JP2014124668A - Production method of magnesium alloy cast material, magnesium alloy cast material, expanded material of magnesium alloy, and molding of magnesium alloy - Google Patents

Production method of magnesium alloy cast material, magnesium alloy cast material, expanded material of magnesium alloy, and molding of magnesium alloy Download PDF

Info

Publication number
JP2014124668A
JP2014124668A JP2012283549A JP2012283549A JP2014124668A JP 2014124668 A JP2014124668 A JP 2014124668A JP 2012283549 A JP2012283549 A JP 2012283549A JP 2012283549 A JP2012283549 A JP 2012283549A JP 2014124668 A JP2014124668 A JP 2014124668A
Authority
JP
Japan
Prior art keywords
magnesium alloy
molten metal
contact
mass
cast material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012283549A
Other languages
Japanese (ja)
Other versions
JP6037119B2 (en
Inventor
Eisuke Hiro
栄介 弘
Nozomi Kawabe
望 河部
Yukihiro Oishi
幸広 大石
Tomomasa Miyanaga
倫正 宮永
Takeshi Uchihara
武志 内原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012283549A priority Critical patent/JP6037119B2/en
Publication of JP2014124668A publication Critical patent/JP2014124668A/en
Application granted granted Critical
Publication of JP6037119B2 publication Critical patent/JP6037119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a magnesium alloy cast material excellent in moldability.SOLUTION: A production method of a magnesium alloy cast material includes a dissolution step for dissolving a magnesium alloy containing aluminum as an additive element to obtain a molten metal 1, and a casting step for producing a casting material 2 by solidifying the molten metal 1, and further includes a contact step for bringing the molten metal 1 into contact with a carbon material by the time of the casting step. In the contact step, assuming that the contact area (mm) of the molten metal 1 to the carbon material is S and the contact time (sec) between the carbon material and the molten metal is T, the product S×T of the contact area and the contact time is 5.0×10(mm×sec) or more.

Description

本発明は、マグネシウム合金の鋳造材の製造方法、その製造方法により製造されたマグネシウム合金の鋳造材、そのマグネシウム合金の鋳造材を塑性加工して得られるマグネシウム合金の展伸材、及びそのマグネシウム合金の展伸材にプレス成形してなるマグネシウム合金の成形品に関するものである。特に、成形性に優れるマグネシウム合金の鋳造材を製造できる製造方法に関するものである。   The present invention relates to a method for producing a cast material of magnesium alloy, a cast material of magnesium alloy produced by the production method, a wrought material of magnesium alloy obtained by plastic processing of the cast material of magnesium alloy, and the magnesium alloy The present invention relates to a magnesium alloy molded product obtained by press-molding the wrought material. In particular, the present invention relates to a production method capable of producing a cast material of a magnesium alloy having excellent formability.

マグネシウム(以下、Mg)合金は、軽量で比強度が高いなどの優れた特性を有することから、携帯電話やノート型パーソナルコンピュータといった携帯用電気・電子機器類の筺体、航空機や自動車の部品などの各種の部材に利用されている。これらMg合金部材の素材となるMg合金の鋳造材は、例えば、双ロール法や双ベルト法といった連続鋳造法によって製造される。その連続鋳造法に使用する装置として、例えば、特許文献1に示すものがある。   Magnesium (hereinafter referred to as Mg) alloy has excellent characteristics such as light weight and high specific strength, so that it can be used for portable electrical and electronic equipment such as mobile phones and notebook personal computers, as well as aircraft and automobile parts. It is used for various members. The cast material of Mg alloy used as the material of these Mg alloy members is manufactured by, for example, a continuous casting method such as a twin roll method or a twin belt method. As an apparatus used for the continuous casting method, for example, there is one shown in Patent Document 1.

特許文献1の連続鋳造装置は、Mg合金を溶解して溶湯とする溶解炉(坩堝)と、溶解炉からの溶湯を一時的に貯留する湯だめ(保持炉)と、溶解炉から湯だめに溶湯を輸送する移送樋と、湯だめから溶湯を鋳造ロールに供給する供給部とを具える。この溶解炉及び湯だめはカーボン(黒鉛)などの炭素系材料で形成されている。このような鋳造装置から得られたMg合金の鋳造材は、塑性加工を施すことでMg合金部材に加工される。   The continuous casting apparatus of Patent Document 1 includes a melting furnace (crucible) that melts Mg alloy to form a molten metal, a hot water reservoir (holding furnace) that temporarily stores molten metal from the melting furnace, and a molten metal from the melting furnace. A transfer trough for transporting the molten metal and a supply unit for supplying the molten metal from the hot water to the casting roll are provided. The melting furnace and the hot water reservoir are formed of a carbon-based material such as carbon (graphite). The cast material of Mg alloy obtained from such a casting apparatus is processed into an Mg alloy member by performing plastic working.

特開2011−45928号公報JP 2011-45928 A

上記のMg合金部材の生産性をより一層改善することが求められている。そのMg合金部材の生産性の改善策として、鋳造材の成形性の向上が挙げられる。鋳造材の成形性を向上させるには、微細で均一な鋳造組織とすればよいと考えられるが、微細で均一な鋳造組織を容易に得るための具体的な鋳造技術が提案されていない。   It is required to further improve the productivity of the Mg alloy member. As a measure for improving the productivity of the Mg alloy member, an improvement in the formability of the cast material can be mentioned. In order to improve the moldability of the cast material, it is considered that a fine and uniform cast structure is sufficient. However, a specific casting technique for easily obtaining a fine and uniform cast structure has not been proposed.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、成形性に優れるMg合金の鋳造材を製造できるMg合金の鋳造材の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a method for producing a cast material of Mg alloy that can produce a cast material of Mg alloy having excellent formability.

本発明の他の目的は、上記製造方法により製造されるMg合金の鋳造材、この鋳造材を塑性加工してなるMg合金の展伸材、このMg合金の展伸材にプレス成形してなるMg合金の成形品を提供することにある。   Another object of the present invention is a cast material of Mg alloy produced by the above production method, a wrought material of Mg alloy obtained by plastic processing of the cast material, and press-molded on the wrought material of Mg alloy. The object is to provide a molded product of Mg alloy.

本発明者らは、上記目的を達成するために、Mg合金の鋳造材の製造方法について鋭意検討した。その結果、アルミニウム(以下、Al)を含有するMg合金の場合、その溶湯に含まれるAlが炭素材料の炭素(以下、C)と反応してAlからなる凝固核を形成することで、鋳造材の結晶粒径を小さく、かつ結晶粒径のばらつきを小さくでき、それにより成形性に優れた鋳造材を得られる、との知見を得た。また、結晶粒径の微細化及び均一化に寄与するその凝固核の形成には、Mg合金の溶湯とCとの接触時間と接触面積とが重要なパラメータである、との知見も得た。これら知見に基づいて本発明を以下に規定する。 In order to achieve the above-mentioned object, the present inventors diligently studied a method for producing a cast material of Mg alloy. As a result, in the case of an Mg alloy containing aluminum (hereinafter referred to as Al), Al contained in the molten metal reacts with carbon (hereinafter referred to as C) of the carbon material to form a solidified nucleus composed of Al 4 C 3. The inventors have found that the crystal grain size of the cast material can be reduced and the variation in crystal grain size can be reduced, thereby obtaining a cast material having excellent moldability. In addition, it was also found that the contact time and the contact area between the molten Mg alloy and C are important parameters for the formation of solidification nuclei that contribute to the refinement and homogenization of the crystal grain size. Based on these findings, the present invention is defined below.

本発明のMg合金の鋳造部材の製造方法は、添加元素としてAlを含有するMg合金を溶解して溶湯とする溶解工程と、溶湯を凝固させて鋳造材を製造する鋳造工程とを具える。さらに、鋳造工程までに溶湯と炭素材料とを接触させる接触工程を具える。そして、接触工程は、炭素材料に対する溶湯の接触面積(mm)をS、炭素材料と溶湯との接触時間(sec)をTとするとき、接触面積と接触時間との積S×Tが5.0×10(mm×sec)以上である。 The method for producing a cast member of Mg alloy according to the present invention includes a melting step of melting an Mg alloy containing Al as an additive element to make a molten metal, and a casting step of producing a cast material by solidifying the molten metal. Furthermore, a contact step of bringing the molten metal into contact with the carbon material by the casting step is provided. In the contact step, when the contact area (mm 2 ) of the molten metal with respect to the carbon material is S and the contact time (sec) between the carbon material and the molten metal is T, the product S × T of the contact area and the contact time is 5 0.0 × 10 9 (mm 2 × sec) or more.

本発明のMg合金の鋳造部材の製造方法は、溶湯を炭素材料と接触面積と接触時間との積が上記範囲を満たすように接触させることで、溶湯中のAlと炭素材料のCとを十分に反応させてAlとCからなる凝固核を効果的に形成できるので、微細で均一な(粒径のばらつきの小さい)結晶粒組織を有する鋳造材を製造できる。この鋳造材は、粗大な結晶粒径が少なく、微細で粒径のばらつきの小さい結晶粒組織を有しているため、その後の塑性加工によって割れが生じ難い。即ち、本発明の製造方法によれば、成形性に優れる鋳造材を製造できる。   In the method for producing a cast member of Mg alloy according to the present invention, the molten metal is sufficiently brought into contact with the carbon material so that the product of the contact area and the contact time satisfies the above range, so that Al in the molten metal and C of the carbon material are sufficient Thus, a solidified nucleus composed of Al and C can be effectively formed, so that a cast material having a fine and uniform crystal grain structure (small variation in grain size) can be produced. Since this cast material has a coarse crystal grain size, a fine crystal grain structure with a small variation in grain size, cracks are less likely to occur by subsequent plastic working. That is, according to the manufacturing method of the present invention, a cast material having excellent formability can be manufactured.

本発明の製造方法の一形態として、溶湯と接触させる炭素材料の温度が600℃以上であることが挙げられる。   As one form of the manufacturing method of this invention, it is mentioned that the temperature of the carbon material made to contact with a molten metal is 600 degreeC or more.

上記の構成によれば、溶湯中のAlと炭素材料のCとの反応を促進することができる。そのため、効果的に凝固核を形成でき、微細で粒径のばらつきの小さい結晶粒組織を有する鋳造材を製造できる。   According to said structure, reaction with Al in molten metal and C of carbon material can be accelerated | stimulated. Therefore, a solidified nucleus can be formed effectively, and a cast material having a fine grain structure with small variation in grain size can be produced.

本発明の製造方法の一形態として、溶湯と炭素材料との接触時間が10000sec以上であることが挙げられる。   As one form of the manufacturing method of this invention, it is mentioned that the contact time of a molten metal and a carbon material is 10,000 sec or more.

上記の構成によれば、上記接触時間を10000sec以上とすることで、溶湯中のAlとCとが反応して凝固核を形成することができ、微細で粒径のばらつきの小さい結晶粒組織を有する鋳造材を製造できる。   According to said structure, by making the said contact time into 10000 sec or more, Al and C in a molten metal can react, and it can form a solidification nucleus, and the crystal grain structure | tissue which has a small and small dispersion | variation in a particle size is formed. The cast material which has can be manufactured.

本発明の製造方法の一形態として、さらに保持工程を具えることが挙げられる。この場合、溶解工程を炭素材料以外の材料で構成される溶解炉で施し、保持工程で、溶解炉からの溶湯を炭素材料で構成される保持炉で一時的に貯留する。そして、接触工程が、保持工程で施される。   One aspect of the production method of the present invention includes a holding step. In this case, the melting step is performed in a melting furnace made of a material other than the carbon material, and the molten metal from the melting furnace is temporarily stored in the holding furnace made of the carbon material in the holding step. And a contact process is given at a holding process.

上記の構成によれば、溶解炉を炭素材料以外の材料で、保持炉を炭素材料でそれぞれ構成することで、成形性に優れると共に、詳細は後述の実施の形態で説明するが、表面性状や内部性状にも優れるMg合金の鋳造材を製造できる。   According to the above configuration, the melting furnace is made of a material other than a carbon material, and the holding furnace is made of a carbon material, so that the moldability is excellent and the details will be described in the embodiments described later. A cast material of Mg alloy having excellent internal properties can be manufactured.

本発明の製造方法の一形態として、Mg合金におけるAlの含有量が、1質量%以上12質量%以下であることが挙げられる。   As one form of the manufacturing method of this invention, it is mentioned that content of Al in Mg alloy is 1 mass% or more and 12 mass% or less.

上記の構成によれば、Alが上記の範囲含有することで、耐食性および機械的特性に優れるMg合金の鋳造材を製造できる。   According to said structure, the casting material of Mg alloy which is excellent in corrosion resistance and a mechanical characteristic can be manufactured because Al contains in said range.

本発明のMg合金部材の一形態として、Mg合金は、Alを8.3質量%以上9.5質量%以下、亜鉛(Zn)を0.5質量%以上1.5質量%以下含有することが挙げられる。   As an embodiment of the Mg alloy member of the present invention, the Mg alloy contains Al in a range of 8.3 mass% to 9.5 mass% and zinc (Zn) in a range of 0.5 mass% to 1.5 mass%. Is mentioned.

上記の構成によれば、さらに耐食性に優れると共に、機械的特性にも優れるMg合金の鋳造材を製造できる。   According to said structure, while being excellent in corrosion resistance, the casting material of Mg alloy which is excellent also in a mechanical characteristic can be manufactured.

本発明のMg合金の鋳造材は、上記本発明のMg合金の鋳造材の製造方法により得られる。   The cast material of Mg alloy of the present invention is obtained by the above-described method for producing a cast material of Mg alloy of the present invention.

本発明のMg合金の鋳造材は、微細で粒径のばらつきの小さい結晶粒組織を有するため、塑性加工によって割れなどが生じ難く成形性に優れる。製造時に溶湯を炭素材料に接触させることで、溶湯に含まれるAlと炭素材料のCとが反応して凝固核を形成されるからである。この鋳造材を塑性加工して得られた本発明のMg合金の展伸材、更にこの展伸材をプレス成形して得られた本発明のMg合金の成形品は、割れなどの欠陥が少なく、高品質である。   Since the cast material of the Mg alloy of the present invention has a fine grain structure with a small grain size variation, cracking and the like are hardly caused by plastic working, and the moldability is excellent. This is because when the molten metal is brought into contact with the carbon material during production, Al contained in the molten metal and C of the carbon material react to form solidified nuclei. The wrought material of the Mg alloy of the present invention obtained by plastic processing of this cast material, and the molded product of the Mg alloy of the present invention obtained by press molding this wrought material have few defects such as cracks. High quality.

本発明のMg合金の鋳造材の製造方法は、成形性に優れるMg合金の鋳造材を製造できる。   The method for producing a cast material of Mg alloy of the present invention can produce a cast material of Mg alloy having excellent formability.

本発明のMg合金の鋳造材は、成形性に優れる。   The cast material of the Mg alloy of the present invention is excellent in formability.

本発明のMg合金の展伸材や成形品は、高品質である。   The wrought material and molded product of the Mg alloy of the present invention are of high quality.

実施形態で使用した双ロール式連続鋳造装置の概略構成図である。It is a schematic block diagram of the twin roll type continuous casting apparatus used in the embodiment. 試験例における接触面積×接触時間と平均結晶粒径との関係を示すグラフである。It is a graph which shows the relationship between the contact area x contact time in a test example, and an average crystal grain size. 試料No.1の鋳造材の断面を示す光学顕微鏡写真である。Sample No. It is an optical microscope photograph which shows the cross section of 1 cast material.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

《マグネシウム合金の鋳造材の製造方法》
本発明のMg合金の鋳造材の製造方法は、Mg合金を溶解して溶湯とする溶解工程と、溶湯を凝固させて鋳造材を製造する鋳造工程とを具える。この製造方法の主な特徴とするところは、鋳造工程までに溶湯と炭素材料とを接触させる接触工程を具え、さらに、その接触工程では、接触面積と接触時間との積が特定の値以上とする点にある。まず、製造する鋳造材の構成材料であるMg合金の組成を説明し、次に、本発明の製造方法を、図1に示す鋳造に使用する装置の一例に基づいて説明する。
<< Manufacturing Method of Magnesium Alloy Cast Material >>
The manufacturing method of the cast material of Mg alloy of this invention comprises the melting process which melt | dissolves Mg alloy to make a molten metal, and the casting process which solidifies a molten metal and manufactures a cast material. The main feature of this manufacturing method is that it comprises a contact step in which the molten metal and the carbon material are brought into contact by the casting step, and in the contact step, the product of the contact area and the contact time is a specific value or more. There is in point to do. First, the composition of the Mg alloy, which is a constituent material of the cast material to be manufactured, will be described, and then the manufacturing method of the present invention will be described based on an example of an apparatus used for casting shown in FIG.

〔マグネシウム合金〕
Mg合金の鋳造材を製造するにあたって、用意するMg合金は、添加元素として少なくともAlを含有し、残部がMg及び不可避的不純物で構成されるMg−Al系合金である。
[Magnesium alloy]
In producing a cast material of Mg alloy, the Mg alloy to be prepared is an Mg-Al alloy that contains at least Al as an additive element and the balance is composed of Mg and inevitable impurities.

Alの含有量は、1質量%以上とすることが好ましく3質量%以上、特に、5.5質量%以上、更には、7.3質量%以上とすると一層好ましい。Alの含有量が多いほど、製造時には湯流れがよく鋳造性に優れる。また、製造後の部材(鋳造材)としては、耐食性に優れる上に、強度、耐塑性変形性といった機械的特性にも優れる傾向にある。但し、Alの含有量が12質量%を超えると塑性加工性の低下を招くことから、上限は12質量%とする。Alの含有量は、11質量%以下、更に、10.5質量%以下が好ましく、特に8.3質量%〜9.5質量%が好ましい。   The content of Al is preferably 1% by mass or more, more preferably 3% by mass or more, particularly 5.5% by mass or more, and even more preferably 7.3% by mass or more. The higher the Al content, the better the hot water flow during production and the better the castability. Further, the manufactured member (cast material) tends to have excellent corrosion resistance and mechanical properties such as strength and plastic deformation resistance. However, if the Al content exceeds 12% by mass, the plastic workability is lowered, so the upper limit is 12% by mass. The Al content is preferably 11% by mass or less, more preferably 10.5% by mass or less, and particularly preferably 8.3% by mass to 9.5% by mass.

Mg合金には、Alの他、種々の添加元素を含有した種々の組成のものが挙げられる。具体的な添加元素としては、Zn、Mn、Si、Be、Ca、Sr、Y、Cu、Ag、Sn、Li、Zr、Ce、Ni、Au及び希土類元素(Y、Ceを除く)から選択された1種以上の元素が挙げられる。このような元素を含む場合、その含有量は、合計で0.01質量%以上10質量%以下、好ましくは0.1質量%以上5質量%以下が挙げられる。これら添加元素のうち、Si、Sn、Y、Ce、Ca、及び希土類元素(Y、Ceを除く)から選択される少なくとも1種の元素を合計0.001質量%以上、好ましくは合計0.1質量%以上5質量%以下含有すると、耐熱性、難燃性に優れる。希土類元素を含有する場合、その合計含有量は0.1質量%以上が好ましく、特に、Yを含有する場合、その含有量は0.5質量%以上が好ましい。不純物は、例えば、Feなどが挙げられる。   Mg alloys include those having various compositions containing various additive elements in addition to Al. Specific additive elements are selected from Zn, Mn, Si, Be, Ca, Sr, Y, Cu, Ag, Sn, Li, Zr, Ce, Ni, Au, and rare earth elements (excluding Y and Ce). 1 type or more elements. When such elements are included, the total content is 0.01% by mass or more and 10% by mass or less, preferably 0.1% by mass or more and 5% by mass or less. Among these additive elements, at least one element selected from Si, Sn, Y, Ce, Ca, and rare earth elements (excluding Y and Ce) is in total 0.001% by mass or more, preferably in total 0.1 When it is contained in an amount of from 5% by mass to 5% by mass, it is excellent in heat resistance and flame retardancy. When the rare earth element is contained, the total content is preferably 0.1% by mass or more, and particularly when Y is contained, the content is preferably 0.5% by mass or more. Examples of the impurities include Fe.

Mg−Al系合金のより具体的な組成は、例えば、ASTM規格におけるAZ系合金(Mg−Al−Zn系合金、Zn:0.2質量%〜1.5質量%)、AM系合金(Mg−Al−Mn系合金、Mn:0.05質量%〜0.5質量%)、AS系合金(Mg−Al−Si系合金、Si:0.3質量%〜4.0質量%)、Mg−Al−RE(希土類元素)系合金、AX系合金(Mg−Al−Ca系合金、Ca:0.2質量%〜6.0質量%)、AZX系合金(Mg−Al−Zn−Ca系合金、Zn:0.2質量%〜1.5質量%、Ca:0.1質量%〜4.0質量%)、AJ系合金(Mg−Al−Sr系合金、Sr:0.2質量%〜7.0質量%)などが挙げられる。特に、Alを8.3質量%〜9.5質量%、Znを0.5質量%〜1.5質量%含有するMg−Al系合金、代表的にはAZ91合金は、耐食性、機械的特性に優れて好ましい。   More specific compositions of Mg-Al alloys include, for example, AZ-based alloys (Mg-Al-Zn-based alloys, Zn: 0.2 mass% to 1.5 mass%) in ASTM standards, AM-based alloys (Mg -Al-Mn alloy, Mn: 0.05 mass% to 0.5 mass%), AS alloy (Mg-Al-Si alloy, Si: 0.3 mass% to 4.0 mass%), Mg -Al-RE (rare earth element) based alloy, AX based alloy (Mg-Al-Ca based alloy, Ca: 0.2 mass% to 6.0 mass%), AZX based alloy (Mg-Al-Zn-Ca based) Alloy, Zn: 0.2 mass% to 1.5 mass%, Ca: 0.1 mass% to 4.0 mass%), AJ alloy (Mg—Al—Sr alloy, Sr: 0.2 mass%) -7.0 mass%) and the like. In particular, Mg—Al based alloys, typically AZ91 alloy, containing Al from 8.3 mass% to 9.5 mass% and Zn from 0.5 mass% to 1.5 mass% have corrosion resistance and mechanical properties. It is excellent and preferable.

〔鋳造装置〕
続いて、図1を参照して可動鋳型に溶湯の自重を利用してMg合金の溶湯を供給するMg合金の双ロール式連続鋳造装置100を説明する。この装置100は、Mg合金を溶解して溶湯1とする溶解炉(坩堝)10と、溶解炉10からの溶湯1を一時的に貯留する保持炉12と、保持炉12から供給された溶湯1を凝固させて鋳造材2を形成する一対のロール14とを具える。この溶解炉10と保持炉12とは、溶解炉10から溶湯1を保持炉12に輸送する移送樋11で連結されている。保持炉12のロール14側には、保持炉12から溶湯1をロール14へ供給する注湯口13を具える供給部12dが連結され、供給部12dの注湯口13側がロール14に近接又は接触するように配置されている。溶解炉10、移送樋11、保持炉12、供給部12d、及び注湯口13には溶湯1の温度を調節できるようにそれぞれヒータ(図示略)を設けることができる。
[Casting equipment]
Next, a twin-roll type continuous casting apparatus 100 for Mg alloy that supplies molten Mg alloy to the movable mold using its own weight will be described with reference to FIG. The apparatus 100 includes a melting furnace (crucible) 10 that melts an Mg alloy to form a molten metal 1, a holding furnace 12 that temporarily stores the molten metal 1 from the melting furnace 10, and a molten metal 1 that is supplied from the holding furnace 12. And a pair of rolls 14 for forming the cast material 2. The melting furnace 10 and the holding furnace 12 are connected by a transfer rod 11 that transports the molten metal 1 from the melting furnace 10 to the holding furnace 12. A supply unit 12 d including a pouring port 13 for supplying the molten metal 1 from the holding furnace 12 to the roll 14 is connected to the roll 14 side of the holding furnace 12, and the pouring port 13 side of the supply unit 12 d is close to or in contact with the roll 14. Are arranged as follows. A heater (not shown) can be provided in each of the melting furnace 10, the transfer rod 11, the holding furnace 12, the supply unit 12d, and the pouring port 13 so that the temperature of the molten metal 1 can be adjusted.

このような連続鋳造装置100を用いて鋳造材を製造する。   A cast material is manufactured using such a continuous casting apparatus 100.

本発明の製造方法では、溶湯1を凝固させて鋳造材2を形成するまでの間で溶湯1を炭素材料と接触させる。その際、炭素材料に対する溶湯1の接触面積(mm)をS、炭素材料と溶湯との接触時間(sec)をTとするとき、接触面積Sと接触時間Tとの積S×Tが5.0×10(mm×sec)以上となるように溶湯1と炭素材料とを接触させる。そうすれば、溶湯中のAlと炭素材料のCとが反応して凝固核を形成でき、微細で均一な(粒径のばらつきの小さい)結晶粒組織の鋳造材を製造できる。微細な結晶粒組織とは、平均結晶粒径が35μm以下のことを言う。この平均結晶粒径は、35μm以下、特に30μm以下が好ましい。 In the manufacturing method of the present invention, the molten metal 1 is brought into contact with the carbon material until the molten metal 1 is solidified to form the cast material 2. At that time, when the contact area (mm 2 ) of the molten metal 1 with respect to the carbon material is S and the contact time (sec) between the carbon material and the molten metal is T, the product S × T of the contact area S and the contact time T is 5 The molten metal 1 and the carbon material are brought into contact with each other so as to be 0.0 × 10 9 (mm 2 × sec) or more. Then, Al in the molten metal and C of the carbon material can react to form solidified nuclei, and a cast material having a fine and uniform crystal grain structure can be manufactured (small variation in grain size). The fine crystal grain structure means that the average crystal grain size is 35 μm or less. The average crystal grain size is preferably 35 μm or less, particularly preferably 30 μm or less.

具体的には、連続鋳造装置100の溶湯1と接触する箇所を炭素材料で構成することが挙げられる。例えば、連続鋳造装置100のうち少なくとも、(1)溶解炉10と保持炉12の両方を炭素材料で構成、(2)溶解炉10を炭素材料、保持炉12を炭素材料以外の材料で構成、(3)溶解炉10を炭素材料以外の材料、保持炉12を炭素材料で構成とすることが挙げられる。中でも、上記(3)のように、溶解炉10を炭素材料以外の材料で構成し、保持炉12を炭素材料で構成することが好ましい。そうすれば、成形性に優れると共に、表面性状や内部性状にも優れるMg合金の鋳造材を製造できる。通常、溶解炉10では随時Mg合金を充填するので、その際に溶湯が酸化しないようにBe(ベリリウム)を添加することが多い。しかし、BeはCと反応し易く、溶解炉10を炭素材料で構成すると、BeがCと反応して溶湯中の金属Be量が減少し、酸化防止効果が得られ難くなる。一方、保持炉12を炭素材料で構成した場合、保持炉12で溶湯中のBeがCと反応しても、保持炉12は一般に密閉されていることが多く、溶解炉10ほど溶湯が大気と触れあうことがないため、酸化防止効果が低下しても問題が少ないからである。   Specifically, the part which contacts the molten metal 1 of the continuous casting apparatus 100 is made of a carbon material. For example, in the continuous casting apparatus 100, at least (1) both the melting furnace 10 and the holding furnace 12 are made of a carbon material, (2) the melting furnace 10 is made of a carbon material, and the holding furnace 12 is made of a material other than the carbon material, (3) The melting furnace 10 may be made of a material other than a carbon material, and the holding furnace 12 may be made of a carbon material. Among these, it is preferable that the melting furnace 10 is made of a material other than the carbon material and the holding furnace 12 is made of the carbon material as in (3) above. If it does so, while being excellent in a moldability, the casting material of Mg alloy which is excellent also in surface property and internal property can be manufactured. Usually, the melting furnace 10 is filled with an Mg alloy at any time, so that Be (beryllium) is often added so that the molten metal is not oxidized at that time. However, Be is easy to react with C, and if the melting furnace 10 is made of a carbon material, Be reacts with C and the amount of metal Be in the molten metal is reduced, so that it is difficult to obtain an antioxidant effect. On the other hand, when the holding furnace 12 is made of a carbon material, even if Be in the molten metal reacts with C in the holding furnace 12, the holding furnace 12 is often sealed in general, and the melting furnace 10 has a higher atmosphere than the molten metal. This is because there is little problem even if the antioxidant effect is reduced because they do not touch each other.

例えば、溶解炉10と保持炉12の構成材料を上記(1)とする場合、溶解炉10及び保持炉12を炭素材料で構成しているため、溶湯1は、溶解炉10と保持炉12の両方で炭素材料と接触する。つまり、溶解炉10と保持炉12における溶湯との接触する領域を接触面積S、その時間を接触時間Tとし、その積S×Tが5.0×10(mm×sec)以上となるように溶湯と炭素材料とを接触させる。同様に、上記(2)とする場合、溶解炉10を炭素材料で構成しているため、溶解炉10における溶湯との接触する領域を接触面積S、その時間を接触時間Tとし、その積S×Tを5.0×10(mm×sec)以上とする。上記(3)とする場合、保持炉12を炭素材料で構成しているため、保持炉12における溶湯との接触する領域を接触面積S、その時間を接触時間Tとし、その積S×Tを5.0×10(mm×sec)以上とする。 For example, when the constituent materials of the melting furnace 10 and the holding furnace 12 are the above (1), since the melting furnace 10 and the holding furnace 12 are made of a carbon material, the molten metal 1 is composed of the melting furnace 10 and the holding furnace 12. Both are in contact with carbon materials. That is, the contact area S 1 is a region where the molten furnace 10 and the molten metal in the holding furnace 12 are in contact with each other, and the time is the contact time T 1 , and the product S 1 × T 1 is 5.0 × 10 9 (mm 2 × sec). ) The molten metal and the carbon material are brought into contact with each other so as to achieve the above. Similarly, in the case of (2) above, since the melting furnace 10 is made of a carbon material, the area in contact with the molten metal in the melting furnace 10 is defined as the contact area S 2 , the time as the contact time T 2 , The product S 2 × T 2 is set to 5.0 × 10 9 (mm 2 × sec) or more. In the case of the above (3), since the holding furnace 12 is made of a carbon material, the area in contact with the molten metal in the holding furnace 12 is a contact area S 3 , the time is the contact time T 3 , and the product S 3 × and T 3 a 5.0 × 10 9 (mm 2 × sec) or more.

なお、溶解炉10、移送樋11、保持炉12、供給部12d、及び注湯口13の全てを炭素材料で構成する場合、Mg合金が溶解炉10で溶解されてからロール14に接触するまで、溶湯は炭素材料で構成された部材と接触する。このとき溶湯と炭素材料との接触面積は、溶解炉10から注湯口13までの接触する表面積全面であるが、この場合は上記(1)の場合と同様とすればよい。これは、移送樋11や供給部12dでの溶湯の接触時間が短いため、接触時間として無視できる程度だからである。即ち、溶解炉10及び保持炉12において溶湯と炭素材料との接触面積をS、その接触時間をTとする。   In addition, when all of the melting furnace 10, the transfer rod 11, the holding furnace 12, the supply unit 12 d, and the pouring port 13 are made of a carbon material, until the Mg alloy is melted in the melting furnace 10 and contacts the roll 14, The molten metal comes into contact with a member made of a carbon material. At this time, the contact area between the molten metal and the carbon material is the entire surface area in contact from the melting furnace 10 to the pouring port 13. In this case, the contact area may be the same as in the case of (1) above. This is because the contact time of the molten metal at the transfer trough 11 and the supply unit 12d is short, so that the contact time can be ignored. That is, the contact area between the molten metal and the carbon material in the melting furnace 10 and the holding furnace 12 is S, and the contact time is T.

上記接触時間Tは、10000sec以上であることが好ましい。この接触時間Tは、長ければ長いほど溶湯中のAlと炭素材料のCとが反応して効果的に凝固核を形成でき、微細で粒径のばらつきの小さい結晶粒組織の鋳造材を製造できる。この接触時間Tの上限は、特に限定されないが、製造作業の効率上、100000sec程度とすることが好ましい。   The contact time T is preferably 10,000 seconds or longer. The longer the contact time T, the more effectively the solidified nuclei can be formed by the reaction between Al in the molten metal and C of the carbon material, and it is possible to produce a cast material having a fine and small grain size variation. . Although the upper limit of this contact time T is not specifically limited, It is preferable to set it as about 100,000 seconds on the efficiency of manufacturing operation.

溶湯を炭素材料と接触させる際、炭素材料の温度を600℃以上とすることが好ましい。例えば、保持炉12を炭素材料で構成する場合、保持炉12の温度を600℃以上に加熱して溶湯1を貯留することが好ましい。そうすれば、溶湯中のAlと保持炉12を構成するCとが反応し易くなり、効果的に凝固核を形成することができ、微細で粒径のばらつきの小さい結晶粒組織を有する鋳造材を製造できる。この温度は、上限を800℃程度とする。   When the molten metal is brought into contact with the carbon material, the temperature of the carbon material is preferably 600 ° C. or higher. For example, when the holding furnace 12 is made of a carbon material, it is preferable to store the molten metal 1 by heating the temperature of the holding furnace 12 to 600 ° C. or higher. By doing so, Al in the molten metal and C constituting the holding furnace 12 can easily react with each other, can effectively form solidification nuclei, and has a fine grain structure with a small grain size variation. Can be manufactured. The upper limit of this temperature is about 800 ° C.

この炭素材料としては、例えば、炭素含有量の多い材料であることが好ましい。炭素含有量の多い材料とは、炭素の含有量が10質量%以上の材料を言う。この炭素含有量は、30質量%以上であることが好ましく、特に70質量%以上、更には90質量%以上が好ましい。具体的には、カーボン(黒鉛)などが挙げられる。一方、炭素材料以外の材料としては、例えば、溶湯中のAlと反応せず凝固核の形成に影響のない材料が挙げられる。具体的には、モリブデン、窒化硼素、銅、黄銅などの銅合金、鉄、及びステンレスなどが挙げられる。   As this carbon material, for example, a material having a high carbon content is preferable. A material having a high carbon content refers to a material having a carbon content of 10% by mass or more. The carbon content is preferably 30% by mass or more, particularly 70% by mass or more, and more preferably 90% by mass or more. Specific examples include carbon (graphite). On the other hand, examples of the material other than the carbon material include materials that do not react with Al in the molten metal and do not affect the formation of solidified nuclei. Specific examples include molybdenum, boron nitride, copper, copper alloys such as brass, iron, and stainless steel.

《作用効果》
上述のMg合金の鋳造材の製造方法は、成形性に優れる鋳造材を製造できる。溶湯と炭素材料とをそれらの接触面積と接触時間との積が特定の範囲を満たすように接触させることで、溶湯中のAlと炭素材料のCとを十分に反応させて凝固核を効果的に形成できる上に、凝固核を均一に分散させることができるため、微細でかつ均一な結晶粒組織を有する鋳造材を製造できるからである。そのため、この鋳造材は、その後の塑性加工によって割れが生じ難い。
<Effect>
The above-described method for producing a cast material of Mg alloy can produce a cast material having excellent formability. By contacting the molten metal and the carbon material so that the product of their contact area and contact time satisfies a specific range, the molten nuclei and the carbon material C are sufficiently reacted to effectively solidify the nucleus. This is because, since the solidification nuclei can be uniformly dispersed, a cast material having a fine and uniform crystal grain structure can be produced. Therefore, this cast material is not easily cracked by subsequent plastic working.

《試験例1》
以上説明した連続鋳造装置100を用いて、Mg合金の鋳造材を複数製造し、その鋳造材の分析および評価を行った。この例では、保持炉12はカーボンで構成した略円筒形(内径φ:約400mm)のものを使用する。
<< Test Example 1 >>
Using the continuous casting apparatus 100 described above, a plurality of cast materials of Mg alloy were manufactured, and the cast materials were analyzed and evaluated. In this example, the holding furnace 12 has a substantially cylindrical shape (inner diameter φ: about 400 mm) made of carbon.

AZ91相当のMg合金(Al:8.3%〜9.5%、Zn:0.2%〜1.5%を含有(全て質量%))を用意し、これを溶解して溶湯1とした後、その溶湯1を注湯口13を介してロール14に供給して厚さ4mm、幅200mmの鋳造材(鋳造板)2の試料を製造した。この例では、溶湯1と炭素材料との接触時間(保持炉12での溶湯の貯留時間)を表1に示すように種々変更して試料1〜6の鋳造材をそれぞれ75kg製造した。各試料の接触時間は保持炉12で溶湯を保持する時間を調節することにより変更した。試料1,2では、保持炉12でMg合金を溶解し、溶解炉10を使用しなかった。試料3では、溶解炉10で溶解して溶湯1を一時的に貯留し、その溶湯1を、予め一定時間溶湯1を貯留している保持炉12へ移送した。即ち、接触時間及び接触面積は、溶解炉と保持炉の両方を平均して算出した値である。試料4〜6では、溶解炉10で溶解して溶湯1を一時的に貯留し、その溶湯1を保持炉12へ移送して、保持炉12では溶湯1を貯留せずそのまま注湯口13を介してロール14に供給した。即ち、接触時間及び接触面積は、保持炉12で一時的に接触している間のみの値である。各試料における溶湯1が炭素材料と接触する面積は表1に示す通りであり、いずれの試料も溶湯1kgあたりの炭素材料との接触面積は約7600mmであった。溶湯1と炭素材料との接触面積S、接触時間T、及びそれらの積S×Tを表1に示す。 An AZ91-equivalent Mg alloy (Al: 8.3% to 9.5%, Zn: 0.2% to 1.5% contained (all by mass%)) was prepared and melted to obtain a molten metal 1. Thereafter, the molten metal 1 was supplied to the roll 14 through the pouring port 13 to produce a sample of a cast material (cast plate) 2 having a thickness of 4 mm and a width of 200 mm. In this example, the contact time between the molten metal 1 and the carbon material (the storage time of the molten metal in the holding furnace 12) was variously changed as shown in Table 1, and 75 kg of the cast materials of Samples 1 to 6 were produced. The contact time of each sample was changed by adjusting the time for holding the molten metal in the holding furnace 12. In Samples 1 and 2, the Mg alloy was melted in the holding furnace 12, and the melting furnace 10 was not used. In the sample 3, the molten metal 1 was melted in the melting furnace 10 and temporarily stored, and the molten metal 1 was transferred to the holding furnace 12 in which the molten metal 1 was stored for a predetermined time in advance. That is, the contact time and the contact area are values calculated by averaging both the melting furnace and the holding furnace. In the samples 4 to 6, the molten metal 1 is temporarily stored by melting in the melting furnace 10, the molten metal 1 is transferred to the holding furnace 12, and the molten furnace 1 is not stored in the holding furnace 12 through the pouring port 13 as it is. And supplied to the roll 14. That is, the contact time and the contact area are values only during the temporary contact with the holding furnace 12. The area where the molten metal 1 in each sample was in contact with the carbon material was as shown in Table 1, and the contact area of each sample with the carbon material per kg of the molten metal was about 7600 mm 2 . Table 1 shows the contact area S, the contact time T, and the product S × T between the molten metal 1 and the carbon material.

[断面観察]
得られた鋳造材の平均結晶粒径を測定した。ここでは、「鋼−結晶粒度の顕微鏡試験方法 JIS G 0551(2005)」に定められた切断法によって求めた。具体的には、試験片を切断し、その切断面をバフ研磨(ダイヤモンド砥粒♯200)した後、エッチング処理を施して、光学顕微鏡の100倍視野にて組織観察を行って、ライン法にて平均結晶粒径を求めた。その測定結果を表1、及び図2に示す。また、試料No.1に対しては、光学顕微鏡の400倍視野にて結晶粒の観察を行った。その結果を図3に示す。
[Section observation]
The average crystal grain size of the obtained cast material was measured. Here, it calculated | required by the cutting method prescribed | regulated to the "microscope test method JIS G 0551 (2005)" of the steel-crystal grain size. Specifically, the test piece was cut, and the cut surface was buffed (diamond abrasive grains # 200), then subjected to etching treatment, and the structure was observed in a 100-fold field of view of an optical microscope. The average crystal grain size was determined. The measurement results are shown in Table 1 and FIG. Sample No. For No. 1, crystal grains were observed in a 400 × field of view of an optical microscope. The result is shown in FIG.

[曲げ試験による割れ数]
得られた各試料の鋳造材を圧延加工して、厚さ0.8mm、幅200mmの展伸材(圧延板)を製造し、この展伸材に対して曲げ試験を実施した。圧延加工は、鋳造材を400℃で24時間の溶体化処理をして冷却した後、これを250℃に加熱して温間で行った。また、圧延は、1パスあたりの圧下率を20%とし複数パス行った。曲げ試験は、上記展伸材を適当な長さに切断して複数の試験片を作製し、各試験片を250℃に加熱した状態でプレス成形して、各試験片を圧延方向に沿って直角に折り曲げた。ここでは、複数の試験片における圧延方向の長さの合計が1m以上となるように試験片の数と長さとを調整した。曲げ試験において、試験片の曲げ部の内側の曲げ半径Rを0.5mmとした。そして、各試験片の曲げ部の外側表面を圧延方向全長に亘って目視にて観察し、曲げ部に発生した割れ数を測定した。この例では、各試料について、それぞれ8個の試験片に対して曲げ試験を実施し、各試験片の割れ数(個)を測定してその平均値を求めた。これを試験片(圧延材)の圧延方向の長さを1mとした場合の割れ数(個/m)に換算することで評価を行った。その結果を表1に示す。
[Number of cracks by bending test]
The obtained cast material of each sample was rolled to produce a stretched material (rolled plate) having a thickness of 0.8 mm and a width of 200 mm, and a bending test was performed on the stretched material. The rolling process was performed by heating the cast material at 400 ° C. for 24 hours and cooling it, and then heating the cast material to 250 ° C. in a warm manner. In addition, rolling was performed in a plurality of passes at a reduction rate of 20% per pass. In the bending test, the wrought material is cut into an appropriate length to produce a plurality of test pieces, each of the test pieces is press-formed in a state heated to 250 ° C., and each test piece is moved along the rolling direction. Bent at a right angle. Here, the number and length of the test pieces were adjusted so that the total length in the rolling direction of the plurality of test pieces was 1 m or more. In the bending test, the bending radius R inside the bent portion of the test piece was set to 0.5 mm. And the outer surface of the bending part of each test piece was observed visually over the rolling direction full length, and the number of cracks which generate | occur | produced in the bending part was measured. In this example, for each sample, a bending test was performed on eight test pieces, and the number of cracks (pieces) of each test piece was measured to obtain an average value. Evaluation was performed by converting this into the number of cracks (pieces / m) when the length of the test piece (rolled material) in the rolling direction was 1 m. The results are shown in Table 1.

[結果]
表1や図2に示すように、接触時間が長くなるほど結晶粒径が小さくなっており、試料1及び2は、試料3〜6に比べて平均結晶粒径が小さかった。また、試料1及び2は、試料3〜6に比べて割れ数が少なかった。試料1の断面を観察した結果、図3の破線円に示すように、Alからなる凝固核3の形成が見られた。同図の破線円において黒点が凝固核3であり、それを中心にグレーのデンドライトが放射状に広がっているのが見て取れる。なお、表1や図2などには示していないが、接触時間が長くなるほど結晶粒径のばらつきが小さくなると考えられ、試料1及び2は、試料3〜6に比べて結晶粒径のばらつきが小さいと考えられる。
[result]
As shown in Table 1 and FIG. 2, the longer the contact time, the smaller the crystal grain size, and Samples 1 and 2 had a smaller average crystal grain size than Samples 3-6. Samples 1 and 2 had fewer cracks than Samples 3-6. As a result of observing the cross section of the sample 1, formation of solidified nuclei 3 made of Al 4 C 3 was observed as shown by a broken-line circle in FIG. It can be seen that the black dot is the solidification nucleus 3 in the broken-line circle in the figure, and the gray dendrite spreads radially around it. Although not shown in Table 1 or FIG. 2, it is considered that the variation in crystal grain size becomes smaller as the contact time becomes longer. Samples 1 and 2 have a variation in crystal grain size compared to Samples 3-6. It is considered small.

試料1は、溶湯と炭素材料との接触時間が長く、溶湯中のAlと炭素材料のCとが十分に反応したため、図3に示すAlからなる凝固核3を効果的に形成できたと考えられる。それに伴い、微細で粒径のばらつきの小さい結晶粒組織を有する鋳造材を製造でき、割れ数が試料3〜6に比べて極めて少なかったと考えられる。試料2も試料1と同様のことが言える。 In sample 1, the contact time between the molten metal and the carbon material was long, and Al in the molten metal and C of the carbon material reacted sufficiently, so that the solidification nucleus 3 made of Al 4 C 3 shown in FIG. 3 could be effectively formed. It is thought. Accordingly, a cast material having a fine grain structure with a small grain size variation can be produced, and the number of cracks is considered to be extremely small compared to Samples 3-6. Sample 2 can be said to be the same as Sample 1.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、溶湯中に炭素材料からなる棒状部材などを直接浸漬して溶湯と炭素材料とを接触させることができる。また、溶解炉や保持炉の内周面を凸凹形状にして溶湯と炭素材料との接触面積を増やすこともできる。   Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, a rod-shaped member made of a carbon material can be directly immersed in the molten metal so that the molten metal and the carbon material are brought into contact with each other. Further, the contact area between the molten metal and the carbon material can be increased by making the inner peripheral surface of the melting furnace or holding furnace uneven.

本発明のMg合金の鋳造材の製造方法は、Mg合金の鋳造材の製造に利用できる。また、本発明のMg合金の鋳造材、展伸材、及び成形品は、Mg合金の部材に利用できる。   The method for producing a cast material of Mg alloy of the present invention can be used for producing a cast material of Mg alloy. The cast material, wrought material, and molded product of the Mg alloy of the present invention can be used as a member of the Mg alloy.

100 双ロール式連続鋳造装置
1 溶湯 2 鋳造材 3 凝固核
10 溶解炉 11 移送樋 12 保持炉 12d 供給部
13 注湯口 14 ロール
DESCRIPTION OF SYMBOLS 100 Twin roll type continuous casting apparatus 1 Molten metal 2 Cast material 3 Solidification nucleus 10 Melting furnace 11 Transfer rod 12 Holding furnace 12d Supply part 13 Pouring spout 14 Roll

Claims (9)

添加元素としてアルミニウムを含有するマグネシウム合金を溶解して溶湯とする溶解工程と、前記溶湯を凝固させて鋳造材を製造する鋳造工程とを具えるマグネシウム合金の鋳造材の製造方法であって、
前記鋳造工程までに前記溶湯と炭素材料とを接触させる接触工程を具え、
前記接触工程は、前記炭素材料に対する溶湯の接触面積(mm)をS、当該炭素材料と溶湯との接触時間(sec)をTとするとき、前記接触面積と接触時間との積S×Tが5.0×10(mm×sec)以上であるマグネシウム合金の鋳造材の製造方法。
A method for producing a magnesium alloy casting material comprising: a melting step of melting a magnesium alloy containing aluminum as an additive element to form a molten metal; and a casting step of solidifying the molten metal to produce a cast material,
Comprising a contact step of bringing the molten metal and carbon material into contact by the casting step;
In the contacting step, when the contact area (mm 2 ) of the molten metal with respect to the carbon material is S and the contact time (sec) between the carbon material and the molten metal is T, the product of the contact area and the contact time S × T The manufacturing method of the casting material of the magnesium alloy whose is 5.0 * 10 < 9 > (mm < 2 > * sec) or more.
前記接触工程では、前記溶湯と接触させる前記炭素材料の温度が600℃以上である請求項1に記載のマグネシウム合金の鋳造材の製造方法。   2. The method for producing a magnesium alloy cast material according to claim 1, wherein in the contacting step, a temperature of the carbon material brought into contact with the molten metal is 600 ° C. or more. 前記接触時間Tが10000sec以上である請求項1または2に記載のマグネシウム合金の鋳造材の製造方法。   The method for producing a magnesium alloy cast material according to claim 1, wherein the contact time T is 10,000 sec or more. 前記溶解工程を前記炭素材料以外の材料で構成される溶解炉で施し、
前記溶解炉からの溶湯を前記炭素材料で構成される保持炉で一時的に貯留する保持工程を具え、
前記接触工程が、前記保持工程で施される請求項1〜3のいずれか1項に記載のマグネシウム合金の鋳造材の製造方法。
Applying the melting step in a melting furnace composed of a material other than the carbon material;
A holding step of temporarily storing the molten metal from the melting furnace in a holding furnace composed of the carbon material,
The manufacturing method of the cast material of the magnesium alloy of any one of Claims 1-3 with which the said contact process is given at the said holding process.
前記マグネシウム合金における前記アルミニウムの含有量が、1質量%以上12質量%以下である請求項1〜4のいずれか1項に記載のマグネシウム合金の鋳造材の製造方法。   5. The method for producing a magnesium alloy cast material according to claim 1, wherein the content of the aluminum in the magnesium alloy is 1% by mass or more and 12% by mass or less. 前記マグネシウム合金が、アルミニウムを8.3質量%以上9.5質量%以下、亜鉛を0.5質量%以上1.5質量%以下含有する請求項5に記載のマグネシウム合金の鋳造材の製造方法。   The method for producing a magnesium alloy cast material according to claim 5, wherein the magnesium alloy contains aluminum in an amount of 8.3 mass% to 9.5 mass% and zinc in an amount of 0.5 mass% to 1.5 mass%. . 請求項1〜6のいずれか1項に記載のマグネシウム合金の鋳造材の製造方法により得られたマグネシウム合金の鋳造材。   A cast material of a magnesium alloy obtained by the method for producing a cast material of a magnesium alloy according to any one of claims 1 to 6. 請求項7に記載のマグネシウム合金の鋳造材を塑性加工して得られたマグネシウム合金の展伸材。   A wrought material of a magnesium alloy obtained by plastic working the cast material of the magnesium alloy according to claim 7. 請求項8に記載のマグネシウム合金の展伸材をプレス成形して得られたマグネシウム合金の成形品。   A molded product of a magnesium alloy obtained by press-molding the expanded material of the magnesium alloy according to claim 8.
JP2012283549A 2012-12-26 2012-12-26 Magnesium alloy casting material manufacturing method Expired - Fee Related JP6037119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012283549A JP6037119B2 (en) 2012-12-26 2012-12-26 Magnesium alloy casting material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283549A JP6037119B2 (en) 2012-12-26 2012-12-26 Magnesium alloy casting material manufacturing method

Publications (2)

Publication Number Publication Date
JP2014124668A true JP2014124668A (en) 2014-07-07
JP6037119B2 JP6037119B2 (en) 2016-11-30

Family

ID=51404630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283549A Expired - Fee Related JP6037119B2 (en) 2012-12-26 2012-12-26 Magnesium alloy casting material manufacturing method

Country Status (1)

Country Link
JP (1) JP6037119B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104136A (en) * 1998-07-31 2000-04-11 Toyota Central Res & Dev Lab Inc Magnesium alloy having fine crystal grain and its production
JP2004337976A (en) * 2003-04-25 2004-12-02 Tetsuichi Mogi Method for grain refining of magnesium alloy casting
JP2009114532A (en) * 2007-11-09 2009-05-28 Mitsubishi Alum Co Ltd Manufacturing method of magnesium alloy material
JP2011045928A (en) * 2004-06-30 2011-03-10 Sumitomo Electric Ind Ltd Magnesium alloy casting material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104136A (en) * 1998-07-31 2000-04-11 Toyota Central Res & Dev Lab Inc Magnesium alloy having fine crystal grain and its production
JP2004337976A (en) * 2003-04-25 2004-12-02 Tetsuichi Mogi Method for grain refining of magnesium alloy casting
JP2011045928A (en) * 2004-06-30 2011-03-10 Sumitomo Electric Ind Ltd Magnesium alloy casting material
JP2009114532A (en) * 2007-11-09 2009-05-28 Mitsubishi Alum Co Ltd Manufacturing method of magnesium alloy material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016019066; 社団法人日本鋳造工学会: '鋳造工学便覧' 10・2 マグネシウム合金 , 20020131, pp.534-548, 丸善株式会社 *
JPN6016019067; 佐藤英一郎: 'マグネシウム鋳造合金の結晶微細化' 鋳造工学 68(12), 1996, pp.1084-1093 *

Also Published As

Publication number Publication date
JP6037119B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP4613965B2 (en) Magnesium alloy sheet
WO2006104152A1 (en) Copper alloy and process for producing the same
WO2006109801A1 (en) Copper alloy and process for producing the same
JP7180101B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheet materials for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP2013007068A (en) Magnesium alloy cast material
JP6156600B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP5910790B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP2015036433A (en) Copper alloy for electronic/electric apparatus, copper alloy sheet for electronic/electric apparatus, component for electronic/electric apparatus, terminal and bus bar
WO2017043577A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
KR20170068431A (en) Magnesium alloy, magnesium alloy sheet, magnesium alloy structural member, and method for producing magnesium alloy
WO2004070070A1 (en) Cu ALLOY AND METHOD FOR PRODUCTION THEREOF
JP4914098B2 (en) Method for producing aluminum alloy cast plate
JP6187630B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP2014125665A (en) Aluminum alloy and aluminum alloy wire
JP2017160542A (en) Magnesium alloy casting material, magnesium alloy cast coil material, wrought magnesium alloy material, magnesium alloy member, magnesium alloy joint material, and method for producing magnesium alloy casting material
JP2019178399A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
JP5516881B2 (en) Magnesium alloy casting material and manufacturing method thereof
CN111212923B (en) Casting die material and copper alloy material
JP6736869B2 (en) Copper alloy material
JP6248388B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6464742B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
CN108138262B (en) Casting die material and Cu-Cr-Zr-Al alloy material
JP6155407B1 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts, terminals, and bus bars
JP6589443B2 (en) Al-Si-Mg-based aluminum alloy plate, method for producing the alloy plate, and automotive parts using the alloy plate
JP6037119B2 (en) Magnesium alloy casting material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6037119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees