
The laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film. Specifically, examples of other laminate base materials include an aluminum layer, a stainless steel layer, a film including these layers, and a polypropylene-based or polyethylene-based seal layer (sealant layer).
In addition, the laminate packaging material of the present embodiment is made of polyethylene terephthalate (PET), polyester resin, polyvinylidene chloride resin, polyvinylidene chloride copolymer resin, lubricant, on at least one surface of the above-mentioned ONy film, A laminate in which an antistatic agent or a coating layer of nitrified cotton amide resin is further laminated may be used.
By laminating such a laminate substrate, it is possible to improve manufacturing efficiency and conveyance efficiency, and functionality (chemical resistance, electrical insulation, moisture resistance, cold resistance, workability, etc.) Can be obtained.
As a lamination | stacking aspect of the said laminate film, ONy / Al (SUS) / PP, PET / ONy / Al (SUS) / PP, ONy / Al / PVC is mentioned, for example.

〔ラミネート包材の構成〕
本実施形態のラミネート包材は、上記ラミネートフィルムから構成されている。一般に、アルミニウム層を含むラミネート包材は、冷間成型の際にアルミニウム層においてネッキングによる破断が生じ易いため冷間成型に適していない。この点、本実施形態のラミネート包材によれば、上記したONyフィルムが優れた深絞り成型性を有するため、冷間での深絞り成型などの際に、アルミニウム層の破断を抑制でき、包材におけるピンホールの発生を抑制できる。したがって、包材総厚が薄い場合でも、シャープな形状かつ高強度の成型品が得られる。
[Composition of laminate packaging material]
The laminate packaging material of this embodiment is comprised from the said laminate film. In general, a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer is easily broken by necking during cold forming. In this regard, according to the laminate packaging material of the present embodiment, the above-described ONy film has excellent deep-drawing moldability, so that it is possible to suppress the breakage of the aluminum layer during cold-drawing, etc. Generation of pinholes in the material can be suppressed. Therefore, even when the total thickness of the packaging material is thin, a molded product having a sharp shape and high strength can be obtained.

本実施形態のラミネート包材は、ONyフィルムと他のラミネート基材との全体の厚みが200μm以下であることが好ましい。かかる全体の厚みが200μmを超えると、冷間成型によるコーナー部の成型が困難となり、シャープな形状の成型品が得られにくい傾向がある。   The laminate packaging material of this embodiment preferably has an overall thickness of the ONy film and other laminate base material of 200 μm or less. When the total thickness exceeds 200 μm, it becomes difficult to form the corner portion by cold forming, and it tends to be difficult to obtain a molded product having a sharp shape.

本実施形態のラミネート包材におけるONyフィルムの厚さは、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。ここで、ONyフィルムの厚さが5μm未満では、ラミネート包材の耐衝撃性が低くなり、冷間成型性が不十分となる傾向にある。一方、ONyフィルムの厚さが50μmを超えると、ラミネート包材の耐衝撃性の更なる向上効果が得られにくくなり、包材総厚が増加するばかりで好ましくない。   The thickness of the ONy film in the laminate packaging material of this embodiment is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 30 μm or less. Here, if the thickness of the ONy film is less than 5 μm, the impact resistance of the laminate packaging material tends to be low, and the cold formability tends to be insufficient. On the other hand, when the thickness of the ONy film exceeds 50 μm, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.

〔二軸延伸ナイロンフィルムの製造装置〕
次に、本実施形態の二軸延伸ナイロンフィルムを製造する方法について図面に基づいて説明する。
先ず、本実施形態の二軸延伸ナイロンフィルムを製造する装置について、一例を挙げて説明する。
フィルム製造装置100は、図1に示すように、原反フィルム1を製造するための原反製造装置90と、原反フィルム1を延伸する二軸延伸装置(チューブラー延伸装置)10と、延伸後に折り畳まれた基材フィルム2(以後、単に「フィルム2」ともいう)を予熱する第一熱処理装置20(予熱炉)と、予熱されたフィルム2を上下2枚に分離する分離装置30と、分離されたフィルム2を熱処理(熱固定)する第二熱処理装置40と、フィルム2が熱固定されるときに、下流側からフィルム2に張力を加える張力制御装置50と、フィルム2が熱固定されてなる二軸延伸ナイロンフィルム3(以後、単に「フィルム3」ともいう)を巻き取る巻取装置60とを備えている。
[Production equipment for biaxially stretched nylon film]
Next, a method for producing the biaxially stretched nylon film of the present embodiment will be described based on the drawings.
First, an apparatus for producing the biaxially stretched nylon film of this embodiment will be described with an example.
As shown in FIG. 1, the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching. A first heat treatment device 20 (preheating furnace) that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set. And a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).

原反製造装置90は、図1に示すように、押出機91と、サーキュラーダイス92と、水冷リング93と、安定板94と、ピンチロール95とを備えている。
チューブラー延伸装置10は、チューブ状の原反フィルム1を内部空気の圧力により二軸延伸(バブル延伸)してフィルム2を製造するための装置である。このチューブラー延伸装置10は、図1に示すように、ピンチロール11と、加熱部12と、案内板13と、ピンチロール14とを備えている。
第一熱処理装置20は、扁平となったフィルム2を予備的に熱処理するための装置である。第一熱処理装置20は、図1に示すように、テンター21と、加熱炉22とを備えている。
分離装置30は、図1に示すように、ガイドロール31と、トリミング装置32と、分離ロール33A,33Bと、溝付ロール34A〜34Cとを備えている。また、トリミング装置32は、ブレード321を有している。
As shown in FIG. 1, the raw fabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
The tubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air. As shown in FIG. 1, the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
The first heat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2. As shown in FIG. 1, the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
As shown in FIG. 1, the separating device 30 includes a guide roll 31, a trimming device 32, separating rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.

第二熱処理装置40は、図1に示すように、テンター41と、加熱炉42とを備えている。
張力制御装置50は、図1に示すように、ガイドロール51A,51Bと、張力ロール52とを備えている。
巻取装置60は、図1に示すように、ガイドロール61と、巻取ロール62とを備えている。
The second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
As shown in FIG. 1, the tension controller 50 includes guide rolls 51 </ b> A and 51 </ b> B and a tension roll 52.
As shown in FIG. 1, the winding device 60 includes a guide roll 61 and a winding roll 62.

〔二軸延伸ナイロンフィルムの製造方法〕
次に、このフィルム製造装置100を用いて二軸延伸ナイロンフィルムを製造する各工程を詳細に説明する。
[Production method of biaxially stretched nylon film]
Next, each process which manufactures a biaxially-stretched nylon film using this film manufacturing apparatus 100 is demonstrated in detail.

(原反フィルム製造工程)
原料であるナイロン樹脂は、図1に示すように、押出機91により溶融混練され、サーキュラーダイス92によりチューブ状に押し出される。チューブ状の溶融樹脂は、水冷リング93により冷却される。原反フィルム1は原料である溶融ナイロン樹脂が水冷リング93により急冷されることで成型される。冷却された原反フィルム1は、安定板94により折り畳まれる。折り畳まれた原反フィルム1は、ピンチロール95により、扁平なフィルムとして次の二軸延伸工程に送られる。
(Raw film production process)
As shown in FIG. 1, the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92. The tubular molten resin is cooled by a water cooling ring 93. The raw film 1 is molded by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93. The cooled original film 1 is folded by the stabilizer 94. The folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.

(二軸延伸工程)
原反フィルム製造工程により製造された原反フィルム1は、図1に示すように、ピンチロール11により、扁平なフィルムとして装置内部に導入される。導入された原反フィルム1は、加熱部12で赤外線により加熱することでバブル延伸される。その後、バブル延伸された後のフィルム2は、案内板13により折り畳まれる。折り畳まれたフィルム2は、ピンチロール14によりピンチされ扁平なフィルム2として次の第一熱処理工程に送られる。
(Biaxial stretching process)
As shown in FIG. 1, the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11. The introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12. Thereafter, the film 2 after being bubble-stretched is folded by the guide plate 13. The folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.

この際、MD方向およびTD方向の延伸倍率がそれぞれ2.8倍以上であることが必要である。MD方向およびTD方向の延伸倍率のいずれかが2.8倍未満である場合、得られるフィルムの強度が低下して実用性に問題が生ずる。   At this time, the draw ratios in the MD direction and the TD direction must be 2.8 times or more, respectively. When either the MD direction or TD direction draw ratio is less than 2.8 times, the strength of the resulting film is lowered, causing a problem in practicality.

また、MD方向およびTD方向の最大歪速度がそれぞれ2.5s−1以上であることが必要である。MD方向およびTD方向の最大歪速度のいずれかが2.5s−1未満である場合、得られるフィルムに所望の結晶化度および突刺強度を付与することができず、フィルム強度或いは深絞り成型性が不足する。また、深絞り成型性の更なる向上という観点から、最大歪速度は、3.0s−1以上であることがより好ましい。
なお、歪速度とは、時間あたりの倍率の増加率のことをいう。
Further, it is necessary that the maximum strain rates in the MD direction and the TD direction are 2.5 s −1 or more, respectively. When either the maximum strain rate in the MD direction or the TD direction is less than 2.5 s −1 , the desired film crystallinity and puncture strength cannot be imparted to the resulting film, and the film strength or deep drawability Is lacking. Further, from the viewpoint of further improving deep drawability, the maximum strain rate is more preferably 3.0 s −1 or more.
The strain rate refers to the rate of increase in magnification per time.

そして、最大歪速度は、次のような方法により求めることができる。
まず、延伸途中のフィルムサンプルを採取する。そして、このサンプルの移動方向の移動距離に対する、サンプルの折径(幅)の変化を計測して、移動距離とサンプルの折径(幅)との関係を示す曲線を作成する。ここで、移動距離からは、延伸開始からの時間が算出できる。また、サンプルの折径と、原反フィルム(未延伸フィルム)の折径(幅)と、TD方向の延伸倍率との関係は、下記式:
(サンプルの折径(幅))/(原反フィルムの折径(幅))=(TD方向の延伸倍率)
で表されることから、サンプルの折径(幅)を原反フィルムの折径(幅)で割ることにより、TD方向の延伸倍率が算出できる。そのため、移動距離とサンプルの折径との関係を示す曲線から、延伸開始からの時間とTD方向の延伸倍率との関係を示す曲線を作成することができる。
次いで、上述したサンプルについて、サンプルの移動方向の移動距離に対する、サンプルの厚みの変化を計測して、移動距離とサンプルの厚みとの関係を示す曲線を作成する。ここで、移動距離からは、延伸開始からの時間が算出できる。また、サンプルの厚みと、原反フィルムの厚みと、MD×TDの総合延伸倍率との関係は、下記式:
(原反フィルムの厚み)/(サンプルの厚み)=(MD×TDの総合延伸倍率)
で表されることから、原反フィルム厚みからサンプルの厚みを割ることにより、MD×TDの総合延伸倍率が算出できる。また、MD×TDの総合延伸倍率と、TD方向の延伸倍率と、MD方向の延伸倍率との関係は、下記式:
(MD×TDの総合延伸倍率)/(TD方向の延伸倍率)=(MD方向の延伸倍率)
で表されることから、MD×TDの総合延伸倍率から先程算出したTD方向の延伸倍率を割ることにより、MD方向の延伸倍率が算出できる。そのため、移動距離とサンプルの厚みとの関係を示す曲線から、延伸開始からの時間とMD方向の延伸倍率との関係を示す曲線を作成することができる。
以上のようにして作成できる2つの曲線により、延伸開始からの時間に対するMD方向およびTD方向の延伸倍率の変化状況が定量化できる。そして、これらの曲線において、曲線の傾きが最大となる箇所の傾きを求めることにより、MD方向およびTD方向の最大歪速度を求めることができる。
The maximum strain rate can be obtained by the following method.
First, a film sample in the middle of stretching is collected. Then, a change in the folding diameter (width) of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the folding diameter (width) of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance. Moreover, the relationship between the folding diameter of the sample, the folding diameter (width) of the raw film (unstretched film), and the stretching ratio in the TD direction is expressed by the following formula:
(Folded diameter of sample (width)) / (Folded diameter of raw film (width)) = (Stretch ratio in TD direction)
Therefore, by dividing the folding diameter (width) of the sample by the folding diameter (width) of the original film, the stretching ratio in the TD direction can be calculated. Therefore, a curve indicating the relationship between the time from the start of stretching and the stretching ratio in the TD direction can be created from a curve indicating the relationship between the moving distance and the folding diameter of the sample.
Next, for the sample described above, a change in the thickness of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the thickness of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance. Moreover, the relationship between the thickness of the sample, the thickness of the raw film, and the overall draw ratio of MD × TD is expressed by the following formula:
(Thickness of original film) / (Thickness of sample) = (Total draw ratio of MD × TD)
Therefore, the total draw ratio of MD × TD can be calculated by dividing the thickness of the sample from the thickness of the raw film. Moreover, the relationship between the MD × TD total draw ratio, the TD direction draw ratio, and the MD direction draw ratio is given by the following formula:
(MD × TD total draw ratio) / (TD direction draw ratio) = (MD direction draw ratio)
Therefore, by dividing the TD-direction stretch ratio calculated from the MD × TD total stretch ratio, the MD-direction stretch ratio can be calculated. Therefore, a curve indicating the relationship between the time from the start of stretching and the stretching ratio in the MD direction can be created from the curve indicating the relationship between the moving distance and the thickness of the sample.
With the two curves that can be created as described above, the change state of the draw ratio in the MD direction and the TD direction with respect to the time from the start of drawing can be quantified. In these curves, the maximum strain rate in the MD direction and the TD direction can be obtained by obtaining the slope of the portion where the slope of the curve is maximum.

さらに、延伸終了時にはMD方向の延伸倍率よりもTD方向の延伸倍率の方が大きくなることが好ましい。また、TD方向の延伸倍率からMD方向の延伸倍率を減じた差(TD−MD)が、0.1倍以上0.8倍以下であることが好ましく、0.2倍以上0.8倍以下であることがより好ましく、0.3倍以上0.8倍以下であることが更により好ましい。TD−MDの値が前記下限未満では、得られるフィルムの深絞り成型性が不十分となる傾向にあり、また、フィルムの厚み精度が低下する傾向にある。また、特に、TD−MDの値が0.1倍以下の場合には、延伸安定性が劣るとともに、フィルムの厚み精度が低下する傾向にある。一方、TD−MDの値が前記上限を超えると、得られるフィルムの深絞り成型性が不十分となる傾向にあり、また、延伸安定性が低下する。   Furthermore, it is preferable that the stretching ratio in the TD direction is larger than the stretching ratio in the MD direction at the end of stretching. Further, the difference (TD-MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is preferably 0.1 to 0.8 times, and more preferably 0.2 to 0.8 times. It is more preferable that it is 0.3 times or more and 0.8 times or less. If the value of TD-MD is less than the above lower limit, the deep drawability of the resulting film tends to be insufficient, and the thickness accuracy of the film tends to be lowered. In particular, when the value of TD-MD is 0.1 times or less, the stretching stability is inferior and the thickness accuracy of the film tends to be lowered. On the other hand, when the value of TD-MD exceeds the upper limit, the deep drawability of the resulting film tends to be insufficient, and the stretching stability is lowered.

(第一熱処理工程)
二軸延伸工程から送られたフィルム2は、テンター21のクリップ(図示せず)で両端部を把持されながら、このフィルム2の収縮開始温度以上であって、フィルム2の融点よりも約30℃低い温度かそれ以下の温度でこのフィルム2を予め熱処理されて次の分離工程に送られる。
この第一熱処理における熱処理温度は、120℃以上190℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。
この第一熱処理工程により、フィルム2の結晶化度が増して、重なり合ったフィルム同士の滑り性が良好になる。
(First heat treatment process)
The film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21. The film 2 is preheated at a low temperature or lower and sent to the next separation step.
The heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
By this first heat treatment step, the crystallinity of the film 2 is increased, and the slipping property between the overlapping films is improved.

(分離工程)
ガイドロール31を介して送られた扁平なフィルム2は、図1に示すように、トリミング装置32のブレード321により、両端部を切開されて2枚のフィルム2A,2Bに分離される。そして、フィルム2A,2Bは、上下に離れて位置する一対の分離ロール33A、33Bにより、フィルム2A,2Bの間に空気を介在させながらこれらを分離される。この扁平なフィルム2の切開は、両端部から若干内側にブレード321を位置させることにより、一部分耳部が生じるように行ってもよく、或いは、フィルム2の折り目部分にブレード321を位置させることにより、耳部が生じないように行ってもよい。
これらのフィルム2A,2Bは、フィルムの流れ方向に順に位置する3個の溝付ロール34Aから34Cにより、再び重ねられて次の第二熱処理工程に送られる。なお、これらの溝付ロール34Aから34Cは、溝付き加工後、表面にめっき処理を施したものである。この溝を介してフィルム2A、2Bと空気との良好な接触状態が得られる。
(Separation process)
As shown in FIG. 1, the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B. And film 2A, 2B is isolate | separated, interposing air between film 2A, 2B by a pair of separation roll 33A, 33B located up and down apart. The incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step. In addition, these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.

(第二熱処理工程(熱固定工程))
重なった状態のフィルム2A、2Bは、テンター41のクリップ(図示せず)で両端部を把持されながら、フィルム2を構成する樹脂の融点以下であって、融点から約30℃低い温度以上で熱処理(熱固定)され、物性の安定した二軸延伸ナイロンフィルム3(以後、フィルム3ともいう)となり、次の巻取工程に送られる。
この第二熱処理(熱固定)における熱処理温度は、170℃以上210℃以下であることが必要である。熱処理温度が前記下限未満では、フィルム収縮率が大きくなり、デラミが発生する危険性が高まり、他方、前記上限を超えると、熱固定時のボーイング現象が大きくなり、フィルムの歪みが増し、また、密度が高くなり過ぎて、結晶化度が高くなり過ぎてフィルムの変形がし難くなる。
また、このときの弛緩率は、15%以下であることが好ましい。
なお、加熱炉42内のフィルム2A、2Bに対しては、下流側に位置する張力制御装置50により強い張力が加えられるようになっている。
(Second heat treatment process (heat setting process))
The overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
The heat treatment temperature in the second heat treatment (heat setting) needs to be 170 ° C. or higher and 210 ° C. or lower. When the heat treatment temperature is less than the lower limit, the film shrinkage rate is increased, and the risk of delamination is increased.On the other hand, when the upper limit is exceeded, the bowing phenomenon at the time of heat setting increases, and the distortion of the film increases. The density becomes too high, the crystallinity becomes too high, and the film is difficult to deform.
In addition, the relaxation rate at this time is preferably 15% or less.
A strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.

(巻取工程)
第二熱処理工程により熱固定されたフィルム3は、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取られる。
(Winding process)
The film 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.

〔実施形態の変形〕
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造および形状などは、本発明の目的および効果を達成できる範囲内において、他の構造や形状などとしても問題はない。
[Modification of Embodiment]
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the object and effect. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. In addition, the specific structure and shape in carrying out the present invention may be used as other structures and shapes within the scope of achieving the object and effect of the present invention.

例えば、本実施形態では、二軸延伸方法としてチューブラー方式を採用したが、テンター方式であってもよい。さらに、延伸方法としては同時二軸延伸でも逐次二軸延伸でもよい。   For example, in this embodiment, the tubular method is adopted as the biaxial stretching method, but a tenter method may be used. Furthermore, the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.

次に、実施例および比較例により本発明をさらに詳細に説明する。ただし、本発明はこれらの例によって何等限定されるものではない。   Next, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to these examples.

〔実施例1〕
(原反フィルム製造工程)
図1に示すように、Ny6ペレットを押出機91中で、270℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。
Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン1022FD(商品名)、相対粘度 ηr=3.5〕である。
(二軸延伸工程)
次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱すると共に、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.0倍、TD方向で3.4倍とした。また、この延伸の際の最大歪速度はMD方向で5.0s−1、TD方向で4.0s−1とした。
(第一熱処理工程および第二熱処理工程)
次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度203℃にて熱処理を施し、熱固定した。
この実施例1の突刺強度は17.9N/25μm、結晶化度は34.2%、フィルム厚さは25μmであった。
(巻取工程)
次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って二軸延伸ナイロンフィルムを製造した。得られた二軸延伸ナイロンフィルムの厚みは25μmであった。
(ラミネートフィルムの作製)
得られた二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ40μmのアルミニウム箔を中間基材とし、厚さ60μmのCPPフィルムをシーラントフィルムとして、ドライラミネートすることによりラミネートフィルムを得た。また、ドライラミネート後のラミネートフィルムは、40℃で3日間エージングを行った。
[Example 1]
(Raw film production process)
As shown in FIG. 1, after Ny6 pellets were melt-kneaded at 270 ° C. in an extruder 91, the melt was extruded as a tubular film from a circular die 92, and then rapidly cooled with water (15 ° C.). Film 1 was produced.
What was used as Ny6 is Ube Industries, Ltd. nylon 6 [UBE nylon 1022FD (trade name), relative viscosity ηr = 3.5].
(Biaxial stretching process)
Next, as shown in FIG. 1, the raw film 1 is inserted between a pair of pinch rolls 11, and then heated by the heating unit 12 while a gas is being pressed into the film 1, and blown to the stretching start point to form bubbles. The biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14. The magnification during this stretching was 3.0 times in the MD direction and 3.4 times in the TD direction. The maximum strain rate during the stretching was 5.0 s -1, 4.0 s -1 at TD direction MD direction.
(First heat treatment step and second heat treatment step)
Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and then passed through the separation apparatus 30 and then heat treated at a temperature of 203 ° C. by the second heat treatment apparatus 40. And heat fixed.
In Example 1, the puncture strength was 17.9 N / 25 μm, the crystallinity was 34.2%, and the film thickness was 25 μm.
(Winding process)
Next, as shown in FIG. 1, the film 3 heat-set in the second heat treatment step is wound as two films 3 </ b> A and 3 </ b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50. A biaxially stretched nylon film was produced. The thickness of the obtained biaxially stretched nylon film was 25 μm.
(Production of laminate film)
The obtained biaxially stretched nylon film was used as a front substrate film, an aluminum foil having a thickness of 40 μm was used as an intermediate substrate, and a CPP film having a thickness of 60 μm was used as a sealant film to obtain a laminate film. The laminated film after dry lamination was aged at 40 ° C. for 3 days.

〔実施例2〕
延伸倍率を、MD方向で3.0倍、TD方向で3.2倍とし、最大歪速度をMD方向で3.5s−1、TD方向で3.0s−1とし、熱処理温度を207℃とした以外は実施例1と同様にして製造した。この実施例2の突刺強度は17.5N/25μm、結晶化度は36.3%、フィルム厚さは25μmであった。
[Example 2]
The stretch ratio, 3.0 times in MD direction and 3.2 times in TD direction, 3.5 s the maximum strain rate in the MD direction -1, and 3.0 s -1 at TD direction, and 207 ° C. The heat treatment temperature The same production as in Example 1 was carried out except that. In Example 2, the puncture strength was 17.5 N / 25 μm, the crystallinity was 36.3%, and the film thickness was 25 μm.

〔実施例3〕
延伸倍率を、MD方向で3.0倍、TD方向で3.3倍とし、最大歪速度をMD方向で5.3s−1、TD方向で4.2s−1とし、熱処理温度を205℃とした以外は実施例1と同様にして製造した。この実施例3の突刺強度は17.7N/25μm、結晶化度は35.3%、フィルム厚さは25μmであった。
Example 3
The stretch ratio, 3.0 times in MD direction and 3.3 times in TD direction, 5.3S the maximum strain rate in the MD direction -1, and 4.2 s -1 at TD direction, and 205 ° C. The heat treatment temperature The same production as in Example 1 was carried out except that. In Example 3, the puncture strength was 17.7 N / 25 μm, the crystallinity was 35.3%, and the film thickness was 25 μm.

〔実施例4〕
延伸倍率を、MD方向で3.0倍、TD方向で3.5倍とし、最大歪速度をMD方向で3.8s−1、TD方向で3.5s−1とし、熱処理温度を208℃とした以外は実施例1と同様にして製造した。この実施例4の突刺強度は18.1N/25μm、結晶化度は37.2%、フィルム厚さは25μmであった。
Example 4
The stretch ratio, 3.0 times in MD direction and 3.5 times in TD direction, 3.8S the maximum strain rate in the MD direction -1, and 3.5 s -1 at TD direction, and 208 ° C. The heat treatment temperature The same production as in Example 1 was carried out except that. In Example 4, the puncture strength was 18.1 N / 25 μm, the crystallinity was 37.2%, and the film thickness was 25 μm.

〔実施例5〕
延伸倍率を、MD方向で3.1倍、TD方向で3.4倍とし、最大歪速度をMD方向で4.0s−1、TD方向で4.1s−1とし、熱処理温度を210℃とした以外は実施例1と同様にして製造した。この実施例5の突刺強度は17.2N/25μm、結晶化度は38.4%、フィルム厚さは25μmであった。
〔比較例1〜6〕
比較例1,2として、実施例1で示した製造方法で、製造条件(延伸倍率、最大歪み強度、熱固定温度、厚み)を以下の表1に示すように適宜調整し、二軸延伸ナイロンフィルムおよびラミネートフィルムを作製した。
一方、比較例3〜6として、以下の表1に示す製造方法で、製造条件(延伸倍率、最大歪み強度、熱固定温度、厚み)を以下の表1に示すように適宜調整し、二軸延伸ナイロンフィルムおよびラミネートフィルムを作製した。
Example 5
The stretch ratio, 3.1 times in MD direction and 3.4 times in TD direction, 4.0 s the maximum strain rate in the MD direction -1, and 4.1S -1 in the TD direction, and 210 ° C. The heat treatment temperature The same production as in Example 1 was carried out except that. In Example 5, the puncture strength was 17.2 N / 25 μm, the crystallinity was 38.4%, and the film thickness was 25 μm.
[Comparative Examples 1-6]
As Comparative Examples 1 and 2, with the production method shown in Example 1, the production conditions (stretch ratio, maximum strain strength, heat setting temperature, thickness) were appropriately adjusted as shown in Table 1 below, and biaxially oriented nylon Films and laminate films were prepared.
On the other hand, as Comparative Examples 3 to 6, with the production methods shown in Table 1 below, the production conditions (stretch ratio, maximum strain strength, heat setting temperature, thickness) were appropriately adjusted as shown in Table 1 below. A stretched nylon film and a laminate film were produced.

〔評価方法〕
以上の実施例、比較例において、得られた二軸延伸ナイロンフィルム、ラミネートフィルムについて、密度、結晶化度、突刺強度、延伸成形性、厚み精度、および、絞り成形性に関する評価を行い、その結果を表1に示した。
〔Evaluation method〕
In the above examples and comparative examples, the obtained biaxially stretched nylon film and laminate film were evaluated for density, crystallinity, puncture strength, stretch moldability, thickness accuracy, and drawability, and the results Are shown in Table 1.

(密度)
密度の測定は、得られたフィルムを、乾式自動密度計「アキュピック1330」(島津製作所製)で測定することにより行った。
(density)
The density was measured by measuring the obtained film with a dry automatic densimeter “Acupic 1330” (manufactured by Shimadzu Corporation).

(結晶化度)
結晶化度χcの測定は、上記の得られたフィルムの密度から次式により、算出する。
χc(%) = dc(d−da)/d(dc−da)×100
d : フィルムの密度 (測定値)
dc : 結晶領域の密度 (文献値 1212)
da : 非晶領域の密度 (文献値 1113)
(Crystallinity)
The crystallinity χc is measured from the density of the obtained film according to the following equation.
χc (%) = dc (d−da) / d (dc−da) × 100
d: film density (measured value)
dc: density of crystal region (reference value 1212)
da: density of amorphous region (reference value 1113)

(突刺強度)
突刺強度の測定は、得られたフィルムに対して、1mmφの針を200mm/minの突刺速度で突刺して、針がフィルムを貫通するのに要した強度(N)を測定することにより行った。
(Puncture strength)
The puncture strength was measured by piercing a 1 mmφ needle at a piercing speed of 200 mm / min on the obtained film and measuring the strength (N) required for the needle to penetrate the film. .

(延伸成形性)
延伸成型性は、フィルム製膜中に連続してフィルム折径幅を計測し、その変動率によって下記評価基準に基づいて評価した。
なお、バブル破袋折径変動率の定義は、下記の通りとした。
{(フィルム最大折径−フィルム最小折径)/2/フィルム平均折径}×100%
○:フィルム折径変動率が2.0%以下である。
×:フィルム折径変動率が2.0%を越える。
(Stretch formability)
The stretch moldability was evaluated based on the following evaluation criteria by measuring the film folding width continuously during film formation, and the variation rate.
In addition, the definition of bubble rupture folding diameter fluctuation rate was as follows.
{(Maximum film folding diameter-film minimum folding diameter) / 2 / film average folding diameter} × 100%
A: The film folding diameter fluctuation rate is 2.0% or less.
X: Film folding diameter fluctuation rate exceeds 2.0%.

(厚み精度)
厚み精度は、得られたフィルムの幅方向に1cmごとに厚みを測定し、その厚み精度(%)によって下記評価基準に基づいて評価した。
なお、厚み精度の定義は、下記の通りとした。
{(フィルム最大厚み−フィルム最小厚み)/2/フィルム平均厚み}×100%
〇:厚み精度が4.5%未満である。
×:厚み精度が4.5%以上である。
(Thickness accuracy)
The thickness accuracy was measured based on the following evaluation criteria by measuring the thickness every 1 cm in the width direction of the obtained film and measuring the thickness accuracy (%).
In addition, the definition of thickness accuracy was as follows.
{(Maximum film thickness-minimum film thickness) / 2 / average film thickness} × 100%
A: Thickness accuracy is less than 4.5%.
X: Thickness accuracy is 4.5% or more.

(絞り成形性)
絞り成型性は、まず、ラミネート包材を裁断して、120×80mmの短冊片を作製してサンプルとし、33×55mmの矩形状の金型を用いて、0.1MPaの面圧で押さえて、0.5mmの成型深さから0.5mm単位で成型深さを変えて各10枚のサンプルについて冷間成型(引き込み1段成型)を行った。そして、10枚のサンプルのいずれにもアルミニウム箔にピンホールが発生していない成型深さを限界成型深さとし、その成型深さを評価値として示した。
なお、ピンホールの確認は透過光を目視で確認した。
〇:限界成型深さが5mm以上である。
×:限界成型深さが5mm未満である。
(Drawing formability)
The drawability is determined by first cutting the laminate wrapping material to prepare a 120 × 80 mm strip and using it as a sample and pressing it with a surface pressure of 0.1 MPa using a 33 × 55 mm rectangular mold. The molding depth was changed in units of 0.5 mm from the molding depth of 0.5 mm, and cold molding (retraction one-stage molding) was performed on each of 10 samples. The molding depth at which no pinhole was generated in the aluminum foil in any of the 10 samples was defined as the limit molding depth, and the molding depth was shown as an evaluation value.
In addition, confirmation of the pinhole confirmed the transmitted light visually.
A: The limit molding depth is 5 mm or more.
X: The limit molding depth is less than 5 mm.

表1に示す結果からも明らかなように、二軸延伸ナイロンフィルムの結晶化度および突刺強度が前記条件を満たす場合(実施例1〜5)には、高いフィルム強度を有するとともに、冷間成型時に良好な深絞り成型性を有することが確認された。また、これらの二軸延伸ナイロンフィルムは、延伸成形性も良好で、フィルムの厚み精度も優れていることが確認された。
一方、二軸延伸ナイロンフィルムの結晶化度および突刺強度が前記条件を満たさない場合(比較例1〜6)では、冷間成型時に良好な深絞り成型性が不十分でフィルム強度も不十分であることが確認された。更に、これらの二軸延伸ナイロンフィルムは、延伸成形性も、フィルムの厚み精度も不十分であり、また、ラミネートフィルムの深絞り成型性も不十分であった。
As is clear from the results shown in Table 1, when the crystallinity and puncture strength of the biaxially stretched nylon film satisfy the above conditions (Examples 1 to 5), the film has high film strength and is cold-molded. Sometimes it has been found to have good deep drawability. Moreover, it was confirmed that these biaxially stretched nylon films have good stretch moldability and excellent film thickness accuracy.
On the other hand, in the case where the crystallinity and puncture strength of the biaxially stretched nylon film do not satisfy the above conditions (Comparative Examples 1 to 6), good deep drawing moldability is insufficient at the time of cold molding and the film strength is insufficient. It was confirmed that there was. Furthermore, these biaxially stretched nylon films have insufficient stretch moldability and film thickness accuracy, and the deep drawability of the laminate film is also insufficient.

本発明の二軸延伸ナイロンフィルムは、例えば工業用分野(電気自動車、タブレット型端末機器、スマートフォンなどに搭載されるリチウム電池用包材など)、医薬用分野(PTP包材など)、生活品用分野(液体洗剤用詰め替え包材など)、食品用分野などの包装材料など、耐ピンホール特性が特に必要とされる包装材料として好適に用いることができる。本発明のラミネート包材は、特に優れた深絞り成型性が要求される冷間成型用包材として好適に用いることができる。   The biaxially stretched nylon film of the present invention is, for example, for industrial fields (such as lithium battery packaging materials mounted on electric vehicles, tablet-type terminal devices, smartphones, etc.), pharmaceutical fields (PTP packaging materials, etc.), household goods. It can be suitably used as a packaging material that particularly requires pinhole resistance, such as packaging materials in the field (such as refill packaging for liquid detergents) and foods. The laminate packaging material of the present invention can be suitably used as a packaging material for cold molding that requires particularly excellent deep drawability.

3,3A,3B…二軸延伸ナイロンフィルム     3, 3A, 3B ... Biaxially stretched nylon film

Claims (6)

ナイロン6を原料として含む二軸延伸ナイロンフィルムであって、
当該フィルムの結晶化度が34%以上39%以下であり、かつ、突刺強度が17.0N/25μm以上である
ことを特徴とする二軸延伸ナイロンフィルム。
A biaxially stretched nylon film containing nylon 6 as a raw material,
A biaxially stretched nylon film, wherein the film has a crystallinity of 34% or more and 39% or less and a puncture strength of 17.0 N / 25 μm or more.
請求項1に記載の二軸延伸ナイロンフィルムにおいて、
冷間成型用であることを特徴とする二軸延伸ナイロンフィルム。
In the biaxially stretched nylon film according to claim 1,
A biaxially stretched nylon film characterized by being for cold forming.
請求項1または請求項2に記載の二軸延伸ナイロンフィルムを積層してなることを特徴とするラミネートフィルム。   A laminate film comprising the biaxially stretched nylon film according to claim 1 or 2 laminated. 請求項3に記載のラミネートフィルムを用いたことを特徴とするラミネート包材。   A laminate packaging material using the laminate film according to claim 3. 請求項1または請求項2に記載の二軸延伸ナイロンフィルムを製造する方法であって、
前記原料から原反フィルムを成形する原反フィルム製造工程と、
MD方向(フィルムの移動方向)およびTD方向(フィルムの幅方向)の延伸倍率がそれぞれ2.8倍以上であり、かつ、MD方向およびTD方向の最大歪速度がそれぞれ2.5s−1以上である条件で、前記原反フィルムを延伸する二軸延伸工程と、
前記二軸延伸工程後のフィルムに170℃以上210℃以下の熱処理温度で熱処理を施して熱固定する熱固定工程と、を備える
ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
A method for producing the biaxially stretched nylon film according to claim 1 or 2,
A raw film manufacturing process for forming a raw film from the raw material,
The stretching ratio in the MD direction (film movement direction) and TD direction (film width direction) is 2.8 times or more, respectively, and the maximum strain rate in the MD direction and TD direction is 2.5 s −1 or more, respectively. Under certain conditions, a biaxial stretching step of stretching the raw film,
A heat setting step of heat-setting the film after the biaxial drawing step at a heat treatment temperature of 170 ° C. or higher and 210 ° C. or lower.
請求項5に記載の二軸延伸ナイロンフィルムの製造方法において、
前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸する
ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
In the manufacturing method of the biaxially stretched nylon film of Claim 5,
In the biaxial stretching step, biaxial stretching is performed by a tubular biaxial stretching method. A method for producing a biaxially stretched nylon film.
JP2012286183A 2012-12-27 2012-12-27 Biaxially stretched nylon film, laminate film, laminate packaging material, and method for manufacturing a biaxially stretched nylon film Pending JP2014124947A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012286183A JP2014124947A (en) 2012-12-27 2012-12-27 Biaxially stretched nylon film, laminate film, laminate packaging material, and method for manufacturing a biaxially stretched nylon film
PCT/JP2013/083689 WO2014103785A1 (en) 2012-12-27 2013-12-17 Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film
TW102148039A TW201436995A (en) 2012-12-27 2013-12-24 Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286183A JP2014124947A (en) 2012-12-27 2012-12-27 Biaxially stretched nylon film, laminate film, laminate packaging material, and method for manufacturing a biaxially stretched nylon film

Publications (1)

Publication Number Publication Date
JP2014124947A true JP2014124947A (en) 2014-07-07

Family

ID=51020873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286183A Pending JP2014124947A (en) 2012-12-27 2012-12-27 Biaxially stretched nylon film, laminate film, laminate packaging material, and method for manufacturing a biaxially stretched nylon film

Country Status (3)

Country Link
JP (1) JP2014124947A (en)
TW (1) TW201436995A (en)
WO (1) WO2014103785A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186927A (en) * 2015-03-27 2016-10-27 大日本印刷株式会社 Wrapping material for battery
JP2020187976A (en) * 2019-05-17 2020-11-19 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, power storage device, and polyamide film
JP2020198305A (en) * 2015-03-27 2020-12-10 大日本印刷株式会社 Battery packaging material
JP6809657B1 (en) * 2019-05-17 2021-01-06 大日本印刷株式会社 Exterior materials for power storage devices, their manufacturing methods, power storage devices, and polyamide films

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268209A (en) * 1994-03-30 1995-10-17 Mitsubishi Chem Corp Polyamide resin composition for forming film and biaxially oriented polyamide film made therefrom
JP4431822B2 (en) * 2003-07-04 2010-03-17 昭和電工パッケージング株式会社 Packaging material with excellent moldability and packaging container molded using the same
KR101292901B1 (en) * 2006-08-14 2013-08-02 이데미쓰 유니테크 가부시키가이샤 Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
JP5487485B2 (en) * 2010-04-01 2014-05-07 興人フィルム&ケミカルズ株式会社 Biaxially stretched nylon film for cold forming
JP2011255931A (en) * 2010-06-09 2011-12-22 Kohjin Co Ltd Cold-forming press-through pack packaging material including biaxially stretched nylon film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186927A (en) * 2015-03-27 2016-10-27 大日本印刷株式会社 Wrapping material for battery
JP2020198305A (en) * 2015-03-27 2020-12-10 大日本印刷株式会社 Battery packaging material
JP2020187976A (en) * 2019-05-17 2020-11-19 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, power storage device, and polyamide film
JP6809657B1 (en) * 2019-05-17 2021-01-06 大日本印刷株式会社 Exterior materials for power storage devices, their manufacturing methods, power storage devices, and polyamide films
JP7234794B2 (en) 2019-05-17 2023-03-08 大日本印刷株式会社 Exterior material for power storage device, method for producing the same, power storage device, and polyamide film

Also Published As

Publication number Publication date
WO2014103785A1 (en) 2014-07-03
TW201436995A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP6218582B2 (en) Method for producing stretched nylon film, method for producing multilayer film, method for producing packaging material, and method for producing battery
JP2015107583A (en) Multilayer film, package material, and battery
JP2008044209A (en) Biaxially stretched nylon film, laminated packaging material and forming method of biaxially stretched nylon film
JP2013022773A (en) Biaxially oriented nylon film for cold molding, laminate film, and molding
JP2015107581A (en) Multilayer film, multilayer film package material, draw-molded article, and battery
WO2014103785A1 (en) Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film
WO2013089081A1 (en) Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material
JP2015107585A (en) Multilayer film, multilayer film package material, draw molded article, and battery
WO2013141135A1 (en) Biaxially stretched nylon film, laminated film, laminated packing material, and method of manufacturing a biaxially stretched nylon film
JP2014054797A (en) Biaxially oriented nylon film, laminate film, laminate packaging material, and production method of biaxially oriented nylon film
WO2013137395A1 (en) Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film
JP2015051527A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2015051525A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
WO2013137153A1 (en) Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film
JP2015107582A (en) Multilayer film, multilayer film package material, draw-molded article, and pharmaceutical packaging material
WO2014141963A1 (en) Biaxially stretched nylon coating film, laminate packaging material, and molded body
WO2014141966A1 (en) Biaxially stretched nylon coating film, laminate packaging material, and molded body
JP2015051528A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
WO2014021425A1 (en) Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film
JP2015107584A (en) Multilayer film, multilayer film package material, and draw-molded article
JP2014037076A (en) Biaxially stretched nylon film, laminated film, laminated packaging material and forming method of biaxially stretched nylon film
JP2014046473A (en) Biaxially-oriented nylon film, laminate film, laminate packaging material, and method for producing biaxially-oriented nylon film
WO2013146455A1 (en) Biaxially stretched nylon film, laminate film, laminate packing material, and method for manufacturing biaxially stretched nylon film
JP2015052033A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2015051526A (en) Biaxially stretched nylon coating film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film